JP2014142247A - Measurement device and manufacturing method of cable for differential signal transmission - Google Patents

Measurement device and manufacturing method of cable for differential signal transmission Download PDF

Info

Publication number
JP2014142247A
JP2014142247A JP2013010522A JP2013010522A JP2014142247A JP 2014142247 A JP2014142247 A JP 2014142247A JP 2013010522 A JP2013010522 A JP 2013010522A JP 2013010522 A JP2013010522 A JP 2013010522A JP 2014142247 A JP2014142247 A JP 2014142247A
Authority
JP
Japan
Prior art keywords
conductors
distance
signal transmission
differential signal
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013010522A
Other languages
Japanese (ja)
Other versions
JP6167530B2 (en
Inventor
masafumi Kaga
雅文 加賀
Hiroshi Ishikawa
弘 石川
Akinari Nakayama
明成 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013010522A priority Critical patent/JP6167530B2/en
Publication of JP2014142247A publication Critical patent/JP2014142247A/en
Application granted granted Critical
Publication of JP6167530B2 publication Critical patent/JP6167530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device that can accurately measure the distance between the centers of the conductors of cables for differential signal transmission without limiting the material of an insulation body coating the conductor, in a non-destructive and non-contact manner, and can assure low skew of the cable for differential signal transmission by performing feedback on the basis of the measurement result and controlling the distance between the centers of the conductors, and provide a manufacturing method of the cable for differential signal transmission.SOLUTION: The manufacturing method of the cable for differential signal transmission includes a coating process of coating at least a pair of conductors 4 separated from each other and extending in parallel in a longitudinal direction with an insulation body, and a measurement process of measuring the distance between the centers of at least the pair of conductors 4 through the insulation body at a plurality of places in the longitudinal direction after the coating process.

Description

本発明は、導体の中心間距離を測定する測定装置、及びそれを用いた差動信号伝送用ケーブルの製造方法に関する。   The present invention relates to a measuring device for measuring a distance between centers of conductors and a method for manufacturing a differential signal transmission cable using the measuring device.

従来、フラットケーブルは、コネクタとの挿脱が行われるため、導体間ピッチやマージン幅に対して要求される精度が厳しい場合が多いことから、ケーブルの導体間ピッチやマージン幅を光学的に測定する測定方法が提案されている(例えば、特許文献1参照。)。   Conventionally, since flat cables are inserted into and removed from the connector, the accuracy required for the pitch between conductors and margin width is often severe. Therefore, optically measure the pitch between conductors and margin width of the cable. A measurement method has been proposed (see, for example, Patent Document 1).

この測定方法が対象とするフラットケーブルは、複数本の導体を光透過率が20%以上75%以下の絶縁基材によって被覆したものである。当該測定方法は、フラットケーブルの一方の側から光を当て、他方の側で透過光の輝度分布を測定し、測定した輝度分布に基づいて導体間ピッチやマージン幅を測定するものである。   The flat cable targeted by this measuring method is obtained by coating a plurality of conductors with an insulating base material having a light transmittance of 20% to 75%. In the measurement method, light is applied from one side of a flat cable, the luminance distribution of transmitted light is measured on the other side, and the pitch between conductors and the margin width are measured based on the measured luminance distribution.

一方、数Gbps以上の高速デジタル信号を扱うサーバ、ルータ及びストレージ関連機器において、機器間あるいは機器内の基板間の信号伝送には、差動信号による伝送が用いられ、その伝送媒体として差動信号伝送用ケーブルが用いられている(例えば、特許文献2参照。)。   On the other hand, in servers, routers, and storage-related devices that handle high-speed digital signals of several Gbps or more, transmission using differential signals is used for signal transmission between devices or between boards in devices, and differential signals are used as the transmission medium. A transmission cable is used (for example, see Patent Document 2).

差動信号伝送とは、対をなす2本の導体により、位相が180度反転している2つの信号をそれぞれ伝送し、受信端側で2信号の差分を取り出すものである。   In the differential signal transmission, two signals whose phases are inverted by 180 degrees are transmitted by two conductors in pairs, and the difference between the two signals is extracted on the receiving end side.

特許文献2に記載された差動信号伝送用ケーブルは、平行に延びる一対以上の内部導体を断面円形又は楕円形の発泡絶縁体で一括被覆するとともに、その発泡絶縁体の周囲に外部導体を備え、さらにその外部導体を発泡絶縁体とともに絶縁ジャケットで隙間なく被覆したものである。これにより、単芯を発泡絶縁体で被覆した発泡絶縁電線を2本対にしたケーブル(ツイナックスケーブル)では到達することができない低スキューを実現することができる。   The cable for differential signal transmission described in Patent Document 2 collectively covers a pair of or more inner conductors extending in parallel with a foamed insulator having a circular or elliptical cross section, and includes an outer conductor around the foamed insulator. Further, the outer conductor is covered with a foamed insulator with an insulating jacket without any gap. Thereby, the low skew which cannot be attained with the cable (Twinax cable) which made the pair of the foam insulation electric wires which coat | covered the single core with the foam insulation can be implement | achieved.

特開平6−68716号公報JP-A-6-68716 特開2001−35270号公報JP 2001-35270 A

しかし、従来の測定方法によると、導体を被覆する絶縁基材の材料が光透過性の材料に制限されるという問題がある。一方、ケーブルの断面を直接観察して導体の中心間距離を測定する方法(以下「断面測定」という。)では、測定に時間と手間がかかり、製造後に測定するので、測定結果を直ちに製造工程に反映できないという問題がある。また、差動信号伝送用ケーブルにあっては、低スキューは重要な特性の一つであり、スキューに関わる、導体の中心間距離の測定精度の向上と、その保証が求められている。   However, according to the conventional measuring method, there is a problem that the material of the insulating base material covering the conductor is limited to a light transmissive material. On the other hand, in the method of measuring the distance between the centers of the conductors by directly observing the cross section of the cable (hereinafter referred to as “cross section measurement”), the measurement takes time and labor, and the measurement is performed after production. There is a problem that can not be reflected in. Further, in the differential signal transmission cable, low skew is one of the important characteristics, and improvement of the measurement accuracy of the distance between the centers of the conductors related to the skew and its guarantee are required.

したがって、本発明の目的は、導体を被覆する絶縁体の材料に制限されずに差動信号伝送用ケーブルの導体の中心間距離を非破壊、非接触で精度良く測定することができ、その測定結果を基にフィードバックし、導体の中心間距離を制御することで、差動信号伝送用ケーブルの低スキューを保証することが可能な測定装置、及び差動信号伝送用ケーブルの製造方法を提供することにある。   Therefore, the object of the present invention is to be able to accurately measure the distance between the centers of the conductors of the differential signal transmission cable without being limited to the insulator material covering the conductors. Provided are a measuring apparatus capable of guaranteeing low skew of a differential signal transmission cable by feedback based on the result and controlling the distance between the centers of the conductors, and a method for manufacturing the differential signal transmission cable. There is.

本発明の一態様は、上記目的を達成するため、以下の測定装置、及び差動信号伝送用ケーブルの製造方法を提供する。   In order to achieve the above object, one embodiment of the present invention provides the following measuring apparatus and method for manufacturing a differential signal transmission cable.

[1]互いに離れて長手方向に平行に延びる少なくとも一対の導体と前記少なくとも一対の導体を被覆する絶縁体とを有する差動信号伝送用ケーブルの前記少なくとも一対の導体の中心間距離を前記絶縁体を介して測定する測定部、
を備えた測定装置。
[2]前記測定部は、
前記少なくとも一対の導体に電流を流したときに前記導体から発生する磁場強度を少なくとも2つの所定の位置で検出する検出部と、
前記検出部の座標情報、及び前記検出部において検出された少なくとも2つの磁場強度に基づいて前記少なくとも一対の導体の中心間距離を演算する演算部と、
を備えた前記[1]記載の測定装置。
[3]前記測定部は、前記少なくとも一対の導体の中心間距離を前記長手方向に沿う複数の箇所で測定する前記[1]又は[2]記載の測定装置。
[4]前記検出部は、前記少なくとも2つの所定の位置にそれぞれ配置された磁気センサを備えた前記[2]記載の測定装置。
[5]前記測定部は、前記磁気センサを前記差動信号伝送用ケーブルに対して相対的に前記長手方向に移動させて前記長手方向に沿う複数の箇所で前記導体の中心間距離を測定する前記[4]記載の測定装置。
[6]前記測定部は、前記磁気センサの位置を固定させた状態で前記差動信号伝送用ケーブルが製造ラインを移動中に前記長手方向に沿う前記複数の箇所で前記導体の中心間距離を測定する前記[5]記載の測定装置。
[1] A distance between centers of at least a pair of conductors of a differential signal transmission cable having at least a pair of conductors extending away from each other in parallel in a longitudinal direction and an insulator covering the at least the pair of conductors. Measuring part to measure through
Measuring device.
[2] The measurement unit includes:
A detection unit for detecting magnetic field strength generated from the conductor when current is passed through the at least one pair of conductors at at least two predetermined positions;
A calculation unit that calculates a distance between centers of the at least a pair of conductors based on coordinate information of the detection unit and at least two magnetic field strengths detected by the detection unit;
The measuring apparatus according to [1], further comprising:
[3] The measurement apparatus according to [1] or [2], wherein the measurement unit measures a distance between centers of the at least a pair of conductors at a plurality of locations along the longitudinal direction.
[4] The measuring device according to [2], wherein the detection unit includes a magnetic sensor disposed at each of the at least two predetermined positions.
[5] The measurement unit moves the magnetic sensor in the longitudinal direction relative to the differential signal transmission cable, and measures the distance between the centers of the conductors at a plurality of locations along the longitudinal direction. The measuring apparatus according to [4] above.
[6] The measuring unit determines the distance between the centers of the conductors at the plurality of locations along the longitudinal direction while the differential signal transmission cable is moving on the production line with the position of the magnetic sensor fixed. The measurement apparatus according to [5], wherein the measurement is performed.

[7]互いに離れて長手方向に平行に延びる少なくとも一対の導体を該導体の中心間距離が所定値となるように絶縁体で被覆する被覆工程と、
前記被覆工程後に前記絶縁体を介して前記長手方向の複数の箇所で前記少なくとも一対の導体の中心間距離を測定する測定工程と、
測定された前記導体の中心間距離が前記所定値から外れる場合には、前記導体の中心間距離が所定値となるように製造ラインにフィードバックし、前記導体の中心間距離を制御する調整工程と、
を含む差動信号伝送用ケーブルの製造方法。
[8]前記測定工程は、
前記少なくとも一対の導体に電流を流したときに前記導体から発生する磁場強度を少なくとも2つの所定の位置で検出する検出工程と、
前記少なくとも2つの所定の位置の座標情報、及び前記検出工程において検出された前記少なくとも2つの磁場強度に基づいて前記少なくとも一対の導体の中心間距離を演算する演算工程と、
含む前記[7]記載の差動信号伝送用ケーブルの製造方法。
[9]前記検出工程は、前記少なくとも2つの所定の位置にそれぞれ配置された磁気センサを用いて行う前記[8]記載の差動信号伝送用ケーブルの製造方法。
[10]前記測定工程は、前記少なくとも2つの磁気センサを前記差動信号伝送用ケーブルに対して相対的に前記長手方向に移動させて前記長手方向に沿う前記複数の箇所で前記中心間距離を測定する前記[9]記載の差動信号伝送用ケーブルの製造方法。
[11]前記測定工程は、前記少なくとも2つの磁気センサの位置を固定させた状態で前記少なくとも一対の導体が製造ラインを移動中に前記長手方向に沿う前記複数の箇所で前記少なくとも一対の導体の中心間距離を測定する前記[10]記載の差動信号伝送用ケーブルの製造方法。
[12]前記被覆工程は、押出成形により前記絶縁体が前記少なくとも一対の導体を一括して被覆するものである前記[7]乃至[11]のいずれかに記載の差動信号伝送用ケーブルの製造方法。
[13]前記測定工程による前記一対の導体の中心間距離の測定結果に基づいて前記少なくとも一対の導体の中心間距離を調整する調整工程を、
さらに含む前記[7]乃至[12]のいずれかに記載の差動信号伝送用ケーブルの製造方法。
[7] A covering step of covering at least a pair of conductors that are separated from each other and extend in parallel in the longitudinal direction with an insulator so that the distance between the centers of the conductors is a predetermined value;
A measuring step of measuring a distance between centers of the at least a pair of conductors at a plurality of locations in the longitudinal direction via the insulator after the covering step;
When the measured center-to-center distance of the conductor deviates from the predetermined value, an adjustment step of feeding back to the production line so that the center-to-center distance of the conductor becomes a predetermined value and controlling the center-to-center distance of the conductor; ,
A method for manufacturing a cable for differential signal transmission including:
[8] The measurement step includes
A detection step of detecting magnetic field strength generated from the conductor when a current is passed through the at least one pair of conductors in at least two predetermined positions;
A calculation step of calculating a distance between centers of the at least one pair of conductors based on coordinate information of the at least two predetermined positions and the at least two magnetic field strengths detected in the detection step;
The manufacturing method of the cable for differential signal transmission of said [7] containing.
[9] The differential signal transmission cable manufacturing method according to [8], wherein the detection step is performed using the magnetic sensors respectively disposed at the at least two predetermined positions.
[10] In the measurement step, the at least two magnetic sensors are moved in the longitudinal direction relative to the differential signal transmission cable, and the distance between the centers is determined at the plurality of locations along the longitudinal direction. The method for manufacturing a differential signal transmission cable according to [9], wherein the differential signal transmission cable is measured.
[11] In the measurement step, the position of the at least two magnetic sensors is fixed, and the at least one pair of conductors is moved at a plurality of locations along the longitudinal direction while the at least one pair of conductors moves on the production line. The method for manufacturing a cable for differential signal transmission according to [10], wherein the distance between the centers is measured.
[12] The differential signal transmission cable according to any one of [7] to [11], wherein in the covering step, the insulator collectively covers the at least one pair of conductors by extrusion molding. Production method.
[13] An adjustment step of adjusting the center-to-center distance between the at least one pair of conductors based on the measurement result of the center-to-center distance between the pair of conductors according to the measurement step.
Furthermore, the manufacturing method of the cable for differential signal transmission in any one of said [7] thru | or [12].

本発明によれば、導体を被覆する絶縁体の材料に制限されずに差動信号伝送用ケーブルの導体の中心間距離を非破壊、非接触で精度良く測定することができ、その測定結果を基にフィードバックし、導体の中心間距離を制御することで、差動信号伝送用ケーブルの低スキューを保証することが可能になる。   According to the present invention, the distance between the centers of the conductors of the differential signal transmission cable can be accurately measured in a non-destructive and non-contact manner without being limited to the insulator material covering the conductors. It is possible to guarantee a low skew of the differential signal transmission cable by feedback based on the control and controlling the distance between the centers of the conductors.

図1は、本発明の実施の形態に係る製造装置の概略の構成例を示す図である。FIG. 1 is a diagram showing a schematic configuration example of a manufacturing apparatus according to an embodiment of the present invention. 図2は、図1に示す製造装置によって製造される差動信号伝送用ケーブルの一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a differential signal transmission cable manufactured by the manufacturing apparatus shown in FIG. 図3は、検出部の構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of the configuration of the detection unit. 図4は、本実施の形態に係る芯線間距離の測定方法の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of the method for measuring the distance between the core wires according to the present embodiment. 図5は、変形例1に係る差動信号伝送用ケーブルの断面図である。FIG. 5 is a cross-sectional view of a differential signal transmission cable according to the first modification. 図6は、変形例2に係る差動信号伝送用ケーブルの断面図である。FIG. 6 is a cross-sectional view of a differential signal transmission cable according to the second modification. 図7は、本実施例1、2に係る芯線間距離の測定方法を説明するための図である。FIG. 7 is a diagram for explaining a method for measuring the distance between the core wires according to the first and second embodiments. 図8は、本実施例2に係る磁場強度の分布を示すグラフである。FIG. 8 is a graph showing the distribution of the magnetic field strength according to the second embodiment. 図9は、本実施例1及び比較例に係る製造装置の概略の構成例を示す図である。FIG. 9 is a diagram illustrating a schematic configuration example of the manufacturing apparatus according to the first embodiment and the comparative example.

以下、本発明の実施の形態について図面を参照して説明する。なお、各図中、実質的に同一の機能を有する構成要素については、同一の符号を付してその重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, about the component which has the substantially same function, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.

[実施の形態の要約]
本実施の形態に係る測定装置は、互いに離れて長手方向に平行に延びる少なくとも一対の導体と前記少なくとも一対の導体を被覆する絶縁体とを有する差動信号伝送用ケーブルの前記少なくとも一対の導体の中心間距離を前記絶縁体を介して測定する測定部、を備える。
[Summary of embodiment]
The measuring apparatus according to the present embodiment includes the at least one pair of conductors of the differential signal transmission cable including at least a pair of conductors that are separated from each other and extend in parallel in the longitudinal direction and an insulator that covers the at least one pair of conductors. A measurement unit that measures the distance between the centers through the insulator.

本実施の形態に係る差動信号伝送用ケーブルの製造方法は、互いに離れて長手方向に平行に延びる少なくとも一対の導体を該導体の中心間距離が所定値となるように絶縁体で被覆する被覆工程と、前記被覆工程後に前記絶縁体を介して前記長手方向の複数の箇所で前記少なくとも一対の導体の中心間距離を測定する測定工程と、測定された前記導体の中心間距離が前記所定値から外れる場合には、前記導体の中心間距離が前記所定値となるように製造ラインにフィードバックし、前記導体の中心間距離を制御する調整工程と、を含む。   In the method for manufacturing a differential signal transmission cable according to the present embodiment, at least a pair of conductors that are separated from each other and extend in parallel in the longitudinal direction are covered with an insulator so that the distance between the centers of the conductors becomes a predetermined value. Measuring the center-to-center distance of the at least one pair of conductors at a plurality of locations in the longitudinal direction via the insulator after the covering step, and the measured center-to-center distance of the conductor is the predetermined value And the adjustment step of feeding back to the production line so that the distance between the centers of the conductors becomes the predetermined value and controlling the distance between the centers of the conductors.

上記構成によれば、上記測定装置において、一対の導体の中心間距離を精度良く測定することができ、製造工程において、測定された導体の中心間距離からフィードバックし、導体の中心間距離を制御して中心間距離を一定の範囲に保つことにより、低スキューを保証することができる。   According to the above configuration, in the measuring apparatus, the center-to-center distance between the pair of conductors can be accurately measured, and the center-to-center distance between the conductors is controlled by feedback from the measured center-to-center distance in the manufacturing process. By keeping the distance between the centers within a certain range, a low skew can be guaranteed.

[実施の形態]
図1は、本発明の実施の形態に係る製造装置の概略の構成例を示す図である。この製造装置1は、差動信号伝送用ケーブル10の製造ライン2に差動信号伝送用ケーブル10を構成する一対の導体4の中心間距離(以下「芯線間距離」という。)を測定する測定装置12をインライン化したものである。
[Embodiment]
FIG. 1 is a diagram showing a schematic configuration example of a manufacturing apparatus according to an embodiment of the present invention. The manufacturing apparatus 1 measures the distance between the centers of a pair of conductors 4 constituting the differential signal transmission cable 10 in the production line 2 of the differential signal transmission cable 10 (hereinafter referred to as “inter-core distance”). The device 12 is inlined.

より具体的には、この製造装置1は、差動信号伝送用ケーブル10の製造ライン2に、導体4を送り出す送り出し機3と、導体4を加熱する加熱器5と、導体4が通過するクロスヘッド6、及び一対の導体4を発泡絶縁体8で被覆し、発泡絶縁体8をスキン層9で被覆する押出機7と、一対の導体4を発泡絶縁体8及びスキン層9により被覆して得られた差動信号伝送用ケーブル10を冷却する水槽11と、芯線間距離を測定する測定装置12と、差動信号伝送用ケーブル10に張力を付与するダンサ13と、差動信号伝送用ケーブル10を巻き取る巻き取り機14とを備える。ここで、測定装置12は、測定部の一例である。   More specifically, the manufacturing apparatus 1 includes a feeder 3 that sends out a conductor 4, a heater 5 that heats the conductor 4, and a cross through which the conductor 4 passes, to the production line 2 of the differential signal transmission cable 10. The head 6 and the pair of conductors 4 are covered with the foam insulator 8 and the extruder 7 for covering the foam insulator 8 with the skin layer 9 and the pair of conductors 4 are covered with the foam insulator 8 and the skin layer 9. A water tank 11 for cooling the obtained differential signal transmission cable 10, a measuring device 12 for measuring the distance between the core wires, a dancer 13 for applying tension to the differential signal transmission cable 10, and a differential signal transmission cable And a winder 14 for winding 10. Here, the measuring device 12 is an example of a measuring unit.

クロスヘッド6は、押出金口の形状及びサイズが変更できるように構成されている。断面が楕円形の差動信号伝送用ケーブルを製造する場合は、押出金口は楕円形のものを使用し、断面が円形の差動信号伝送用ケーブルを製造する場合は、押出金口は円形のものを使用する。   The cross head 6 is configured so that the shape and size of the extrusion die can be changed. When manufacturing a differential signal transmission cable with an elliptical cross section, use an elliptical extrusion port, and when manufacturing a differential signal transmission cable with a circular cross section, the extrusion port is circular. Use one.

測定装置12は、導体4に電流を流したときに導体4から発生する磁場強度を検出する検出部15と、本製造装置1の各部を制御する制御装置16とを備える。検出部15の詳細については、後述する。   The measuring device 12 includes a detection unit 15 that detects a magnetic field intensity generated from the conductor 4 when a current is passed through the conductor 4, and a control device 16 that controls each unit of the manufacturing apparatus 1. Details of the detection unit 15 will be described later.

制御装置16は、検出部15によって検出された磁場強度に基づいて芯線間距離を演算するとともに、本製造装置1の各部を制御するCPU等を有する制御部160と、CPUのプログラムや各種のデータを記憶する記憶部161と、芯線間距離の測定結果等を表示する表示部162とを備える。制御装置16は、コンピュータによって実現することができる。ここで、制御部160は、演算部の一例である。   The control device 16 calculates the inter-core distance based on the magnetic field intensity detected by the detection unit 15, and also includes a control unit 160 having a CPU and the like for controlling each part of the manufacturing apparatus 1, a CPU program, and various data Is stored, and a display unit 162 that displays the measurement result of the distance between the cores is provided. The control device 16 can be realized by a computer. Here, the control unit 160 is an example of a calculation unit.

制御部160は、後述する図4に示す2つの磁気センサ154、154の位置の座標情報、及び2つの磁気センサ154、154が検出した磁場強度に基づいて芯線間距離を演算する。また、制御部160は、演算した芯線間距離と所定値とを比較し、演算した芯線間距離が所定値から外れる場合には、再度測定して演算した芯線間距離が所定値を満たすように製造ライン2に対してフィードバック制御、すなわち製造ライン2の速度、押出条件、水槽11の水位、差動信号伝送用ケーブル10への張力等を調整し、芯線間距離の制御を行う。 The control unit 160 calculates the inter-core distance based on the coordinate information of the positions of two magnetic sensors 154 1 , 154 2 shown in FIG. 4 to be described later, and the magnetic field strength detected by the two magnetic sensors 154 1 , 154 2. . Further, the control unit 160 compares the calculated inter-core distance with a predetermined value, and when the calculated inter-core distance deviates from the predetermined value, the re-measured and calculated inter-core distance satisfies the predetermined value. Feedback control is performed on the production line 2, that is, the speed of the production line 2, the extrusion conditions, the water level of the water tank 11, the tension to the differential signal transmission cable 10, etc. are adjusted to control the distance between the core wires.

図2は、図1に示す製造装置1によって製造される差動信号伝送用ケーブル10の一例を示す断面図である。差動信号伝送用ケーブル10は、図2に示すように、互いに離れて長手方向に平行に延びる一対の導体4と、一対の導体4を被覆する断面が楕円形の発泡絶縁体8と、発泡絶縁体8の周囲を被覆するスキン層9とを備える。なお、一対の導体4に発泡絶縁体8及びスキン層9を被覆した構成(コア)の周囲にシールド層等を形成してもよい。   FIG. 2 is a cross-sectional view showing an example of the differential signal transmission cable 10 manufactured by the manufacturing apparatus 1 shown in FIG. As shown in FIG. 2, the differential signal transmission cable 10 includes a pair of conductors 4 that are separated from each other and extend in parallel in the longitudinal direction, a foam insulator 8 having an elliptical cross section that covers the pair of conductors 4, and foam And a skin layer 9 covering the periphery of the insulator 8. A shield layer or the like may be formed around a configuration (core) in which the pair of conductors 4 are covered with the foamed insulator 8 and the skin layer 9.

導体4は、例えば、銅、銅合金、アルミニウム、アルミニウム合金、鋼等の電気良導体からなる単線、又はその電気良導体にメッキ等を施した単線を用いることができる。なお、導体4は、屈曲性を重視する場合には、単線と同様の材料からなる複数の導線を撚って形成した撚線でもよい。また、差動信号伝送用ケーブル10は、図2に示す2芯のものに限られず、4芯以上の偶数本の多芯でもよい。   As the conductor 4, for example, a single wire made of a good electrical conductor such as copper, copper alloy, aluminum, aluminum alloy, or steel, or a single wire obtained by plating the good electrical conductor can be used. The conductor 4 may be a stranded wire formed by twisting a plurality of conducting wires made of the same material as that of a single wire when flexibility is important. Further, the differential signal transmission cable 10 is not limited to the two-core cable shown in FIG. 2, and may be an even-numbered multi-core having four or more cores.

発泡絶縁体8は、耐圧潰性であって低誘電率を有するものであれば特に限定されるものではないが、一括押出成形によって一対の導体4を一括被覆する都合上、押出性,硬化性等に優れた公知の熱可塑性ポリマー、例えば、フッソエチレンプロピレンコポリマー(FEP),ペルフルオロアルコキシコポリマー(PFA),エチレンテトラフルオロエチレンコポリマー(ETFE),ポリオレフィンコポリマー等の熱可塑性ポリマーを用いることが好ましい。なお、発泡絶縁体8は、発泡していない絶縁体でもよい。   The foamed insulator 8 is not particularly limited as long as it is pressure-proof and has a low dielectric constant. However, for the convenience of batch-coating a pair of conductors 4 by batch extrusion, extrudability and curability. It is preferable to use known thermoplastic polymers such as fluoroethylene propylene copolymer (FEP), perfluoroalkoxy copolymer (PFA), ethylene tetrafluoroethylene copolymer (ETFE), and polyolefin copolymer. The foamed insulator 8 may be an insulator that is not foamed.

スキン層9は、例えば、発泡していない絶縁体、又は発泡絶縁体8と比較して発泡度が小さい絶縁体からなる。スキン層9の絶縁体としては、例えば、四フッ化エチレン・パーフロロプロビルビニルエーテル共重合体(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)を用いることができる。なお、スキン層9は、PET(ポリエチレンテレフタラート)テープ等のテープを巻回したものでもよい。   The skin layer 9 is made of, for example, an insulator that is not foamed, or an insulator that has a lower foaming degree than the foamed insulator 8. Examples of the insulator for the skin layer 9 include ethylene tetrafluoride / perfluoropropyl vinyl ether copolymer (PFA), ethylene tetrafluoride / hexafluoropropylene copolymer (FEP), and ethylene / tetrafluoroethylene copolymer. A polymer (ETFE) can be used. The skin layer 9 may be one in which a tape such as a PET (polyethylene terephthalate) tape is wound.

図3は、検出部15の構成の一例を示す図である。検出部15は、導体4に交流電圧を印加する交流電源150と、交流電源150と導体4との間に接続された抵抗151と、導体4に流れる電流を表示する電流計152と、磁場強度を検出するラインセンサ153とを備える。導体4に印加する電圧は、コイルによる誘導起電力により印加するのが適切であり、その場合は主に導体4間の起電力は同相となる。その他の方法で導体4に別々に電圧を印加できる場合は、差動方式とすれば、より高精度な測定が期待できる。   FIG. 3 is a diagram illustrating an example of the configuration of the detection unit 15. The detection unit 15 includes an AC power supply 150 that applies an AC voltage to the conductor 4, a resistor 151 connected between the AC power supply 150 and the conductor 4, an ammeter 152 that displays the current flowing through the conductor 4, and the magnetic field strength. And a line sensor 153 for detecting. The voltage applied to the conductor 4 is suitably applied by an induced electromotive force generated by the coil. In this case, the electromotive force between the conductors 4 is mainly in phase. When voltages can be separately applied to the conductors 4 by other methods, more accurate measurement can be expected by using the differential method.

図4は、芯線間距離の測定方法の一例を説明するための図である。差動信号伝送用ケーブル10は、芯線間距離pを測定するとき、各導体4の中心が図4のX軸上に位置するようにテーブル17上に配置される。この場合、磁気センサの数は、導体4の数と同数又はそれ以上であればよい。本実施の形態のラインセンサ153は、X軸に沿ってライン状に配置された2つの磁気センサ154、154(これらを総称するときは磁気センサ154という。)を用いる。なお、差動信号伝送用ケーブル10を一対のテーブル17で上下から挟むようにしてもよい。磁気センサ154は、磁場強度に応じた電流を出力する。磁気センサ154としては、コイル、ホール素子等を用いることができる。本実施の形態では、基板上に導電性材料からなる渦巻き状のパターンのプリントコイルを用いる。 FIG. 4 is a diagram for explaining an example of a method for measuring the distance between the core wires. The differential signal transmission cable 10 is arranged on the table 17 so that the center of each conductor 4 is positioned on the X axis in FIG. 4 when the inter-core distance p is measured. In this case, the number of magnetic sensors may be the same as or more than the number of conductors 4. The line sensor 153 of this embodiment uses two magnetic sensors 154 1 , 154 2 (referred to collectively as magnetic sensors 154) arranged in a line along the X axis. The differential signal transmission cable 10 may be sandwiched between the pair of tables 17 from above and below. The magnetic sensor 154 outputs a current corresponding to the magnetic field strength. As the magnetic sensor 154, a coil, a Hall element, or the like can be used. In this embodiment, a spiral pattern printed coil made of a conductive material is used on a substrate.

磁気センサ154、154毎に電流計152で電流値を読み取り、それを制御装置16で演算処理してグラフ化する。このとき、予め芯線間距離が1mmとなる基準のケーブルを測定して得られた電流波形との比較により芯線間距離を次式[1]で割り出すプログラムを作成した。このプログラムは、記憶部161に記憶しておく。 The current value is read by the ammeter 152 for each of the magnetic sensors 154 1 and 154 2 , and is calculated by the control device 16 to be graphed. At this time, a program for calculating the distance between the core wires by the following formula [1] by comparing with a current waveform obtained by measuring a reference cable having a distance between the core wires of 1 mm in advance was created. This program is stored in the storage unit 161.

Figure 2014142247
ここで、Iは電流(mA)、(x,y)は磁気センサ154の位置(センサ位置)の座標(mm)、x1、はそれぞれの導体4の中心位置(mm)、Hが磁場強度(nH)である。
Figure 2014142247
Here, I is the current (mA), (x, y) is the coordinate (mm) of the position (sensor position) of the magnetic sensor 154, x 1 and x 2 are the center position (mm) of each conductor 4, and H is Magnetic field strength (nH).

図4における測定系において、既知の量は、電流I(mA)、センサ位置(x,y)(mm)、磁場強度H(nH)である。このため、所定の位置に配置された2つの磁気センサ154、154を用いることで、次の式[2]、[3]のようなデータを得ることができる。2つの磁気センサ154、154は、差動信号伝送用ケーブル10の中心軸と直交する面上の異なる位置に配置されるのが好ましい。これによりその面における芯線間距離を測定することができる。ラインセンサ153は、高精度な測定のため、図示しない支持部材によって差動信号伝送用ケーブル10にできるだけ接近させて支持されるのが好ましい。 In the measurement system in FIG. 4, the known amounts are current I (mA), sensor position (x, y) (mm), and magnetic field strength H (nH). For this reason, by using the two magnetic sensors 154 1 , 154 2 arranged at predetermined positions, data such as the following equations [2] and [3] can be obtained. The two magnetic sensors 154 1 , 154 2 are preferably arranged at different positions on a plane orthogonal to the central axis of the differential signal transmission cable 10. Thereby, the distance between the core wires on the surface can be measured. The line sensor 153 is preferably supported as close as possible to the differential signal transmission cable 10 by a support member (not shown) for highly accurate measurement.

Figure 2014142247
Figure 2014142247
ここで、上記式[2]、[3]において、(1),(2)の添え字は、磁気センサ154毎のデータを表している。式[2]、[3]をxとxについて解いて|x−x|を算出することにより芯線間距離pを求めることができる。
Figure 2014142247
Figure 2014142247
Here, in the above formulas [2] and [3], the subscripts (1) and (2) represent data for each magnetic sensor 154. The inter-core distance p can be obtained by solving the equations [2] and [3] for x 1 and x 2 and calculating | x 1 −x 2 |.

なお、磁気センサの数を導体4の数よりも多いn個用いてもよい。この場合、最小二乗法により平均値を算出することで各導体4のx座標x、xを計算することができる。 The number of magnetic sensors may be n, which is larger than the number of conductors 4. In this case, the x-coordinates x 1 and x 2 of each conductor 4 can be calculated by calculating the average value by the method of least squares.

また、各導体4をX軸上に配置せずに、磁気センサの数を4つ以上にして芯線間距離を測定してもよい。   Further, the distance between the core wires may be measured by arranging four or more magnetic sensors without disposing each conductor 4 on the X axis.

また、予め芯線間距離が既知の基準のケーブルを用いて、磁場強度を上述の方法で測定しておき、新たにケーブルを製造する際に、ケーブルの製造工程で磁場強度をインライン(またはオフライン)で測定し、基準のケーブルの磁場強度との差を小さくすることで、芯線間距離を基準のケーブルと等しい値に調整することができ、芯線間距離を精度良く調整、製造することが可能である。   In addition, when using a standard cable with a known distance between the core wires, the magnetic field strength is measured by the above-described method, and when the cable is newly manufactured, the magnetic field strength is in-line (or offline) in the cable manufacturing process. The distance between the core wires can be adjusted to the same value as that of the reference cable by reducing the difference from the magnetic field strength of the reference cable, and the distance between the core wires can be adjusted and manufactured with high accuracy. is there.

(製造方法)
次に、上述した製造装置1による差動信号伝送用ケーブル10の製造方法の一例について説明する。
(Production method)
Next, an example of a manufacturing method of the differential signal transmission cable 10 by the manufacturing apparatus 1 described above will be described.

(1)被覆工程
送り出し機3から導体4が送り出されると、導体4は加熱器5によって加熱された後、クロスヘッド6を通過する。導体4がクロスヘッド6を通過する際、押出機7によって一対の導体4が発泡絶縁体8で被覆され、さらに発泡絶縁体8がスキン層9で被覆され、差動信号伝送用ケーブル10が得られる。続いて差動信号伝送用ケーブル10は水槽11で冷却される。
(1) Covering Step When the conductor 4 is sent out from the sending machine 3, the conductor 4 is heated by the heater 5 and then passes through the crosshead 6. When the conductor 4 passes through the crosshead 6, the pair of conductors 4 are covered with the foamed insulator 8 by the extruder 7, and the foamed insulator 8 is further covered with the skin layer 9 to obtain the differential signal transmission cable 10. It is done. Subsequently, the differential signal transmission cable 10 is cooled in the water tank 11.

(2)測定工程
この測定工程では、差動信号伝送用ケーブル10が製造ライン2を移動中に差動信号伝送用ケーブル10の全長に渡って長手方向に沿う複数の箇所で芯線間距離が測定される。すなわち、水槽11で冷却された差動信号伝送用ケーブル10は、検出部15を通過する際、交流電源150から交流電圧が一対の導体4に印加され、導体4を流れる電流によって導体4から磁場が発生する。検出部15のラインセンサ153の磁気センサ154、154は、導体4から発生する磁場強度に応じた電流を検出信号として制御部160に出力する。制御部160は、磁気センサ154、154からの検出信号に基づいて芯線間距離を演算する。なお、芯線間距離の測定は、断続的に行ってもよく、連続して行ってもよい。
(2) Measurement process In this measurement process, the distance between the core wires is measured at a plurality of locations along the longitudinal direction over the entire length of the differential signal transmission cable 10 while the differential signal transmission cable 10 is moving on the production line 2. Is done. That is, when the differential signal transmission cable 10 cooled in the water tank 11 passes through the detection unit 15, an AC voltage is applied to the pair of conductors 4 from the AC power supply 150, and a magnetic field is generated from the conductors 4 by the current flowing through the conductors 4. Will occur. Magnetic sensors 154 1 and 154 2 of the line sensor 153 of the detection unit 15 output a current corresponding to the magnetic field intensity generated from the conductor 4 to the control unit 160 as a detection signal. The controller 160 calculates the inter-core distance based on detection signals from the magnetic sensors 154 1 , 154 2 . Note that the measurement of the distance between the core wires may be performed intermittently or continuously.

測定装置12の検出部15を通過した差動信号伝送用ケーブル10は、ダンサ13を通って巻き取り機14に巻き取られる。   The differential signal transmission cable 10 that has passed through the detection unit 15 of the measuring device 12 passes through the dancer 13 and is wound around the winder 14.

(3)調整工程
制御部160は、演算して得られた芯線間距離が所定値を満たさない場合は、所定値を満たすように製造ライン2に対してフィードバック制御を行う。
(3) Adjustment process The control part 160 performs feedback control with respect to the production line 2 so that a predetermined value may be satisfy | filled, when the distance between core wires obtained by calculation does not satisfy a predetermined value.

(実施の形態の効果)
本実施の形態によれば、以下の効果を奏する。
(a)導体4に電流を流して導体4から発生する磁場強度を測定して芯線間距離を求めているので、芯線間距離を精度良く測定できるとともに、導体4を被覆する絶縁体の材料に制限されずに、非破壊、非接触で芯線間距離を測定することができる。
(b)差動信号伝送用ケーブルを全長に渡って芯線間距離を測定し、芯線間距離を一定の範囲に保つことにより低スキューを保証することが可能になる。
(c)磁気センサ154を固定とし、差動信号伝送用ケーブル10を移動させて芯線間距離を測定することで、インライン測定が可能であり、磁気センサ154を移動させる場合と比べて測定装置12が複雑にならなくて済む。
(d)フィードバック制御により芯線間距離を所定値を満たすように調整できるので、信頼性の高い差動信号伝送用ケーブル10を製造することができる。
(Effect of embodiment)
According to the present embodiment, the following effects can be obtained.
(A) Since the current between the conductors 4 is measured to measure the magnetic field intensity generated from the conductors 4 to determine the distance between the core wires, the distance between the core wires can be measured with high accuracy, and the insulator material that covers the conductor 4 can be used. Without being limited, the inter-core distance can be measured in a non-destructive and non-contact manner.
(B) By measuring the distance between the core wires over the entire length of the differential signal transmission cable and keeping the distance between the core wires in a certain range, it is possible to guarantee a low skew.
(C) In-line measurement is possible by fixing the magnetic sensor 154 and moving the differential signal transmission cable 10 and measuring the distance between the core wires. Compared with the case where the magnetic sensor 154 is moved, the measuring apparatus 12 Is not complicated.
(D) Since the distance between the core wires can be adjusted to satisfy the predetermined value by feedback control, the highly reliable differential signal transmission cable 10 can be manufactured.

(変形例1)
図5は、変形例1に係る差動信号伝送用ケーブルの断面図である。変形例1に係る差動信号伝送用ケーブル10は、一対の導体4を2組横一例に配置した断面が楕円形の多芯タイプであり、他は実施の形態と同様に構成されている。多芯タイプ(芯線数N本)の場合は、磁気センサの数も最低限芯線の数(N個)が必要となる。各導体4の位置を算出するためには、式[1]を変更しなくてはならないが、2芯毎に電圧を印加することで、前述したのと同じスキームで導体位置の計算が可能である。なお、芯線の数は、横一列に6本以上配置されたものでもよい。
(Modification 1)
FIG. 5 is a cross-sectional view of a differential signal transmission cable according to the first modification. The differential signal transmission cable 10 according to the first modification is a multi-core type with a cross section in which two pairs of conductors 4 are arranged in a horizontal example, and the other configuration is the same as that of the embodiment. In the case of a multi-core type (the number of core wires is N), the number of magnetic sensors is required to be at least the number of core wires (N). In order to calculate the position of each conductor 4, equation [1] must be changed, but by applying a voltage to every two cores, the conductor position can be calculated using the same scheme as described above. is there. The number of core wires may be six or more arranged in a horizontal row.

(変形例2)
図6は、変形例2に係る差動信号伝送用ケーブルの断面図である。変形例2に係る差動信号伝送用ケーブル10は、同心円上に4本の導体4を配置した断面が円形の多芯タイプであり、他は実施の形態と同様に構成されている。この変形例2も変形例1と同様に、2芯毎に電圧を印加することで、前述したのと同じスキームで導体位置の計算が可能である。なお、芯線の数は、同心円上に6本以上配置されたものでもよい。
(Modification 2)
FIG. 6 is a cross-sectional view of a differential signal transmission cable according to the second modification. The differential signal transmission cable 10 according to the modification 2 is a multi-core type with a circular cross section in which four conductors 4 are arranged on concentric circles, and the other configuration is the same as in the embodiment. In the second modification, similarly to the first modification, the conductor position can be calculated by the same scheme as described above by applying a voltage for every two cores. The number of core wires may be six or more arranged on concentric circles.

次に、本発明の実施例について説明する。実施例1及び比較例の試料A、Bとして、図9に示す製造装置100を用いて図2に示す差動信号伝送用ケーブル10を製造した。図9は、図1に示す製造装置1に対して測定装置12を有していない汎用の製造装置100である。   Next, examples of the present invention will be described. As the samples A and B of Example 1 and Comparative Example, the differential signal transmission cable 10 shown in FIG. 2 was manufactured using the manufacturing apparatus 100 shown in FIG. FIG. 9 shows a general-purpose manufacturing apparatus 100 that does not have the measuring apparatus 12 with respect to the manufacturing apparatus 1 shown in FIG.

一対の導体4は24AWG銀メッキ銅線の2芯を用いた。発泡絶縁体8を構成するポリマーには、ポリエチレン、発泡剤としてADCA(アゾジカルボンアミド)を用い、添加量は樹脂に対して1%とした。発泡度はいずれも45±1%である。   The pair of conductors 4 is a two-core 24 AWG silver-plated copper wire. As the polymer constituting the foamed insulator 8, polyethylene and ADCA (azodicarbonamide) were used as the foaming agent, and the addition amount was 1% with respect to the resin. The foaming degree is 45 ± 1% in all cases.

クロスヘッド6として楕円形の押出金口を用い、押出機7としてイタリアSAMP社製45mm押出機7を用いた。スクリューの回転速度及び線速を調整して2芯の24AWG銀メッキ銅線を一括で押出成形した。芯線間距離pがそれぞれ1.00mmの基準サンプル、0.9mmの試料A、1.10mmの試料Bのケーブルを製作した。   An elliptical extrusion die was used as the cross head 6 and a 45 mm extruder 7 manufactured by SAMP, Italy was used as the extruder 7. Two-core 24AWG silver-plated copper wire was extruded at once by adjusting the rotational speed and wire speed of the screw. Cables of a reference sample, a specimen A of 0.9 mm, and a specimen B of 1.10 mm, each having an inter-core distance p of 1.00 mm, were manufactured.

(比較例)
まず、基準サンプル及び試料A、Bの芯線間距離は断面測定により芯線間距離を測定した。断面測定は、ケーブル長手方向の任意の点で横断面に切断して芯線間距離を測定したものであり、ケーブル長手方向の10箇所で同様に測定した値の平均値で示す。
(Comparative example)
First, the distance between the core wires of the reference sample and the samples A and B was measured by measuring the cross section. The cross-section measurement is a cross-section cut at an arbitrary point in the cable longitudinal direction and the distance between the core wires is measured, and is shown as an average value of values measured in the same manner at 10 locations in the cable longitudinal direction.

(実施例1)
実施例1として、上述のように製造したケーブルの磁場強度をオフラインで本実施の形態の測定装置を用い、前述した方法で測定した。オフライン磁場測定は長さ1mに切断したケーブルサンプルに交流電圧を図3のように2芯線に対して並列(同相)で印加し、磁気センサ毎に電磁誘導により発生した電流の実効値を記録し、芯線間距離1.00mmの基準サンプルの磁場分布からのズレを基に芯線間距離を計算した。
Example 1
As Example 1, the magnetic field strength of the cable manufactured as described above was measured by the above-described method using the measurement apparatus of the present embodiment off-line. For off-line magnetic field measurement, an AC voltage is applied in parallel (in phase) to the two core wires as shown in Fig. 3 on a cable sample cut to a length of 1 m, and the effective value of the current generated by electromagnetic induction is recorded for each magnetic sensor. The distance between the core wires was calculated based on the deviation from the magnetic field distribution of the reference sample having a distance between the core wires of 1.00 mm.

(実施例2)
実施例2は、実施例1と同様のケーブルをインラインで磁場測定した。図1のように測定装置を製造ラインに組み込み、製造過程においてインラインで連続的に磁場強度を測定した。表1の値は、その測定値の平均値である。図7は、本実施例1、2に係る導体の芯線間距離の測定方法を説明するための図である。図8は、本実施例2に係る磁場強度の分布を示すグラフである。ラインセンサ153は、図7に示すように、X軸方向に沿って4つの磁気センサ154〜154が並んだものを用いた。また、ラインセンサ153は、図示しない支持部材により、コアに1mm程度まで近づけて行った。磁場強度の分布として、試料A(p=1.1mm)、試料B(p=0.9mm)測定時の磁気センサ154〜154の電流値(試料測定値のセンサ出力)を基準サンプルの測定時の磁気センサ154〜154の電流値(基準サンプル測定時のセンサ出力)で割った値を図8に示す。図8から両側に位置する磁気センサ154、154よりも内側に位置する磁気センサ154、すなわち導体4に近い磁気センサ154、154の方が感度が良いことが分かる。したがって、2つの磁気センサ154を用いるときは、導体4に近い磁気センサ154、154を用いる。
(Example 2)
In Example 2, the magnetic field of the cable similar to that in Example 1 was measured in-line. As shown in FIG. 1, the measurement apparatus was incorporated in the production line, and the magnetic field strength was continuously measured in-line during the production process. The values in Table 1 are average values of the measured values. FIG. 7 is a diagram for explaining a method for measuring the distance between the conductors of the conductors according to the first and second embodiments. FIG. 8 is a graph showing the distribution of the magnetic field strength according to the second embodiment. As the line sensor 153, as shown in FIG. 7, a sensor in which four magnetic sensors 154 1 to 154 4 are arranged along the X-axis direction is used. The line sensor 153 was moved close to the core by about 1 mm by a support member (not shown). As the distribution of the magnetic field strength, the current values (sensor outputs of the sample measurement values) of the magnetic sensors 154 1 to 154 4 when measuring the sample A (p = 1.1 mm) and the sample B (p = 0.9 mm) are used as the reference sample. FIG. 8 shows a value divided by the current values of the magnetic sensors 154 1 to 154 4 at the time of measurement (sensor output at the time of measuring the reference sample). It can be seen from FIG. 8 that the magnetic sensors 154 1 and 154 3 located on both sides of the magnetic sensors 154 1 and 154 4 , that is, the magnetic sensors 154 2 and 154 3 close to the conductor 4 have higher sensitivity. Therefore, when two magnetic sensors 154 are used, magnetic sensors 154 2 and 154 3 close to the conductor 4 are used.

表1に、各測定方法による芯線間距離の測定結果を示す。ラインセンサ153は、図7に示すものを用いた。インライン測定は区間2000mを40m/min及び80m/minでそれぞれ走行させ測定を実施し、外径変動の大きい方を記載した。ただし、基準サンプルのインライン磁場測定は、製造過程での測定ではなく、本実施の形態の測定装置を試料A、Bを製造する際の線速と同様の線速で基準サンプルを通過させて測定したものである。   Table 1 shows the measurement results of the distance between the core wires by each measurement method. The line sensor 153 shown in FIG. 7 was used. In-line measurement was performed by running a section of 2000 m at 40 m / min and 80 m / min, respectively, and the one with the larger outer diameter fluctuation was described. However, the in-line magnetic field measurement of the reference sample is not a measurement in the manufacturing process, but is performed by passing the reference sample through the measurement apparatus according to the present embodiment at the same linear velocity as the linear velocity when the samples A and B are manufactured. It is a thing.

Figure 2014142247
Figure 2014142247

表1から、本実施の形態の測定装置によって磁場を測定し算出された芯線間距離は、オフライン磁場測定、インライン磁場測定のいずれにおいても、断面測定した場合と同様に誤差が小さく、良い精度で一致していることが分かる。また、製造ライン2に上記測定装置12を配置し、インラインの全長検査においてもケーブルの振動をローラで抑制することで、上述の実験と同等の結果が得られることを確認した。計測データは、時系列で制御装置16に記録して、製造した差動信号伝送用ケーブルの品質保証に利用することが可能である。また、本発明を適用することで、従来の断面測定のように、時間や手間を掛けることなく、精度の高い芯線間距離測定が可能となる。   From Table 1, the distance between the core wires calculated by measuring the magnetic field with the measuring device of the present embodiment is small in error in both offline magnetic field measurement and in-line magnetic field measurement, as in the case of cross-sectional measurement, and with good accuracy. You can see that they match. In addition, it was confirmed that the same result as the above-described experiment was obtained by arranging the measuring device 12 in the production line 2 and suppressing the vibration of the cable with the roller in the in-line full length inspection. The measurement data can be recorded in the control device 16 in time series and used for quality assurance of the manufactured differential signal transmission cable. Further, by applying the present invention, it is possible to measure the distance between core wires with high accuracy without taking time and labor as in the conventional cross-sectional measurement.

なお、本発明の実施の形態は、上記実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲内で種々の変形、実施が可能である。例えば、上記実施の形態では、測定対象のケーブルを一対の導体を発泡絶縁体で一括して被覆したものとしたが、単芯を絶縁体で被覆した一対以上の電線をケーブルとしたものでもよく、一対の導体を絶縁体で一括して被覆した複数の電線をさらに絶縁体で被覆したケーブルとしたものでもよい。   The embodiment of the present invention is not limited to the above-described embodiment, and various modifications and implementations are possible without departing from the scope of the present invention. For example, in the above-described embodiment, the cable to be measured is formed by covering a pair of conductors together with a foamed insulator, but may be formed by using a pair of electric wires having a single core covered with an insulator as a cable. A cable in which a plurality of electric wires obtained by collectively covering a pair of conductors with an insulator is further covered with an insulator may be used.

また、X線を測定対象のケーブルに照射して芯線間距離を測定してもよい。   Alternatively, the distance between the core wires may be measured by irradiating the measurement target cable with X-rays.

また、上記実施の形態では、磁気センサを固定した状態で、差動信号伝送用ケーブルの移動中に、ケーブルの長手方向に沿う複数の箇所で芯線間距離を測定したが、差動信号伝送用ケーブルを固定した状態で、磁気センサをケーブルの長手方向に移動させて芯線間距離を測定してもよい。   In the above embodiment, while the magnetic sensor is fixed, the distance between the core wires is measured at a plurality of locations along the longitudinal direction of the cable while the cable for differential signal transmission is moving. With the cable fixed, the distance between the core wires may be measured by moving the magnetic sensor in the longitudinal direction of the cable.

また、本発明の要旨を変更しない範囲内で、上記実施の形態の構成要素の一部を省くことが可能である。例えば、上記実施の形態では、2つの磁気センサを用いたが、一方の磁気センサのみを用いてもよい。すなわち、一方の磁気センサで磁場強度を測定した後、一方の磁気センサを他方の磁気センサの位置に移動させてそこで磁場強度を測定してもよい。   Moreover, it is possible to omit some of the constituent elements of the above-described embodiment within a range not changing the gist of the present invention. For example, in the above embodiment, two magnetic sensors are used, but only one magnetic sensor may be used. That is, after measuring the magnetic field strength with one magnetic sensor, one magnetic sensor may be moved to the position of the other magnetic sensor, and the magnetic field strength may be measured there.

1…製造装置、2…製造ライン、3…送り出し機、4…導体、5…加熱器、6…クロスヘッド、7…押出機、8…発泡絶縁体、9…スキン層、10…差動信号伝送用ケーブル、11…水槽、12…測定装置、13…ダンサ、14…巻き取り機、15…検出部、16…制御装置、17…テーブル、100…製造装置、150…交流電源、151…抵抗、152…電流計、153…ラインセンサ、154〜154…磁気センサ、160…制御部、161…記憶部、162…表示部 DESCRIPTION OF SYMBOLS 1 ... Manufacturing apparatus, 2 ... Production line, 3 ... Delivery machine, 4 ... Conductor, 5 ... Heater, 6 ... Cross head, 7 ... Extruder, 8 ... Foam insulator, 9 ... Skin layer, 10 ... Differential signal Transmission cable, 11 ... water tank, 12 ... measuring device, 13 ... dancer, 14 ... winder, 15 ... detector, 16 ... control device, 17 ... table, 100 ... manufacturing device, 150 ... AC power supply, 151 ... resistance , 152 ... Ammeter, 153 ... Line sensor, 154 1 to 154 4 ... Magnetic sensor, 160 ... Control unit, 161 ... Storage unit, 162 ... Display unit

Claims (13)

互いに離れて長手方向に平行に延びる少なくとも一対の導体と前記少なくとも一対の導体を被覆する絶縁体とを有する差動信号伝送用ケーブルの前記少なくとも一対の導体の中心間距離を前記絶縁体を介して測定する測定部、
を備えた測定装置。
The distance between the centers of the at least one pair of conductors of the differential signal transmission cable having at least a pair of conductors extending away from each other and extending in parallel in the longitudinal direction and an insulator covering the at least one pair of conductors through the insulator. Measuring unit to measure,
Measuring device.
前記測定部は、
前記少なくとも一対の導体に電流を流したときに前記導体から発生する磁場強度を少なくとも2つの所定の位置で検出する検出部と、
前記検出部の座標情報、及び前記検出部において検出された少なくとも2つの磁場強度に基づいて前記少なくとも一対の導体の中心間距離を演算する演算部と、
を備えた請求項1記載の測定装置。
The measuring unit is
A detection unit for detecting magnetic field strength generated from the conductor when current is passed through the at least one pair of conductors at at least two predetermined positions;
A calculation unit that calculates a distance between centers of the at least a pair of conductors based on coordinate information of the detection unit and at least two magnetic field strengths detected by the detection unit;
The measuring apparatus according to claim 1, further comprising:
前記測定部は、前記少なくとも一対の導体の中心間距離を前記長手方向に沿う複数の箇所で測定する請求項1又は2記載の測定装置。   The measuring device according to claim 1, wherein the measuring unit measures a distance between centers of the at least one pair of conductors at a plurality of locations along the longitudinal direction. 前記検出部は、前記少なくとも2つの所定の位置にそれぞれ配置された磁気センサを備えた請求項2記載の測定装置。   The measurement device according to claim 2, wherein the detection unit includes a magnetic sensor disposed at each of the at least two predetermined positions. 前記測定部は、前記磁気センサを前記差動信号伝送用ケーブルに対して相対的に前記長手方向に移動させて前記長手方向に沿う複数の箇所で前記導体の中心間距離を測定する請求項4記載の測定装置。   The measurement unit moves the magnetic sensor in the longitudinal direction relative to the differential signal transmission cable to measure the distance between the centers of the conductors at a plurality of locations along the longitudinal direction. The measuring device described. 前記測定部は、前記磁気センサの位置を固定させた状態で前記差動信号伝送用ケーブルが製造ラインを移動中に前記長手方向に沿う前記複数の箇所で前記導体の中心間距離を測定する請求項5記載の測定装置。   The measuring unit measures the distance between the centers of the conductors at the plurality of locations along the longitudinal direction while the differential signal transmission cable is moving on a production line with the position of the magnetic sensor fixed. Item 6. The measuring device according to Item 5. 互いに離れて長手方向に平行に延びる少なくとも一対の導体を該導体の中心間距離が所定値となるように絶縁体で被覆する被覆工程と、
前記被覆工程後に前記絶縁体を介して前記長手方向の複数の箇所で前記少なくとも一対の導体の中心間距離を測定する測定工程と、
測定された前記導体の中心間距離が前記所定値から外れる場合には、前記導体の中心間距離が前記所定値となるように製造ラインにフィードバックし、前記導体の中心間距離を制御する調整工程と、
を含む差動信号伝送用ケーブルの製造方法。
A covering step of covering at least a pair of conductors extending away from each other in parallel in the longitudinal direction with an insulator so that the distance between the centers of the conductors is a predetermined value;
A measuring step of measuring a distance between centers of the at least a pair of conductors at a plurality of locations in the longitudinal direction via the insulator after the covering step;
When the measured distance between the centers of the conductors deviates from the predetermined value, an adjustment step of feeding back to the production line so that the distance between the centers of the conductors becomes the predetermined value and controlling the distance between the centers of the conductors. When,
A method for manufacturing a cable for differential signal transmission including:
前記測定工程は、
前記少なくとも一対の導体に電流を流したときに前記導体から発生する磁場強度を少なくとも2つの所定の位置で検出する検出工程と、
前記少なくとも2つの所定の位置の座標情報、及び前記検出工程において検出された前記少なくとも2つの磁場強度に基づいて前記少なくとも一対の導体の中心間距離を演算する演算工程と、
含む請求項7記載の差動信号伝送用ケーブルの製造方法。
The measurement step includes
A detection step of detecting magnetic field strength generated from the conductor when a current is passed through the at least one pair of conductors in at least two predetermined positions;
A calculation step of calculating a distance between centers of the at least one pair of conductors based on coordinate information of the at least two predetermined positions and the at least two magnetic field strengths detected in the detection step;
The manufacturing method of the cable for differential signal transmission of Claim 7 containing.
前記検出工程は、前記少なくとも2つの所定の位置にそれぞれ配置された磁気センサを用いて行う請求項8記載の差動信号伝送用ケーブルの製造方法。   The differential signal transmission cable manufacturing method according to claim 8, wherein the detection step is performed using magnetic sensors respectively disposed at the at least two predetermined positions. 前記測定工程は、前記少なくとも2つの磁気センサを前記差動信号伝送用ケーブルに対して相対的に前記長手方向に移動させて前記長手方向に沿う前記複数の箇所で前記中心間距離を測定する請求項9記載の差動信号伝送用ケーブルの製造方法。   The measuring step includes moving the at least two magnetic sensors in the longitudinal direction relative to the differential signal transmission cable to measure the center-to-center distance at the plurality of locations along the longitudinal direction. Item 10. A method for manufacturing a cable for differential signal transmission according to Item 9. 前記測定工程は、前記少なくとも2つの磁気センサの位置を固定させた状態で前記少なくとも一対の導体が製造ラインを移動中に前記長手方向に沿う前記複数の箇所で前記少なくとも一対の導体の中心間距離を測定する請求項10記載の差動信号伝送用ケーブルの製造方法。   The measuring step includes a distance between the centers of the at least one pair of conductors at the plurality of locations along the longitudinal direction while the at least two pairs of conductors are moving on the production line in a state where the positions of the at least two magnetic sensors are fixed. The method for manufacturing a differential signal transmission cable according to claim 10, wherein: 前記被覆工程は、押出成形により前記絶縁体が前記少なくとも一対の導体を一括して被覆するものである請求項7乃至11のいずれか1項に記載の差動信号伝送用ケーブルの製造方法。   The method for manufacturing a cable for differential signal transmission according to any one of claims 7 to 11, wherein in the covering step, the insulator collectively covers the at least one pair of conductors by extrusion molding. 前記測定工程による前記一対の導体の中心間距離の測定結果に基づいて前記少なくとも一対の導体の中心間距離を調整する調整工程を、
さらに含む請求項7乃至12のいずれか1項に記載の差動信号伝送用ケーブルの製造方法。
An adjustment step of adjusting the center-to-center distance of the at least one pair of conductors based on the measurement result of the center-to-center distance between the pair of conductors by the measurement step;
Furthermore, the manufacturing method of the cable for differential signal transmission of any one of Claims 7 thru | or 12 included.
JP2013010522A 2013-01-23 2013-01-23 Measuring device and method for manufacturing differential signal transmission cable Expired - Fee Related JP6167530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013010522A JP6167530B2 (en) 2013-01-23 2013-01-23 Measuring device and method for manufacturing differential signal transmission cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013010522A JP6167530B2 (en) 2013-01-23 2013-01-23 Measuring device and method for manufacturing differential signal transmission cable

Publications (2)

Publication Number Publication Date
JP2014142247A true JP2014142247A (en) 2014-08-07
JP6167530B2 JP6167530B2 (en) 2017-07-26

Family

ID=51423657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013010522A Expired - Fee Related JP6167530B2 (en) 2013-01-23 2013-01-23 Measuring device and method for manufacturing differential signal transmission cable

Country Status (1)

Country Link
JP (1) JP6167530B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213111A (en) * 2015-05-12 2016-12-15 日立金属株式会社 Manufacturing method and manufacturing apparatus of cable for differential signal transmission
US10283240B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10283238B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10304592B1 (en) 2018-03-19 2019-05-28 Te Connectivity Corporation Electrical cable
US10600537B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10600536B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10741308B2 (en) 2018-05-10 2020-08-11 Te Connectivity Corporation Electrical cable
US10950367B1 (en) 2019-09-05 2021-03-16 Te Connectivity Corporation Electrical cable
US11069458B2 (en) 2018-04-13 2021-07-20 TE Connectivity Services Gmbh Electrical cable
CN114006302A (en) * 2021-10-21 2022-02-01 中国南方电网有限责任公司超高压输电公司曲靖局 Preformed armour clamp shaping tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200802A (en) * 1981-06-05 1982-12-09 Nippon Kokan Kk <Nkk> Method for detecting buried position of underground buried conductor
JPH01148901A (en) * 1987-12-04 1989-06-12 Showa Electric Wire & Cable Co Ltd Method for measuring pitch between conductors in flat cable
JPH0660757A (en) * 1992-08-07 1994-03-04 Fujikura Ltd Tape electric cable and its manufacture and apparatus thereof
JP2006324215A (en) * 2005-05-20 2006-11-30 Furukawa Electric Co Ltd:The Manufacturing method and manufacturing device of flat cable
JP2011086458A (en) * 2009-10-14 2011-04-28 Hitachi Cable Ltd Differential signaling cable and transmission cable using the same, and method of manufacturing differential signaling cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200802A (en) * 1981-06-05 1982-12-09 Nippon Kokan Kk <Nkk> Method for detecting buried position of underground buried conductor
JPH01148901A (en) * 1987-12-04 1989-06-12 Showa Electric Wire & Cable Co Ltd Method for measuring pitch between conductors in flat cable
JPH0660757A (en) * 1992-08-07 1994-03-04 Fujikura Ltd Tape electric cable and its manufacture and apparatus thereof
JP2006324215A (en) * 2005-05-20 2006-11-30 Furukawa Electric Co Ltd:The Manufacturing method and manufacturing device of flat cable
JP2011086458A (en) * 2009-10-14 2011-04-28 Hitachi Cable Ltd Differential signaling cable and transmission cable using the same, and method of manufacturing differential signaling cable

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213111A (en) * 2015-05-12 2016-12-15 日立金属株式会社 Manufacturing method and manufacturing apparatus of cable for differential signal transmission
US10283240B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10283238B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10304592B1 (en) 2018-03-19 2019-05-28 Te Connectivity Corporation Electrical cable
US11069458B2 (en) 2018-04-13 2021-07-20 TE Connectivity Services Gmbh Electrical cable
US10741308B2 (en) 2018-05-10 2020-08-11 Te Connectivity Corporation Electrical cable
US10600537B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10600536B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10950367B1 (en) 2019-09-05 2021-03-16 Te Connectivity Corporation Electrical cable
CN114006302A (en) * 2021-10-21 2022-02-01 中国南方电网有限责任公司超高压输电公司曲靖局 Preformed armour clamp shaping tool

Also Published As

Publication number Publication date
JP6167530B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
JP6167530B2 (en) Measuring device and method for manufacturing differential signal transmission cable
CN103208336B (en) Parallel type foamed coaxial cable
JP6102775B2 (en) Differential signal transmission cable and method of manufacturing the same
CN105659334B (en) improved high performance data communication cable
WO2009119339A1 (en) Method for producing hollow core body of coaxial cable, hollow core body of coaxial cable, and coaxial cable
US4474825A (en) Monitoring temperature of wire during heating
US20130134998A1 (en) Power line voltage measurement using a distributed resistance conductor
CN202771829U (en) A cable used for differential signal transmission and wire beam utilizing the cable
US20220230782A1 (en) Coax cable for inductive charging
CN103680752B (en) A kind of coaxial cable and manufacturing process thereof
JP2013178244A (en) Method and apparatus for measuring temperature of strand-like material
US20150266071A1 (en) System and Method for Forming a Metal Strip, and System for Forming an Electrical Wire or Transmission Line Including the Metal Strip
JP7046914B2 (en) Manufacturing method of insulated wire
JP7437289B2 (en) wire and coil
US11456090B2 (en) Insulated electrical cable with inner sheath layer
US11874181B2 (en) Sensor line and measuring assembly
JP5881046B2 (en) Insulated wire manufacturing equipment
RU2015136512A (en) MEASURING HOMOGENEOUS COIL TEMPERATURE BY INCREASING WIRING RESISTANCE
JP2011159511A (en) Manufacturing method of transmission cable, its manufacturing device, and transmission cable manufactured by its method
KR101597028B1 (en) Estimation method and device of superconducting wire
KR102435583B1 (en) Magnetic field type current sensor manufactured with Carbon nanotube wire
JP2016205859A (en) Device for measuring distance between conductor cores
JP2011258377A (en) Method and apparatus for manufacturing small-diameter wire
WO2022085358A1 (en) Inspection device for magnet wire coating, inspection method for magnet wire coating, and manufacturing method for electrical machine
JP2016006387A (en) Method and device for measuring characteristic of shield electric wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6167530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees