JP2015149208A - Negative electrode material for lithium ion secondary batteries, manufacturing method thereof, negative electrode, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary batteries, manufacturing method thereof, negative electrode, and lithium ion secondary battery Download PDF

Info

Publication number
JP2015149208A
JP2015149208A JP2014021908A JP2014021908A JP2015149208A JP 2015149208 A JP2015149208 A JP 2015149208A JP 2014021908 A JP2014021908 A JP 2014021908A JP 2014021908 A JP2014021908 A JP 2014021908A JP 2015149208 A JP2015149208 A JP 2015149208A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
carbon
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014021908A
Other languages
Japanese (ja)
Other versions
JP6299248B2 (en
Inventor
浩一朗 渡邊
Koichiro Watanabe
浩一朗 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2014021908A priority Critical patent/JP6299248B2/en
Publication of JP2015149208A publication Critical patent/JP2015149208A/en
Application granted granted Critical
Publication of JP6299248B2 publication Critical patent/JP6299248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a negative electrode material which is suitable for a lithium ion secondary battery negative electrode, and superior in cycle characteristics while keeping an advantages of a silicon-containing material, e.g. a silicon oxide-based material, such as a high battery capacity and a low volume expansion coefficient; a method for manufacturing such a negative electrode material; a negative electrode arranged by use of such a negative electrode material; and a lithium ion secondary battery arranged by use thereof.SOLUTION: A negative electrode material for lithium ion secondary batteries comprises: coated particles which is capable of occluding and releasing lithium ions, and includes silicon-containing particles, and a carbon coating covering the surface of each silicon-containing particle, and of which the bvalue defined by JIS Z 8729 is 0.8-5.0.

Description

本発明は、リチウムイオン二次電池用負極活物質として用いた際に、高容量で良好なサイクル特性を示すリチウムイオン二次電池用負極材と製造方法、ならびにこれを用いた負極及びリチウムイオン二次電池に関するものである。   The present invention relates to a negative electrode material for a lithium ion secondary battery and a manufacturing method that exhibit good cycle characteristics at a high capacity when used as a negative electrode active material for a lithium ion secondary battery, and a negative electrode and a lithium ion secondary battery using the same. The present invention relates to a secondary battery.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。   In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices.

従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(例えば、特許文献1,2参照)、溶融急冷した金属酸化物を負極材として適用する方法(例えば、特許文献3参照)、負極材料に酸化珪素を用いる方法(例えば、特許文献4参照)、負極材料にSi22O及びGe22Oを用いる方法(例えば、特許文献5参照)等が知られている。 Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as a negative electrode material (for example, Patent Documents 1 and 2). (See, for example, Patent Document 3), a method using silicon oxide as a negative electrode material (see, for example, Patent Document 4), and Si 2 N 2 O as a negative electrode material. And a method using Ge 2 N 2 O (see, for example, Patent Document 5).

また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後に炭化処理する方法(例えば、特許文献6参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献7参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献8参照)がある。   Further, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO after graphite and mechanical alloying (for example, see Patent Document 6), a method of coating a carbon layer on the surface of silicon particles by a chemical vapor deposition method (for example, And Patent Document 7), and a method of coating the surface of silicon oxide particles with a carbon layer by chemical vapor deposition (for example, see Patent Document 8).

しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル特性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。   However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycle characteristics are insufficient or the required characteristics of the market are still insufficient, and are not always satisfactory. However, further improvement in energy density has been desired.

特に、特許文献4では、酸化珪素をリチウムイオン二次電池用負極材として用い、高容量の電極を得ているが、本発明者が知る限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル特性が実用レベルに達していなかったり等の問題があり、改良する余地がある。   In particular, Patent Document 4 uses silicon oxide as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. However, as far as the inventors know, the irreversible capacity at the time of initial charge / discharge is still large. There is a problem that the cycle characteristics have not reached the practical level, and there is room for improvement.

また、負極材に導電性を付与した技術についても、特許文献6では固体と固体の融着であるため均一な炭素被膜が形成されず、導電性が不十分であるといった問題がある。
そして、特許文献7の方法においては、均一な炭素被膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮が余りにも大きすぎて、結果として実用に耐えられず、サイクル特性が低下するためにこれを防止するべく充電量の制限を設けなくてはならない。特許文献8の方法においては、サイクル特性の向上は確認されるものの、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。以上のことから、酸化珪素系の高い電池容量と低い体積膨張率の利点を維持しつつ、初回充放電効率が高く、サイクル特性に優れたリチウムイオン二次電池用として有効な負極材とその製造方法の開発が待たれていた。
Further, the technique of imparting conductivity to the negative electrode material also has a problem in Patent Document 6 that a uniform carbon film is not formed because of solid-solid fusion, and the conductivity is insufficient.
In the method of Patent Document 7, although a uniform carbon film can be formed, since Si is used as a negative electrode material, the expansion / contraction at the time of adsorption / desorption of lithium ions is too large. In order to prevent this, since it cannot endure practical use and cycle characteristics deteriorate, it is necessary to limit the amount of charge. In the method of Patent Document 8, although improvement in cycle characteristics is confirmed, the number of charge / discharge cycles is increased due to insufficient deposition of fine silicon crystals, integration of the carbon coating structure and the base material. As a result, there is a problem that the capacity gradually decreases and then rapidly decreases after a certain number of times, which is still insufficient for a secondary battery. From the above, while maintaining the advantages of high silicon oxide-based battery capacity and low volume expansion coefficient, negative electrode materials that are effective for lithium ion secondary batteries with high initial charge / discharge efficiency and excellent cycle characteristics, and their production The development of the method was awaited.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A

本発明は、珪素を含む材料、例えば酸化珪素系の低い体積膨張率の利点を維持しつつ、高容量でサイクル特性に優れたリチウムイオン二次電池負極用として好適な負極材及びその製造方法、これを用いた負極及びリチウムイオン二次電池を提供することを目的とする。   The present invention provides a negative electrode material suitable for a negative electrode of a lithium ion secondary battery having a high capacity and excellent cycle characteristics while maintaining the advantage of a low volume expansion coefficient of a material containing silicon, for example, silicon oxide, and a method for producing the same. An object is to provide a negative electrode and a lithium ion secondary battery using the same.

本発明者は、珪素を含む粒子を炭素被膜で被覆する場合、炭素被覆の量だけでなく、その膜質が重要であることを見出した。具体的には、リチウムイオンを吸蔵及び放出することが可能で珪素を含む粒子の表面を、JIS Z 8729におけるb*値が0.8〜5.0の範囲となるように被覆した被覆粒子を負極活物質とすることで、高容量でサイクル特性に優れたリチウムイオン二次電池が得られることを知見し、本発明をなすに至ったものである。 The present inventor has found that not only the amount of carbon coating but also the film quality is important when particles containing silicon are coated with a carbon coating. Specifically, coated particles in which lithium ions can be occluded and released and the surfaces of silicon-containing particles are coated so that the b * value in JIS Z 8729 is in the range of 0.8 to 5.0. It has been found that a lithium ion secondary battery having a high capacity and excellent cycle characteristics can be obtained by using a negative electrode active material, and the present invention has been made.

従って、本発明は下記リチウムイオン二次電池用負極材及びその製造方法、ならびに負極及びリチウムイオン二次電池を提供する。
[I].リチウムイオンを吸蔵及び放出することが可能で、珪素を含む粒子の表面が、炭素被膜で被覆され、JIS Z 8729におけるb*値が0.8〜5.0である被覆粒子からなるリチウムイオン二次電池用負極材。
[II].[I]記載のリチウムイオン二次電池用負極材を含むリチウムイオン二次電池用負極。
[III].[II]記載のリチウムイオン二次電池用負極を有するリチウムイオン二次電池。
[IV].(1)炭素被覆原料のガス、又は(2)炭素被覆原料のガス及び蒸気雰囲気中、600〜1,200℃の温度範囲で、炭素被覆原料を熱分解させ、リチウムイオンを吸蔵及び放出することが可能で、珪素を含む粒子の表面に炭素を化学蒸着して形成することを特徴とする、[I]記載のリチウムイオン二次電池用負極材を製造する製造方法。
Accordingly, the present invention provides the following negative electrode material for a lithium ion secondary battery and a method for producing the same, and the negative electrode and the lithium ion secondary battery.
[I]. Lithium ions can be occluded and released, and the surface of particles containing silicon is coated with a carbon film, and the lithium ion particles are made of coated particles having a b * value of 0.8 to 5.0 in JIS Z 8729. Negative electrode material for secondary batteries.
[II]. The negative electrode for lithium ion secondary batteries containing the negative electrode material for lithium ion secondary batteries as described in [I].
[III]. The lithium ion secondary battery which has a negative electrode for lithium ion secondary batteries as described in [II].
[IV]. (1) carbon-coated raw material gas, or (2) carbon-coated raw material in a temperature range of 600 to 1,200 ° C. in a carbon-coated raw material gas and vapor atmosphere, and occlude and release lithium ions. The method for producing a negative electrode material for a lithium ion secondary battery according to [I], wherein carbon is formed by chemical vapor deposition on the surface of particles containing silicon.

本発明によれば、高容量でかつサイクル特性に優れたリチウムイオン二次電池を得ることができる。また、その製造方法についても特別複雑なものではなく簡便であり、工業的規模の生産にも十分耐え得るものである。   According to the present invention, a lithium ion secondary battery having a high capacity and excellent cycle characteristics can be obtained. Further, the manufacturing method is not particularly complicated and simple, and can sufficiently withstand industrial scale production.

以下、本発明について詳細に説明する。
[リチウムイオン二次電池用負極材]
本発明のリチウムイオン二次電池用負極材は、リチウムイオンを吸蔵及び放出することが可能で、珪素を含む粒子の表面が、炭素被膜で被覆され、JIS Z 8729におけるb*値が0.8〜5.0である被覆粒子である。
Hereinafter, the present invention will be described in detail.
[Anode material for lithium ion secondary battery]
The negative electrode material for a lithium ion secondary battery of the present invention can occlude and release lithium ions, the surface of particles containing silicon is coated with a carbon film, and the b * value in JIS Z 8729 is 0.8. Coated particles that are ˜5.0.

リチウムイオンを吸蔵及び放出することが可能で、珪素を含む材料からなる粒子(以下、珪素を含む粒子と表記する場合がある。)としては、珪素粒子、珪素の微粒子が珪素系化合物に分散した構造を有する粒子、一般式SiOx(0.5≦x≦1.6)で表される酸化珪素粒子、又はこれらの混合物が好ましい。これらを使用することで、より初回充放電効率が高く、高容量でかつサイクル特性に優れたリチウムイオン二次電池用負極材が得られる。   As particles capable of inserting and extracting lithium ions and made of a silicon-containing material (hereinafter sometimes referred to as silicon-containing particles), silicon particles and silicon fine particles are dispersed in a silicon-based compound. Particles having a structure, silicon oxide particles represented by the general formula SiOx (0.5 ≦ x ≦ 1.6), or a mixture thereof are preferable. By using these, a negative electrode material for a lithium ion secondary battery having higher initial charge / discharge efficiency, high capacity, and excellent cycle characteristics can be obtained.

本発明における酸化珪素とは、非晶質の珪素酸化物の総称であり、不均化前の酸化珪素は、一般式SiOx(0.5≦x≦1.6)で表される。xは0.8≦x<1.6が好ましく、0.8≦x<1.3がより好ましい。この酸化珪素は、例えば、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得ることができる。   Silicon oxide in the present invention is a general term for amorphous silicon oxide, and silicon oxide before disproportionation is represented by the general formula SiOx (0.5 ≦ x ≦ 1.6). x is preferably 0.8 ≦ x <1.6, and more preferably 0.8 ≦ x <1.3. This silicon oxide can be obtained, for example, by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon.

珪素の微粒子が珪素系化合物に分散した構造を有する粒子は、例えば、珪素の微粒子を珪素系化合物と混合したものを焼成する方法や、一般式SiOxで表される不均化前の酸化珪素粒子を、アルゴン等不活性な非酸化性雰囲気中、400℃以上、好適には800〜1,100℃の温度で熱処理し、不均化反応を行うことで得ることができる。特に後者の方法で得た材料は、珪素の微結晶が均一に分散されるため好適である。上記のような不均化反応により、珪素ナノ粒子のサイズを1〜100nmとすることができる。なお、珪素ナノ粒子が酸化珪素中に分散した構造を有する粒子中の酸化珪素については、二酸化珪素であることが望ましい。なお、透過電子顕微鏡によってシリコンのナノ粒子(結晶)が無定形の酸化珪素に分散していることを確認することができる。   Particles having a structure in which silicon fine particles are dispersed in a silicon-based compound are, for example, a method of firing a mixture of silicon fine particles and a silicon-based compound, or silicon oxide particles before disproportionation represented by the general formula SiOx Can be obtained by heat treatment at a temperature of 400 ° C. or higher, preferably 800 to 1,100 ° C. in an inert non-oxidizing atmosphere such as argon, and performing a disproportionation reaction. In particular, the material obtained by the latter method is suitable because silicon crystallites are uniformly dispersed. By the disproportionation reaction as described above, the size of the silicon nanoparticles can be set to 1 to 100 nm. Note that silicon dioxide in the particles having a structure in which silicon nanoparticles are dispersed in silicon oxide is preferably silicon dioxide. Note that it can be confirmed by transmission electron microscopy that silicon nanoparticles (crystals) are dispersed in amorphous silicon oxide.

珪素を含む粒子の物性は、目的とする複合粒子により適宜選定することができる。例えば、平均粒径は0.1〜50μmが好ましく、下限は0.2μm以上がより好ましく、0.5μm以上がさらに好ましい。上限は30μm以下がより好ましく、20μm以下がさらに好ましい。なお、本発明における平均粒径とは、レーザー回折法による粒度分布測定における重量平均粒径で表すものである。   The physical properties of the particles containing silicon can be appropriately selected depending on the intended composite particles. For example, the average particle size is preferably 0.1 to 50 μm, the lower limit is more preferably 0.2 μm or more, and further preferably 0.5 μm or more. The upper limit is more preferably 30 μm or less, and further preferably 20 μm or less. In addition, the average particle diameter in this invention is represented by the weight average particle diameter in the particle size distribution measurement by a laser diffraction method.

BET比表面積は、0.5〜100m2/gが好ましく、1〜20m2/gがより好ましい。BET比表面積が0.5m2/g以上であれば、電極に塗布した際の接着性が低下して電池特性が低下するおそれがない。また100m2/g以下であれば、粒子表面の二酸化珪素の割合が大きくなり、リチウムイオン二次電池用負極材として用いた際に電池容量が低下するおそれがない。 BET specific surface area is preferably 0.5~100m 2 / g, 1~20m 2 / g is more preferable. When the BET specific surface area is 0.5 m 2 / g or more, there is no possibility that the adhesiveness when applied to the electrode is lowered and the battery characteristics are not lowered. Moreover, if it is 100 m < 2 > / g or less, the ratio of the silicon dioxide on the particle | grain surface will become large, and when it uses as a negative electrode material for lithium ion secondary batteries, there is no possibility that a battery capacity may fall.

上記珪素を含む粒子を炭素被覆することで導電性を付与し、電池特性の向上が見られる。導電性を付与するための方法として、黒鉛等の導電性のある粒子と混合する方法、上記珪素を含む粒子の表面を炭素被膜で被覆する方法、及びその両方を組み合わせる方法が挙げられるが、炭素被膜で被覆する方法が好ましく、化学蒸着(CVD)する方法がより好ましい。   Conductivity is imparted by coating the particles containing silicon with carbon to improve battery characteristics. Examples of a method for imparting conductivity include a method of mixing with conductive particles such as graphite, a method of coating the surface of the particles containing silicon with a carbon film, and a method of combining both. A method of coating with a film is preferable, and a method of chemical vapor deposition (CVD) is more preferable.

炭素被膜で被覆された被覆粒子の色差は、JIS Z 8729におけるb*値が0.8〜5.0である。この範囲とすることで、高容量でサイクル特性に優れたリチウムイオン二次電池を得ることができる。b*値は、0.9〜4.0が好ましく、1.0〜3.0がより好ましく、1.0〜1.8が特に好ましい。上記b*値の範囲を有する被覆粒子を得る方法については、下記に説明する。 The color difference of the coated particles coated with the carbon coating has a b * value of 0.8 to 5.0 in JIS Z 8729. By setting it within this range, a lithium ion secondary battery having a high capacity and excellent cycle characteristics can be obtained. The b * value is preferably 0.9 to 4.0, more preferably 1.0 to 3.0, and particularly preferably 1.0 to 1.8. A method for obtaining coated particles having the above b * value range will be described below.

炭素被膜で被覆された被覆粒子の平均粒径は、0.1〜50μmが好ましく、0.2〜30μmがより好ましく、0.5〜20μmがさらに好ましく、2〜10μmが特に好ましい。BET比表面積は、0.5〜100m2/gが好ましく、1〜20m2/gがより好ましく、1〜15m2/gがさらに好ましい。 The average particle diameter of the coated particles coated with the carbon film is preferably 0.1 to 50 μm, more preferably 0.2 to 30 μm, further preferably 0.5 to 20 μm, and particularly preferably 2 to 10 μm. BET specific surface area is preferably from 0.5 to 100 2 / g, more preferably 1-20 m 2 / g, more preferably 1~15m 2 / g.

[製造方法]
炭素被膜の形成として、例えば化学蒸着する方法としては、600〜1,200℃で熱分解して炭素を生成し得る炭素被覆原料を、600〜1,200℃で熱分解し、粒子表面に炭素を化学蒸着して形成する方法が挙げられる。例えば、上記(1)炭素被覆原料のガス、又は(2)炭素被覆原料のガス及び蒸気雰囲気中、600〜1,200℃の温度範囲で、炭素被覆原料を熱分解させ、珪素を含む粒子表面に炭素を化学蒸着して形成する方法が挙げられる。具体的には、熱処理時に反応器内に(1)炭素被覆原料のガス、又は(2)炭素被覆原料のガス及び蒸気を導入することで、効率よく行うことが可能である。なお、珪素を含む粒子として、珪素粒子、珪素の微粒子が珪素系化合物に分散した構造を有する粒子、一般式SiOx(0.5≦x≦1.6)で表される酸化珪素粒子、又はこれらの混合物を用いる場合、化学蒸着工程において高温で処理を行うと、珪素結晶の肥大化が進み、充電時の膨張が大きくなる等の点と、生産性の双方から、化学蒸着処理温度は800〜1,100℃が好ましく、800〜1,000℃がより好ましく、900〜1,000℃がさらに好ましい。
[Production method]
For example, as a method of chemical vapor deposition, the carbon coating material that can be pyrolyzed at 600 to 1,200 ° C. to generate carbon is pyrolyzed at 600 to 1,200 ° C. to form carbon on the particle surface. Can be formed by chemical vapor deposition. For example, in the above (1) carbon-coated raw material gas or (2) carbon-coated raw material gas and steam atmosphere, the carbon-coated raw material is thermally decomposed in a temperature range of 600 to 1,200 ° C., and the particle surface containing silicon And a method of chemical vapor deposition of carbon. Specifically, it can be carried out efficiently by introducing (1) a carbon-coated raw material gas or (2) a carbon-coated raw material gas and vapor into the reactor during the heat treatment. Note that as particles containing silicon, silicon particles, particles having a structure in which silicon fine particles are dispersed in a silicon-based compound, silicon oxide particles represented by a general formula SiOx (0.5 ≦ x ≦ 1.6), or these In the case of using a mixture of the above, the chemical vapor deposition temperature is 800 to 800 ° C. in terms of both productivity and the fact that if the treatment is carried out at a high temperature in the chemical vapor deposition step, the silicon crystal enlarges and the expansion during charging increases. 1,100 degreeC is preferable, 800-1,000 degreeC is more preferable, 900-1,000 degreeC is further more preferable.

上記炭素被覆の形成工程の圧力は、常圧、減圧下共に適用可能であり、減圧下としては、50〜30,000Paの減圧下が挙げられる。また、炭素被膜の形成工程に使用する装置は、バッチ式炉、ロータリーキルン、ローラーハースキルンといった連続炉、流動層等の一般的に知られた装置が使用可能である。特に、蒸着装置が粉体を静置して行うバッチ式炉の場合、減圧下で行うことにより炭素をさらに均一に被覆することができ、電池特性の向上を図ることができる。   The pressure in the carbon coating forming step is applicable to both normal pressure and reduced pressure, and examples of reduced pressure include reduced pressure of 50 to 30,000 Pa. Moreover, generally known apparatuses, such as a continuous furnace, such as a batch furnace, a rotary kiln, and a roller hearth kiln, a fluidized bed, can be used for the apparatus used for the formation process of a carbon film. In particular, in the case of a batch furnace in which the vapor deposition apparatus is placed by allowing powder to stand, carbon can be more uniformly coated by performing the process under reduced pressure, and battery characteristics can be improved.

化学蒸着による炭素被膜の形成には、上記のような様々な有機物がその炭素源として挙げられるが、熱分解温度や蒸着速度、また蒸着後に形成される炭素被膜の特性等は用いる物質によって大きく異なる場合がある。蒸着速度が大きい物質は、表面の炭素被膜の均一性が十分でない場合が多く、一方、分解に高温を要する物質は、高温での蒸着時に、珪素を含む粒子の珪素結晶が大きく成長し過ぎて、放電効率やサイクル特性の低下を招くおそれがある。   The formation of carbon films by chemical vapor deposition includes various organic substances as described above as the carbon source, but the thermal decomposition temperature, vapor deposition rate, and characteristics of the carbon film formed after vapor deposition vary greatly depending on the materials used. There is a case. Substances with a high deposition rate often have insufficient uniformity of the carbon coating on the surface. On the other hand, substances that require a high temperature for decomposition cause excessive growth of silicon crystals of silicon-containing particles during deposition at a high temperature. There is a risk that the discharge efficiency and the cycle characteristics may be deteriorated.

上記b*値の範囲を有する被覆粒子を得る方法としては、上記温度範囲で熱分解して炭素を生成し得る炭素被覆原料として特定の成分を用いること、炭素被覆量を調整することが重要である。 As a method for obtaining coated particles having the above b * value range, it is important to use a specific component as a carbon coating raw material that can be pyrolyzed within the above temperature range to generate carbon, and to adjust the carbon coating amount. is there.

炭素原料としては、炭素被覆原料が、メタン、エタン、プロパン又はプロピレンと、その他ガス成分とを含有する混合ガスが挙げられる。メタン、エタン、プロパン又はプロピレンを必須成分として、さらにその他ガス成分とを含有する混合ガスとすることにより、より初回充放電効率が高く、また高容量でかつサイクル特性に優れたリチウムイオン二次電池用負極材が得られる。製造方法の観点からは、蒸着速度については、早い方が生産性を向上させるが、被膜の均一性という点では不利である。炭素蒸着の原料となる有機物の種類によって分解温度は異なり、炭素量を稼ぐための原料と、表面特性を向上させるための原料とを使い分けることで、生産性と負極材としての特性の両立が達成可能である。表面特性を向上させるための原料としては、メタン、エタン、プロパン、プロピレンが挙げられ、炭素量を稼ぐための原料としては、その他ガス成分が挙げられる。   Examples of the carbon raw material include a mixed gas in which the carbon-coated raw material contains methane, ethane, propane, or propylene and other gas components. By using methane, ethane, propane, or propylene as an essential component and a mixed gas containing other gas components, the lithium ion secondary battery has higher initial charge / discharge efficiency, high capacity, and excellent cycle characteristics. A negative electrode material is obtained. From the viewpoint of the production method, the higher the deposition rate, the higher the productivity, but it is disadvantageous in terms of the uniformity of the coating. The decomposition temperature varies depending on the type of organic matter used as the raw material for carbon deposition, and by combining the raw material for increasing the carbon content and the raw material for improving the surface characteristics, both productivity and characteristics as the negative electrode material can be achieved. Is possible. Examples of the raw material for improving the surface characteristics include methane, ethane, propane, and propylene, and examples of the raw material for increasing the carbon content include other gas components.

混合ガス中のメタン、エタン、プロパン又はプロピレンの合計量は、混合ガス中60体積%以上が好ましく、85体積%以上がより好ましい。上限は特に限定されないが、95体積%以下でもよく、90体積%以下でもよい。   The total amount of methane, ethane, propane or propylene in the mixed gas is preferably 60% by volume or more, and more preferably 85% by volume or more in the mixed gas. Although an upper limit is not specifically limited, 95 volume% or less may be sufficient and 90 volume% or less may be sufficient.

その他ガス成分としては、トルエン、エチレン、アセチレン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素、ベンゼン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環〜3環の芳香族炭化水素等が挙げられる。これらは1種単独で又は2種以上を適宜選択して用いることができる。その他ガス成分の合計量は、混合ガス中40体積%以下が好ましく、15体積%以下がさらに好ましい。下限は特に限定されないが、5体積%以上でもよく、10体積%以上でもよい。   Other gas components include hydrocarbons such as toluene, ethylene, acetylene, butane, butene, pentane, isobutane, hexane, benzene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone. 1- to 3-ring aromatic hydrocarbons such as pyridine, anthracene, and phenanthrene. These can be used singly or in appropriate combination of two or more. The total amount of other gas components is preferably 40% by volume or less, more preferably 15% by volume or less in the mixed gas. Although a minimum is not specifically limited, 5 volume% or more may be sufficient and 10 volume% or more may be sufficient.

メタン、エタン、プロパン又はプロピレンとしては、メタン、エタン、プロパン及びプロピレンからなる群から選ばれる2種以上を含有することが好ましい。この場合は、その他ガス成分を含んでいても、含まなくてもよい。   The methane, ethane, propane or propylene preferably contains two or more selected from the group consisting of methane, ethane, propane and propylene. In this case, other gas components may or may not be included.

さらに、メタン、エタン及びプロパンを含有する混合ガスが好ましい。混合ガス中のメタン、エタン、プロパン及びプロピレンの合計量は、混合ガス中90体積%以上が好ましく、95体積%以上がさらに好ましい。上限は99.5体積%以下でもよいが、98体積%以下としてもよい。特に、ガス中のメタンの量は80体積%以上が好ましく、85〜90体積%が好ましい。ガス中のエタンの量は3〜9体積%が好ましく、4〜8体積%がさらに好ましい。ガス中のプロパンの量は1〜5体積%が好ましく、2〜4体積%がより好ましい。   Furthermore, a mixed gas containing methane, ethane and propane is preferable. The total amount of methane, ethane, propane and propylene in the mixed gas is preferably 90% by volume or more, more preferably 95% by volume or more in the mixed gas. Although an upper limit may be 99.5 volume% or less, it is good also as 98 volume% or less. In particular, the amount of methane in the gas is preferably 80% by volume or more, and preferably 85 to 90% by volume. The amount of ethane in the gas is preferably 3 to 9% by volume, more preferably 4 to 8% by volume. The amount of propane in the gas is preferably 1 to 5% by volume, more preferably 2 to 4% by volume.

メタン、エタン、プロパン及びプロピレンからなる群から選ばれる2種以上を含有する混合ガスの場合にも、その他ガス成分を含んでいても、含まなくてもよい。その他ガス成分を含む場合、その他ガス成分の合計量は、混合ガス中0.5〜10体積%が好ましく、2〜5体積%がより好ましい。   Also in the case of a mixed gas containing two or more selected from the group consisting of methane, ethane, propane and propylene, other gas components may or may not be included. When other gas components are included, the total amount of the other gas components is preferably 0.5 to 10% by volume, more preferably 2 to 5% by volume in the mixed gas.

炭素被膜の被覆量は、炭素被覆した粒子全体に対して1.0〜40質量%が好ましく、1.0〜30質量%がより好ましい。母材の粒子径にもよるが、炭素被覆量を1.0質量%以上とすることで、概ね十分な導電性を維持することができる。b*をより好適な範囲にし、よりサイクル特性を向上させるためには、炭素被膜の被覆量は、3〜25質量%がさらに好ましい。また、炭素被覆量が40質量%以下であれば、効果の向上が見られずに負極材料に占める炭素の割合が多くなってリチウムイオン二次電池用負極材として用いた場合に充放電容量が低下するような事態が発生する可能性を極力低くすることができる。 The coating amount of the carbon coating is preferably 1.0 to 40% by mass, and more preferably 1.0 to 30% by mass with respect to the entire carbon-coated particle. Although it depends on the particle diameter of the base material, by setting the carbon coating amount to 1.0% by mass or more, it is possible to maintain substantially sufficient conductivity. In order to make b * into a more suitable range and to improve cycling characteristics, the coating amount of the carbon film is more preferably 3 to 25% by mass. Further, if the carbon coating amount is 40% by mass or less, the improvement of the effect is not seen, and the proportion of carbon in the negative electrode material is increased so that the charge / discharge capacity is obtained when used as a negative electrode material for a lithium ion secondary battery. It is possible to reduce the possibility of occurrence of such a situation as much as possible.

さらに、十分な炭素被覆量であっても、被膜が不均一で酸化珪素の表面が部分的に露出していたり、また黒鉛化が不十分でタール成分が残留していたりすると、その部分は絶縁性となってしまい、充放電容量やサイクル特性に悪影響を及ぼすおそれがある。均一性は、例えば、ラマン分光分析の珪素と黒鉛の結晶強度比等で確認することができる。炭素被膜の黒鉛化についても同様に、ラマン分光分析の炭素のグラファイトとダイヤモンド結晶強度比や半値幅で確認可能である。   Furthermore, even if the carbon coverage is sufficient, if the coating is non-uniform and the silicon oxide surface is partially exposed, or if the tar component remains due to insufficient graphitization, that part will be insulated. And may adversely affect charge / discharge capacity and cycle characteristics. The uniformity can be confirmed by, for example, the crystal intensity ratio of silicon and graphite in Raman spectroscopic analysis. Similarly, graphitization of the carbon film can be confirmed by the ratio of carbon graphite to diamond crystal and the half-value width in Raman spectroscopic analysis.

炭素被膜の黒鉛化、またタール生成の抑制には、蒸着時の温度が高いほど効果があり、蒸着速度も高くなって生産性の向上に寄与する反面、酸化珪素中に微分散しているナノシリコンの肥大化に繋がり、電池容量やサイクル特性を低下させるおそれがある。   The higher the temperature during deposition, the more effective the graphitization of the carbon film and the suppression of tar formation. The higher the deposition rate, the higher the productivity, while the finely dispersed nano-particles in silicon oxide. This may lead to enlargement of silicon and may reduce battery capacity and cycle characteristics.

炭素被膜を形成する工程で、2種以上の有機物ガスの流入(通気)を行って炭素被膜の形成を行う場合、必ずしも同一の温度、圧力で行う必要性はなく、炭素原料となる有機物の特性に応じて適宜選択することが可能である。   When forming a carbon film by inflowing (venting) two or more organic gases in the process of forming the carbon film, it is not always necessary to perform the same at the same temperature and pressure. It is possible to select appropriately according to the situation.

[負極]
上記リチウムイオン二次電池用負極材を用いて負極を作製する場合、さらにカーボンや黒鉛等の導電剤を添加することができる。導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよい。具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粒子や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粒子、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
[Negative electrode]
When producing a negative electrode using the said negative electrode material for lithium ion secondary batteries, conductive agents, such as carbon and graphite, can be added further. The type of the conductive agent is not particularly limited as long as it is an electron-conductive material that does not decompose or change in the configured battery. Specifically, metal particles such as Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si, metal fibers, natural graphite, artificial graphite, various coke particles, mesophase carbon, vapor grown carbon fiber, pitch Graphite such as carbon-based carbon fiber, PAN-based carbon fiber, and various resin fired bodies can be used.

負極(成型体)の調製方法としては、一例として下記のような方法が挙げられる。
上述の負極材と、必要に応じて導電剤と、結着剤等の他の添加剤とに、N−メチルピロリドン又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。この場合、集電体としては、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。
なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
Examples of the method for preparing the negative electrode (molded body) include the following methods.
A paste-like mixture is prepared by kneading a negative electrode material, if necessary, a conductive agent, and other additives such as a binder, with a solvent such as N-methylpyrrolidone or water. Apply to current collector sheet. In this case, as the current collector, any material that is usually used as a negative electrode current collector, such as a copper foil or a nickel foil, can be used without any particular limitation on thickness and surface treatment.
In addition, the shaping | molding method which shape | molds a mixture into a sheet form is not specifically limited, A well-known method can be used.

[リチウムイオン二次電池]
リチウムイオン二次電池は、少なくとも、正極と、負極と、リチウムイオン導電性の非水電解質とを有するリチウムイオン二次電池であって、上記負極に、本発明に係るリチウムイオン二次電池用負極材が用いられたものである。本発明のリチウムイオン二次電池は、上記被覆粒子からなる負極材を用いた負極からなる点に特徴を有し、その他の正極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。上述のように、本発明の負極材は、リチウムイオン二次電池用の負極材として用いた場合の電池特性(充放電容量及びサイクル特性)が良好で、特にサイクル耐久性に優れたものである。
[Lithium ion secondary battery]
A lithium ion secondary battery is a lithium ion secondary battery having at least a positive electrode, a negative electrode, and a lithium ion conductive non-aqueous electrolyte. The negative electrode for a lithium ion secondary battery according to the present invention is used as the negative electrode. The material is used. The lithium ion secondary battery of the present invention is characterized in that it comprises a negative electrode using the negative electrode material composed of the above coated particles, and other positive electrode, electrolyte, separator, and other materials and battery shapes are used. There is no particular limitation. As described above, the negative electrode material of the present invention has good battery characteristics (charge / discharge capacity and cycle characteristics) when used as a negative electrode material for a lithium ion secondary battery, and is particularly excellent in cycle durability. .

また、正極活物質としてはLiCoO2、LiNiO2、LiMn24、V25、MnO2、TiS2、MoS2等の遷移金属の酸化物、リチウム、及びカルコゲン化合物等が用いられる。 As the positive electrode active material, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , lithium, chalcogen compounds, and the like are used.

電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられる。非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用することができる。   As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate and lithium perchlorate is used. As the non-aqueous solvent, one or a combination of two or more of propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran and the like are used. Various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例において特に明記のない場合は、組成の「%」は質量%、比率は質量比を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, unless otherwise specified, “%” in the composition represents mass%, and the ratio represents mass ratio.

[実施例1]
平均粒径が5μmのSiOx(x=1.0)粒子をバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして900℃に達した後、炉内に天然ガス(メタン88.5体積%、エタン5体積%、プロパン2.5体積%)を0.3L/min流入し、100時間の炭素被覆処理を行った。得られた黒色粒子は、平均粒径5.5μm、炭素被覆量5.1質量%の導電性粒子であった。また、またこの粒子を測色色差計(日本電色工業(株)製 ZE−2000)で測定したところ、b*値(黄色味)は1.06であった。下記方法で負極及びリチウムイオン二次電池を作製し、電池評価を行った。
[Example 1]
SiOx (x = 1.0) particles having an average particle diameter of 5 μm were charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 900 ° C. at a temperature rising rate of 200 ° C./hr while the inside of the furnace was depressurized with an oil rotary vacuum pump. After reaching 900 ° C., natural gas (88.5% by volume of methane, 5% by volume of ethane, 2.5% by volume of propane) is introduced into the furnace at 0.3 L / min, and carbon coating treatment is performed for 100 hours. It was. The obtained black particles were conductive particles having an average particle size of 5.5 μm and a carbon coating amount of 5.1% by mass. Moreover, when this particle | grain was measured with the colorimetric color difference meter (Nippon Denshoku Industries Co., Ltd. product ZE-2000), b * value (yellowishness) was 1.06. A negative electrode and a lithium ion secondary battery were prepared by the following method, and the battery was evaluated.

<電池評価>
次に、以下の方法で、得られた粒子を負極活物質として用いた電池評価を行った。
まず、得られた負極材45質量%と人造黒鉛(平均粒径10μm)45質量%、ポリイミド10質量%を混合し、さらにN−メチルピロリドンを加えてスラリーとした。
このスラリーを厚さ12μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥させた。その後、2cm2に打ち抜き、負極とした。
<Battery evaluation>
Next, battery evaluation using the obtained particles as a negative electrode active material was performed by the following method.
First, 45% by mass of the obtained negative electrode material, 45% by mass of artificial graphite (average particle size 10 μm) and 10% by mass of polyimide were mixed, and N-methylpyrrolidone was further added to form a slurry.
This slurry was applied to a copper foil having a thickness of 12 μm, dried at 80 ° C. for 1 hour, then subjected to pressure molding by a roller press, and the electrode was vacuum-dried at 350 ° C. for 1 hour. Thereafter, it was punched into 2 cm 2 to form a negative electrode.

そして、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として、六フッ化リン酸リチウムを、エチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。   In order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used for the counter electrode, lithium hexafluorophosphate was used as the non-aqueous electrolyte, and 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in the mixed solution and a polyethylene microporous film having a thickness of 30 μm as a separator was produced.

作製したリチウムイオン二次電池を、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで0.5mA/cm2の定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cm2を下回った時点で充電を終了させた。そして放電は0.5mA/cm2の定電流で行い、セル電圧が1.4Vに達した時点で放電を終了して、放電容量を求めた。
そしてこの際の充電容量(初回充電容量)と放電容量(初回放電容量)から初回充放電効率を算出した。以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果を表1に示す。
The prepared lithium ion secondary battery is allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the voltage of the test cell reaches 0 V at 0.5 mA / cm 2. After reaching 0V, the battery was charged by decreasing the current so as to keep the cell voltage at 0V. The charging was terminated when the current value fell below 40 μA / cm 2 . The discharge was performed at a constant current of 0.5 mA / cm 2 , and when the cell voltage reached 1.4 V, the discharge was terminated and the discharge capacity was determined.
The initial charge / discharge efficiency was calculated from the charge capacity (initial charge capacity) and the discharge capacity (initial discharge capacity) at this time. The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. The results are shown in Table 1.

その結果、初回放電容量1,667mAh/g、50サイクル後の放電容量維持率94%の高容量及びサイクル特性に優れたリチウムイオン二次電池であることが確認された。   As a result, it was confirmed that the lithium ion secondary battery had an initial discharge capacity of 1,667 mAh / g, a high capacity with a discharge capacity retention rate of 94% after 50 cycles, and excellent cycle characteristics.

[実施例2]
実施例1と同じSiOx(x=1.0)粒子gをバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして900℃に達した後、炉内に家庭用LPガス1種2号(エタン+エチレン5体積%以下、プロパン+プロピレン60体積%以上80体積%以下、ブタン+ブチレン40体積%以下)を0.3L/minで流入し、8時間の炭素被覆処理を行った。LPガス停止後降温し、106gの黒色粒子を得た。
得られた黒色粒子は、平均粒径5.3μm、炭素被覆量4.9質量%の導電性粒子であり、測色色差計によるb*値は1.15であった。実施例1と同様の電池評価を行った。
[Example 2]
The same SiOx (x = 1.0) particles g as in Example 1 were charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 900 ° C. at a temperature rising rate of 200 ° C./hr while the inside of the furnace was depressurized with an oil rotary vacuum pump. Then, after reaching 900 ° C., the household LP gas type 1 No. 2 (ethane + ethylene 5% by volume or less, propane + propylene 60% by volume to 80% by volume, butane + butylene 40% by volume or less) in the furnace is 0. It flowed in at 3 L / min and carbon coating treatment was performed for 8 hours. After the LP gas was stopped, the temperature was lowered to obtain 106 g of black particles.
The obtained black particles were conductive particles having an average particle size of 5.3 μm and a carbon coating amount of 4.9% by mass, and the b * value measured by a colorimetric color difference meter was 1.15. The same battery evaluation as in Example 1 was performed.

[実施例3]
実施例1と同じSiOx(x=1.0)粒子100gを、粉体層厚みが10mmとなるようトレイに敷き、バッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして900℃に達した後、炉内にメタン0.1L/min、トルエンを0.2cc/minで流入し(メタン:71体積%、トルエン:29体積%)、7時間の炭素被覆処理を行った。メタン及びトルエン停止後、炉内を降温、冷却し、106gの黒色粒子を得た。
[Example 3]
100 g of the same SiOx (x = 1.0) particles as in Example 1 were laid on a tray so that the thickness of the powder layer was 10 mm, and charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 900 ° C. at a temperature rising rate of 200 ° C./hr while the inside of the furnace was depressurized with an oil rotary vacuum pump. After reaching 900 ° C., 0.1 L / min of methane and 0.2 cc / min of toluene are flown into the furnace (methane: 71% by volume, toluene: 29% by volume), and carbon coating treatment is performed for 7 hours. It was. After stopping methane and toluene, the inside of the furnace was cooled and cooled to obtain 106 g of black particles.

得られた黒色粒子は、平均粒径5.2μm、BET比表面積が2.8m2/gで、黒色粒子に対する炭素被覆量4.8質量%の導電性粒子であり、測色色差計によるb*値は2.53であった。実施例1と同様の電池評価を行った。 The obtained black particles are conductive particles having an average particle diameter of 5.2 μm, a BET specific surface area of 2.8 m 2 / g, and a carbon coating amount of 4.8% by mass with respect to the black particles. * The value was 2.53. The same battery evaluation as in Example 1 was performed.

[比較例1]
実施例1と同じSiOx(x=1.0)粒子をバッチ式加熱炉内に仕込んだ。
そして油回転式真空ポンプで炉内を減圧しつつ、炉内を1,000℃に昇温させた。1,000℃に達した後にメタンガスを0.3NL/min流入し、11時間の炭素被覆処理を行った。なお、この時の減圧度は800Paであった。
この粉末を混合して測定したところ、炭素被覆量5.0質量%、平均粒径5.3μm、BET比表面積5.1m2/gの粒子であった。測色色差計によるb*値は0.76であった。実施例1と同様の電池評価を行った。
[Comparative Example 1]
The same SiOx (x = 1.0) particles as in Example 1 were charged into a batch-type heating furnace.
Then, the inside of the furnace was heated to 1,000 ° C. while reducing the inside of the furnace with an oil rotary vacuum pump. After reaching 1,000 ° C., methane gas was introduced at 0.3 NL / min, and carbon coating treatment was performed for 11 hours. In addition, the pressure reduction degree at this time was 800 Pa.
When this powder was mixed and measured, it was a particle having a carbon coating amount of 5.0% by mass, an average particle size of 5.3 μm, and a BET specific surface area of 5.1 m 2 / g. The b * value measured by a colorimetric color difference meter was 0.76. The same battery evaluation as in Example 1 was performed.

[比較例2]
実施例1と同じSiOx(x=1.0)粒子100gをバッチ式加熱炉内に仕込んだ。
油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして900℃に達した後、炉内にトルエンを0.4cc/minで流入し、5時間の炭素被覆処理を行った。冷却後この粉末を混合して測定したところ、炭素被覆量4.8質量%、平均粒径5.3μmの粒子であった。この粒子のb*値は0.69であった。実施例1と同様の電池評価を行った。
[Comparative Example 2]
The same SiOx (x = 1.0) particles 100 g as in Example 1 were charged into a batch-type heating furnace.
While reducing the pressure inside the furnace with an oil rotary vacuum pump, the temperature inside the furnace was raised to 900 ° C. at a temperature rising rate of 200 ° C./hr. And after reaching 900 degreeC, toluene was flowed in into the furnace at 0.4 cc / min, and the carbon coating process for 5 hours was performed. After cooling, this powder was mixed and measured to find particles having a carbon coating amount of 4.8% by mass and an average particle size of 5.3 μm. The b * value of this particle was 0.69. The same battery evaluation as in Example 1 was performed.

[比較例3]
実施例1と同じSiOx(x=1.0)粒子100gをバッチ式加熱炉内に仕込んだ。
油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を900℃に昇温した。そして900℃に達した後、炉内に実施例2と同じLPガスを0.3L/minで流入し、1時間の炭素被覆処理を行った。
冷却後この粉末を混合して測定したところ、炭素被覆量0.8質量%、平均粒径5.3μmの粒子であった。この粒子のb*値は5.9であった。実施例1と同様の電池評価を行った。
[Comparative Example 3]
The same SiOx (x = 1.0) particles 100 g as in Example 1 were charged into a batch-type heating furnace.
While reducing the pressure inside the furnace with an oil rotary vacuum pump, the temperature inside the furnace was raised to 900 ° C. at a temperature rising rate of 200 ° C./hr. Then, after reaching 900 ° C., the same LP gas as in Example 2 was flowed into the furnace at 0.3 L / min, and carbon coating treatment was performed for 1 hour.
When this powder was mixed after cooling and measured, it was particles having a carbon coating amount of 0.8 mass% and an average particle size of 5.3 μm. The b * value of this particle was 5.9. The same battery evaluation as in Example 1 was performed.

実施例及び比較例の炭素蒸着工程及び電池特性を表1に示す。本発明の実施例が、高容量でサイクル特性に優れ、初回充放電効率が十分であるのに対し、比較例は実施例の負極材に比べて明らかにサイクル特性に劣るリチウムイオン二次電池であることが確認された。   Table 1 shows carbon deposition processes and battery characteristics of Examples and Comparative Examples. While the examples of the present invention have high capacity and excellent cycle characteristics, and the initial charge and discharge efficiency is sufficient, the comparative example is a lithium ion secondary battery that is clearly inferior in cycle characteristics compared to the negative electrode material of the examples. It was confirmed that there was.

Figure 2015149208
Figure 2015149208

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (8)

リチウムイオンを吸蔵及び放出することが可能で、珪素を含む粒子の表面が、炭素被膜で被覆され、JIS Z 8729におけるb*値が0.8〜5.0である被覆粒子からなるリチウムイオン二次電池用負極材。 Lithium ions can be occluded and released, and the surface of particles containing silicon is coated with a carbon film, and the lithium ion particles are made of coated particles having a b * value of 0.8 to 5.0 in JIS Z 8729. Negative electrode material for secondary batteries. 上記リチウムイオンを吸蔵及び放出することが可能で、珪素を含む粒子が、珪素粒子、珪素の微粒子が珪素系化合物に分散した構造を有する粒子、一般式SiOx(0.5≦x≦1.6)で表される酸化珪素粒子、又はこれらの混合物である請求項1記載のリチウムイオン二次電池用負極材。   The lithium ions can be occluded and released, and the silicon-containing particles are silicon particles, particles having a structure in which silicon fine particles are dispersed in a silicon-based compound, and a general formula SiOx (0.5 ≦ x ≦ 1.6). 2. The negative electrode material for a lithium ion secondary battery according to claim 1, which is a silicon oxide particle represented by the formula: 炭素被膜が、炭素被覆原料を600〜1,200℃で熱分解し、粒子表面に炭素を化学蒸着して形成された炭素被膜である請求項1又は2記載のリチウムイオン二次電池用負極材。   3. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the carbon coating is a carbon coating formed by thermally decomposing a carbon coating raw material at 600 to 1,200 ° C. and chemically depositing carbon on the particle surface. . 炭素被覆原料が、メタン、エタン、プロパン又はプロピレンと、その他ガス成分とを含有する混合ガスである請求項3記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to claim 3, wherein the carbon-coated raw material is a mixed gas containing methane, ethane, propane or propylene and other gas components. 炭素被覆原料が、メタン、エタン、プロパン及びプロピレンからなる群から選ばれる2種以上を含有する混合ガスである請求項3又は4記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to claim 3 or 4, wherein the carbon-coated raw material is a mixed gas containing two or more selected from the group consisting of methane, ethane, propane and propylene. 請求項1〜5のいずれか1項記載のリチウムイオン二次電池用負極材を含むリチウムイオン二次電池用負極。   The negative electrode for lithium ion secondary batteries containing the negative electrode material for lithium ion secondary batteries of any one of Claims 1-5. 請求項6に記載のリチウムイオン二次電池用負極を有するリチウムイオン二次電池。   The lithium ion secondary battery which has a negative electrode for lithium ion secondary batteries of Claim 6. (1)炭素被覆原料のガス、又は(2)炭素被覆原料のガス及び蒸気雰囲気中、600〜1,200℃の温度範囲で、炭素被覆原料を熱分解させ、リチウムイオンを吸蔵及び放出することが可能で、珪素を含む粒子の表面に炭素を化学蒸着して形成することを特徴とする、請求項1記載のリチウムイオン二次電池用負極材を製造する製造方法。   (1) carbon-coated raw material gas, or (2) carbon-coated raw material in a temperature range of 600 to 1,200 ° C. in a carbon-coated raw material gas and vapor atmosphere, and occlude and release lithium ions. The method for producing a negative electrode material for a lithium ion secondary battery according to claim 1, wherein carbon is chemically deposited on the surface of particles containing silicon.
JP2014021908A 2014-02-07 2014-02-07 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery Active JP6299248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014021908A JP6299248B2 (en) 2014-02-07 2014-02-07 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014021908A JP6299248B2 (en) 2014-02-07 2014-02-07 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015149208A true JP2015149208A (en) 2015-08-20
JP6299248B2 JP6299248B2 (en) 2018-03-28

Family

ID=53892424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014021908A Active JP6299248B2 (en) 2014-02-07 2014-02-07 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6299248B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206594A (en) * 2017-06-02 2018-12-27 信越化学工業株式会社 Method of manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
WO2020075597A1 (en) 2018-10-12 2020-04-16 日産自動車株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
CN111634918A (en) * 2020-06-09 2020-09-08 洛阳联创锂能科技有限公司 Lithium ion battery cathode material and low-cost preparation method thereof
WO2023074216A1 (en) * 2021-10-27 2023-05-04 三菱ケミカル株式会社 Particles and method for producing same, and secondary battery and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216751A (en) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd Composite material for lithium secondary battery negative electrode and lithium secondary battery
JP2004063433A (en) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd Conductive silicon oxide powder, its manufacturing method, and negative electrode material for nonaqueous secondary battery using the same
JP2010146900A (en) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery
JP2011192563A (en) * 2010-03-16 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2013080603A (en) * 2011-10-03 2013-05-02 Nippon Chem Ind Co Ltd Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216751A (en) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd Composite material for lithium secondary battery negative electrode and lithium secondary battery
JP2004063433A (en) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd Conductive silicon oxide powder, its manufacturing method, and negative electrode material for nonaqueous secondary battery using the same
JP2010146900A (en) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery
JP2011192563A (en) * 2010-03-16 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2013080603A (en) * 2011-10-03 2013-05-02 Nippon Chem Ind Co Ltd Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206594A (en) * 2017-06-02 2018-12-27 信越化学工業株式会社 Method of manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
WO2020075597A1 (en) 2018-10-12 2020-04-16 日産自動車株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
CN111634918A (en) * 2020-06-09 2020-09-08 洛阳联创锂能科技有限公司 Lithium ion battery cathode material and low-cost preparation method thereof
WO2023074216A1 (en) * 2021-10-27 2023-05-04 三菱ケミカル株式会社 Particles and method for producing same, and secondary battery and method for manufacturing same

Also Published As

Publication number Publication date
JP6299248B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
US10566613B2 (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing negative electrode material for lithium-ion secondary battery
JP5406799B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6301142B2 (en) Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009212074A (en) Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium ion secondary battery, and electrochemical capacitor
JP2011243535A (en) Silicon oxide for negative electrode material of nonaqueous electrolyte secondary battery and method of producing the same, lithium ion secondary battery and electrochemical capacitor
JP2010225494A (en) Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
JP2010272411A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP6299248B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery
JP5910479B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor
JP5320890B2 (en) Method for producing negative electrode material
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP6046594B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP5798209B2 (en) Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery
JP2016091649A (en) Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6408639B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018032648A (en) Method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JP6394498B2 (en) Graphite-coated particles and method for producing the same
JP5558312B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2010177070A (en) Method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JP2018206594A (en) Method of manufacturing negative electrode active material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R150 Certificate of patent or registration of utility model

Ref document number: 6299248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150