JP2015142884A - Volatile organic compound treatment apparatus and treatment method - Google Patents

Volatile organic compound treatment apparatus and treatment method Download PDF

Info

Publication number
JP2015142884A
JP2015142884A JP2014016867A JP2014016867A JP2015142884A JP 2015142884 A JP2015142884 A JP 2015142884A JP 2014016867 A JP2014016867 A JP 2014016867A JP 2014016867 A JP2014016867 A JP 2014016867A JP 2015142884 A JP2015142884 A JP 2015142884A
Authority
JP
Japan
Prior art keywords
organic compound
water vapor
desorption
drain
volatile organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014016867A
Other languages
Japanese (ja)
Inventor
雅美 周藤
Masami Shudo
雅美 周藤
博臣 釜野
Hiroomi Kamano
博臣 釜野
晃弘 塔本
Akihiro Tomoto
晃弘 塔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2014016867A priority Critical patent/JP2015142884A/en
Publication of JP2015142884A publication Critical patent/JP2015142884A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To treat drain G generated by condensing steam F for desorption when desorbing without requiring a special step in an organic compound treatment apparatus where a volatile organic compound A after being adsorbed by an adsorbent in an adsorption tower 11 is desorbed by supplying the steam F for desorption and incinerated by a combustion furnace 31.SOLUTION: Drain G is introduced into a steam generation recycling route 54 where steam F for desorption can be recycled to be heated to reach a sufficient temperature via a heat exchanger 32 generating the steam F for desorption.

Description

この発明は、揮発性有機化合物を含むガスを排出する前に、ガスから揮発性有機化合物を処理する装置に関する。   The present invention relates to an apparatus for treating a volatile organic compound from a gas before discharging the gas containing the volatile organic compound.

工場から発生する排ガスには、そのまま大気中に排出すると問題を起こす揮発性有機化合物が含まれる場合がある。この場合、排ガスを大気中に排出する前に、含有している揮発性有機化合物を処理しなければならない。その方法として、活性炭等の吸着剤を内蔵した吸着塔で、排ガス中に含まれる揮発性有機化合物を吸着剤に吸着させ、ガス中の濃度を低減させて大気へ排出する。その後、吸着塔に水蒸気を導入して吸着剤から揮発性有機化合物を脱着させて吸着塔を再利用可能にするとともに、揮発性有機化合物を処理するという吸脱着方式が一般的である。また、脱着させた揮発性有機化合物を燃焼させ、その燃焼熱を利用して脱着用水蒸気を生成させることもできる。   Exhaust gas generated from factories may contain volatile organic compounds that cause problems if discharged into the atmosphere as they are. In this case, before exhaust gas is discharged into the atmosphere, the contained volatile organic compounds must be treated. As a method for this, a volatile organic compound contained in exhaust gas is adsorbed on an adsorbent in an adsorption tower containing an adsorbent such as activated carbon, and the concentration in the gas is reduced and discharged to the atmosphere. Thereafter, an adsorption / desorption method is generally used in which water vapor is introduced into the adsorption tower to desorb the volatile organic compound from the adsorbent so that the adsorption tower can be reused and the volatile organic compound is treated. Further, the desorbed volatile organic compound can be burned, and desorption water vapor can be generated using the combustion heat.

しかし、吸着塔内の吸着剤が低温であるうちは、吸着塔に導入した水蒸気は凝縮してドレンが発生する。このドレンは脱着した揮発性有機化合物やその他の不純物を含むため、工場外に排出するには別途排出処理を行わなければならない。   However, while the adsorbent in the adsorption tower is at a low temperature, the water vapor introduced into the adsorption tower is condensed to generate drain. Since this drain contains desorbed volatile organic compounds and other impurities, it must be separately discharged to discharge it outside the factory.

特許文献1には、吸着槽を備えたフルオロカーボン回収装置に導入する脱着用水蒸気を生成するボイラを備え、脱着用水蒸気のドレンをそのボイラの補給水として再利用することが記載されている(請求項1,図1)。ドレンに含まれるフルオロカーボンはボイラの熱により水とともに蒸発して吸着塔へ移送され、一旦吸着された後、通常の脱着工程で処理されるため、別途ドレンの排出処理を行わなくてもよくなる。   Patent Document 1 describes that a boiler that generates desorption steam to be introduced into a fluorocarbon recovery device equipped with an adsorption tank is provided, and the drain of the desorption steam is reused as make-up water for the boiler (claim). Item 1, FIG. 1). The fluorocarbon contained in the drain is evaporated together with water by the heat of the boiler, transferred to the adsorption tower, once adsorbed, and then processed in a normal desorption process. Therefore, it is not necessary to separately perform a drain discharge process.

また、特許文献2には、脱着用水蒸気のドレンを回収し、そのドレンをミスト化して吸着塔内へ噴霧して再度吸着剤に吸着させる方法が記載されている。ミスト化にあたっては、脱着用水蒸気の一部とドレンとを合わせてエゼクタ(ejector)に導入することが記載されている。ドレンに含有された揮発性有機化合物は、吸着剤に吸着された後で脱着されて燃焼炉で燃料として消費されるため、別途ドレンの排出処理を行わなくてもよくなる。   Patent Document 2 describes a method of recovering dewatered steam drain, making the drain mist, spraying it into an adsorption tower, and adsorbing it again to the adsorbent. In mist formation, it is described that a part of desorption water vapor and drain are combined and introduced into an ejector. Since the volatile organic compound contained in the drain is adsorbed by the adsorbent and then desorbed and consumed as fuel in the combustion furnace, there is no need to perform a separate drain discharge process.

実開平3−115026号公報Japanese Utility Model Publication No. 3-11026 特開2009−233617号公報JP 2009-233617 A

しかしながら、特許文献1に記載の手法では、ボイラの補給水としてドレンを供給するため、ボイラの伝熱面にドレンが含有する不純物などがスケールとして付着してしまい、これを除去するための定期的なメンテナンスが必要になってしまう。   However, in the method described in Patent Document 1, since drain is supplied as boiler make-up water, impurities contained in the drain adhere to the heat transfer surface of the boiler as a scale, and are periodically removed to remove this. Maintenance is required.

また、特許文献2に記載の手法では、ドレンをミスト化するためのエゼクタが必要になるため、工程が長く装置全体が複雑化してしまう。さらに、ドレンをミスト化するためには本来脱着用に用いる水蒸気を流用しなければならず、その水蒸気は脱着には活用されないため、装置全体での熱エネルギー効率が低下してしまっていた。   Further, in the method described in Patent Document 2, an ejector for misting the drain is required, so that the process is long and the entire apparatus is complicated. Furthermore, in order to make the drain mist, the water vapor originally used for desorption must be diverted, and since the water vapor is not used for desorption, the thermal energy efficiency of the entire apparatus has been reduced.

そこでこの発明は、特別な工程を必要とすることなく、脱着用水蒸気のドレンの処理を不要にすることを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to eliminate the need for treatment of the desorption water vapor drain without requiring a special process.

この発明は、熱交換器を経由して十分な温度に加熱するまで脱着用水蒸気を循環させ得る水蒸気生成循環経路にドレンを導入することで、上記の課題を解決したのである。   The present invention solves the above-mentioned problem by introducing drain into a water vapor generation circulation path through which the desorption water vapor can be circulated until it is heated to a sufficient temperature via a heat exchanger.

上記水蒸気生成循環経路には、吸着塔へ送る前の水蒸気が空気に乗って循環しており、熱交換器ではこの経路を循環して戻ってきた水蒸気に加えて、さらに水を供給しつつ加熱していき十分に高温の脱着用水蒸気を生成する。この水蒸気生成循環経路にドレンを導入すると、循環する空気及び水蒸気により気流搬送されながら細かい液滴となって熱交換器へ到達し、熱を受けて水蒸気となる。この工程は、吸着塔での吸着及び脱着工程と並行して、あるいはそれらの工程の準備として行えるので、吸着塔の使用及び再生サイクル中に余計なステップを挟む必要はない。また、ドレン中の揮発性有機化合物を含む不純物は、生成した脱着用水蒸気とともに吸着塔に気流搬送され、燃焼炉でエネルギーとして燃焼された上で、系外へと排出される。これにより、別途排出処理の設備を拡張する必要なく、ドレンの処理が可能となる。   In the steam generation circulation path, the steam before being sent to the adsorption tower is circulated on the air, and the heat exchanger is heated while supplying water in addition to the steam returned through the path. Then, sufficiently high temperature desorption water vapor is generated. When drain is introduced into this water vapor generation and circulation path, the air flows by the circulating air and water vapor to form fine droplets that reach the heat exchanger and receive heat to become water vapor. Since this process can be performed in parallel with the adsorption and desorption processes in the adsorption tower or as preparations for those processes, it is not necessary to put extra steps in the use and regeneration cycle of the adsorption tower. Impurities including volatile organic compounds in the drain are air-flowed to the adsorption tower together with the generated desorption water vapor, burned as energy in the combustion furnace, and then discharged out of the system. As a result, it is possible to process the drain without having to separately expand the facility for the discharge process.

さらに、ドレンを水蒸気生成循環経路に供給した後も、所定温度に到達するまでは経路内を循環させることもできるため、吸着塔に供給される脱着用水蒸気の温度が低下して脱着効率が低下するといったこともない。そして、ドレンを熱交換器に直接供給するのではなく、水蒸気生成循環経路に導入して気流搬送させることで、水だけでなく不純物も気流搬送されながら加熱されるため、熱交換器の伝熱面でスケール化しにくくなり、メンテナンス回数の増加を抑制できる。   Furthermore, even after supplying drain to the steam generation and circulation path, it can be circulated in the path until it reaches a predetermined temperature, so the temperature of the desorption steam supplied to the adsorption tower decreases and the desorption efficiency decreases. There is no such thing as to do. And instead of supplying the drain directly to the heat exchanger, it is introduced into the steam generation and circulation path and transported by airflow, so that not only water but also impurities are heated while being transported by airflow, so the heat transfer of the heat exchanger It becomes difficult to scale in terms of surface and increase in the number of maintenance can be suppressed.

ドレンを水蒸気生成循環経路に送り込むにあたっては、ドレンを蓄えるタンクを設けて吸着塔から出たドレンを一旦にそこに蓄え、必要な量を水蒸気生成循環経路に送り込めるようにすると、熱交換器や燃焼炉の温度に応じた最適なタイミングでドレンを水蒸気化できるので好ましい。これはただのタンクであり、装置の構造を複雑化させることなく設置できる。   When the drain is sent to the steam generation circulation path, a drain storage tank is provided so that the drain discharged from the adsorption tower can be stored there once, and the necessary amount can be sent to the steam generation circulation path. This is preferable because the drain can be steamed at an optimal timing according to the temperature of the combustion furnace. This is just a tank and can be installed without complicating the structure of the device.

この発明により、装置を複雑化させる工程を追加することなく、また、別途メンテナンスの手間を生じさせることなく、脱着用水蒸気のドレンを処理することができる。   According to the present invention, it is possible to treat the drainage of the desorption water vapor without adding a process for complicating the apparatus and without causing additional maintenance work.

この発明にかかる第一の有機化合物処理装置の実施例図Embodiment of the first organic compound processing apparatus according to the present invention この発明にかかる第一の有機化合物処理装置の運用方法の例を示すフロー図The flowchart which shows the example of the operation method of the 1st organic compound processing apparatus concerning this invention この発明にかかる第二の有機化合物処理装置の実施例図Example diagram of the second organic compound processing apparatus according to the present invention

以下、この発明の実施形態を説明する。この発明は、揮発性有機化合物含有ガスの濃度を低減させて大気中へ排出可能とし、その分の揮発性有機化合物を回収して燃料として使用する揮発性有機化合物処理装置にかかるものである。図1はこの発明にかかる揮発性有機化合物処理装置の全体像の例を示す。   Embodiments of the present invention will be described below. The present invention relates to a volatile organic compound processing apparatus that reduces the concentration of a volatile organic compound-containing gas so that the gas can be discharged into the atmosphere, collects the volatile organic compound, and uses it as a fuel. FIG. 1 shows an example of an overall image of a volatile organic compound processing apparatus according to the present invention.

この発明で処理する揮発性有機化合物とは、常圧で加熱することで気体になり得る有機化合物であり、特に常温で液体であるものが吸着処理しやすい。例えば、メタノール、エタノール、イソプロピルアルコール等の炭素数が1〜8程度のアルコール、トルエン、ベンゼンなどの芳香族有機化合物などの、炭化水素系の溶剤が挙げられる。   The volatile organic compound to be treated in the present invention is an organic compound that can be converted into a gas when heated at normal pressure, and particularly, a liquid that is liquid at room temperature is easily adsorbed. Examples thereof include hydrocarbon solvents such as alcohols having about 1 to 8 carbon atoms such as methanol, ethanol and isopropyl alcohol, and aromatic organic compounds such as toluene and benzene.

この発明を実施する揮発性有機化合物処理装置は、一基又は複数基の吸着塔11と、燃焼炉31と、熱交換器32と、それらを繋ぐ配管とからなる。ここでは、二基の吸着塔11(11a,11b)を有する構成を例に示す。   The volatile organic compound processing apparatus for carrying out the present invention includes one or a plurality of adsorption towers 11, a combustion furnace 31, a heat exchanger 32, and piping connecting them. Here, a configuration having two adsorption towers 11 (11a, 11b) is shown as an example.

個々の吸着塔11は、角形であり、内部は下方側の端部近傍に設けた一枚の多孔板20(20a、20b)で仕切ってある。この多孔板20上に、揮発性有機化合物を吸着し、加熱により脱着できる吸着剤を充填させた吸着層12(12a、12b)を設けている。この吸着剤としては、例えば活性炭などが挙げられる。   Each adsorption tower 11 has a rectangular shape, and the inside is partitioned by a single porous plate 20 (20a, 20b) provided in the vicinity of the lower end. On the perforated plate 20, an adsorption layer 12 (12a, 12b) filled with an adsorbent that adsorbs a volatile organic compound and can be desorbed by heating is provided. Examples of the adsorbent include activated carbon.

吸着塔11の吸着層12より上端側には、揮発性有機化合物含有ガスAの導入口17(17a,17b)が設けてあり、吸着層12より下端側には、揮発性有機化合物を吸着剤に吸着されて濃度が低下した処理後ガスBの排出口18(18a,18b)が設けてある。排出口18は大気中へ放出するものである。   The inlet 17 (17a, 17b) of the volatile organic compound-containing gas A is provided on the upper end side of the adsorption layer 11 of the adsorption tower 11, and the volatile organic compound is adsorbed on the lower end side of the adsorption layer 12. Are provided with discharge ports 18 (18a, 18b) for the treated gas B that are adsorbed by the gas and have a reduced concentration. The discharge port 18 discharges into the atmosphere.

また、吸着塔11の吸着層12を設けた部分の側面と下端とに、脱着用水蒸気Fの供給口24,25が設けてある。側面の供給口24a、24bは吸着層12の上下方向中央よりも上で吸着層12の上端よりも下に位置しており、下端の供給口25a、25bは吸着層12の下端よりも下に位置している。なお、さらに多段階に供給口が設けられていてもよい。また、有機化合物を脱着した水蒸気有機化合物同伴ガスKを抜き出すための供出口26a、26bが、吸着層12の上端よりも上端側に設けてある。この供出口26から燃焼炉31へと通じる同伴ガス供出路21を通ってこの水蒸気有機化合物同伴ガスKが搬送される。   Moreover, the supply ports 24 and 25 of the desorption water vapor | steam F are provided in the side surface and lower end of the part in which the adsorption layer 12 of the adsorption tower 11 was provided. The side supply ports 24 a and 24 b are located above the vertical center of the adsorption layer 12 and below the upper end of the adsorption layer 12, and the lower supply ports 25 a and 25 b are below the lower end of the adsorption layer 12. positioned. In addition, supply ports may be provided in more stages. Further, outlets 26 a and 26 b for extracting the vapor organic compound accompanying gas K from which the organic compound has been desorbed are provided on the upper end side of the adsorption layer 12. The steam organic compound entrained gas K is transported through the entrained gas delivery path 21 leading from the feed outlet 26 to the combustion furnace 31.

さらに、吸着塔11の吸着層12の下端よりも下の、吸着塔11底部近傍に、発生したドレンの抜出口27a,27bが設けてある。また、抜出口27a,27bから抜け出たドレンをドレン貯留装置29に送り込むドレン配管28が設けてある。   Further, drain outlets 27 a and 27 b for the generated drain are provided near the bottom of the adsorption tower 11 below the lower end of the adsorption layer 12 of the adsorption tower 11. Further, a drain pipe 28 for feeding the drain that has escaped from the outlets 27 a and 27 b to the drain storage device 29 is provided.

燃焼炉31は、上記脱着用水蒸気Fを生成するための熱を発生させるものであり、燃料Dを供給する燃料供給口42と、吸着塔11の供出口26から送られてきた水蒸気有機化合物同伴ガスKを供給する含有ガス供給口43、バーナ(図示せず)、煙突60、内部温度を測定する燃焼炉温度センサ44を有する。この燃焼炉31で発生した熱が、発生した高温ガスとして、高温ガス供出路45を通り、熱交換器32へ供給される。   The combustion furnace 31 generates heat for generating the desorption water vapor F, and is accompanied by the water vapor organic compound sent from the fuel supply port 42 for supplying the fuel D and the outlet 26 of the adsorption tower 11. It has a contained gas supply port 43 for supplying the gas K, a burner (not shown), a chimney 60, and a combustion furnace temperature sensor 44 for measuring the internal temperature. The heat generated in the combustion furnace 31 is supplied to the heat exchanger 32 through the high temperature gas supply passage 45 as the generated high temperature gas.

熱交換器32は、水蒸気の元となる水Eを供給する水供給口58を備え、水Eを加熱して得られた脱着用水蒸気Fを吸着塔11の供給口24,25へ供給する、脱着用水蒸気供給路52と、内部温度を測定する水蒸気温度センサ56とを有する。なお、水供給口58は、熱交換器32内に水Eを噴霧する機能を有している。   The heat exchanger 32 includes a water supply port 58 that supplies water E that is a source of water vapor, and supplies desorption water vapor F obtained by heating the water E to the supply ports 24 and 25 of the adsorption tower 11. It has a desorption water vapor supply path 52 and a water vapor temperature sensor 56 for measuring the internal temperature. The water supply port 58 has a function of spraying water E into the heat exchanger 32.

熱交換器32で生じた水蒸気Fが抜き出される脱着用水蒸気供給路52は、途中で分岐(循環経路分岐点53)しており、一方は熱交換器32へと戻る水蒸気生成循環経路54へ、他方は吸着塔11へと繋がる水蒸気供給経路55へと分かれている。水蒸気生成循環経路54の途中には、熱交換器32へ向かって吹き上げるブロワ61が設けられて循環する気流を生じさせている。水蒸気生成循環経路54のうち、このブロワ61から生じる気流が通過する部分の途中(気流通過点63)に、ドレン貯留装置29に貯留したドレンを供給するドレン供給管62が接続される。水蒸気生成循環経路54の気流の中に導入されたドレンGは、導入する気流通過点63に留まらずに細かい雫、又は循環している水蒸気と熱交換し、水蒸気となって順次搬送されていく。このため、気流通過点63からブロワ61にかけてドレンG中の不純物がスケール化することを防止しながらドレンGを供給し続けることができる。   The desorption water vapor supply path 52 through which the water vapor F generated in the heat exchanger 32 is extracted branches on the way (circulation path branch point 53), and one of the water vapor generation paths returns to the heat exchanger 32 to the water vapor generation circulation path 54 The other is divided into a water vapor supply path 55 that leads to the adsorption tower 11. A blower 61 that blows up toward the heat exchanger 32 is provided in the middle of the water vapor generation circulation path 54 to generate a circulating air flow. A drain supply pipe 62 that supplies the drain stored in the drain storage device 29 is connected to a portion of the steam generation circulation path 54 where the air flow generated from the blower 61 passes (the air flow passage point 63). The drain G introduced into the air flow in the water vapor generation circulation path 54 does not stay at the air flow passage point 63 to be introduced, but exchanges heat with fine soot or circulating water vapor, and is sequentially conveyed as water vapor. . For this reason, it is possible to continue supplying the drain G while preventing the impurities in the drain G from being scaled from the airflow passage point 63 to the blower 61.

吸着塔11へと通じる水蒸気供給経路55も途中で分岐(大気開放路分岐点57)しており、一方は大気への開放口59に繋がり、他方は吸着塔11の供給口24,25へと繋がっている。ドレンGが蒸発した水蒸気と有機成分は、吸着塔11で水蒸気が脱着に寄与した上で、供出口26から同伴ガス供出路21を通って燃焼炉31に到達し、有機成分が燃料として消費される。   The water vapor supply path 55 leading to the adsorption tower 11 is also branched on the way (atmosphere opening path branching point 57), one leading to the opening 59 to the atmosphere, and the other to the supply openings 24 and 25 of the adsorption tower 11. It is connected. The water vapor and the organic component evaporated from the drain G reach the combustion furnace 31 from the outlet 26 through the accompanying gas supply passage 21 after the water vapor contributes to desorption in the adsorption tower 11, and the organic component is consumed as fuel. The

この発明にかかる装置により、揮発性有機化合物の処理を行う手順例を示す。
この発明にかかる揮発性有機化合物処理装置は、まず、吸着塔11に導入された揮発性有機化合物含有ガスAに含まれる揮発性有機化合物を、吸着層12の吸着剤に吸着させる。吸着層12を通過した処理後ガスBは排出口18から出て大気中へ放出される。この吸着作業を一定時間が経過するまで、又は、吸着能が一定以下になるまで行う。なお、吸着能の低下を検知して吸着を止めるには、排出口18に揮発性有機化合物の検出装置(図示せず)を設け、そこで処理後ガスBに含まれる揮発性有機化合物の濃度を測定し、予め定めた値以上になったら、吸着層12の吸着能が限界に達していると解釈して導入口17の弁へ閉める命令を出す制御回路を設ける。
An example of a procedure for processing a volatile organic compound by the apparatus according to the present invention will be described.
In the volatile organic compound processing apparatus according to the present invention, first, the volatile organic compound contained in the volatile organic compound-containing gas A introduced into the adsorption tower 11 is adsorbed by the adsorbent of the adsorption layer 12. The treated gas B that has passed through the adsorption layer 12 exits from the outlet 18 and is released into the atmosphere. This adsorption work is performed until a certain period of time elapses or until the adsorption capacity becomes below a certain level. In order to stop the adsorption by detecting a decrease in the adsorption capacity, a volatile organic compound detection device (not shown) is provided at the discharge port 18 where the concentration of the volatile organic compound contained in the gas B after the treatment is determined. A control circuit is provided that, when measured and exceeds a predetermined value, interprets that the adsorption capacity of the adsorption layer 12 has reached its limit and issues a command to close the valve of the inlet 17.

一方、吸着を終える前から脱着の準備を進めておく。脱着用水蒸気Fは即座に供給開始できるものではないので、吸着終了後から加熱を始めると、脱着が始まるまでの間にタイムラグが生じてしまい、本来必要な吸着工程が止まってしまうためである。なお、吸着塔11が二基以上ある場合は、一方で吸着工程を止めても他方で吸着工程を行うことができるが、その場合は常に脱着用水蒸気Fを用意していることとなる。このとき、水蒸気生成循環経路54を循環させることで脱着用水蒸気Fを高温のまま保持しておくことができる。   On the other hand, preparation for desorption is proceeded before the adsorption is completed. Since the desorption water vapor F cannot be supplied immediately, if heating is started after the completion of adsorption, a time lag occurs before the desorption begins, and the originally necessary adsorption process is stopped. In addition, when there are two or more adsorption towers 11, the adsorption process can be performed on the other side even if the adsorption process is stopped on one side, but in that case, the desorption water vapor F is always prepared. At this time, the desorption water vapor F can be kept at a high temperature by circulating the water vapor generation circulation path 54.

この脱着工程を図2のフローを用いて説明する。まず、燃焼炉31で燃料Dの燃焼を開始し、水蒸気生成循環経路54内の空気を、経路中に設けたブロワ61で循環させる(S11)。この時の空気温度を水蒸気温度センサ56で検知し、水蒸気が生成できる設定温度T1以上になったことを確認したら(S12)、水Eの水供給口58の弁を開放し、水Eを噴霧して熱交換器32内で水蒸気を生成させる(S13)。熱交換器32では、水蒸気温度センサ56で生成する水蒸気の温度を検知しておき、脱着用水蒸気Fが脱着に好適な温度T2になるまで(S14)、又は吸着が終了するまで、開放口59への弁を開放して、大気中へ放出する(S15)。脱着は吸熱反応であるため、十分に高温の水蒸気でなければ脱着が速やかに進行しないからである。従って、ここで脱着用水蒸気Fとは、過熱水蒸気である。また、循環経路分岐点53で分岐する一部の脱着用水蒸気Fは水蒸気生成循環経路54へと通じて、熱交換器32へ循環する。   This desorption process will be described with reference to the flow of FIG. First, combustion of the fuel D is started in the combustion furnace 31, and the air in the water vapor generation circulation path 54 is circulated by the blower 61 provided in the path (S11). When the air temperature at this time is detected by the water vapor temperature sensor 56 and it is confirmed that the temperature is equal to or higher than the set temperature T1 at which water vapor can be generated (S12), the valve of the water supply port 58 of water E is opened and water E is sprayed. Then, water vapor is generated in the heat exchanger 32 (S13). In the heat exchanger 32, the temperature of the water vapor generated by the water vapor temperature sensor 56 is detected, and the opening 59 is used until the desorption water vapor F reaches a temperature T2 suitable for desorption (S14) or until the adsorption is completed. The valve is opened and released into the atmosphere (S15). This is because desorption is an endothermic reaction, and desorption does not proceed quickly unless the steam is sufficiently hot. Therefore, the desorption water vapor F here is superheated water vapor. Further, a part of the desorption steam F branched at the circulation path branch point 53 is circulated to the heat exchanger 32 through the steam generation circulation path 54.

吸着塔11での吸着が終了し、脱着用水蒸気Fが所定の温度T2以上になったら(S14)、開放口の制御回路により開放口59への弁を閉じるとともに、供出口26に近い側の供給口24への脱着用水蒸気Fの弁を開放する(S16)。供給口24に供給された脱着用水蒸気Fは、吸着層12の吸着剤に接触して、保持する熱を吸着剤に与えて加熱するとともに、一部の水蒸気が凝縮して水となる。この水は吸着剤に接触して吸着されたままの一部の揮発性有機化合物やその他の不純物を取り込んでドレンとなる。集まったドレンは自重で吸着塔11内を落下して、塔底部にある抜出口27からドレンGとして排出を開始する(S17)。吸着層12の上層部分の吸着剤が十分に加熱された後は、脱着用水蒸気Fと接触することで揮発性有機化合物の脱着反応が進行する。凝縮しなかった水蒸気と脱着された揮発性有機化合物とは一緒になって、水蒸気有機化合物同伴ガスKとなって供出口26から供出させる(S18)。   When the adsorption in the adsorption tower 11 is completed and the desorption water vapor F becomes equal to or higher than the predetermined temperature T2 (S14), the valve to the open port 59 is closed by the open port control circuit, and the side near the outlet 26 is closed. The valve of the desorption water vapor F to the supply port 24 is opened (S16). The desorption water vapor F supplied to the supply port 24 comes into contact with the adsorbent of the adsorption layer 12 and heats the adsorbent by holding the heat, and a part of the water vapor is condensed to become water. The water takes a part of volatile organic compounds and other impurities that are adsorbed in contact with the adsorbent and becomes drain. The collected drain falls in the adsorption tower 11 by its own weight, and starts to be discharged as drain G from the outlet 27 at the bottom of the tower (S17). After the adsorbent in the upper layer portion of the adsorption layer 12 is sufficiently heated, the desorption reaction of the volatile organic compound proceeds by contacting with the desorption water vapor F. The water vapor that has not been condensed and the desorbed volatile organic compound are combined with the vapor organic compound accompanying gas K and delivered from the outlet 26 (S18).

水蒸気有機化合物同伴ガスKが燃焼炉31に到達すると(S19)、燃焼炉31に供給される可燃物の合計量が増えるので、燃焼炉31内の温度が上昇する。この温度上昇を燃焼炉温度センサ44で検知する。燃料Dのみの燃焼の際の温度上昇の誤差分を上回るとして規定する規定の温度T3を予め規定しておき、燃焼炉温度センサ44の検知温度がT3以上となったら(S20)、水蒸気有機化合物同伴ガスKの到達により、可燃物が増えたとみなして、燃料供給口42へ供給される燃料Dの弁を絞り、燃料Dを節約する(S21)。   When the steam organic compound entrained gas K reaches the combustion furnace 31 (S19), the total amount of combustibles supplied to the combustion furnace 31 increases, so that the temperature in the combustion furnace 31 rises. This temperature rise is detected by the combustion furnace temperature sensor 44. When a specified temperature T3 that is defined as exceeding the error in temperature rise during combustion of only the fuel D is specified in advance, and the temperature detected by the combustion furnace temperature sensor 44 is equal to or higher than T3 (S20), the water vapor organic compound Considering that the combustibles have increased due to the arrival of the accompanying gas K, the valve of the fuel D supplied to the fuel supply port 42 is throttled to save the fuel D (S21).

ただし、水蒸気有機化合物同伴ガスKに含まれる有機化合物は、供給口24付近に吸着した揮発性有機化合物が徐々に脱着されていくにつれて減っていくので、タイミングを計って供給口25の弁を開放して、燃焼炉31に供給される揮発性有機化合物の量が過度に低下しないようにする。供給口が24,25との間にさらに多段に亘って設けられている場合は、最も供出口26に近い側にある供給口から順次タイミングを計って開放していく。この開放するタイミングは、供出口26に近い側にある供給口24を開放してからの経過時間によって決定しておいてもよいし、燃焼炉31の燃焼炉温度センサ44が予め規定した温度低下を示す、すなわち、燃やすべき可燃物の量が減少したことを検知したら、順次開放するようにしてもよい。温度低下を検知する場合、可燃物が減少して対処すべきと考えられる炉内温度T4を予め規定した制御回路が、燃焼炉温度センサ44の温度低下を検知したら(S22)、供給口の未開放の弁のうち、供出口26側(上端側)にある弁を開放する(S23)。一つの弁を開放して、一旦炉内温度が上昇したら、再び炉内温度を監視し、温度低下を検知したら次の弁を開放する。仮に、図1よりもさらに多段に亘って供給口がある場合は、これを全ての供給口が開くまで続ける。なお、次の弁を開放したら、それまで開放していた供給口の弁は閉鎖する。   However, since the organic compound contained in the vapor organic compound accompanying gas K decreases as the volatile organic compound adsorbed in the vicinity of the supply port 24 is gradually desorbed, the valve of the supply port 25 is opened at a timing. Thus, the amount of the volatile organic compound supplied to the combustion furnace 31 is prevented from excessively decreasing. In the case where the supply ports are provided in multiple stages between 24 and 25, the supply ports that are closest to the supply port 26 are sequentially opened and timed. This opening timing may be determined by the elapsed time since the supply port 24 on the side close to the outlet 26 is opened, or a temperature drop that is defined in advance by the combustion furnace temperature sensor 44 of the combustion furnace 31. In other words, when it is detected that the amount of combustible material to be burned has decreased, the battery may be opened sequentially. When detecting a temperature drop, if a control circuit that preliminarily defines a furnace temperature T4 that should be dealt with by reducing combustibles detects a temperature drop of the combustion furnace temperature sensor 44 (S22), the supply port is not connected. Among the opened valves, the valve on the outlet 26 side (upper end side) is opened (S23). One valve is opened, and once the furnace temperature rises, the furnace temperature is monitored again, and when the temperature drop is detected, the next valve is opened. If there are supply ports in more stages than in FIG. 1, this continues until all the supply ports are opened. When the next valve is opened, the supply port valve that has been opened is closed.

供給口24,25等を全て開放してから、吸着層12における脱着が十分に進行する時間t1が経過したら(S26)、供給口24、25等を全て閉鎖して脱着を終了する(S27)。   When the time t1 at which the desorption in the adsorption layer 12 sufficiently proceeds after the supply ports 24, 25, etc. are all opened (S26), all the supply ports 24, 25, etc. are closed to complete the desorption (S27). .

以上で吸着塔11の脱着は終了し、再び吸着層12での吸着が可能な状態になったので、揮発性有機化合物含有ガスAの導入口17を開放して吸着を開始し、一定時間吸着した後、上記と同様の手順で脱着を行う。   Thus, the desorption of the adsorption tower 11 is completed, and the adsorption layer 12 can be again adsorbed. Therefore, the inlet 17 of the volatile organic compound-containing gas A is opened to start the adsorption, and the adsorption is performed for a certain time After that, desorption is performed in the same procedure as described above.

一方、S17で排出されたドレンGは一旦ドレン貯留装置29に蓄えられた後、水蒸気生成循環経路54へ供給される(S17)。このドレン貯留装置29に一旦蓄えることで、ドレン貯留装置29が水封装置としての機能を果たし、水蒸気生成循環経路54から吸着塔11への水蒸気の逆流を防止できる。供給されたドレンGは、細かい雫となって熱交換器32で加熱されて蒸発し、または循環している脱着用水蒸気Fと熱交換し、水蒸気となって、順次搬送されていく。その後、脱着用水蒸気Fが十分に加熱されたら(S14、S15)、必要なタイミングで脱着用水蒸気Fを吸着塔11に供給する(S16)。この吸着塔11は、先に脱着が終えた吸着塔11でもよいし、二基の吸着塔11を備える場合は二基目の吸着塔11となる。   On the other hand, the drain G discharged in S17 is once stored in the drain storage device 29 and then supplied to the water vapor generation circulation path 54 (S17). By temporarily storing in the drain storage device 29, the drain storage device 29 functions as a water seal device, and the backflow of water vapor from the water vapor generation circulation path 54 to the adsorption tower 11 can be prevented. The supplied drain G becomes fine soot and is heated by the heat exchanger 32 to evaporate, or exchanges heat with the circulating desorption water vapor F to form water vapor, which is sequentially conveyed. Thereafter, when the desorption water vapor F is sufficiently heated (S14, S15), the desorption water vapor F is supplied to the adsorption tower 11 at a necessary timing (S16). The adsorption tower 11 may be the adsorption tower 11 that has been previously desorbed, and when the two adsorption towers 11 are provided, it becomes the second adsorption tower 11.

この発明を実施する有機化合物処理装置の形態は、上記の図1の形態に限られるものではなく、吸着塔11と燃焼炉31、熱交換器32を備え、脱着用水蒸気Fを供給して吸着剤の再生を行う処理装置であれば、同様に吸着塔11から排出したドレンを熱交換器32に循環させる水蒸気生成循環経路54に供給する配管を設けることでこの発明にかかる装置として実施できる。   The form of the organic compound processing apparatus for carrying out the present invention is not limited to the form shown in FIG. 1, and includes an adsorption tower 11, a combustion furnace 31, and a heat exchanger 32. If it is a processing apparatus which reproduces | regenerates an agent, it can implement as an apparatus concerning this invention by providing the piping which supplies the water vapor | steam production | generation circulation path 54 which circulates the drain discharged | emitted from the adsorption tower 11 to the heat exchanger 32 similarly.

上記以外の形態としては例えば、燃焼炉31で生成した高温ガスや、その高温ガスを熱交換器32に供給して熱交換させた後の排ガスを一部分岐させて水蒸気生成循環経路54に導入して、ドレンGの搬送及び蒸発と水蒸気の加熱とを促進させてもよい。この実施形態を図3の例に示す。高温ガス供出路45と排ガス供出路46とをそれぞれ分岐させて、水蒸気生成循環経路54へと供給する高温ガス分岐供給路47と排ガス分岐供給路48とを設ける。   As a form other than the above, for example, the high-temperature gas generated in the combustion furnace 31 or the exhaust gas after the high-temperature gas is supplied to the heat exchanger 32 and heat-exchanged is partially branched and introduced into the water vapor generation circulation path 54. Thus, the conveyance and evaporation of the drain G and the heating of the water vapor may be promoted. This embodiment is shown in the example of FIG. A high-temperature gas supply path 45 and an exhaust gas supply path 46 are branched to provide a high-temperature gas branch supply path 47 and an exhaust gas branch supply path 48 that are supplied to the water vapor generation circulation path 54.

なお、この発明を実施する際の実施形態は、吸着塔11に設ける供給口24、25、供出口26,導入口17、排出口18の位置の上下方向が逆でもよい。また、原理上は吸着塔11が水平方向を向いた、図の形態から90度回転した形態でも実施可能である。吸着塔11がいずれの方向を向いているにせよ、吸着塔11への揮発性有機化合物含有ガスAを導入する導入口17と、水蒸気有機化合物同伴ガスKを供出する供出口26とが、吸着塔11の一方の端部側(一端側)にあり、処理後ガスBを排出する排出口18が、他方の端部側(他端側)に位置する形態は変わらない。   In the embodiment when carrying out the present invention, the vertical direction of the positions of the supply ports 24 and 25, the supply port 26, the introduction port 17 and the discharge port 18 provided in the adsorption tower 11 may be reversed. Further, in principle, the present invention can also be implemented in a form in which the adsorption tower 11 is oriented in the horizontal direction and rotated 90 degrees from the form shown in the figure. Whatever direction the adsorption tower 11 faces, the inlet 17 for introducing the volatile organic compound-containing gas A to the adsorption tower 11 and the outlet 26 for delivering the steam organic compound-containing gas K are adsorbed. There is no change in the form in which the exhaust port 18 for exhausting the treated gas B on one end side (one end side) of the tower 11 is located on the other end side (other end side).

11,11a,11b 吸着塔
12 吸着層
17 導入口(揮発性有機化合物含有ガス)
18 排出口(処理後ガス)
20 多孔板
21 同伴ガス供出路
24、24a,24b、25,25a,25b 供給口
26,26a,26b 供出口(水蒸気有機化合物同伴ガス)
27,27a,27b 抜出口
28 ドレン配管
29 ドレン貯留装置
31 燃焼炉
32 熱交換器
42 燃料供給口
43 含有ガス供給口
44 燃焼炉温度センサ
45 高温ガス供出路
46 排ガス供出路
47 高温ガス分岐供給路
48 排ガス分岐供給路
52 脱着用水蒸気供給路
53 循環経路分岐点
54 水蒸気生成循環経路
55 水蒸気供給経路
56 水蒸気温度センサ
57 大気開放路分岐点
58 水供給口
59 開放口
60 煙突
61 ブロワ
62 ドレン供給管
63 気流通過点
A 揮発性有機化合物含有ガス
B 処理後ガス
D 燃料
E 水
F 脱着用水蒸気
G ドレン
K 水蒸気有機化合物同伴ガス
11, 11a, 11b Adsorption tower 12 Adsorption layer 17 Inlet (volatile organic compound-containing gas)
18 Outlet (Gas after treatment)
20 perforated plate 21 entrained gas delivery path 24, 24a, 24b, 25, 25a, 25b supply port 26, 26a, 26b outlet (water vapor organic compound accompanying gas)
27, 27a, 27b Drain outlet 28 Drain piping 29 Drain storage device 31 Combustion furnace 32 Heat exchanger 42 Fuel supply port 43 Contained gas supply port 44 Combustion furnace temperature sensor 45 High temperature gas supply path 46 Exhaust gas supply path 47 High temperature gas branch supply path 48 Exhaust gas branch supply path 52 Desorption water vapor supply path 53 Circulation path branch point 54 Steam generation circulation path 55 Water vapor supply path 56 Water vapor temperature sensor 57 Atmospheric open path branch point 58 Water supply port 59 Open port 60 Chimney 61 Blower 62 Drain supply pipe 63 Airflow passage point A Gas containing volatile organic compound B Gas after treatment D Fuel E Water F Desorption water vapor G Drain K Water vapor organic compound gas

Claims (4)

揮発性有機化合物を吸着する吸着剤を充填した吸着層を内部に有し、上記吸着層から上記揮発性有機化合物を脱着させる脱着用水蒸気を供給され得る吸着塔と、
脱着した上記揮発性有機化合物を燃料の一部として利用可能な燃焼炉と、
上記燃焼炉で生成した高温ガスと水とを熱交換して上記脱着用水蒸気を生成する熱交換器とを有し、
上記吸着塔で脱着用水蒸気が凝縮して生じるドレンを、上記熱交換器で生成させた上記脱着用水蒸気を再加熱させるために上記熱交換器へ循環させる水蒸気生成循環経路に導入可能な配管を有する、有機化合物処理装置。
An adsorption tower having an adsorption layer filled with an adsorbent that adsorbs a volatile organic compound, and can be supplied with desorption water vapor that desorbs the volatile organic compound from the adsorption layer;
A combustion furnace capable of using the desorbed volatile organic compound as a part of the fuel;
A heat exchanger that exchanges heat between the high-temperature gas generated in the combustion furnace and water to generate the desorption water vapor, and
A pipe that can be introduced into the water vapor generation circulation path for circulating the drain generated by condensation of the desorption water vapor in the adsorption tower to the heat exchanger in order to reheat the desorption water vapor generated in the heat exchanger. An organic compound processing apparatus.
上記吸着塔で生じたドレンを、上記水蒸気生成循環経路へ導入する前に一時的に貯留可能なドレン貯留装置を有する請求項1に記載の有機化合物処理装置。   The organic compound processing apparatus according to claim 1, further comprising a drain storage device capable of temporarily storing drain generated in the adsorption tower before introducing the drain into the water vapor generation circulation path. 請求項1又は2に記載の有機化合物処理装置を用いて、
上記揮発性有機化合物を上記吸着剤に吸着させた後、上記脱着用水蒸気を導入して上記揮発性有機化合物を上記吸着剤から脱着させて上記燃焼炉へ供出させて燃焼させる有機化合物処理方法において、
上記脱着時に上記吸着塔で生じる上記揮発性有機化合物を含有する上記ドレンを、上記脱着用水蒸気を加熱するために循環させている上記水蒸気生成循環経路に導入して、上記ドレンに含まれる上記揮発性有機化合物を上記脱着用水蒸気に同伴させ、上記燃焼炉で燃焼させる有機化合物処理方法。
Using the organic compound processing apparatus according to claim 1 or 2,
In the organic compound treatment method in which after the volatile organic compound is adsorbed on the adsorbent, the desorption water vapor is introduced, the volatile organic compound is desorbed from the adsorbent, and delivered to the combustion furnace for combustion. ,
The drain containing the volatile organic compound generated in the adsorption tower at the time of the desorption is introduced into the water vapor generation circulation path circulating for heating the desorption water vapor, and the volatilization contained in the drain is performed. An organic compound treatment method in which an organic compound is entrained in the desorption water vapor and burned in the combustion furnace.
上記水蒸気生成循環経路に、上記高温ガス、上記高温ガスを熱交換した後の排ガス、又はそれらの両方を導入する、請求項3に記載の有機化合物処理方法。   The organic compound processing method according to claim 3, wherein the high-temperature gas, the exhaust gas after heat-exchanging the high-temperature gas, or both are introduced into the water vapor generation circulation path.
JP2014016867A 2014-01-31 2014-01-31 Volatile organic compound treatment apparatus and treatment method Pending JP2015142884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016867A JP2015142884A (en) 2014-01-31 2014-01-31 Volatile organic compound treatment apparatus and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016867A JP2015142884A (en) 2014-01-31 2014-01-31 Volatile organic compound treatment apparatus and treatment method

Publications (1)

Publication Number Publication Date
JP2015142884A true JP2015142884A (en) 2015-08-06

Family

ID=53888322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016867A Pending JP2015142884A (en) 2014-01-31 2014-01-31 Volatile organic compound treatment apparatus and treatment method

Country Status (1)

Country Link
JP (1) JP2015142884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786382A (en) * 2018-06-27 2018-11-13 河北工业大学 A kind of absorption process of VOCs
CN109908757A (en) * 2019-04-18 2019-06-21 国电环境保护研究院有限公司 A kind of carbon base catalyst regenerating unit and regeneration method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115026U (en) * 1990-03-09 1991-11-27
JP2008020079A (en) * 2006-07-10 2008-01-31 Ihi Corp Treatment method of volatile organic compound, adsorption/desorption device, and treatment system of volatile organic compound
JP2009233617A (en) * 2008-03-28 2009-10-15 Ihi Corp Volatile organic compound treatment system and volatile organic compound treatment method
JP2011206690A (en) * 2010-03-30 2011-10-20 Kurimoto Ltd Operation method of volatile organic compound treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115026U (en) * 1990-03-09 1991-11-27
JP2008020079A (en) * 2006-07-10 2008-01-31 Ihi Corp Treatment method of volatile organic compound, adsorption/desorption device, and treatment system of volatile organic compound
JP2009233617A (en) * 2008-03-28 2009-10-15 Ihi Corp Volatile organic compound treatment system and volatile organic compound treatment method
JP2011206690A (en) * 2010-03-30 2011-10-20 Kurimoto Ltd Operation method of volatile organic compound treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786382A (en) * 2018-06-27 2018-11-13 河北工业大学 A kind of absorption process of VOCs
CN108786382B (en) * 2018-06-27 2021-03-26 河北工业大学 Absorption method of VOCs
CN109908757A (en) * 2019-04-18 2019-06-21 国电环境保护研究院有限公司 A kind of carbon base catalyst regenerating unit and regeneration method

Similar Documents

Publication Publication Date Title
RU2495707C2 (en) Method and device for separation of carbon dioxide from offgas at electric power station running on fossil fuel
JP6427098B2 (en) Carbon dioxide separation and recovery system and method
RU2346730C2 (en) Aggregate and method of co2 extraction
EP2375012B1 (en) Boiler apparatus
CA2965927C (en) Dryer exhaust heat recovery
US8784761B2 (en) Single absorber vessel to capture CO2
JP6009009B2 (en) Heat recovery power generation facility from combustion exhaust gas
RU2539943C2 (en) Method for removing entrapped gas in power production system with combined cycle
NO344753B1 (en) System and procedure for CO2 recovery
KR20130012125A (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil-fired power generating plant
CA2730865A1 (en) Method and device for separating carbon dioxide from a waste gas of a fossil fuel-operated power plant
JP2005321190A (en) Exhaust heat recovery device of heat generation furnace
US20140041523A1 (en) Exhaust gas treatment system
RU2716772C1 (en) System for extracting co2 and method of extracting co2
JP2013226487A (en) Co2 recovery device and co2 recovery method
CN103505986A (en) Carbon dioxide recovery device and carbon dioxide recovery method
WO2012072362A1 (en) Combined cycle power plant with co2 capture
CN112105441B (en) Carbon dioxide separation and recovery system and method
JP5113207B2 (en) Operation method of volatile organic compound processing equipment
JP2015142884A (en) Volatile organic compound treatment apparatus and treatment method
JP6394699B2 (en) Heat pump steam generation system
KR101702219B1 (en) The optimized condensing heat recovery system using absorbing liquid fluidized bed heat exchanger and front heat exchanger for boiler flue gas
KR102203665B1 (en) Organic rankine cycle generating system using waste heat of activted carbon regeneration equipment
JP6207086B2 (en) Absorption heat pump apparatus with heat supply means for regeneration of amine absorption liquid
JP5835662B2 (en) Control method of volatile organic compound processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306