JP2015146298A - Cable for differential signal transmission and method of manufacturing the same - Google Patents

Cable for differential signal transmission and method of manufacturing the same Download PDF

Info

Publication number
JP2015146298A
JP2015146298A JP2014019443A JP2014019443A JP2015146298A JP 2015146298 A JP2015146298 A JP 2015146298A JP 2014019443 A JP2014019443 A JP 2014019443A JP 2014019443 A JP2014019443 A JP 2014019443A JP 2015146298 A JP2015146298 A JP 2015146298A
Authority
JP
Japan
Prior art keywords
signal line
insulator
signal transmission
differential signal
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014019443A
Other languages
Japanese (ja)
Other versions
JP6102775B2 (en
Inventor
雅文 加賀
masafumi Kaga
雅文 加賀
晴之 渡辺
Haruyuki Watanabe
晴之 渡辺
鈴木 秀幸
Hideyuki Suzuki
秀幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014019443A priority Critical patent/JP6102775B2/en
Publication of JP2015146298A publication Critical patent/JP2015146298A/en
Application granted granted Critical
Publication of JP6102775B2 publication Critical patent/JP6102775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve uniformity of an insulator formed around signal line conductors.SOLUTION: A cable 1A for differential signal transmission includes a pair of signal line conductors 2a and 2b and an insulator 3 formed of a foamed insulating material and collectively covering the pair of signal line conductors 2a and 2b. When the foaming degree of the insulator 3 around one signal line conductor 2a is a first foaming degree and the foaming degree of the insulator 3 around the other signal line conductor 2b is a second foaming degree, the difference between the first foaming degree and the second foaming degree is kept within 5.0% in two or more different regions (a first region 11 and a second region 21) in the longitudinal direction.

Description

本発明は、互いに位相が異なる2以上の信号を伝送するための差動信号伝送用ケーブル及びその製造方法に関する。   The present invention relates to a differential signal transmission cable for transmitting two or more signals having different phases, and a method of manufacturing the same.

数Gbit/s以上の高速デジタル信号を扱うサーバ,ルータ,ストレージなどの機器においては、差動インターフェース規格(例えば、LVDS(Low Voltage Differential Signal))が採用され、各機器間あるいは機器内の各回路基板間では、差動信号伝送用ケーブルを用いて差動信号の伝送が行われている。差動信号は、システム電源の低電圧化を実現しつつ外来ノイズに対する耐性が高いという利点を有している。   In devices such as servers, routers, and storages that handle high-speed digital signals of several Gbit / s or more, a differential interface standard (for example, LVDS (Low Voltage Differential Signal)) is adopted, and each circuit between devices or in each device. Differential signals are transmitted between the substrates using a differential signal transmission cable. The differential signal has an advantage that it is highly resistant to external noise while realizing a low system power supply voltage.

一般的な差動信号伝送用ケーブルは、平行に並べられた一対の信号線導体と、これら信号線導体の周囲に設けられた絶縁体と、絶縁体の周囲に巻かれたシールドテープと、シールドテープの周囲に巻かれた押さえテープと、を備えている。すなわち、2本の信号線導体は絶縁体によって一括被覆されている。それぞれの信号線導体には、位相を180度反転させたプラス側(ポジティブ)信号およびマイナス側(ネガティブ)信号がそれぞれ伝送される。これらの2つの信号(プラス側信号およびマイナス側信号)の電位差が信号レベルとなって、例えば電位差がプラスであれば「High」,マイナスであれば「Low」として、当該信号レベルを受信側で認識できるようになっている。   A general differential signal transmission cable includes a pair of signal line conductors arranged in parallel, an insulator provided around these signal line conductors, a shield tape wound around the insulator, and a shield. And a pressing tape wound around the tape. That is, the two signal line conductors are collectively covered with the insulator. A positive side signal (positive) and a negative side (negative) signal with the phase inverted by 180 degrees are transmitted to the respective signal line conductors. The potential difference between these two signals (plus signal and minus signal) becomes a signal level. For example, if the potential difference is plus, it is “High”, and if it is minus, it is “Low”. It can be recognized.

ここで、一対の信号線導体を一括被覆する絶縁体は、一対の信号線導体の周囲に発泡絶縁材料を押出し被覆して形成される(特許文献1)。具体的には、予熱された2本の信号線導体が被覆装置の押出ヘッドの内部に導入される。押出ヘッドは、口金と該口金の内側に配置された心金とからなる二重構造を備えている。心金の中心には貫通孔が設けられており、心金と口金との間には心金の全周に亘って隙間が設けられている。すなわち、貫通孔の周囲に環状の供給路が設けられている。   Here, the insulator that collectively covers the pair of signal line conductors is formed by extruding and covering the foamed insulating material around the pair of signal line conductors (Patent Document 1). Specifically, two preheated signal line conductors are introduced into the extrusion head of the coating apparatus. The extrusion head has a double structure composed of a base and a mandrel disposed inside the base. A through hole is provided at the center of the mandrel, and a gap is provided between the mandrel and the base over the entire circumference of the mandrel. That is, an annular supply path is provided around the through hole.

差動信号伝送用ケーブルの製造工程では、予熱された2本の信号線導体を心金の貫通孔を通して心金の外に送り出しつつ、送り出される信号線導体の周囲に供給路を通して発泡絶縁材料を吐出させて、2本の信号線導体を一括被覆する絶縁体(絶縁層)が形成される。   In the manufacturing process of the differential signal transmission cable, the two preheated signal line conductors are sent out of the mandrel through the through hole of the mandrel, and the foam insulating material is passed through the supply path around the signal line conductor to be sent out. By discharging, an insulator (insulating layer) covering the two signal line conductors at once is formed.

特開2000−48653号公報JP 2000-48653 A

上記のように、差動信号伝送用ケーブルの製造方法には、信号線導体の周囲に発泡絶縁材料を押出して絶縁体を形成する工程(以下“被覆工程”と呼ぶ。)が含まれる。しかし、かかる被覆工程において形成される絶縁体の均一性が低いと、差動信号伝送用ケーブルの伝送特性が悪くなる。特に、一方の信号線導体の周囲における気泡の直径と他方の信号線導体の周囲における気泡の直径とが異なると、スキュー(Skew)が著しく増加する。   As described above, the method for manufacturing a differential signal transmission cable includes a step of forming an insulator by extruding a foam insulating material around a signal line conductor (hereinafter referred to as a “coating step”). However, if the uniformity of the insulator formed in such a coating process is low, the transmission characteristics of the differential signal transmission cable will deteriorate. In particular, when the bubble diameter around one signal line conductor is different from the bubble diameter around the other signal line conductor, the skew increases significantly.

本発明の目的は、信号線導体の周囲に形成される絶縁体の均一性を向上させることである。   An object of the present invention is to improve the uniformity of an insulator formed around a signal line conductor.

本発明に係る製造方法は、一対の信号線導体と、発泡絶縁材料により形成され、前記一対の信号線導体を一括被覆する絶縁体と、を備える差動信号伝送用ケーブルの製造方法である。本発明の一態様では、前記一対の信号線導体の周囲に前記発泡絶縁材料を押し出す被覆工程において、前記一対の信号線導体の温度差が10℃以内に維持される。   The manufacturing method according to the present invention is a method for manufacturing a differential signal transmission cable comprising a pair of signal line conductors and an insulator that is formed of a foamed insulating material and collectively covers the pair of signal line conductors. In one aspect of the present invention, the temperature difference between the pair of signal line conductors is maintained within 10 ° C. in the covering step of extruding the foamed insulating material around the pair of signal line conductors.

本発明の他の態様では、前記被覆工程における前記一対の信号線導体の温度差が10℃以内に維持されるように、前記被覆工程に先立って前記一対の信号線導体を加熱する予熱工程が行われる。   In another aspect of the present invention, a preheating step of heating the pair of signal line conductors prior to the covering step so that a temperature difference between the pair of signal line conductors in the covering step is maintained within 10 ° C. Done.

本発明の他の態様では、前記予熱工程において、前記一対の信号線導体の温度差に基づいて、一方の信号線導体に対する加熱温度と他方の信号線導体に対する加熱温度の少なくとも何れか一方が調節される。   In another aspect of the present invention, in the preheating step, at least one of a heating temperature for one signal line conductor and a heating temperature for the other signal line conductor is adjusted based on a temperature difference between the pair of signal line conductors. Is done.

本発明に係る差動信号伝送用ケーブルは、一対の信号線導体と、発泡絶縁材料により形成され、前記一対の信号線導体を一括被覆する絶縁体と、を備える。さらに、一方の信号線導体の周囲における前記絶縁体の発泡度を第1発泡度とし、他方の信号線導体の周囲における前記絶縁体の発泡度を第2発泡度としたとき、長手方向の異なる2以上の領域において、前記第1発泡度と前記第2発泡度との差が5.0%以内である。   A differential signal transmission cable according to the present invention includes a pair of signal line conductors and an insulator formed of a foamed insulating material and covering the pair of signal line conductors at once. Further, when the foaming degree of the insulator around one signal line conductor is the first foaming degree and the foaming degree of the insulator around the other signal line conductor is the second foaming degree, the longitudinal direction is different. In two or more regions, the difference between the first foaming degree and the second foaming degree is within 5.0%.

本発明の他の態様では、任意の長さに切断された前記差動信号伝送用ケーブルの一方の端面を含む第1領域および他方の端面を含む第2領域において、前記第1発泡度と前記第2発泡度との差が5.0%以内である。   In another aspect of the present invention, in the first region including one end surface and the second region including the other end surface of the differential signal transmission cable cut to an arbitrary length, the first foaming degree and the The difference from the second degree of foaming is within 5.0%.

本発明の他の態様では、前記一方の信号線導体のキャパシタンスと前記他方の信号線導体のキャパシタンスとの差が1.0%以内である。   In another aspect of the invention, the difference between the capacitance of the one signal line conductor and the capacitance of the other signal line conductor is within 1.0%.

本発明によれば、信号線導体が均一性の高い絶縁体によって被覆された差動信号伝送用ケーブルが実現される。   According to the present invention, a differential signal transmission cable in which a signal line conductor is covered with a highly uniform insulator is realized.

本発明が適用された差動信号伝送用ケーブルの構造を示す斜視図である。It is a perspective view which shows the structure of the cable for differential signal transmission to which this invention was applied. 図1に示される差動信号伝送用ケーブルの横断面を示す断面図である。It is sectional drawing which shows the cross section of the cable for differential signal transmission shown by FIG. 図1に示される差動信号伝送用ケーブルの水平断面を示す斜視図である。It is a perspective view which shows the horizontal cross section of the cable for differential signal transmission shown by FIG. 図1に示される差動信号伝送用ケーブルの垂直断面を示す斜視図である。It is a perspective view which shows the vertical cross section of the cable for differential signal transmission shown by FIG. (a)は図1に示す差動信号伝送用ケーブルの平面図であり、(b)はサンプルの水平断面を示す拡大図である。(A) is a top view of the cable for differential signal transmission shown in FIG. 1, (b) is an enlarged view which shows the horizontal cross section of a sample. (a)は図1に示される差動信号伝送用ケーブルの製造に用いられる被覆装置の構成図であり、(b)は(a)に示される押出ヘッドの拡大断面図である。(A) is a block diagram of the coating | coated apparatus used for manufacture of the cable for differential signal transmission shown by FIG. 1, (b) is an expanded sectional view of the extrusion head shown by (a).

以下、本発明の実施形態の一例について図面を参照しながら詳細に説明する。図1に示される差動信号伝送用ケーブル1Aは、一対の信号線導体2a,2bと、これら信号線導体2a,2bを一括被覆する絶縁体3と、絶縁体3を被覆するスキン層4と、スキン層4を被覆するシールド層5と、シールド層5を被覆する押さえテープ6と、を有する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. A differential signal transmission cable 1A shown in FIG. 1 includes a pair of signal line conductors 2a and 2b, an insulator 3 that collectively covers these signal line conductors 2a and 2b, and a skin layer 4 that covers the insulator 3. The shield layer 5 that covers the skin layer 4 and the pressing tape 6 that covers the shield layer 5 are provided.

一対の信号線導体2a,2bのそれぞれは、表面に銀めっき処理が施された円形断面の軟銅線(Silver Plated Copper Wire)である。一対の信号線導体2a,2bのいずれか一方にはプラス側(ポジティブ)信号が伝送され、一対の信号線導体2a,2bのいずれか他方にはマイナス側(ネガティブ)信号が伝送される。   Each of the pair of signal line conductors 2a and 2b is an annealed copper wire (Silver Plated Copper Wire) having a circular cross section whose surface is subjected to silver plating. A plus side (positive) signal is transmitted to one of the pair of signal line conductors 2a and 2b, and a minus side (negative) signal is transmitted to the other of the pair of signal line conductors 2a and 2b.

絶縁体3は発泡絶縁材料によって形成されており、絶縁体3には多数の気泡が含まれている。絶縁体3は、2本の信号線導体2a,2bが所定間隔で平行に並ぶように、これら信号線導体2a,2bを保持している。また、それぞれの信号線導体2a,2bの周囲における絶縁体3の肉厚は略同一である。   The insulator 3 is made of a foam insulating material, and the insulator 3 contains a large number of bubbles. The insulator 3 holds the signal line conductors 2a and 2b so that the two signal line conductors 2a and 2b are arranged in parallel at a predetermined interval. Further, the thickness of the insulator 3 around each signal line conductor 2a, 2b is substantially the same.

絶縁体3の周囲に設けられているスキン層4は、発泡していない薄膜又は絶縁体3に比べて発泡度が小さい薄膜である。スキン層4の材料としては、例えば、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA),テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP),エチレン・テトラフルオロエチレン共重合体(ETFE)などを用いることができる。もっとも、スキン層4の材料は特定の材料に限定されるものではない。   The skin layer 4 provided around the insulator 3 is a thin film that is not foamed or a thin film having a lower foaming degree than the insulator 3. Examples of the material for the skin layer 4 include tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and ethylene / tetrafluoroethylene copolymer (ETFE). Etc. can be used. However, the material of the skin layer 4 is not limited to a specific material.

スキン層4の周囲に設けられているシールド層5は、スキン層4の周囲に巻き付けられたシールドテープによって形成されている。図示は省略されているが、シールドテープは、シート状の基材と該基材の一面に形成された金属導体層とからなる二重構造を有しており、金属導体層は、例えば銅箔やアルミニウム箔によって形成される。   The shield layer 5 provided around the skin layer 4 is formed of a shield tape wound around the skin layer 4. Although illustration is omitted, the shield tape has a double structure composed of a sheet-like base material and a metal conductor layer formed on one surface of the base material. Or aluminum foil.

シールド層5を形成しているシールドテープは、金属導体層を内側にしてスキン層4の周囲に縦添え巻きされている。よって、シールドテープの両端部は互いに重なり合っている。もっとも、螺旋巻き(横巻き)されたシールドテープによってシールド層5が形成される実施形態もある。また、シールドテープが金属導体層を外側にしてスキン層4の周囲に縦添え巻きされ、または螺旋巻き(横巻き)される実施形態もある。   The shield tape forming the shield layer 5 is wound side by side around the skin layer 4 with the metal conductor layer inside. Therefore, both ends of the shield tape overlap each other. However, there is also an embodiment in which the shield layer 5 is formed by a spirally wound (laterally wound) shield tape. In some embodiments, the shield tape is vertically wound around the skin layer 4 with the metal conductor layer on the outside, or spirally wound (laterally wound).

シールド層5の周囲には、シールドテープを保持するための押さえテープ6が螺旋状に巻かれている。さらに、押さえテープ6の周囲にはジャケット(“シース”と呼ばれることもある。)が設けられている。ジャケットの材料としては、ポリエチレン,ポリプロピレン,ポリ塩化ビニル,エチレン−酢酸ビニル共重合体,フッ素樹脂,ハロゲンフリー難燃ポリオレフィン,軟質塩化ビニル樹脂などを用いることができる。   A pressing tape 6 for holding the shielding tape is spirally wound around the shielding layer 5. Further, a jacket (sometimes referred to as “sheath”) is provided around the pressing tape 6. As the jacket material, polyethylene, polypropylene, polyvinyl chloride, ethylene-vinyl acetate copolymer, fluororesin, halogen-free flame-retardant polyolefin, soft vinyl chloride resin, or the like can be used.

図1に示される差動信号伝送用ケーブル1Aは後述する製造方法によって製造されており、絶縁体3は高い均一性を備えている。具体的には、差動信号伝送用ケーブル1Aの長手方向(Z方向)において、絶縁体3の発泡度のバラツキが小さい。換言すれば、本実施形態に係る差動信号伝送用ケーブル1Aでは、信号線導体2aの周囲における絶縁体3の発泡度と信号線導体2bの周囲における絶縁体3の発泡度との差が所定範囲内に保たれている。“発泡度”とは、絶縁体3の任意の断面の面積と、その断面中の気泡の面積との比率である。   The differential signal transmission cable 1A shown in FIG. 1 is manufactured by a manufacturing method to be described later, and the insulator 3 has high uniformity. Specifically, the variation in the foaming degree of the insulator 3 is small in the longitudinal direction (Z direction) of the differential signal transmission cable 1A. In other words, in the differential signal transmission cable 1A according to the present embodiment, the difference between the foaming degree of the insulator 3 around the signal line conductor 2a and the foaming degree of the insulator 3 around the signal line conductor 2b is predetermined. It is kept within range. “Foaming degree” is the ratio between the area of an arbitrary cross section of the insulator 3 and the area of bubbles in the cross section.

ここで、図2に示されるように、信号線導体2aの中心と信号線導体2bの中心とを結ぶ直線を“直線S1”と定義する。また、直線S1の中点において該直線S1と直交する直線を“直線S2”と定義する。以下の説明では、直線S1,S2を含む差動信号伝送用ケーブル1Aの断面を“横断面”と呼ぶ。また、直線S1を含む差動信号伝送用ケーブル1Aの断面を“水平断面”と呼ぶ。さらに、直線S2を含む差動信号伝送用ケーブル1Aの断面を“垂直断面”と呼ぶ。   Here, as shown in FIG. 2, a straight line connecting the center of the signal line conductor 2a and the center of the signal line conductor 2b is defined as "straight line S1". A straight line orthogonal to the straight line S1 at the midpoint of the straight line S1 is defined as a “straight line S2”. In the following description, a cross section of the differential signal transmission cable 1A including the straight lines S1 and S2 is referred to as a “cross section”. The cross section of the differential signal transmission cable 1A including the straight line S1 is referred to as a “horizontal cross section”. Further, the cross section of the differential signal transmission cable 1A including the straight line S2 is referred to as a “vertical cross section”.

すなわち、図2に示されている断面は、差動信号伝送用ケーブル1Aの横断面の1つである。また、図3に示されている断面は、差動信号伝送用ケーブル1Aの水平断面の1つである。さらに、図4に示されている断面は、差動信号伝送用ケーブル1Aの垂直断面の1つである。換言すれば、差動信号伝送用ケーブル1Aの横断面は、差動信号伝送用ケーブル1Aの長手方向(Z方向)に対して直角な断面である。一方、差動信号伝送用ケーブル1Aの水平断面及び垂直断面は、差動信号伝送用ケーブル1Aの長手方向(Z方向)に対して平行な断面である。さらに、差動信号伝送用ケーブル1Aの水平断面と垂直断面とは、互いに直交する断面である。   That is, the cross section shown in FIG. 2 is one of the cross sections of the differential signal transmission cable 1A. The cross section shown in FIG. 3 is one of the horizontal cross sections of the differential signal transmission cable 1A. Further, the cross section shown in FIG. 4 is one of the vertical cross sections of the differential signal transmission cable 1A. In other words, the cross section of the differential signal transmission cable 1A is a cross section perpendicular to the longitudinal direction (Z direction) of the differential signal transmission cable 1A. On the other hand, the horizontal cross section and the vertical cross section of the differential signal transmission cable 1A are parallel to the longitudinal direction (Z direction) of the differential signal transmission cable 1A. Furthermore, the horizontal cross section and the vertical cross section of the differential signal transmission cable 1A are cross sections orthogonal to each other.

また、差動信号伝送用ケーブル1Aの横断面は、差動信号伝送用ケーブル1Aの長手方向(Z方向)に沿って多数存在する。一方、差動信号伝送用ケーブル1Aの水平断面は、図3に示されている断面及び該断面と対向する断面の2つである。また、差動信号伝送用ケーブル1Aの垂直断面は、図4に示されている断面及び該断面と対向する断面の2つである。   In addition, there are many cross sections of the differential signal transmission cable 1A along the longitudinal direction (Z direction) of the differential signal transmission cable 1A. On the other hand, the horizontal cross section of the differential signal transmission cable 1A has two cross sections, the cross section shown in FIG. The vertical cross section of the differential signal transmission cable 1A has two cross sections, the cross section shown in FIG. 4 and the cross section facing the cross section.

上述のように、本実施形態に係る差動信号伝送用ケーブル1Aでは、信号線導体2aの周囲における絶縁体3の発泡度と信号線導体2bの周囲における絶縁体3の発泡度との差が所定範囲内に保たれている。ここで、信号線導体2aの周囲における絶縁体3とは、図2に示される直線S2を含む平面によって絶縁体3を二分したときに、すなわち、図4に示されるように絶縁体3を二分したときに、信号線導体2aの周囲に残る絶縁体3の一部(絶縁体3の半分)を意味する。一方、信号線導体2bの周囲における絶縁体3とは、図2に示される直線S2を含む平面によって絶縁体3を二分したときに、すなわち、図4に示されるように絶縁体3を二分したときに、信号線導体2bの周囲に残る絶縁体3の他の一部(絶縁体3の他の半分)を意味する。すなわち、図2において、直線S2よりも左側に位置する絶縁体3の一部が信号線導体2aの周囲の絶縁体3であり、直線S2よりも右側に位置する絶縁体3の他の一部が信号線導体2bの周囲の絶縁体3である。そこで、以下の説明では、信号線導体2aの周囲の絶縁体3を“左側絶縁体3a”と呼び、信号線導体2bの周囲の絶縁体3を“右側絶縁体3b”と呼ぶ。また、左側絶縁体3aの発泡度を“第1発泡度”と呼び、右側絶縁体3bの発泡度を“第2発泡度”と呼ぶ。すなわち、本実施形態に係る差動信号伝送用ケーブル1Aでは、第1発泡度と第2発泡度との差が所定範囲内に保たれている。具体的には、差動信号伝送用ケーブル1Aの長手方向(Z方向)の異なる2以上の領域において、第1発泡度と第2発泡度との差が5.0%以内に保たれている。尚、図2〜図4では、図1に示されている押さえテープ6の図示は省略されている。   As described above, in the differential signal transmission cable 1A according to the present embodiment, there is a difference between the foaming degree of the insulator 3 around the signal line conductor 2a and the foaming degree of the insulator 3 around the signal line conductor 2b. It is kept within a predetermined range. Here, the insulator 3 around the signal line conductor 2a is divided into two when the insulator 3 is bisected by a plane including the straight line S2 shown in FIG. 2, that is, as shown in FIG. Means a part of the insulator 3 (half of the insulator 3) remaining around the signal line conductor 2a. On the other hand, the insulator 3 around the signal line conductor 2b is divided into two when the insulator 3 is bisected by a plane including the straight line S2 shown in FIG. 2, that is, as shown in FIG. Sometimes, it means the other part of the insulator 3 (the other half of the insulator 3) remaining around the signal line conductor 2b. That is, in FIG. 2, a part of the insulator 3 located on the left side of the straight line S2 is the insulator 3 around the signal line conductor 2a, and the other part of the insulator 3 located on the right side of the straight line S2. Is the insulator 3 around the signal line conductor 2b. Therefore, in the following description, the insulator 3 around the signal line conductor 2a is referred to as “left insulator 3a”, and the insulator 3 around the signal line conductor 2b is referred to as “right insulator 3b”. Further, the foaming degree of the left insulator 3a is referred to as “first foaming degree”, and the foaming degree of the right insulator 3b is referred to as “second foaming degree”. That is, in the differential signal transmission cable 1A according to the present embodiment, the difference between the first foaming degree and the second foaming degree is kept within a predetermined range. Specifically, the difference between the first foaming degree and the second foaming degree is kept within 5.0% in two or more regions having different longitudinal directions (Z direction) of the differential signal transmission cable 1A. . 2 to 4, the illustration of the pressing tape 6 shown in FIG. 1 is omitted.

従って、本実施形態に係る差動信号伝送用ケーブル1Aを任意の長さに切断したとき、切り出された差動信号伝送用ケーブル1Aの一部の一端部における第1発泡度と第2発泡度との差は5.0%以内であり、かつ、切り出された差動信号伝送用ケーブル1Aの一部の他端部における第1発泡度と第2発泡度との差も5.0%以内である。以下、図5(a),(b)を参照しながら具体的に説明する。   Therefore, when the differential signal transmission cable 1A according to the present embodiment is cut to an arbitrary length, the first foaming degree and the second foaming degree at one end of a part of the cutout differential signal transmission cable 1A. The difference between the first foaming degree and the second foaming degree at the other end of a part of the cutout differential signal transmission cable 1A is also within 5.0%. It is. Hereinafter, a specific description will be given with reference to FIGS.

図5(a)に示されるように、差動信号伝送用ケーブル1Aを任意の長さに切断する。図5(a)では、差動信号伝送用ケーブル1Aの切断位置を2本の破線によって示してある。また、以下の説明では、任意の長さに切り出された差動信号伝送用ケーブル1Aの一部を“サンプル1a”と呼ぶ。すなわち、図5(a)に示されるサンプル1aの両端部において、第1発泡度と第2発泡度との差が5.0%以内に保たれている。   As shown in FIG. 5A, the differential signal transmission cable 1A is cut to an arbitrary length. In FIG. 5A, the cutting position of the differential signal transmission cable 1A is indicated by two broken lines. In the following description, a part of the differential signal transmission cable 1A cut out to an arbitrary length is referred to as “sample 1a”. That is, the difference between the first foaming degree and the second foaming degree is kept within 5.0% at both ends of the sample 1a shown in FIG.

図5(b)を参照しつつ、より具体的に説明する。図5(b)は、サンプル1aの水平断面を示す拡大図である。図5(b)に示されるサンプル1aの長さ(L)は10cmである。また、サンプル1aの一方の端部(第1領域11)は、サンプル1aの一方の端面12を含む、該端面12から0.5cmの範囲内の部分である。また、サンプル1aの他方の端部(第2領域21)は、サンプル1aの他方の端面22を含む、該端面22から0.5cmの範囲内の部分である。すなわち、第1領域11の長さ(L1)及び第2領域21の長さ(L2)は、0.5cmである(L1=L2)。   More specific description will be given with reference to FIG. FIG.5 (b) is an enlarged view which shows the horizontal cross section of the sample 1a. The length (L) of the sample 1a shown in FIG. 5 (b) is 10 cm. In addition, one end portion (first region 11) of the sample 1a is a portion within a range of 0.5 cm from the end surface 12 including the one end surface 12 of the sample 1a. The other end portion (second region 21) of the sample 1a is a portion within the range of 0.5 cm from the end surface 22 including the other end surface 22 of the sample 1a. That is, the length (L1) of the first region 11 and the length (L2) of the second region 21 are 0.5 cm (L1 = L2).

図5(b)に示されるように、サンプル1aの第1領域11では、左側絶縁体3a及び右側絶縁体3bに、直径が略同一の多数の気泡30が略均一に含まれている。同様に、サンプル1aの第2領域21では、左側絶縁体3a及び右側絶縁体3bに、直径が略同一の多数の気泡30が略均一に含まれている。具体的には、図5(b)に示されている第1領域11における左側絶縁体3aと右側絶縁体3bの発泡度の差は5.0%以内である。また、図5(b)に示されている第2領域21における左側絶縁体3aと右側絶縁体3bの発泡度の差も5.0%以内である。   As shown in FIG. 5B, in the first region 11 of the sample 1a, the left insulator 3a and the right insulator 3b contain a large number of bubbles 30 having substantially the same diameter. Similarly, in the second region 21 of the sample 1a, the left insulator 3a and the right insulator 3b contain a large number of bubbles 30 having substantially the same diameter. Specifically, the difference in the degree of foaming between the left insulator 3a and the right insulator 3b in the first region 11 shown in FIG. 5B is within 5.0%. Further, the difference in the degree of foaming between the left insulator 3a and the right insulator 3b in the second region 21 shown in FIG. 5B is also within 5.0%.

ここで、各領域における発泡度は次のようにして求めた。まず、図5(b)に示されているサンプル1aの水平断面を電子顕微鏡によって撮影する。次に、サンプル1aに含まれる絶縁体3の発泡度を該絶縁体3の比重測定によって求める。測定方法は、JIS Z 8807:2012「固体の密度及び比重測定方法」に従う。次いで、撮影した画像を白黒に2値化し、サンプル1aの水平断面を気泡30の部分と気泡壁の部分(気泡30ではない部分)とに分ける。白黒の比率は、測定した発泡度に合わせる。その後、画像中の白の部分と黒の部分の面積(画素数)を求めて、次式により水平断面内における発泡度を算出する。
発泡度=B/(A+B)×100(%)
A:気泡壁画素数(黒)
B:気泡画素数(白)
以上のようにして、第1領域11における左側絶縁体3aと右側絶縁体3bの発泡度を算出して比較する。同様にして、第2領域21における左側絶縁体3aと右側絶縁体3bの発泡度を算出して比較する。
Here, the degree of foaming in each region was determined as follows. First, a horizontal section of the sample 1a shown in FIG. Next, the foaming degree of the insulator 3 included in the sample 1a is obtained by measuring the specific gravity of the insulator 3. The measuring method follows JIS Z 8807: 2012 “Method for measuring density and specific gravity of solid”. Next, the captured image is binarized into black and white, and the horizontal cross section of the sample 1a is divided into a bubble 30 portion and a bubble wall portion (a portion other than the bubble 30). The ratio of black and white is adjusted to the measured degree of foaming. Thereafter, the area (number of pixels) of the white portion and the black portion in the image is obtained, and the foaming degree in the horizontal section is calculated by the following equation.
Foaming degree = B / (A + B) × 100 (%)
A: Bubble wall pixel count (black)
B: Bubble pixel count (white)
As described above, the foaming degree of the left insulator 3a and the right insulator 3b in the first region 11 is calculated and compared. Similarly, the foaming degree of the left insulator 3a and the right insulator 3b in the second region 21 is calculated and compared.

以上のように、本実施形態に係る差動信号伝送用ケーブル1Aでは、長手方向(Z方向)における絶縁体3の発泡度のバラツキが所定範囲内に保たれている。よって、一方の信号線導体2aのキャパシタンスと他方の信号線導体2bのキャパシタンスとの差が1.0%以内に保たれる。この結果、本実施形態に係る差動信号伝送用ケーブル1Aは良好な伝送特性を備えており、該差動信号伝送用ケーブル1Aを用いた差動伝送ではスキュー(Skew)の増加が抑制される。   As described above, in the differential signal transmission cable 1A according to the present embodiment, the variation in the foaming degree of the insulator 3 in the longitudinal direction (Z direction) is kept within a predetermined range. Therefore, the difference between the capacitance of one signal line conductor 2a and the capacitance of the other signal line conductor 2b is kept within 1.0%. As a result, the differential signal transmission cable 1A according to the present embodiment has good transmission characteristics, and an increase in skew is suppressed in the differential transmission using the differential signal transmission cable 1A. .

次に、本実施形態に係る差動信号伝送用ケーブル1Aの製造方法について説明する。差動信号伝送用ケーブル1Aの製造方法は、一対の信号線導体2a,2bを加熱する予熱工程と、予熱された信号線導体2a,2bの周囲に絶縁体3を形成する被覆工程と、を少なくとも含む。   Next, a method for manufacturing the differential signal transmission cable 1A according to the present embodiment will be described. The manufacturing method of the differential signal transmission cable 1A includes a preheating step of heating the pair of signal line conductors 2a and 2b and a covering step of forming the insulator 3 around the preheated signal line conductors 2a and 2b. Including at least.

被覆工程は、例えば図6(a)に示される被覆装置40を用いて行われる。図示されている被覆装置40は、押出ヘッド50と、発泡絶縁材料を押出ヘッド50に供給する供給機構60と、を備えている。   The coating process is performed using, for example, a coating apparatus 40 shown in FIG. The illustrated coating apparatus 40 includes an extrusion head 50 and a supply mechanism 60 that supplies foamed insulating material to the extrusion head 50.

図6(a)に示されるように、供給機構60は、発泡絶縁材料31が投入されるホッパ61と、ホッパ61及び押出ヘッド50にそれぞれ連通するシリンダ62と、シリンダ62内で回転するスクリュ63と、を備えている。一方、図6(b)に示されるように、押出ヘッド50は、口金51と該口金51の内側に配置された心金52とからなる二重構造を備えている。心金52は、略円錐形の形状を有し、その中心には貫通孔(不図示)が設けられている。また、口金51と心金52との間には、心金52の全周に亘って隙間53が設けられている。すなわち、心金52の周囲に環状の供給路53が設けられている。   As shown in FIG. 6A, the supply mechanism 60 includes a hopper 61 into which the foamed insulating material 31 is charged, a cylinder 62 that communicates with the hopper 61 and the extrusion head 50, and a screw 63 that rotates within the cylinder 62. And. On the other hand, as shown in FIG. 6B, the extrusion head 50 has a double structure including a base 51 and a core 52 disposed inside the base 51. The mandrel 52 has a substantially conical shape, and a through hole (not shown) is provided at the center thereof. A gap 53 is provided between the base 51 and the core 52 over the entire circumference of the core 52. That is, an annular supply path 53 is provided around the mandrel 52.

図6(a)に示されるように、ペレット状に成形された発泡絶縁材料31が供給機構60のホッパ61に投入される。ここで、発泡絶縁材料31は、樹脂材料と化学発泡剤を含む。樹脂材料としては、例えばポリオレフィンを用いることができる。具体的には、低密度ポリエチレン,高密度ポリエチレン,直鎖状低密度ポリエチレン,超低密度ポリエチレン,エチレン−ヘキセン共重合体,エチレン−オクテン共重合体,エチレン−酢酸ビニル共重合体,エチレン−エチルアクリレート共重合体,エチレン−メチルアクリレート共重合体,エチレン−メチルメタクリレート共重合体,ポリプロピレン,エチレン共重合体ポリプロピレン,リアクタブレンド型ポリプロピレン,シクロオレフィンポリマ,ポリ−4−メチル−1−ペンテンが挙げられる。これら樹脂材料は単独で用いてもよく、2種以上をブレンドして用いてもよい。   As shown in FIG. 6A, the foamed insulating material 31 formed into a pellet is put into a hopper 61 of the supply mechanism 60. Here, the foam insulating material 31 includes a resin material and a chemical foaming agent. As the resin material, for example, polyolefin can be used. Specifically, low density polyethylene, high density polyethylene, linear low density polyethylene, ultra low density polyethylene, ethylene-hexene copolymer, ethylene-octene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl Examples include acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, polypropylene, ethylene copolymer polypropylene, reactor blend type polypropylene, cycloolefin polymer, and poly-4-methyl-1-pentene. . These resin materials may be used alone or in combination of two or more.

一方、化学発泡剤としては、アゾジカルボンアミド,アゾビスイソブチロニトリル,バリウムアゾジカルボキシレート,ジニトロソペンタメチレンテトラミン,4,4’−オキシビス(ベンゼンスルホニルヒドラジッド),N,N’−ジニトロソペンタメチレンテトラミン,ベンゼンスルホニルヒドラジッド,ビステトラゾール・ジアンモニウム,ビステトラゾール・ピペラジン,5−フェニールテトラゾールなどの有機系化学発泡剤が挙げられる。また、化学発泡剤としては、炭酸塩,重炭酸塩,亜硝酸塩,水素化物などの無機系化学発泡剤が挙げられる。さらに、化学発泡剤としては、酸化亜鉛,酸化マグネシウムなどの金属酸化物,脂肪酸塩,無機亜鉛化合物,有機亜鉛化合物,尿素系化合物,有機酸,アミン化合物などの発泡助剤が挙げられる。これら化学発泡剤は単独で用いてもよく、2種以上をブレンドして用いてもよい。   On the other hand, as the chemical foaming agent, azodicarbonamide, azobisisobutyronitrile, barium azodicarboxylate, dinitrosopentamethylenetetramine, 4,4′-oxybis (benzenesulfonylhydrazide), N, N′-di Examples thereof include organic chemical blowing agents such as nitrosopentamethylenetetramine, benzenesulfonylhydrazide, bistetrazole / diammonium, bistetrazole / piperazine, and 5-phenyltetrazole. Examples of the chemical foaming agent include inorganic chemical foaming agents such as carbonates, bicarbonates, nitrites, and hydrides. Furthermore, examples of the chemical foaming agent include foaming aids such as metal oxides such as zinc oxide and magnesium oxide, fatty acid salts, inorganic zinc compounds, organic zinc compounds, urea compounds, organic acids, and amine compounds. These chemical foaming agents may be used alone or in combination of two or more.

図6(a)に示されるように、ホッパ61に投入されたペレット状の発泡絶縁材料31は、シリンダ62に供給され、シリンダ62内で回転するスクリュ63によって練り混ぜられてペースト状にされる。さらに、ペースト状に練り混ぜられた発泡絶縁材料31は、スクリュ63の回転に伴って押出ヘッド50に送り込まれる。同時に、押出ヘッド50には、加熱(予熱)された信号線導体2a,2bが導入される。具体的には、図6(b)に示されるように、予熱された信号線導体2a,2bが心金52の貫通孔を通して心金52から送り出される。一方、押出ヘッド50に送り込まれたペースト状の発泡絶縁材料31は、押出ヘッド50の供給路53を通して、心金52から送り出される信号線導体2a,2bの周囲に吐出される。これによって、一対の信号線導体2a,2bの周囲に、これら信号線導体2a,2bを一括被覆する絶縁体3が形成される。すなわち、一対の信号線導体2a,2bの周囲に発泡絶縁材料31を押し出す被覆工程と該被覆工程に先立って一対の信号線導体2a,2bを加熱する予熱工程とを経て絶縁体3が形成される。   As shown in FIG. 6 (a), the pellet-shaped foamed insulating material 31 put into the hopper 61 is supplied to the cylinder 62, and is kneaded by the screw 63 that rotates in the cylinder 62 to form a paste. . Further, the foamed insulating material 31 kneaded into a paste is fed into the extrusion head 50 as the screw 63 rotates. At the same time, heated (preheated) signal line conductors 2 a and 2 b are introduced into the extrusion head 50. Specifically, as shown in FIG. 6B, the preheated signal line conductors 2 a and 2 b are sent out from the mandrel 52 through the through holes of the mandrel 52. On the other hand, the pasty foam insulating material 31 fed to the extrusion head 50 is discharged around the signal line conductors 2 a and 2 b delivered from the mandrel 52 through the supply path 53 of the extrusion head 50. As a result, an insulator 3 is formed around the pair of signal line conductors 2a and 2b to collectively cover the signal line conductors 2a and 2b. That is, the insulator 3 is formed through a covering process for extruding the foam insulating material 31 around the pair of signal line conductors 2a and 2b and a preheating process for heating the pair of signal line conductors 2a and 2b prior to the covering process. The

ここで、被覆工程においては、2本の信号線導体2a,2bの温度差が10℃以内に維持される。具体的には、絶縁体3が形成される際の信号線導体2a,2bの温度差が10℃以内に維持される。より具体的には、図6(b)に示される心金52から送り出される際の信号線導体2a,2bの温度差が10℃以内になるように、予熱工程における信号線導体2a,2bの加熱温度が調節される。例えば、押出ヘッド50に導入される前に信号線導体2a,2bの温度が測定され、その測定結果に基づいて、一方の信号線導体2a,2bに対する加熱温度と他方の信号線導体2b,2aに対する加熱温度の少なくとも何れか一方が調節される。   Here, in the covering step, the temperature difference between the two signal line conductors 2a and 2b is maintained within 10 ° C. Specifically, the temperature difference between the signal line conductors 2a and 2b when the insulator 3 is formed is maintained within 10 ° C. More specifically, the signal line conductors 2a and 2b in the preheating step are set so that the temperature difference between the signal line conductors 2a and 2b when being sent out from the mandrel 52 shown in FIG. The heating temperature is adjusted. For example, the temperature of the signal line conductors 2a and 2b is measured before being introduced into the extrusion head 50, and the heating temperature for one signal line conductor 2a and 2b and the other signal line conductor 2b and 2a are measured based on the measurement result. At least one of the heating temperatures is adjusted.

ここで、予熱工程では、直接加熱又は誘導加熱によって信号線導体2a,2bが加熱(予熱)される。直接加熱によって信号線導体2a,2bが予熱される場合には、電熱線ヒータやガスバーナなどの熱源がそれぞれの信号線導体2a,2bに対して設けられる。この場合、熱源と押出ヘッド50との間において信号線導体2a,2bの温度差が測定され、その測定結果に基づいて、一方の信号線導体用の熱源と他方の信号線導体用の熱源の少なくとも何れか一方が手動により、または自動的に調節される。   Here, in the preheating step, the signal line conductors 2a and 2b are heated (preheated) by direct heating or induction heating. When the signal line conductors 2a and 2b are preheated by direct heating, a heat source such as a heating wire heater or a gas burner is provided for each of the signal line conductors 2a and 2b. In this case, the temperature difference between the signal line conductors 2a and 2b is measured between the heat source and the extrusion head 50, and based on the measurement result, the heat source for one signal line conductor and the heat source for the other signal line conductor At least one of them is adjusted manually or automatically.

また、誘導加熱によって信号線導体2a,2bが予熱される場合には、交流電源に接続されたコイルがそれぞれの信号線導体2a,2bに対して設けられる。それぞれの信号線導体2a,2bは、対応するコイルの内側を通過する際にジュール熱によって加熱(予熱)される。この場合、コイルと押出ヘッド50との間において信号線導体2a,2bの温度差が測定され、その測定結果に基づいて、一方の信号線導体用のコイルと他方の信号線導体用のコイルの少なくとも何れか一方に対する印加電圧が手動により、または自動的に調節される。   When the signal line conductors 2a and 2b are preheated by induction heating, a coil connected to an AC power source is provided for each of the signal line conductors 2a and 2b. Each signal line conductor 2a, 2b is heated (preheated) by Joule heat when passing inside the corresponding coil. In this case, the temperature difference between the signal line conductors 2a and 2b is measured between the coil and the extrusion head 50, and based on the measurement result, the coil for one signal line conductor and the coil for the other signal line conductor are The applied voltage to at least one of them is adjusted manually or automatically.

何れの場合も、信号線導体2a,2bが押出ヘッド50に導入される直前に、信号線導体2a,2bの温度差を測定することが望ましい。従って、信号線導体2a,2bの温度を測定するセンサなどの測定手段は、押出ヘッド50の直前に配置されることが望ましい。   In any case, it is desirable to measure the temperature difference between the signal line conductors 2a and 2b immediately before the signal line conductors 2a and 2b are introduced into the extrusion head 50. Therefore, it is desirable that measurement means such as a sensor for measuring the temperature of the signal line conductors 2 a and 2 b is disposed immediately before the extrusion head 50.

以上のように、被覆工程における信号線導体2a,2bの温度差を10℃以内に維持することによって絶縁体3の発泡度を均一に保つことができる。すなわち、長手方向の異なる2以上の領域において第1発泡度と第2発泡度との差が5.0%以内に保たれている差動信号伝送用ケーブル1A(図1)が製造される。換言すれば、一方の信号線導体2aのキャパシタンスと他方の信号線導体2bのキャパシタンスとの差が1.0%以内に保たれている差動信号伝送用ケーブル1A(図1)が製造される。   As described above, the foaming degree of the insulator 3 can be kept uniform by maintaining the temperature difference between the signal line conductors 2a and 2b in the covering step within 10 ° C. That is, the differential signal transmission cable 1A (FIG. 1) in which the difference between the first foaming degree and the second foaming degree is maintained within 5.0% in two or more regions having different longitudinal directions is manufactured. In other words, the differential signal transmission cable 1A (FIG. 1) in which the difference between the capacitance of one signal line conductor 2a and the capacitance of the other signal line conductor 2b is kept within 1.0% is manufactured. .

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、信号線導体2a,2bには、銅線に代えて各種合金線を用いることができる。また、信号線導体2a,2bは、単線でもよく、撚り線でもよい。さらに、信号線導体2a,2bの表面には、銀めっきに代えて、錫めっき,ニッケルめっき,金めっきなどの各種めっきを施すことができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, various alloy wires can be used for the signal line conductors 2a and 2b instead of copper wires. The signal line conductors 2a and 2b may be single wires or stranded wires. Further, the surface of the signal line conductors 2a and 2b can be subjected to various types of plating such as tin plating, nickel plating and gold plating instead of silver plating.

絶縁体3を形成する樹脂を発泡させる方式は、上述の化学発泡方式に限られず、物理発泡方式でもよい。例えば、図6(a)に示される供給機構60において樹脂材料にガスを溶解させてもよい。樹脂材料に溶解されるガスとしては、窒素ガス,炭酸ガス,空気,ペンタン,ブタン,フロン化合物などが挙げられる。   The method of foaming the resin that forms the insulator 3 is not limited to the chemical foaming method described above, and may be a physical foaming method. For example, a gas may be dissolved in the resin material in the supply mechanism 60 shown in FIG. Examples of the gas dissolved in the resin material include nitrogen gas, carbon dioxide gas, air, pentane, butane, and chlorofluorocarbon compounds.

1A 差動信号伝送用ケーブル
1a サンプル
2a,2b 信号線導体
3 絶縁体
3a 左側絶縁体
3b 右側絶縁体
4 スキン層
5 シールド層
6 押さえテープ
11 第1領域
12,22 端面
21 第2領域
30 気泡
31 発泡絶縁材料
40 被覆装置
50 押出ヘッド
51 口金
52 心金
53 供給路(隙間)
60 供給機構
61 ホッパ
62 シリンダ
63 スクリュ
1A Cable for differential signal transmission 1a Sample 2a, 2b Signal line conductor 3 Insulator 3a Left insulator 3b Right insulator 4 Skin layer 5 Shield layer 6 Holding tape 11 First region 12, 22 End face 21 Second region 30 Bubble 31 Foam insulation material 40 Coating device 50 Extrusion head 51 Base 52 Core metal 53 Supply path (gap)
60 Supply mechanism 61 Hopper 62 Cylinder 63 Screw

Claims (6)

一対の信号線導体と、発泡絶縁材料により形成され、前記一対の信号線導体を一括被覆する絶縁体と、を備える差動信号伝送用ケーブルの製造方法であって、
前記一対の信号線導体の周囲に前記発泡絶縁材料を押し出す被覆工程において、前記一対の信号線導体の温度差を10℃以内に維持する、
差動信号伝送用ケーブルの製造方法。
A differential signal transmission cable manufacturing method comprising: a pair of signal line conductors; and an insulator that is formed of a foam insulating material and collectively covers the pair of signal line conductors,
In the covering step of extruding the foamed insulating material around the pair of signal line conductors, the temperature difference between the pair of signal line conductors is maintained within 10 ° C.
A method for manufacturing a cable for differential signal transmission.
請求項1に記載の差動信号伝送用ケーブルの製造方法であって、
前記被覆工程における前記一対の信号線導体の温度差が10℃以内に維持されるように、前記被覆工程に先立って前記一対の信号線導体を加熱する予熱工程を有する、
差動信号伝送用ケーブルの製造方法。
It is a manufacturing method of the cable for differential signal transmission according to claim 1,
A preheating step of heating the pair of signal line conductors prior to the covering step so that a temperature difference between the pair of signal line conductors in the covering step is maintained within 10 ° C.
A method for manufacturing a cable for differential signal transmission.
請求項2に記載の差動信号伝送用ケーブルの製造方法であって、
前記予熱工程では、前記一対の信号線導体の温度差に基づいて、一方の信号線導体に対する加熱温度と他方の信号線導体に対する加熱温度の少なくとも何れか一方を調節する、
差動信号伝送用ケーブルの製造方法。
It is a manufacturing method of the cable for differential signal transmission according to claim 2,
In the preheating step, based on the temperature difference between the pair of signal line conductors, the heating temperature for one signal line conductor and the heating temperature for the other signal line conductor are adjusted.
A method for manufacturing a cable for differential signal transmission.
一対の信号線導体と、発泡絶縁材料により形成され、前記一対の信号線導体を一括被覆する絶縁体と、を備える差動信号伝送用ケーブルであって、
一方の信号線導体の周囲における前記絶縁体の発泡度を第1発泡度とし、他方の信号線導体の周囲における前記絶縁体の発泡度を第2発泡度としたとき、
長手方向の異なる2以上の領域において、前記第1発泡度と前記第2発泡度との差が5.0%以内である、
差動信号伝送用ケーブル。
A differential signal transmission cable comprising: a pair of signal line conductors; and an insulator that is formed of a foam insulating material and collectively covers the pair of signal line conductors,
When the foaming degree of the insulator around one signal line conductor is a first foaming degree, and the foaming degree of the insulator around the other signal line conductor is a second foaming degree,
In two or more regions having different longitudinal directions, the difference between the first foaming degree and the second foaming degree is within 5.0%.
Cable for differential signal transmission.
請求項4に記載の差動信号伝送用ケーブルであって、
任意の長さに切断された前記差動信号伝送用ケーブルの一方の端面を含む第1領域および他方の端面を含む第2領域において、前記第1発泡度と前記第2発泡度との差が5.0%以内である、
差動信号伝送用ケーブル。
The differential signal transmission cable according to claim 4,
In the first region including one end face of the differential signal transmission cable cut to an arbitrary length and the second region including the other end face, a difference between the first foaming degree and the second foaming degree is Within 5.0%,
Cable for differential signal transmission.
請求項4または5に記載の差動信号伝送用ケーブルであって、
前記一方の信号線導体のキャパシタンスと前記他方の信号線導体のキャパシタンスとの差が1.0%以内である、
差動信号伝送用ケーブル。
The differential signal transmission cable according to claim 4 or 5,
The difference between the capacitance of the one signal line conductor and the capacitance of the other signal line conductor is within 1.0%.
Cable for differential signal transmission.
JP2014019443A 2014-02-04 2014-02-04 Differential signal transmission cable and method of manufacturing the same Active JP6102775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014019443A JP6102775B2 (en) 2014-02-04 2014-02-04 Differential signal transmission cable and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014019443A JP6102775B2 (en) 2014-02-04 2014-02-04 Differential signal transmission cable and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2015146298A true JP2015146298A (en) 2015-08-13
JP6102775B2 JP6102775B2 (en) 2017-03-29

Family

ID=53890443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014019443A Active JP6102775B2 (en) 2014-02-04 2014-02-04 Differential signal transmission cable and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6102775B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283238B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10283240B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10304592B1 (en) 2018-03-19 2019-05-28 Te Connectivity Corporation Electrical cable
US10600537B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10600536B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10741308B2 (en) 2018-05-10 2020-08-11 Te Connectivity Corporation Electrical cable
US10950367B1 (en) 2019-09-05 2021-03-16 Te Connectivity Corporation Electrical cable
US11069458B2 (en) 2018-04-13 2021-07-20 TE Connectivity Services Gmbh Electrical cable
US12087465B2 (en) 2018-10-12 2024-09-10 Te Connectivity Solutions Gmbh Electrical cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089950A (en) * 2012-10-03 2014-05-15 Hitachi Metals Ltd Cable for transmitting differential signal, and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089950A (en) * 2012-10-03 2014-05-15 Hitachi Metals Ltd Cable for transmitting differential signal, and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283238B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10283240B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10304592B1 (en) 2018-03-19 2019-05-28 Te Connectivity Corporation Electrical cable
US11069458B2 (en) 2018-04-13 2021-07-20 TE Connectivity Services Gmbh Electrical cable
US10741308B2 (en) 2018-05-10 2020-08-11 Te Connectivity Corporation Electrical cable
US10600537B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10600536B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US12087465B2 (en) 2018-10-12 2024-09-10 Te Connectivity Solutions Gmbh Electrical cable
US10950367B1 (en) 2019-09-05 2021-03-16 Te Connectivity Corporation Electrical cable

Also Published As

Publication number Publication date
JP6102775B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6102775B2 (en) Differential signal transmission cable and method of manufacturing the same
JP6044501B2 (en) Differential signal transmission cable and method of manufacturing the same
US9064621B2 (en) Parallel foamed coaxial cable
WO2015145537A1 (en) Transmission line
CN107924738B (en) Cable core and transmission cable
JP2008027913A (en) Superfine coaxial cable
WO2010035762A1 (en) Coaxial cable and multicore coaxial cable
CN103915137A (en) Shielded cable
TW201447923A (en) Multi-core cable and its manufacturing method
JP2008171824A (en) Electric cable device, and its manufacturing method
JP2011222262A (en) Shield cable
JP2013152789A (en) Multi-conductor cable and method of manufacturing the same
JP2007026909A (en) Two-core balanced cable
JP2016027547A (en) Differential signal transmission cable and multicore differential signal transmission cable
CN202771829U (en) A cable used for differential signal transmission and wire beam utilizing the cable
JP2014142247A (en) Measurement device and manufacturing method of cable for differential signal transmission
JP6459197B2 (en) 2-core parallel wire
JP2016072196A (en) Two-core parallel electric wire
JP2015204195A (en) Differential signal cable, production method thereof and multi-pair differential signal cable
JPWO2010064579A1 (en) Transmission cable and signal transmission cable using the same
TW201447930A (en) Coaxial cable and manufacturing method thereof
TW201530569A (en) Insulated wire and coaxial cable
JP2011071095A (en) Coaxial cable and multicore coaxial cable
JP5426948B2 (en) Foamed electric wire and transmission cable having the same
JP2015046396A (en) Cable for differential signal transmission and harness using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350