JP2015144033A - Soft magnetic film layer alloy having low-saturation magnetic flux density used for magnetic recording medium, and sputtering target material - Google Patents

Soft magnetic film layer alloy having low-saturation magnetic flux density used for magnetic recording medium, and sputtering target material Download PDF

Info

Publication number
JP2015144033A
JP2015144033A JP2015021048A JP2015021048A JP2015144033A JP 2015144033 A JP2015144033 A JP 2015144033A JP 2015021048 A JP2015021048 A JP 2015021048A JP 2015021048 A JP2015021048 A JP 2015021048A JP 2015144033 A JP2015144033 A JP 2015144033A
Authority
JP
Japan
Prior art keywords
magnetization
soft magnetic
alloy
hbias
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015021048A
Other languages
Japanese (ja)
Other versions
JP5980971B2 (en
Inventor
澤田 俊之
Toshiyuki Sawada
俊之 澤田
慶明 松原
Yoshiaki Matsubara
慶明 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2015021048A priority Critical patent/JP5980971B2/en
Publication of JP2015144033A publication Critical patent/JP2015144033A/en
Application granted granted Critical
Publication of JP5980971B2 publication Critical patent/JP5980971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic film layer alloy having a low-saturation magnetic flux density used for magnetic recording medium, and a sputtering target material.SOLUTION: A soft magnetic thin film layer alloy for a magnetic recording medium includes, in at.%, one or more kinds of Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge and Sn, includes Co and Fe as balance, and satisfied the following formulae (1) to (3): (1) 0.50≤Fe%/(Fe%+Co%)≤0.90; (2) 5≤TAM≤19; (3) 18≤TAM+TNM≤19, however, TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2, and TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%.

Description

本発明は、磁気記録媒体に用いる低飽和磁束密度を有する軟磁性膜層用合金およびスパッタリングターゲット材に関するものである。   The present invention relates to an alloy for a soft magnetic film layer having a low saturation magnetic flux density and a sputtering target material used for a magnetic recording medium.

近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められており、従来普及していた面内磁気記録媒体より更に高記録密度が実現できる、垂直磁気記録方式が実用化されている。更に、垂直磁気記録方式を応用し、熱やマイクロ波により記録をアシストする方法も検討されている。   In recent years, the magnetic recording technology has been remarkably advanced, and the recording density of magnetic recording media has been increased to increase the capacity of the drive, realizing a higher recording density than the conventional in-plane magnetic recording media. A perpendicular magnetic recording system capable of being used has been put into practical use. Further, a method of assisting recording by applying heat or microwaves by applying a perpendicular magnetic recording method has been studied.

上記、垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する2層記録媒体が開発されている。この磁気記録膜層には一般的にCoCrPt−SiO2 系合金が用いられている。 The perpendicular magnetic recording method is a method suitable for high recording density, in which the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium. In the perpendicular magnetic recording system, a two-layer recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed. A CoCrPt—SiO 2 alloy is generally used for the magnetic recording film layer.

また、一般に軟磁性膜層の間にはRu膜が挿入され、軟磁性膜とRu膜の反強磁性結合(以下、AFC結合と記す)により、外部磁場に対する不感域(以下、Hbiasと記す)を持たせてある。例えば特開2011−86356号公報(特許文献1)に開示されているように、磁気記録媒体の使用環境下における外部のノイズ磁場に対する耐性を高めるためである。本発明による軟磁性膜層用合金は、これらの垂直磁気記録方式の媒体に用いることができる。   In general, a Ru film is inserted between soft magnetic film layers, and due to antiferromagnetic coupling between the soft magnetic film and the Ru film (hereinafter referred to as AFC coupling), a dead zone against an external magnetic field (hereinafter referred to as Hbias). Is given. For example, as disclosed in Japanese Patent Application Laid-Open No. 2011-86356 (Patent Document 1), this is to increase the resistance to an external noise magnetic field under the usage environment of the magnetic recording medium. The alloy for soft magnetic film layers according to the present invention can be used for these perpendicular magnetic recording media.

また、従来の軟磁性膜層には、高い飽和磁束密度(以下、Bsと記す)と高いアモルファス形成能(以下、非晶質性と記す)が必須であり、さらに垂直磁気記録媒体の用途や使用環境によっては、高耐食性、高硬度など様々な特性が付加的に要求されてきた。
上記の要求特性の中でも、特に高Bsは重要であり、例えば特許文献1や特開2011−181140号公報(特許文献2)および特開2008−299905号公報(特許文献3)においても高いBsを狙いとしている。このように高いBsが要求されている理由は、記録膜の磁化を安定化させるために一定値以上のBsが必要であることと、大きいHbiasを持たせるためである。
In addition, a conventional soft magnetic film layer must have a high saturation magnetic flux density (hereinafter referred to as Bs) and a high amorphous forming ability (hereinafter referred to as amorphous). Depending on the usage environment, various properties such as high corrosion resistance and high hardness have been additionally required.
Among the above required characteristics, high Bs is particularly important. For example, Patent Document 1, Japanese Patent Application Laid-Open No. 2011-181140 (Patent Document 2), and Japanese Patent Application Laid-Open No. 2008-299905 (Patent Document 3) have a high Bs. I am aiming. The reason why such a high Bs is required is that a Bs of a certain value or more is necessary to stabilize the magnetization of the recording film and that a large Hbias is provided.

しかしながら、高いBsの軟磁性膜を用いることによる弊害もある。高いBsを示す軟磁性膜を用いると、Hbiasが大きくなる傾向があり高い外部ノイズ磁場耐性が得られるが、同時に、記録磁化が着磁された場合に、この軟磁性膜が持つ過度に大きな磁束が周囲に大きく影響し、結果として書き込みに必要なスペースが大きくなり、記録密度の低下を招く。さらに、高いHbiasの膜を用いると、Hbias以上の印加磁場に対する磁化の反応(以下、磁化の立ち上がりと記す)が鈍くなる傾向も見られる。   However, there is an adverse effect of using a high Bs soft magnetic film. When a soft magnetic film exhibiting high Bs is used, Hbias tends to be large and high external noise magnetic field resistance can be obtained. At the same time, when the recording magnetization is magnetized, an excessively large magnetic flux possessed by the soft magnetic film is obtained. Greatly affects the surroundings, resulting in an increase in the space required for writing, leading to a decrease in recording density. Furthermore, when a high Hbias film is used, there is also a tendency that the magnetization response to the applied magnetic field equal to or higher than Hbias (hereinafter referred to as the rise of magnetization) becomes dull.

Hbiasおよびそれ以上の磁場に対する磁化の立ち上がりを図1に模式的に示す。一般に書き込み用ヘッドにより記録膜に着磁する場合、軟磁性膜の磁化が飽和するだけの磁界を印加する。したがって、磁化の立ち上がりが鈍くなると、着磁にそれだけ大きな磁場を印加することが必要となってしまう。このように、着磁磁場が大きくなると、過度な周囲への影響が避けられず、結果として小さな領域に限定して記録することが困難となり、やはり記録密度を低下させる原因となってしまう。上記2つの記録密度低下の現象は、いわゆる「書き滲み」とも呼ばれており、一方の現象の抑制でも書き滲み改善効果はあるが、両現象を抑制すると、さらに書き滲み改善効果がある。
特開2011−86356号公報 特開2011−181140号公報 特開2008−299905号公報
The rise of magnetization for a magnetic field of Hbias and higher is schematically shown in FIG. In general, when a recording film is magnetized by a writing head, a magnetic field sufficient to saturate the magnetization of the soft magnetic film is applied. Therefore, if the rise of magnetization becomes dull, it is necessary to apply a magnetic field that is large for magnetization. As described above, when the magnetizing magnetic field is increased, an excessive influence on the surroundings cannot be avoided, and as a result, it becomes difficult to record only in a small area, which also causes a decrease in recording density. The two recording density reduction phenomena are also referred to as so-called “writing bleeding”, and suppression of one phenomenon has an effect of improving writing bleeding. However, suppression of both phenomena further has an effect of improving writing bleeding.
JP 2011-86356 A JP 2011-181140 A JP 2008-299905 A

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、記録膜の磁化を安定させる最低限のBsと考えられる0.5Tを超えるBsを有しながら、比較的低いBsでも高いHbiasを持ち、さらには、高いHbiasでも鋭い磁化の立ち上がりを持つ軟磁性合金を見出せれば、外部磁場に対する高い耐性と、「書き滲み」抑制による、高記録密度が両立できるものと考えた。   In order to solve the above-described problems, the inventors have made extensive developments. As a result, the inventors have relatively low Bs exceeding 0.5 T, which is considered to be the minimum Bs that stabilizes the magnetization of the recording film. If a soft magnetic alloy having a high Hbias even in Bs and having a sharp rise in magnetization even in high Hbias is found, it is considered that both high resistance to external magnetic fields and high recording density by suppressing “writing bleeding” can be achieved. It was.

その発明の要旨は以下の通りである。
(1)at%で、Y,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Ni,Cu,Al,B,C,Si,P,Zn,Ga,Ge,Snを1種以上、残部CoおよびFeからなり、下記の式(1)〜(3)を満たすことを特徴とした磁気記録媒体における軟磁性薄膜層用合金。
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦19
(3)18≦TAM+TNM≦19
ただし、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
The gist of the invention is as follows.
(1) At%, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge, Sn An alloy for a soft magnetic thin film layer in a magnetic recording medium characterized by comprising at least one of the above and the balance Co and Fe and satisfying the following formulas (1) to (3):
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 19
(3) 18 ≦ TAM + TNM ≦ 19
However,
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%

(2)下記の式(4)を満たすことを特徴とした前記(1)に記載の磁気記録媒体における軟磁性薄膜層用合金。
(4)0.25≦(Nb%+Ta%)/(TAM+TNM)≦1.00
(3)下記の式(5)および/または(6)を満たすことを特徴とした前記(1)または(2)に記載の磁気記録媒体における軟磁性薄膜層用合金。
(5)0≦Ti%+Zr%+Hf%+B%/2≦ 5
(6)0<Cu%+Sn%+Zn%+Ga%≦10
(2) The soft magnetic thin film layer alloy in the magnetic recording medium according to (1), wherein the following formula (4) is satisfied.
(4) 0.25 ≦ (Nb% + Ta%) / (TAM + TNM) ≦ 1.00
(3) The alloy for a soft magnetic thin film layer in the magnetic recording medium according to (1) or (2), wherein the following formula (5) and / or (6) is satisfied.
(5) 0 ≦ Ti% + Zr% + Hf% + B% / 2 ≦ 5
(6) 0 <Cu% + Sn% + Zn% + Ga% ≦ 10

(4)飽和磁束密度が0.5Tを超え1.1T未満であることを特徴とした前記(1)〜(3)のいずれか1に記載の軟磁性薄膜層用合金。
(5)前記(1)〜(4)のいずれか1に記載の合金からなるスパッタリングターゲット材にある。
(4) The soft magnetic thin film layer alloy according to any one of (1) to (3), wherein the saturation magnetic flux density is more than 0.5T and less than 1.1T.
(5) It exists in the sputtering target material which consists of an alloy of any one of said (1)-(4).

以上述べたように、本発明は、低い飽和磁束密度を有する軟磁性アモルファス合金であり、本合金薄膜の間にRuなどの非磁性薄膜を挿入し反強磁性結合させた多層膜において、外部磁場に対する不感域が大きい合金、さらに、不感域以上の外部磁場に対する磁化の立ち上がりが良好な磁気記録媒体用軟磁性合金およびこの合金の薄膜を作製するためのスパッタリングターゲット材を提供できることにある。このように、本用途の軟磁性合金において、積極的に低いBsを狙う思想は従来にはなかった。この考え方は本発明における最も特徴的な思想である。   As described above, the present invention is a soft magnetic amorphous alloy having a low saturation magnetic flux density. In a multilayer film in which a nonmagnetic thin film such as Ru is inserted between the alloy thin films and antiferromagnetically coupled, Further, it is possible to provide an alloy having a large insensitive range against magnetic field, a soft magnetic alloy for magnetic recording media having a good rise in magnetization with respect to an external magnetic field exceeding the insensitive region, and a sputtering target material for producing a thin film of this alloy. Thus, in the soft magnetic alloy of this application, there has been no idea in the past to actively aim for low Bs. This concept is the most characteristic idea in the present invention.

以下、本発明について詳細に説明する。
まず、Hbiasに及ぼす軟磁性膜組成の影響について検討するため、様々な組成の軟磁性膜について、Hbiasを評価したところ、Bsの大きさだけでなく、Fe%/(Fe%+Co%)によってもHbiasの大きさが変化することがわかった。すなわち、0.5Tを超え、1.1T未満と、従来例よりも比較的低いBsを有する軟磁性膜であっても、所定のFe%/(Fe%+Co%)の範囲にすることにより、高いHbiasが得られることがわかった。
Hereinafter, the present invention will be described in detail.
First, in order to examine the effect of the soft magnetic film composition on Hbias, Hbias was evaluated for soft magnetic films of various compositions. Not only the size of Bs but also Fe% / (Fe% + Co%). It was found that the size of Hbias changed. That is, even if it is a soft magnetic film having a Bs exceeding 0.5T and less than 1.1T and relatively lower than the conventional example, by setting it to a predetermined Fe% / (Fe% + Co%) range, It was found that high Hbias can be obtained.

次に、Hbias以上の印加磁場による磁化の立ち上がりについても検討したところ、Fe,Co以外の添加元素の内、Nb,Taが多いこと、Ti,Zr,Hf,Bが少ないこと、Cu,Sn,Zn,Gaが少量添加されていることが、影響することがわかった。したがって、これらの元素を所定の添加量にすることにより、高いHbiasを有しながらも、鋭い磁化の立ち上がりを示す効果が付加的に得られることがわかった。   Next, the rise of magnetization due to an applied magnetic field of Hbias or higher was also examined. Among additive elements other than Fe and Co, Nb and Ta were large, Ti, Zr, Hf and B were small, Cu, Sn, It has been found that the addition of a small amount of Zn and Ga has an effect. Therefore, it has been found that by adding these elements in predetermined amounts, an effect of showing a sharp rise in magnetization can be obtained while having high Hbias.

このような新たな知見に基づき、従来の垂直磁気記録媒体用の軟磁性膜用合金の要求特性とは全く異なり、比較的低いBsを有しながらも、大きなHbiasを示し、さらに、高いHbiasを有しながらもHbias以上の印加磁場による磁化の立ち上がりの鋭い軟磁性合金を見い出し、従来では困難であった、外部ノイズ磁場に対する高い耐性と、書き滲みの抑制による高記録密度化を両立可能とし、本発明に至った。以下に、本発明合金の限定理由を説明する。   Based on such new knowledge, the characteristics required for soft magnetic film alloys for conventional perpendicular magnetic recording media are completely different from those of the conventional alloys for soft magnetic films, exhibiting a large Hbias while having a relatively low Bs, and further exhibiting a high Hbias. A soft magnetic alloy that has a sharp rise in magnetization due to an applied magnetic field of Hbias or higher while having it, making it possible to achieve both high resistance to an external noise magnetic field and high recording density by suppressing write bleeding, The present invention has been reached. Below, the reason for limitation of this invention alloy is demonstrated.

0.50≦Fe%/(Fe%+Co%)≦0.90
本合金において、FeおよびCoは、記録膜の磁化を安定させるために最低限必要な磁化を持たせるための元素であり、BsとFe%/(Fe%+Co%)の挙動は、いわゆるスレーターポーリング曲線などに示される。さらに、Fe%/(Fe%+Co%)は、比較的低いBsにおいても、高いHbiasを持たせるための重要な因子でもある。Fe%/(Fe%+Co%)が0.50未満では、同程度のBsを有し、0.50以上の軟磁性膜と比較し、Hbiasが小さくなってしまう。この現象についての詳細な理由は不明であるが、AFC結合には軟磁性膜のBsとともに、磁性元素における3d電子軌道による層間の相互作用が関与していると考えられ、FeとCoの比率によりこれが変化することが影響していると推察される。また、0.90を超えると著しくBsが低下し、十分なHbiasが得られない。なお、好ましい範囲は0.55以上、0.85以下、より好ましくは0.60以上、0.80以下である。
0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
In this alloy, Fe and Co are elements for providing the minimum necessary magnetization for stabilizing the magnetization of the recording film, and the behavior of Bs and Fe% / (Fe% + Co%) is a so-called slater polling. It is shown in a curve. Furthermore, Fe% / (Fe% + Co%) is also an important factor for providing high Hbias even at relatively low Bs. When Fe% / (Fe% + Co%) is less than 0.50, Hbias becomes small as compared with a soft magnetic film having the same degree of Bs and 0.50 or more. Although the detailed reason for this phenomenon is unknown, it is considered that the AFC coupling involves the interaction between the layers due to the 3d electron orbital in the magnetic element together with Bs of the soft magnetic film. It is inferred that this change has an effect. On the other hand, if it exceeds 0.90, Bs is remarkably lowered, and sufficient Hbias cannot be obtained. In addition, a preferable range is 0.55 or more and 0.85 or less, More preferably, it is 0.60 or more and 0.80 or less.

5≦TAM≦19、18≦TAM+TNM≦19
本合金における、Fe,Co以外の元素の効果について、下記にまとめる。Ti,Zr,Hf,Bは非晶質化の促進とBsの低下をもたらす元素であるとともに、磁化の立ち上がりを大幅に鈍くしてしまう元素でもある。なお、BについてはBs低下および非晶質性増加の効果がTi,Zr,Hfと比較し約1/2であることから、TAMの中ではB%/2として扱うことができる。ただし、スパッタリングターゲット材の中では、Bは特に硬質な化合物(例えば硼化物)を生成し、機械加工の際に加工速度を落とす必要が出てくるため、BをTAMに分類した元素として単独で添加するよりも、複合的に添加することが好ましい。この点を踏まえると、(B/2)/TAMは0.8以下が好ましく、0.5以下がより好ましい。
5 ≦ TAM ≦ 19, 18 ≦ TAM + TNM ≦ 19
The effects of elements other than Fe and Co in this alloy are summarized below. Ti, Zr, Hf, and B are elements that promote amorphization and lower Bs, and are elements that significantly slow the rise of magnetization. Note that B can be treated as B% / 2 in TAM because the effect of lowering Bs and increasing amorphousness is about ½ compared to Ti, Zr, and Hf. However, among sputtering target materials, B generates a particularly hard compound (for example, boride), and it is necessary to reduce the processing speed during machining, so that B alone is an element classified as TAM. It is preferable to add in combination rather than adding. Considering this point, (B / 2) / TAM is preferably 0.8 or less, and more preferably 0.5 or less.

Y,V,Cr,Mo,WはBsの低下をもたらすとともに、わずかに磁化の立ち上がりを鈍くしてしまう元素でもある。また、Y,Vは非晶質化の促進にも寄与する。Nb,Taは非晶質化の促進とBsの低下をもたらすとともに、磁化の立ち上がりを鋭くする効果がある重要な元素である。Mn,Al,Si,Ge,PはBsの低下をもたらすとともに、磁化の立ち上がりをわずかに鈍くしてしまう元素でもある。Ni,CuはBsの低下幅が小さい元素であり、Cuについては少量添加で磁化の立ち上がりを鋭くする効果もあるが多量の添加は磁化の立ち上がりをわずかに低下させる元素である。   Y, V, Cr, Mo, and W are elements that cause a decrease in Bs and slightly slow the rise of magnetization. Y and V also contribute to the promotion of amorphization. Nb and Ta are important elements that have effects of promoting amorphization and lowering Bs and sharpening the rise of magnetization. Mn, Al, Si, Ge, and P are elements that cause a decrease in Bs and slightly slow the rise of magnetization. Ni and Cu are elements with a small decrease width of Bs, and Cu has an effect of sharpening the rise of magnetization when added in a small amount, but addition of a large amount is an element that slightly lowers the rise of magnetization.

なお、Ni,Cuは他のTAMやTNMに分類した元素と比較し、Bsの低下幅が約1/3であることから、TNMの中ではNi%/3、Cu%/3として扱うことができる。Ga,Sn,ZnはBsの低下とともに、少量の添加においては磁化の立ち上がりを鋭くする効果があるが、多量の添加は磁化の立ち上がりをわずかに鈍くする元素である。このように、全ての元素がBsを低下させる効果を有しているとともに、非晶質性改善の効果や磁化の立ち上がりに影響する元素もある。これらの添加量を最適化することにより、本発明合金が得られる。   Note that Ni and Cu are treated as Ni% / 3 and Cu% / 3 in TNM because the decrease in Bs is about 1/3 compared to other elements classified as TAM and TNM. it can. Ga, Sn, and Zn have an effect of sharpening the rise of magnetization when added in a small amount as Bs decreases. However, addition of a large amount is an element that slightly slows down the rise of magnetization. Thus, all elements have the effect of lowering Bs, and there are also elements that affect the effect of improving amorphousness and the rise of magnetization. The alloy of the present invention can be obtained by optimizing these addition amounts.

TAMが5未満では十分な非晶質性が得られず、19を超えるとBsが低くなり、十分なHbiasが得られない。好ましくは7以上、19以下、より好ましくは9以上、19以下である。なお、NbとTaはスパッタリングターゲット材において、FeやCoと脆性な金属間化合物を生成するため、TAMとしてNbまたは/およびTaのみを添加する場合は、機械加工時に割れや欠けが発生しないように、加工速度を落とす必要がある。   If TAM is less than 5, sufficient amorphousness cannot be obtained, and if it exceeds 19, Bs becomes low and sufficient Hbias cannot be obtained. Preferably they are 7 or more and 19 or less, More preferably, they are 9 or more and 19 or less. Since Nb and Ta generate a brittle intermetallic compound with Fe or Co in the sputtering target material, when only Nb or / and Ta is added as TAM, cracks and chips do not occur during machining. It is necessary to reduce the processing speed.

TAM+TNMが18未満ではBsが大きくなるためHbiasは増加するものの、磁化の立ち上がりが鈍くなってしまう。TAM+TNMが19を超えるとBsが小さく、Hbiasが小さくなってしまう。   If TAM + TNM is less than 18, Bs increases and Hbias increases, but the rise of magnetization becomes dull. When TAM + TNM exceeds 19, Bs is small and Hbias is small.

0.25≦(Nb%+Ta%)/(TAM+TNM)≦1.00
上述したように、Nb,Taは本合金において、磁化の立ち上がりを鋭くする付加的な効果のある重要な元素であるが、(Nb%+Ta%)/(TAM+TNM)が0.25未満では、この効果が得られない。また、TAMにはNbとTaの添加量も含まれているため、必然的に(Nb%+Ta%)/(TAM+TNM)の上限は1.00となる。なお、好ましくは0.40以上、1.00未満、より好ましくは0.60以上、1.00未満である。
0.25 ≦ (Nb% + Ta%) / (TAM + TNM) ≦ 1.00
As described above, Nb and Ta are important elements having an additional effect of sharpening the rise of magnetization in this alloy. However, when (Nb% + Ta%) / (TAM + TNM) is less than 0.25, The effect is not obtained. Further, since the amount of Nb and Ta is included in TAM, the upper limit of (Nb% + Ta%) / (TAM + TNM) is necessarily 1.00. In addition, Preferably it is 0.40 or more and less than 1.00, More preferably, it is 0.60 or more and less than 1.00.

0≦Ti%+Zr%+Hf%+B%/2≦5、0<Cu%+Sn%+Zn%+Ga%≦10
上述したように、Ti,Zr,Hf,Bは本合金において、磁化の立ち上がりを大幅に鈍くしてしまう元素であることから、その合計量の上限を厳しく規定することにより、より鋭い磁化の立ち上がりが付加的な効果として得られる。Ti%+Zr%+Hf%+B%/2が5を超えると磁化の立ち上がりを鋭くする効果が得られない。好ましくは3以下、より好ましくは0である。
0 ≦ Ti% + Zr% + Hf% + B% / 2 ≦ 5, 0 <Cu% + Sn% + Zn% + Ga% ≦ 10
As described above, Ti, Zr, Hf, and B are elements that significantly slow down the rise of magnetization in this alloy. Therefore, by sharply defining the upper limit of the total amount, sharper rise of magnetization is achieved. Is obtained as an additional effect. If Ti% + Zr% + Hf% + B% / 2 exceeds 5, the effect of sharpening the rise of magnetization cannot be obtained. Preferably it is 3 or less, more preferably 0.

上述したように、Cu,Sn,Zn,Gaは本合金において、少量添加において磁化の立ち上がりを鋭くする付加的な効果のある元素であることから、少量の範囲では積極添加することで、より鋭い磁化の立ち上がりが得られる。Cu%+Sn%+Zn%+Ga%が10を超えると、この効果が得られない。好ましくは1以上、8以下、より好ましくは2以上、6以下である。なお、この両式は、いずれか一方のみを満たす場合でも、磁化の立ち上がりを鋭くする付加的な効果が得られる。   As described above, Cu, Sn, Zn, and Ga are elements having an additional effect of sharpening the rise of magnetization when added in a small amount in this alloy. Therefore, when added in a small amount, Cu, Sn, Zn, and Ga are sharper. A rise in magnetization is obtained. If Cu% + Sn% + Zn% + Ga% exceeds 10, this effect cannot be obtained. Preferably they are 1 or more and 8 or less, More preferably, they are 2 or more and 6 or less. In addition, even when both of these formulas satisfy only one of them, an additional effect of sharpening the rise of magnetization can be obtained.

以上のように様々な元素がBsへの影響以外に磁化の立ち上がりに影響し、その詳細な理由については不明であるが、以下のことが推察される。Hbias以上の印加磁場に対する磁化の立ち上がりの鋭さには、軟磁性合金のスパッタ膜の表面粗さが影響している傾向が見られる。Hbias以上の外部磁場により磁化が立ち上がる現象は、軟磁性膜とRu膜との界面におけるAFC結合が大きな印加磁場に耐えられず磁化反転を起こすと考えられるが、軟磁性膜の表面が粗く、両膜の界面に凹凸が存在すると、局所的に磁化反転が早く起こる部位と、遅く起こる部位が混在する可能性がある。   As described above, various elements affect the rise of magnetization in addition to the influence on Bs, and the detailed reason is unknown, but the following is presumed. There is a tendency that the surface roughness of the sputtered film of the soft magnetic alloy has an influence on the sharpness of the rising of the magnetization with respect to the applied magnetic field of Hbias or higher. The phenomenon that magnetization rises due to an external magnetic field of Hbias or higher is considered that the AFC coupling at the interface between the soft magnetic film and the Ru film cannot withstand a large applied magnetic field and causes magnetization reversal, but the surface of the soft magnetic film is rough, If there is unevenness at the interface of the film, there is a possibility that a part where the magnetization reversal occurs locally and a part where the magnetization reversal occur locally.

このように、部位により磁化反転挙動に不一致が発生すると膜全体としては磁化の立ち上がりが緩やかとなってしまう。このため、スパッタ膜の表面粗さと磁化の立ち上がりの鋭さに相関が見られるのではないかと考えられる。さらに、スパッタ膜の表面粗さへの添加元素の影響については、非晶質合金としての自由体積および過剰自由体積が影響している可能性が推察される。これらの両体積は、非晶質合金において原子と原子の間の隙間に相当する体積であり、これが大きい場合、合金中で原子が密に詰まっておらず、したがって、スパッタ膜において原子サイズのレベルでの表面粗さが大きくなると考えられる。   As described above, when the magnetization reversal behavior is inconsistent depending on the portion, the magnetization rises gradually for the entire film. For this reason, it is considered that there is a correlation between the surface roughness of the sputtered film and the sharpness of the rise of magnetization. Furthermore, regarding the influence of the additive element on the surface roughness of the sputtered film, it is presumed that the free volume and excess free volume as an amorphous alloy may have an influence. Both of these volumes are the volume corresponding to the gap between atoms in an amorphous alloy, and when this is large, the atoms are not densely packed in the alloy, and therefore the atomic size level in the sputtered film. It is believed that the surface roughness at

なお、両体積には非晶質の安定性が関係する可能性が示唆されているが、本発明において、磁化の立ち上がりを大幅に鈍くするTi,Zr,Hf,Bは特に非晶質を安定化する元素であり、少量添加で磁化の立ち上がりを鋭くするCu,Ga,Sn,Znは非晶質性を低下させる元素である。更に、磁化の立ち上がりを鋭くする重要な元素であるNb,Taは、Ti,Zr,Hf,Bと比較すると、非晶質化を促進する効果が低い元素である。   Although it has been suggested that both volumes may be related to amorphous stability, in the present invention, Ti, Zr, Hf, and B that significantly slow the rise of magnetization are particularly stable in amorphous. Cu, Ga, Sn, and Zn are elements that reduce the amorphous nature. Furthermore, Nb and Ta, which are important elements that sharpen the rise of magnetization, are elements that have a lower effect of promoting amorphization than Ti, Zr, Hf, and B.

以下、本発明について実施例によって具体的に説明する。
表1に示す組成でガスアトマイズ法により軟磁性合金粉末を作製した。溶解母材は25kgで減圧Ar中にて誘導溶解し、直径8mmのノズルから合金溶湯を出湯し、直後に高圧Arガスを噴霧しアトマイズした。この粉末を500μm以下に分級し、HIP成形(熱間等方圧プレス)の原料粉末として用いた。HIP成形用ビレットは、直径200mm、長さ10mmの炭素鋼製缶に原料粉末を充填したのち、真空脱気、封入し作製した。この粉末充填ビレットを、温度1100℃、圧力120MPa、保持時間2時間の条件でHIP成形した。その後、成形体から直径95mm、厚さ2mmの軟磁性合金スパッタリングターゲット材を作製した。この軟磁性合金製のスパッタリングターゲット材を用い軟磁性薄膜を作製した。また、Ru薄膜の作製には、市販のRu金属製のスパッタリングターゲット材を用いた。
Hereinafter, the present invention will be specifically described with reference to examples.
Soft magnetic alloy powders having the compositions shown in Table 1 were prepared by gas atomization. The molten base material was induction-melted at 25 kg in reduced pressure Ar, the molten alloy was discharged from a nozzle having a diameter of 8 mm, and immediately after that, high-pressure Ar gas was sprayed and atomized. This powder was classified to 500 μm or less and used as a raw material powder for HIP molding (hot isostatic pressing). The billet for HIP molding was prepared by filling a raw material powder into a carbon steel can having a diameter of 200 mm and a length of 10 mm, followed by vacuum degassing and sealing. This powder-filled billet was HIP-molded under the conditions of a temperature of 1100 ° C., a pressure of 120 MPa, and a holding time of 2 hours. Thereafter, a soft magnetic alloy sputtering target material having a diameter of 95 mm and a thickness of 2 mm was produced from the compact. A soft magnetic thin film was produced using this soft magnetic alloy sputtering target material. For the production of the Ru thin film, a commercially available Ru metal sputtering target material was used.

チャンバー内を1×10-4Pa以下に真空排気し、純度99.99%のArガスを0.6Pa投入しスパッタを行なった。まず、洗浄したガラス基板上に20nmの軟磁性合金薄膜(下軟磁性層)を成膜し、その上に0.8nmのRu膜を成膜し、さらにその上に上述した膜と同じ20nmの軟磁性合金薄膜(上軟磁性層)を成膜し、多層膜を作製した。なお、全ての実施例および比較例における多層膜の上下の軟磁性膜には同じ合金を用いた。また、軟磁性膜のBs、結晶構造、表面粗さの評価用として下軟磁性層のみ成膜した単層膜も作製した。 The inside of the chamber was evacuated to 1 × 10 −4 Pa or less, and Ar gas with a purity of 99.99% was charged with 0.6 Pa to perform sputtering. First, a 20 nm soft magnetic alloy thin film (lower soft magnetic layer) is formed on a cleaned glass substrate, a 0.8 nm Ru film is formed thereon, and a 20 nm same as the above-described film is formed thereon. A soft magnetic alloy thin film (upper soft magnetic layer) was formed to produce a multilayer film. The same alloy was used for the upper and lower soft magnetic films of the multilayer film in all Examples and Comparative Examples. In addition, a single-layer film in which only the lower soft magnetic layer was formed was also used for evaluation of Bs, crystal structure, and surface roughness of the soft magnetic film.

このようにして作製した単層膜を試料とし、BsはVSM(試料振動型磁束計)、結晶構造はX線回折、算術平均粗さRa(表面粗さ)はAFM(原子間力顕微鏡)を用いて評価した。結晶構造については、非晶質を○、非晶質の中に一部微結晶が見られるものを△、結晶を×とした。さらに多層膜によりHbiasおよび磁化の立ち上がりの鋭さを評価した。これらの結果は表2に示す通りであった。   The single-layer film thus prepared is used as a sample, Bs is VSM (sample vibration type magnetometer), crystal structure is X-ray diffraction, arithmetic average roughness Ra (surface roughness) is AFM (atomic force microscope). Evaluated. Regarding the crystal structure, the amorphous structure was indicated by ◯, the amorphous structure where some crystallites were observed was indicated by Δ, and the crystal was indicated by ×. Furthermore, the sharpness of the rise of Hbias and magnetization was evaluated by the multilayer film. These results are shown in Table 2.

図1は、多層膜の磁化曲線の模式図である。この図に示すように、Hbiasは多層膜の磁化が立ち上がる時の印加磁場、磁化の立ち上がりの鋭さは、多層膜の磁化が飽和する印加磁場(Hsat)とHbiasの比、すなわちHsat/Hbiasで評価した。図1(a)はHbiasが大きく、磁化の立ち上がりが鋭い例を示し、図1(b)はHbiasが小さく、磁化の立ち上がりが鈍い例を示している。すなわち、この値が小さく1に近いほど磁化の立ち上がりが鋭いことを示す。この値が、1.2未満を◎、1.2以上1.4未満を○、1.4以上1.8未満を△、1.8以上を×とした。   FIG. 1 is a schematic diagram of a magnetization curve of a multilayer film. As shown in this figure, Hbias is an applied magnetic field when the magnetization of the multilayer film rises, and the sharpness of the magnetization is evaluated by the ratio of the applied magnetic field (Hsat) where the magnetization of the multilayer film is saturated to Hbias, that is, Hsat / Hbias. did. FIG. 1A shows an example in which Hbias is large and the rise of magnetization is sharp, and FIG. 1B shows an example in which Hbias is small and the rise of magnetization is slow. That is, the smaller this value is and the closer it is to 1, the sharper the rise of magnetization. In this value, 未 満 is less than 1.2, ○ is 1.2 or more and less than 1.4, Δ is 1.4 or more and less than 1.8, and × is 1.8 or more.

Figure 2015144033
Figure 2015144033

Figure 2015144033
表1および表2に示すように、No.1〜18は本発明例である、No.19〜29は比較例である。
Figure 2015144033
As shown in Table 1 and Table 2, Nos. 1 to 18 are examples of the present invention. 19 to 29 are comparative examples.

図2は、表2の結果について、多層膜のHbiasを縦軸、単層膜のBsを横軸にプロットした図である。この図中の実線の楕円のとおり、高いHbiasを得るためには、高いBsが必要であることがわかる。なお、この実線の楕円中のデータはいずれもFe%/(Fe%+Co%)が0.5〜0.9の範囲のものである。これに対し、図2中でこの実線の楕円より下に位置する比較例No.19〜21は、Fe%/(Fe%+Co%)が0.5未満であるため、実線楕円内のデータと同等のBsを有しながら、Hbiasは低い値にとどまってしまっている。すなわち、Fe%/(Fe%+Co%)を0.50〜0.90とすることで、比較的低いBsでも高いHbiasが得られている。   FIG. 2 is a diagram in which the results of Table 2 are plotted with the Hbias of the multilayer film on the vertical axis and the Bs of the single layer film on the horizontal axis. It can be seen that high Bs is necessary to obtain high Hbias, as indicated by the solid oval in this figure. The data in the solid line ellipse are all in the range of Fe% / (Fe% + Co%) of 0.5 to 0.9. On the other hand, in Comparative Example No. 1 located below the solid ellipse in FIG. In 19-21, since Fe% / (Fe% + Co%) is less than 0.5, Hbias remains at a low value while having Bs equivalent to the data in the solid-line ellipse. That is, by setting Fe% / (Fe% + Co%) to 0.50 to 0.90, high Hbias is obtained even with relatively low Bs.

一方、図2中で左下の点線の楕円内に位置する比較例No.22〜26は、Bsが著しく低いためHbiasも低くなってしまっている。また、比較例No.29は、Fe%/(Fe%+Co%)が0.4と低く、TAM+TNMが15未満と小さい組成で、従来技術で多く見られる高Bs組成である。この組成は図2中でにおいて、実線の楕円の右に位置するプロットであり、実線の楕円中の組成と比較し、同等の高いHbiasを得るために、著しく大きいBsを必要としており、このような組成はいわゆる「書き滲み」を引き起こしてしまう。   On the other hand, Comparative Example No. 1 located within the dotted ellipse at the lower left in FIG. In Nos. 22 to 26, since Bs is extremely low, Hbias is also low. Comparative Example No. No. 29 is a high Bs composition often seen in the prior art, with a composition as small as Fe% / (Fe% + Co%) as low as 0.4 and TAM + TNM as small as less than 15. This composition is a plot located to the right of the solid ellipse in FIG. 2. Compared with the composition in the solid ellipse, a significantly larger Bs is required to obtain an equivalently high Hbias. Such a composition causes so-called “writing bleeding”.

図3は、表2の結果について、多層膜のHbiasを縦軸、単層膜のRaを横軸にプロットし、プロットのマークを、Hbias以上の外部磁場を印加したときの多層膜の磁化の立ち上りの鋭さごとに変化させたものである。この図から、同等のHbiasを有する多層膜であっても、単層膜の表面粗さ(Ra)が大きい場合に、磁化の立上りが劣化することがわかる。   FIG. 3 plots the Hbias of the multilayer film on the vertical axis and the Ra of the single layer film on the horizontal axis for the results in Table 2, and the mark of the plot is the magnetization of the multilayer film when an external magnetic field of Hbias or higher is applied. It is changed according to the sharpness of the rise. From this figure, it can be seen that even in the case of a multilayer film having the same Hbias, when the surface roughness (Ra) of the single layer film is large, the rise of magnetization deteriorates.

次に、表2に示す個々の比較例データについて説明する。比較例No.19〜21はFe%/(Fe%+Co%)値がいずれも低いため、0.80〜0.86TのBsを有しているにもかかわらず、高いHbiasが得られていない。比較例No.22,23はFe%/(Fe%+Co%)値が過度に高く、比較例No.24,25はTAM+TNMが高く、比較例No.26はTAMおよびTAM+TNMが高いため、いずれもBsが著しく低く、高いHbiasが得られていない。   Next, individual comparative example data shown in Table 2 will be described. Comparative Example No. Since 19 to 21 have low Fe% / (Fe% + Co%) values, high Hbias is not obtained despite having Bs of 0.80 to 0.86 T. Comparative Example No. Nos. 22 and 23 have excessively high Fe% / (Fe% + Co%) values. Nos. 24 and 25 have high TAM + TNM. No. 26 has a high TAM and TAM + TNM, and therefore, Bs is remarkably low and high Hbias is not obtained.

比較例No.27はTAM+TNMが低いためBsが高く、高いHbiasは得られるが、Hbiasを超える外部磁場に対する磁化の立ち上がりが鈍い。比較例No.28はTAMが低く、結晶質であり、結晶粒に起因する単層膜表面の凹凸によりRaが高く、Hbiasを超える外部磁場に対する磁化の立ち上がりが鈍い。比較例No.29は、Fe%/(Fe%+Co%)値が低く、TAM+TNMが低いため、著しくBsが高いにもかかわらず、実施例と同等レベルのHbiasしか得られておらず、このように著しくBsの高い組成は、いわゆる「書き滲み」を起こしてしまう。   Comparative Example No. No. 27 has a low TAM + TNM, so Bs is high and a high Hbias can be obtained, but the rise of magnetization with respect to an external magnetic field exceeding Hbias is slow. Comparative Example No. No. 28 has a low TAM, is crystalline, has a high Ra due to irregularities on the surface of the single layer film caused by crystal grains, and has a slow rise in magnetization with respect to an external magnetic field exceeding Hbias. Comparative Example No. No. 29 has a low Fe% / (Fe% + Co%) value and a low TAM + TNM, so even though the Bs is remarkably high, only Hbias of the same level as in the example was obtained. A high composition causes so-called “writing bleeding”.

これらと比較し、実施例No.1〜18はいずれも本発明の範囲内であることから、1.1T未満と従来技術より低いBsでありながら、高いHbiasを有しており、さらに、Hbiasを超える印加磁場に対し鋭い磁化の立ち上りを示すことがわかる。このような組成によって、高い外部ノイズ磁場に対する耐性とBsが過度に高いことによる書き滲みの抑制が両立できる。なお、実施例No.5〜7は(Nb%+Ta%)/(TAM+TNM)が0.4〜1.0の範囲であることから、実施例No.1〜4よりも、単層膜の粗さ(Ra)が小さく磁化の立ち上がりが鋭い付加的な効果も得られている。   Compared to these, Example No. Since 1 to 18 are all within the scope of the present invention, Bs is lower than 1.1T and lower than that of the prior art, and has a high Hbias, and further has a sharp magnetization with respect to an applied magnetic field exceeding Hbias. It can be seen that it shows a rise. With such a composition, both resistance to a high external noise magnetic field and suppression of writing bleeding due to excessively high Bs can be achieved. In addition, Example No. In Nos. 5-7, (Nb% + Ta%) / (TAM + TNM) is in the range of 0.4 to 1.0. The additional effect that the roughness (Ra) of the single layer film is small and the rise of magnetization is sharper than 1 to 4 is also obtained.

さらに、実施例No.8〜18は、Ti%+Zr%+Hf%+B%/2が5以下および/もしくはCu%+Sn%+Zn%+Ga%が0を超え、10以下であることから、実施例No.1〜4よりも、単層膜の粗さ(Ra)が小さく磁化の立ち上がりが鋭い付加的な効果も得られている。   Furthermore, Example No. Nos. 8 to 18 have Ti% + Zr% + Hf% + B% / 2 of 5 or less and / or Cu% + Sn% + Zn% + Ga% of more than 0 and 10 or less. The additional effect that the roughness (Ra) of the single layer film is small and the rise of magnetization is sharper than 1 to 4 is also obtained.

以上のように、記録膜の磁化を安定させる最低限のBsを有しながら、比較的低いBsでも高いHbiasを持ち、さらには、付加的な効果として鋭い磁化の立ち上がりを持つ軟磁性合金であることから、外部磁場に対する高い耐性と、「書き滲み」抑制による、高記録密度の両立が可能となる、低飽和磁束密度を有する軟磁性膜層用合金およびスパッタリングターゲット材を提供することができる極めて優れた効果を奏するものである。   As described above, it is a soft magnetic alloy having a minimum Bs for stabilizing the magnetization of the recording film, a high Hbias even at a relatively low Bs, and a sharp rise in magnetization as an additional effect. Therefore, it is possible to provide an alloy for a soft magnetic film layer having a low saturation magnetic flux density and a sputtering target material that can achieve both high resistance to an external magnetic field and high recording density by suppressing “writing bleeding”. It has an excellent effect.

多層膜の磁化曲線の模式図である。It is a schematic diagram of the magnetization curve of a multilayer film. 単層膜のBsと多層膜のHbiasの相関を示す図である。It is a figure which shows the correlation of Bs of a single layer film, and Hbias of a multilayer film. Hbias後の磁化の立ち上りの鋭さに及ぼす単層膜のRaと多層膜のHbiasの影響を示す図である。It is a figure which shows the influence of Ra of a single layer film, and Hbias of a multilayer film on the sharpness of the rise of magnetization after Hbias.

Claims (5)

at%で、Y,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Ni,Cu,Al,B,C,Si,P,Zn,Ga,Ge,Snを1種以上、残部CoおよびFeからなり、下記の式(1)〜(3)を満たすことを特徴とした磁気記録媒体における軟磁性薄膜層用合金。
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦19
(3)18≦TAM+TNM≦19
ただし、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
At%, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge, Sn An alloy for a soft magnetic thin film layer in a magnetic recording medium comprising the balance Co and Fe and satisfying the following formulas (1) to (3).
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 19
(3) 18 ≦ TAM + TNM ≦ 19
However,
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
下記の式(4)を満たすことを特徴とした請求項1に記載の磁気記録媒体における軟磁性薄膜層用合金。
(4)0.25≦(Nb%+Ta%)/(TAM+TNM)≦1.00
The alloy for a soft magnetic thin film layer in the magnetic recording medium according to claim 1, wherein the following formula (4) is satisfied.
(4) 0.25 ≦ (Nb% + Ta%) / (TAM + TNM) ≦ 1.00
下記の式(5)および/または(6)を満たすことを特徴とした請求項1または請求項2に記載の磁気記録媒体における軟磁性薄膜層用合金。
(5)0≦Ti%+Zr%+Hf%+B%/2≦ 5
(6)0<Cu%+Sn%+Zn%+Ga%≦10
The alloy for soft magnetic thin film layers in a magnetic recording medium according to claim 1 or 2, wherein the following formula (5) and / or (6) is satisfied.
(5) 0 ≦ Ti% + Zr% + Hf% + B% / 2 ≦ 5
(6) 0 <Cu% + Sn% + Zn% + Ga% ≦ 10
飽和磁束密度が0.5Tを超え1.1T未満であることを特徴とした、請求項1〜3のいずれか1項に記載の軟磁性薄膜層用合金。   The alloy for soft magnetic thin film layers according to any one of claims 1 to 3, wherein the saturation magnetic flux density is more than 0.5T and less than 1.1T. 請求項1〜4のいずれか1項に記載の合金からなる軟磁性薄膜を製造するためのスパッタリングターゲット材。   The sputtering target material for manufacturing the soft-magnetic thin film which consists of an alloy of any one of Claims 1-4.
JP2015021048A 2015-02-05 2015-02-05 Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material Active JP5980971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021048A JP5980971B2 (en) 2015-02-05 2015-02-05 Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021048A JP5980971B2 (en) 2015-02-05 2015-02-05 Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012022096A Division JP5778052B2 (en) 2012-02-03 2012-02-03 Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material

Publications (2)

Publication Number Publication Date
JP2015144033A true JP2015144033A (en) 2015-08-06
JP5980971B2 JP5980971B2 (en) 2016-08-31

Family

ID=53888978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021048A Active JP5980971B2 (en) 2015-02-05 2015-02-05 Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material

Country Status (1)

Country Link
JP (1) JP5980971B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189006A (en) * 1999-12-28 2001-07-10 Showa Denko Kk Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP2006265653A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2007161540A (en) * 2005-12-15 2007-06-28 Sanyo Special Steel Co Ltd Method of manufacturing fecob-based sputtering target material
JP2010129165A (en) * 2008-12-01 2010-06-10 Showa Denko HD Singapore Pte Ltd Magnetic recording medium, manufacturing method thereof, and magnetic recording and reproducing device
JP2013032573A (en) * 2011-08-03 2013-02-14 Hitachi Metals Ltd METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
JP2013143156A (en) * 2012-01-10 2013-07-22 Hitachi Metals Ltd Co-Fe ALLOY SOFT MAGNETIC BASE LAYER

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189006A (en) * 1999-12-28 2001-07-10 Showa Denko Kk Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP2006265653A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2007161540A (en) * 2005-12-15 2007-06-28 Sanyo Special Steel Co Ltd Method of manufacturing fecob-based sputtering target material
JP2010129165A (en) * 2008-12-01 2010-06-10 Showa Denko HD Singapore Pte Ltd Magnetic recording medium, manufacturing method thereof, and magnetic recording and reproducing device
JP2013032573A (en) * 2011-08-03 2013-02-14 Hitachi Metals Ltd METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
JP2013143156A (en) * 2012-01-10 2013-07-22 Hitachi Metals Ltd Co-Fe ALLOY SOFT MAGNETIC BASE LAYER

Also Published As

Publication number Publication date
JP5980971B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP4331182B2 (en) Soft magnetic target material
JP5778052B2 (en) Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material
WO2014126143A1 (en) Cofe system alloy for soft magnetic film layers in perpendicular magnetic recording media, and sputtering target material
JP5477724B2 (en) Co-Fe alloy for soft magnetic film, soft magnetic film and perpendicular magnetic recording medium
JP5631659B2 (en) Soft magnetic alloy and sputtering target material for perpendicular magnetic recording medium, and magnetic recording medium
JP5980970B2 (en) Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material
JP5980972B2 (en) Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material
JP5403418B2 (en) Method for producing Co-Fe-Ni alloy sputtering target material
JP6062462B2 (en) Sputtering target material for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium
JP5980971B2 (en) Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material
JP6302153B2 (en) Soft magnetic thin film layer and perpendicular magnetic recording medium in perpendicular magnetic recording medium
JP5474902B2 (en) An alloy used for a soft magnetic thin film layer in a perpendicular magnetic recording medium, a sputtering target material, and a perpendicular magnetic recording medium having a soft magnetic thin film layer.
JP6113817B2 (en) An alloy for a soft magnetic thin film layer and a sputtering target material in a perpendicular magnetic recording medium, and a perpendicular magnetic recording medium having a soft magnetic thin film layer.
JP5031443B2 (en) Alloy for soft magnetic film layer in perpendicular magnetic recording media
JP6128417B2 (en) Soft magnetic underlayer
JP2011068985A (en) Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM
JP6575775B2 (en) Soft magnetic film
JP2010150591A (en) Cobalt-iron based alloy for soft-magnetic film
JP6442460B2 (en) CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
JP2013143156A (en) Co-Fe ALLOY SOFT MAGNETIC BASE LAYER
JP2016149170A (en) Fe-Co-Nb BASED ALLOY SPUTTERING TARGET MATERIAL AND SOFT MAGNETIC FILM
JP5418897B2 (en) Method for producing Co-Fe alloy sputtering target material
WO2013157468A1 (en) CrTi-BASED ALLOY FOR ADHESION FILM LAYER FOR USE IN MAGNETIC RECORDING MEDIUM, TARGET MATERIAL FOR SPUTTERING, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM OBTAINED USING SAME
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof
JP5037542B2 (en) Soft magnetic target material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5980971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250