JP2015141889A - Alkali battery - Google Patents

Alkali battery Download PDF

Info

Publication number
JP2015141889A
JP2015141889A JP2014016171A JP2014016171A JP2015141889A JP 2015141889 A JP2015141889 A JP 2015141889A JP 2014016171 A JP2014016171 A JP 2014016171A JP 2014016171 A JP2014016171 A JP 2014016171A JP 2015141889 A JP2015141889 A JP 2015141889A
Authority
JP
Japan
Prior art keywords
electrode mixture
negative electrode
positive electrode
potassium hydroxide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014016171A
Other languages
Japanese (ja)
Other versions
JP6322430B2 (en
Inventor
武男 野上
Takeo Nogami
武男 野上
秀典 都築
Shusuke Tsuzuki
秀典 都築
賢大 遠藤
Takahiro Endo
賢大 遠藤
祐紀 夏目
Yuki Natsume
祐紀 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2014016171A priority Critical patent/JP6322430B2/en
Publication of JP2015141889A publication Critical patent/JP2015141889A/en
Application granted granted Critical
Publication of JP6322430B2 publication Critical patent/JP6322430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkali battery superior in heavy load discharge performance.SOLUTION: An alkali battery 1 comprises: a positive electrode mixture 21 put in a bottomed cylindrical positive electrode can 11; a separator 22 provided on the inner peripheral side of the positive electrode mixture 21; a negative electrode mixture 23 including powder including zinc as a primary component, and filled on the inner peripheral side of the separator 22; a negative electrode current collector 31 inserted in the negative electrode mixture 23; a negative electrode terminal plate 32 for sealing the opening of the positive electrode can 11; and an electrolytic solution including a potassium hydroxide. The concentration of potassium hydroxide included in the positive electrode mixture 21 is made larger than the concentration of potassium hydroxide included in the negative electrode mixture 23. As the powder, powder including particles having a particle size of 75 μm or less by 25-40 mass% is used. It is more preferable that the potassium hydroxide concentration of the positive electrode mixture 21 is in a range of 35-50 mass%, and the potassium hydroxide concentration of the negative electrode mixture 23 is in a range of 30-45 mass%.

Description

本発明は、アルカリ電池の放電性能、とくに重負荷放電性能を向上する技術に関する。   The present invention relates to a technique for improving discharge performance, particularly heavy load discharge performance, of an alkaline battery.

昨今、デジタルカメラ、ビデオカメラ、携帯電話機、スマートフォン等の電子機器の高性能化及び小型化が進んでおり、こうした電子機器の電源として用いられるアルカリ電池に対する性能向上の要求が高まっている。   In recent years, electronic devices such as digital cameras, video cameras, mobile phones, smartphones and the like have been improved in performance and size, and demands for improving the performance of alkaline batteries used as power sources for such electronic devices are increasing.

アルカリ電池の性能改善に関し、特許文献1には、特別なバインダーは添加せずに放電性能を維持し、正極ペレットの強度を向上させて円筒形アルカリ電池の歩留まりを向上すべく、正極合剤用アルカリ電解液の濃度を注液用アルカリ電解液のそれより高濃度とし、とくに正極合剤用電解液の濃度を45〜50wt%、注液用電解液の濃度を35〜40wt%とし、前者を後者より5wt%以上高濃度とすることが記載されている。   Regarding the improvement of the performance of alkaline batteries, Patent Document 1 discloses that a positive binder is used for maintaining discharge performance without adding a special binder and improving the yield of cylindrical alkaline batteries by improving the strength of positive electrode pellets. The concentration of the alkaline electrolyte is higher than that of the alkaline electrolyte for pouring, particularly the concentration of the electrolyte for positive electrode mixture is 45 to 50 wt%, the concentration of the electrolytic solution for pouring is 35 to 40 wt%, It is described that the concentration is 5 wt% or more higher than the latter.

また特許文献2には、負荷特性に優れ、電解液との反応によるガス発生や貯蔵性の低下を防止する一方で、異常発生時の発熱挙動を抑制したアルカリ電池を提供すべく、二酸化マンガンまたはニッケル酸化物と導電剤と水酸化カリウムを溶解したアルカリ電解液(A)とを含有する正極合剤、セパレータ、亜鉛合金粉末とゲル化剤と水酸化カリウムを溶解したアルカリ電解液(B)とを含有する負極合剤、および水酸化カリウムを溶解したアルカリ電解液(C)を外装体内部に封入することにより作製されるアルカリ電池であって、電池組み立て後に、電池系内のアルカリ電解液の水酸化カリウム濃度が平均して30〜37質量%となるように、電解液(A)〜(C)の水酸化カリウム濃度を調整し、負極に200メッシュのふるい目を通過する粉末の割合が4〜40質量%である亜鉛合金粉末を用いることが記載されている。   In Patent Document 2, manganese dioxide or manganese dioxide is provided in order to provide an alkaline battery that has excellent load characteristics and prevents gas generation and storage stability from being reduced by reaction with an electrolytic solution, while suppressing heat generation behavior when an abnormality occurs. A positive electrode mixture containing nickel oxide, a conductive agent and an alkaline electrolyte (A) in which potassium hydroxide is dissolved; a separator; an alkaline electrolyte (B) in which zinc alloy powder, a gelling agent and potassium hydroxide are dissolved; An alkaline battery prepared by encapsulating an alkaline electrolyte (C) in which potassium hydroxide is dissolved in an exterior body, and after the battery is assembled, the alkaline electrolyte in the battery system The potassium hydroxide concentration of the electrolytes (A) to (C) is adjusted so that the average potassium hydroxide concentration is 30 to 37% by mass, and a 200 mesh sieve is passed through the negative electrode. That the ratio of the powders is describes the use of zinc alloy powder is 4-40 weight%.

特開2002−15748号公報JP 2002-15748 A 特開2007−115701号公報JP 2007-115701 A

特許文献1には、放電性能の維持並びに正極ペレットの強度向上を目的として正極合剤用アルカリ電解液の濃度を注液用アルカリ電解液の濃度を調整することが記載されているが、放電性能の向上、とくに活物質の利用率が低下する重負荷放電時の性能改善については考慮されていない。また特許文献2には、アルカリ電池の負荷特性を向上すべく、電池系内のアルカリ電解液の水酸化カリウム濃度を調整することが記載されているが、重負荷放電性能の改善についてはとくに言及されていない。   Patent Document 1 describes that the concentration of the alkaline electrolyte for positive electrode mixture is adjusted for the purpose of maintaining the discharge performance and improving the strength of the positive electrode pellet. In particular, improvement in performance at the time of heavy load discharge in which the utilization factor of the active material decreases is not considered. Patent Document 2 describes that the potassium hydroxide concentration of the alkaline electrolyte in the battery system is adjusted in order to improve the load characteristics of the alkaline battery, but particularly mentions the improvement of heavy load discharge performance. It has not been.

本発明はアルカリ電池の放電性能の向上を目的としてなされたものであり、とくに重負荷放電性能に優れたアルカリ電池を提供することを目的としている。   The present invention has been made for the purpose of improving the discharge performance of an alkaline battery, and particularly has an object of providing an alkaline battery excellent in heavy load discharge performance.

上記目的を達成するための本発明の一つは、有底筒状の正極缶内に装填される正極合剤と、前記正極合剤の内周側に設けられるセパレータと、前記セパレータの内周側に充填される、亜鉛を主成分とする粉末を含む負極合剤と、前記負極合剤に挿入される負極集電体と、前記正極缶の開口部を封口する負極端子板と、水酸化カリウムを含む電解液と、を備えて構成されるアルカリ電池であって、前記正極合剤に含まれている前記水酸化カリウムの濃度が前記負極合剤に含まれている前記水酸化カリウムの濃度よりも大きく、前記粉末に粒度が75μm以下の粒子が25〜40質量%の範囲で含まれていることを特徴としている。   One aspect of the present invention for achieving the above object is that a positive electrode mixture loaded in a bottomed cylindrical positive electrode can, a separator provided on the inner peripheral side of the positive electrode mixture, and an inner periphery of the separator A negative electrode mixture containing zinc-based powder, a negative electrode current collector inserted into the negative electrode mixture, a negative electrode terminal plate that seals the opening of the positive electrode can, and hydroxylation An alkaline battery comprising an electrolyte containing potassium, wherein the concentration of the potassium hydroxide contained in the cathode mixture is the concentration of the potassium hydroxide contained in the anode mixture It is characterized in that the powder contains particles having a particle size of 75 μm or less in a range of 25 to 40% by mass.

また本発明の他の一つは、上記アルカリ電池であって、前記正極合剤に含まれている前記水酸化カリウムの濃度が35〜50質量%であり、前記負極合剤に含まれている前記水酸化カリウムの濃度が30〜45質量%の範囲であることを特徴としている。   Moreover, another one of this invention is the said alkaline battery, Comprising: The density | concentration of the said potassium hydroxide contained in the said positive electrode mixture is 35-50 mass%, and is contained in the said negative electrode mixture. The potassium hydroxide concentration is in the range of 30 to 45% by mass.

また本発明の他の一つは、上記アルカリ電池であって、前記粉末には、ビスマスが0.01〜0.03質量%の範囲で含まれていることを特徴としている。   Another aspect of the present invention is the alkaline battery, wherein the powder contains bismuth in a range of 0.01 to 0.03% by mass.

その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the subject which this application discloses, and its solution method are clarified by the column of the form for inventing, and drawing.

本発明によれば、放電性能、とくに重負荷放電性能に優れたアルカリ電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the alkaline battery excellent in discharge performance, especially heavy load discharge performance can be provided.

一般的な円筒形アルカリ電池の構造を示す図である。It is a figure which shows the structure of a general cylindrical alkaline battery.

図1に本発明の適用対象となる一般的な円筒形アルカリ電池(LR6型(単三形)アルカリ電池)の構成(以下、アルカリ電池1と称する。)を示している。尚、同図ではアルカリ電池1を縦断面図(円筒軸の延長方向を上下(縦)方向としたときの断面図)として示している。   FIG. 1 shows a configuration of a general cylindrical alkaline battery (LR6 type (AA) alkaline battery) (hereinafter referred to as alkaline battery 1) to which the present invention is applied. In the figure, the alkaline battery 1 is shown as a vertical cross-sectional view (a cross-sectional view when the extending direction of the cylindrical shaft is the vertical (vertical) direction).

同図に示すように、アルカリ電池1は、有底筒状の金属製の電池缶(以下、正極缶11と称する。)、正極缶11に挿入される正極合剤21、正極合剤21の内周側に設けられる有底円筒状のセパレータ22、セパレータ22の内周側に充填される負極合剤23、正極缶11の開口部に樹脂製の封口ガスケット35を介して嵌着される負極端子板32、及び負極端子板32の内側にスポット溶接等によって固設される、真鍮等の素材からなる棒状の負極集電子31を備える。正極合剤21、セパレータ22、及び負極合剤23は、アルカリ電池1の発電要素20を構成する。   As shown in FIG. 1, the alkaline battery 1 includes a bottomed cylindrical metal battery can (hereinafter referred to as a positive electrode can 11), a positive electrode mixture 21 inserted into the positive electrode can 11, and a positive electrode mixture 21. A bottomed cylindrical separator 22 provided on the inner peripheral side, a negative electrode mixture 23 filled on the inner peripheral side of the separator 22, and a negative electrode fitted into the opening of the positive electrode can 11 via a resin sealing gasket 35 A terminal plate 32 and a rod-shaped negative electrode current collector 31 made of a material such as brass, which is fixed inside the negative electrode terminal plate 32 by spot welding or the like, are provided. The positive electrode mixture 21, the separator 22, and the negative electrode mixture 23 constitute the power generation element 20 of the alkaline battery 1.

正極缶11は導電性の材質からなり、例えば、ニッケルメッキ鋼板等の金属材をプレス加工したものが用いられる。正極缶11は、正極集電体と正極端子の機能を兼ねており、その底部に凸状の正極端子部12が一体形成されている。   The positive electrode can 11 is made of a conductive material. For example, a material obtained by pressing a metal material such as a nickel-plated steel plate is used. The positive electrode can 11 also functions as a positive electrode current collector and a positive electrode terminal, and a convex positive electrode terminal portion 12 is integrally formed at the bottom thereof.

正極合剤21は、正極活物質としての電解二酸化マンガン(EMD)、導電材としての黒鉛、及び水酸化カリウム(KOH)を主成分とする電解液を、ポリアクリル酸などのバインダーとともに混合し、その混合物を圧延、解砕、造粒、分級等の工程にて処理した後、圧縮して環状に成形したものである。同図に示すように、正極缶11内には、複数の環状の正極合剤21が、正極缶11の円筒軸と同軸になるように、上下方向に積層されて圧入されている。図1のアルカリ電池1では、正極缶11内に3つの正極合剤21を圧入している。   The positive electrode mixture 21 is a mixture of electrolytic manganese dioxide (EMD) as a positive electrode active material, graphite as a conductive material, and an electrolytic solution mainly composed of potassium hydroxide (KOH) together with a binder such as polyacrylic acid, The mixture is processed in steps such as rolling, crushing, granulating, and classifying, and then compressed into a ring shape. As shown in the figure, in the positive electrode can 11, a plurality of annular positive electrode mixtures 21 are stacked in the vertical direction and press-fitted so as to be coaxial with the cylindrical axis of the positive electrode can 11. In the alkaline battery 1 of FIG. 1, three positive electrode mixtures 21 are pressed into a positive electrode can 11.

負極合剤23は、負極活物質としての亜鉛合金粉末をゲル化したものである。亜鉛合金粉末は、ガスアトマイズ法や遠心噴霧法によって造粉されたものであり、亜鉛、ガスの発生の抑制(漏液防止)等を目的として添加される合金成分(ビスマス、アルミニウム、インジウム等)、及び電解液としての水酸化カリウムを含む。負極集電子31は、負極合剤23の中心部に貫入されている。   The negative electrode mixture 23 is a gelled zinc alloy powder as a negative electrode active material. Zinc alloy powder is powdered by gas atomization method or centrifugal spray method, zinc, alloy components added for the purpose of suppressing gas generation (leakage prevention), etc. (bismuth, aluminum, indium, etc.), And potassium hydroxide as an electrolyte. The negative electrode current collector 31 is inserted into the central portion of the negative electrode mixture 23.

以上の構成からなるアルカリ電池1について、放電性能、とくに重負荷放電性能の改善効果を検証すべく以下の試験1〜3を行った。   About the alkaline battery 1 which consists of the above structure, the following tests 1-3 were performed in order to verify the improvement effect of discharge performance, especially heavy load discharge performance.

<試験1>
試験1では、正極合剤21の水酸化カリウムの濃度および負極合剤23の水酸化カリウムの濃度をいずれも30〜50質量%の範囲で変化させるとともに、負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を10質量%含むものと30質量%含むものの夫々を用いて複数種のアルカリ電池1を作製し、夫々の放電性能を比較した。放電性能の比較は、デジタルカメラの使用時等における重負荷放電を想定したサイクル放電試験(1500mWで2秒放電、650mWで28秒放電のサイクルを1時間当たり10回(1時間当たりの休止時間55分))を行い、終止電圧(1.05V)に至るまでのサイクル数を計数し、これを比較することにより行った。
<Test 1>
In Test 1, the concentration of potassium hydroxide in the positive electrode mixture 21 and the concentration of potassium hydroxide in the negative electrode mixture 23 were both changed in the range of 30 to 50% by mass, and the particle size of the zinc alloy powder of the negative electrode mixture 23 was changed. A plurality of types of alkaline batteries 1 were prepared using those containing 10% by mass of particles having a particle size of 75 μm or less and those containing 30% by mass, and their discharge performances were compared. The comparison of discharge performance is based on a cycle discharge test assuming heavy load discharge when using a digital camera (2 discharges at 1500 mW, discharge for 28 seconds at 650 mW 10 times per hour (rest time 55 per hour) Min)), and the number of cycles up to the end voltage (1.05 V) was counted and compared.

表1に各アルカリ電池1の放電性能を比較した結果を示す。尚、放電性能を表す表中の数値は、正極合剤21の水酸化カリウムの濃度を40質量%、負極合剤23の水酸化カリウムの濃度を40質量%、負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を40質量%含むものを用いて作製したアルカリ電池1の放電性能を100(下線を付した数値)としたときの相対値である。改善効果が比較的高い数値については枠線を付してある。   Table 1 shows the result of comparing the discharge performance of each alkaline battery 1. The numerical values in the table showing the discharge performance are 40% by mass of the potassium hydroxide concentration of the positive electrode mixture 21, 40% by mass of the potassium hydroxide concentration of the negative electrode mixture 23, and the zinc alloy powder of the negative electrode mixture 23. Is a relative value when the discharge performance of the alkaline battery 1 produced using 40% by mass of particles having a particle size of 75 μm or less is 100 (numerical value underlined). Numbers that have a relatively high improvement effect are marked with a frame.

Figure 2015141889

表1に示すように、正極合剤21の水酸化カリウムの濃度 (35〜50質量%)が負極合剤23の水酸化カリウムの濃度 (30〜45質量%)よりも大きい場合に放電性能が高くなることが確認された。また粒径の小さな亜鉛合金粉末をより多く用いた場合(同表では粒度が75μm以下の粒子を30質量%含むもの)にとくに放電性能が高くなることが確認された。このように放電性能が向上するのは、負極合剤23に粒径の小さな亜鉛合金粉末を用い、かつ、負極合剤23の水酸化カリウムの濃度を低減することによって電解液(水)の供給がスムーズになり、パルス放電性能が向上するためであると考えられる。
Figure 2015141889

As shown in Table 1, when the potassium hydroxide concentration (35 to 50% by mass) of the positive electrode mixture 21 is larger than the potassium hydroxide concentration (30 to 45% by mass) of the negative electrode mixture 23, the discharge performance is improved. It was confirmed that it would be higher. In addition, it was confirmed that the discharge performance was particularly improved when a larger amount of zinc alloy powder having a smaller particle size was used (in the same table, particles containing 30% by mass of particles having a particle size of 75 μm or less). Thus, the discharge performance is improved by using a zinc alloy powder having a small particle size for the negative electrode mixture 23 and reducing the concentration of potassium hydroxide in the negative electrode mixture 23 to supply the electrolytic solution (water). This is considered to be smooth and improve the pulse discharge performance.

尚、正極合剤21の水酸化カリウムの濃度を35質量%未満とした場合には正極合剤21の強度が低下し、正極合剤21を正極缶11に挿入する工程で正極合剤21に割れが発生した。また正極合剤21の水酸化カリウムの濃度が50質量%を超えた場合は常温下で水酸化カリウムが析出し、均一な正極合剤21を作製することが困難となった。   When the concentration of potassium hydroxide in the positive electrode mixture 21 is less than 35% by mass, the strength of the positive electrode mixture 21 decreases, and the positive electrode mixture 21 is inserted into the positive electrode can 11 in the step of inserting the positive electrode mixture 21 into the positive electrode mixture 21. Cracking occurred. In addition, when the concentration of potassium hydroxide in the positive electrode mixture 21 exceeded 50% by mass, potassium hydroxide precipitated at room temperature, making it difficult to produce a uniform positive electrode mixture 21.

また負極合剤23の水酸化カリウムの濃度を30質量%未満とした場合は負極ゲルの酸化が進みやすくなり、均一な負極ゲルを作製することが困難となった。また負極合剤23の水酸化カリウムの濃度が45質量%を超えた場合は負極合剤23の粘度が高くなり過ぎ、負極合剤23をセパレータ22の内部に注入する工程で負極合剤23の流動性が不十分となった。   Further, when the concentration of potassium hydroxide in the negative electrode mixture 23 was less than 30% by mass, the oxidation of the negative electrode gel was facilitated, and it was difficult to produce a uniform negative electrode gel. When the concentration of potassium hydroxide in the negative electrode mixture 23 exceeds 45% by mass, the viscosity of the negative electrode mixture 23 becomes too high, and the negative electrode mixture 23 is injected into the separator 22 in the step of injecting the negative electrode mixture 23 into the separator 22. The fluidity became insufficient.

<試験2>
続いて、負極合剤23の亜鉛合金粉末の粒度として適切な範囲を検証すべく、負極合剤23の亜鉛合金粉末の粒度を変えた(粒度が75μm以下の粒子の含有率を24〜41質量%の範囲で変化させた)複数種のアルカリ電池1を作製し、夫々の放電性能並びに電池内ガスの発生量を比較した。また正極合剤21の水酸化カリウムの濃度と負極合剤23の水酸化カリウムの濃度との組み合わせを変えた(但し、「正極合剤21の水酸化カリウムの濃度>負極合剤23の水酸化カリウムの濃度」の関係は維持)複数種のアルカリ電池1を作製し、夫々について負極合剤23の亜鉛合金粉末の粒度を変化させたときの放電性能並びに電池内ガスの発生量を比較した。更に従来例として、正極合剤21の水酸化カリウムの濃度と負極合剤23の水酸化カリウムの濃度を一致させ(いずれも40質量%とした)、負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を10質量%含むものを用いてアルカリ電池1を作製し、これについて放電性能並びに電池内ガスの発生量を比較した。尚、放電性能については前述と同様の方法で求めた。また電池内ガスの発生量については、作製したアルカリ電池1を90℃下で15日間保存した後における電池内ガスの発生量を測定した。
<Test 2>
Subsequently, in order to verify an appropriate range as the particle size of the zinc alloy powder of the negative electrode mixture 23, the particle size of the zinc alloy powder of the negative electrode mixture 23 was changed (the content ratio of particles having a particle size of 75 μm or less is 24 to 41 mass). A plurality of types of alkaline batteries 1 (changed in the range of%) were prepared, and the discharge performance and the amount of gas generated in the batteries were compared. In addition, the combination of the concentration of potassium hydroxide in the positive electrode mixture 21 and the concentration of potassium hydroxide in the negative electrode mixture 23 was changed (provided that “the concentration of potassium hydroxide in the positive electrode mixture 21> the hydroxylation in the negative electrode mixture 23). Maintaining the relationship of “potassium concentration”) A plurality of types of alkaline batteries 1 were prepared, and the discharge performance and the amount of gas generated in the battery were compared when the particle size of the zinc alloy powder of the negative electrode mixture 23 was changed. Further, as a conventional example, the concentration of potassium hydroxide in the positive electrode mixture 21 and the concentration of potassium hydroxide in the negative electrode mixture 23 are matched (both 40% by mass), and the particle size of the zinc alloy powder of the negative electrode mixture 23 is reduced. An alkaline battery 1 was prepared using a particle containing 10% by mass of particles of 75 μm or less, and the discharge performance and the amount of gas generated in the battery were compared. The discharge performance was determined by the same method as described above. Regarding the amount of gas generated in the battery, the amount of gas generated in the battery after the produced alkaline battery 1 was stored at 90 ° C. for 15 days was measured.

表2に各アルカリ電池1の放電性能並びに電池内ガスの発生量を比較した結果を示す。尚、表中の放電性能並びに電池内ガスの発生量を表す数値は、正極合剤21の水酸化カリウムの濃度を40質量%、負極合剤23の水酸化カリウムの濃度を40質量%、負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を10質量%含むものを用いて作製したアルカリ電池1の放電性能並びに電池内ガスの値をいずれも100(下線を付した数値)としたときの相対値である。改善効果が比較的高い数値については枠線を付してある。   Table 2 shows the results of comparing the discharge performance of each alkaline battery 1 and the amount of gas generated in the battery. The numerical values representing the discharge performance and the amount of gas generated in the battery are 40% by mass of the potassium hydroxide concentration of the positive electrode mixture 21, 40% by mass of the potassium hydroxide concentration of the negative electrode mixture 23, and the negative electrode. The discharge performance of the alkaline battery 1 produced using the zinc alloy powder of the mixture 23 containing 10% by mass of particles having a particle size of 75 μm or less and the value of the gas in the battery were both set to 100 (values underlined). Relative value. Numbers that have a relatively high improvement effect are marked with a frame.

Figure 2015141889

表2に示すように、負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を25〜40質量%の範囲で含むものを用いて作製したアルカリ電池1(実施例A1〜A3,B1〜B3,C1〜C3)については、放電性能が従来例よりも10%以上向上し、かつ、電池内ガスの発生量は従来例と同程度であることが確認された。また負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子の含有率が25質量%未満であるものを用いて作製したアルカリ電池1(比較例A1,B1,C1)については、放電性能の改善効果が不充分であることが確認された。また負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子の含有率が40質量%を超えるものを用いて作製したアルカリ電池1(比較例A2,比較例B2,比較例C2)については、電池内ガスの発生量が多く耐漏液性能が低下することが確認された。
Figure 2015141889

As shown in Table 2, alkaline batteries 1 (Examples A1 to A3, B1 to B1) prepared using zinc alloy powder of the negative electrode mixture 23 containing particles having a particle size of 75 μm or less in a range of 25 to 40% by mass. Regarding B3, C1 to C3), it was confirmed that the discharge performance was improved by 10% or more than the conventional example, and the amount of gas in the battery was the same as that of the conventional example. Moreover, about the alkaline battery 1 (comparative example A1, B1, C1) produced using the zinc alloy powder of the negative electrode mixture 23 whose particle size is 75 micrometers or less and whose content rate is less than 25 mass%, it is of discharge performance. It was confirmed that the improvement effect was insufficient. Moreover, about the alkaline battery 1 (Comparative Example A2, Comparative Example B2, Comparative Example C2) produced using the zinc alloy powder of the negative electrode mixture 23 having a particle size of 75 μm or less exceeding 40% by mass, It was confirmed that the amount of gas generated in the battery was large and the leakage resistance performance deteriorated.

<試験3>
続いて、負極合剤23として用いる亜鉛合金粉末の組成(ビスマス含有量)について検証すべく、亜鉛合金粉末の組成(ビスマス含有量)を変える(ビスマスの含有量を0.009〜0.031質量%の間で変化させる)とともに、亜鉛合金粉末の粒度を変えた(粒度が75μm以下の粒子の含有率を25〜40質量%の間で変化させた)複数種のアルカリ電池1を作製し、夫々の放電性能並びに電池内ガスの発生量を比較した。尚、これらについてはいずれも「正極合剤21の水酸化カリウムの濃度(50質量%)>負極合剤23の水酸化カリウムの濃度(30質量%)」の関係とした。また従来例として、正極合剤21の水酸化カリウムの濃度と負極合剤23の水酸化カリウムの濃度を一致(いずれも40質量%)させ、負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子の含有率が10質量%であるものを用い、ビスマスの含有量を0.007質量%としたアルカリ電池1を作製し、これについても放電性能並びに電池内ガスの発生量を比較した。尚、放電性能並びに電池内ガスの発生量については前述と同様の方法で求めた。
<Test 3>
Subsequently, in order to verify the composition (bismuth content) of the zinc alloy powder used as the negative electrode mixture 23, the composition (bismuth content) of the zinc alloy powder is changed (the content of bismuth is 0.009 to 0.031 mass). And a plurality of types of alkaline batteries 1 in which the particle size of the zinc alloy powder was changed (the content of particles having a particle size of 75 μm or less was changed between 25 and 40% by mass), The discharge performance and the amount of gas generated in the battery were compared. In addition, about all these, it was set as the relationship of "the density | concentration (50 mass%) of potassium hydroxide of the positive electrode mixture 21> the density | concentration (30 mass%) of potassium hydroxide of the negative electrode mixture 23". As a conventional example, the concentration of potassium hydroxide in the positive electrode mixture 21 and the concentration of potassium hydroxide in the negative electrode mixture 23 are matched (both 40% by mass), and the particle size of the negative electrode mixture 23 as zinc alloy powder is 75 μm or less. The alkaline battery 1 having a bismuth content of 0.007% by mass was prepared using a particle content of 10% by mass, and the discharge performance and the amount of gas generated in the battery were also compared. The discharge performance and the amount of gas generated in the battery were determined by the same method as described above.

表3に各アルカリ電池1の放電性能並びに電池内ガスの発生量を比較した結果を示す。尚、表中の放電性能並びに電池内ガスを表す数値は、正極合剤21の水酸化カリウムの濃度を40質量%、負極合剤23の水酸化カリウムの濃度を40質量%、亜鉛合金粉末として粒度が75μm以下の粒子を10質量%含むものを用いて作製したアルカリ電池1の放電性能並びに電池内ガスの値をいずれも100(下線を付した数値)としたときの相対値である。改善効果が比較的高い数値については枠線を付してある。   Table 3 shows the results of comparing the discharge performance of each alkaline battery 1 and the amount of gas generated in the battery. The numerical values representing the discharge performance and the gas in the battery in the table are as follows: the concentration of potassium hydroxide in the positive electrode mixture 21 is 40% by mass; the concentration of potassium hydroxide in the negative electrode mixture 23 is 40% by mass; It is a relative value when the discharge performance of the alkaline battery 1 produced using particles containing 10% by mass of particles having a particle size of 75 μm or less and the value of the gas in the battery are both 100 (underlined numerical value). Numbers that have a relatively high improvement effect are marked with a frame.

Figure 2015141889

表3に示すように、負極合剤23の亜鉛合金粉のビスマス含有量が0.0010〜0.030質量%の範囲のアルカリ電池1(実施例A1〜A8)については電池内ガスの発生量は従来例と同程度であり、かつ、放電性能が従来例より10%以上向上することを確認できた。また亜鉛合金粉のビスマス含有量が0.010質量%未満(従来例並びに比較例、A3,A5,A7)では、電池内ガスの発生を抑制する効果が不充分であるため耐漏液性能が低下し、とくにビスマス含有量が0.030質量%を超えると放電性能が低下することが確認できた。
Figure 2015141889

As shown in Table 3, for alkaline battery 1 (Examples A1 to A8) in which the bismuth content of the zinc alloy powder of negative electrode mixture 23 is in the range of 0.0010 to 0.030 mass%, the amount of gas generated in the battery Was comparable to the conventional example, and it was confirmed that the discharge performance was improved by 10% or more than the conventional example. In addition, when the bismuth content of the zinc alloy powder is less than 0.010% by mass (conventional examples and comparative examples, A3, A5, and A7), the effect of suppressing the generation of gas in the battery is insufficient, and the leakage resistance performance is reduced. In particular, it was confirmed that the discharge performance deteriorates when the bismuth content exceeds 0.030% by mass.

<効果>
以上の通り、正極合剤21の水酸化カリウムの濃度が負極合剤23の水酸化カリウムの濃度よりも大きい場合にアルカリ電池1の放電性能が高くなり、更に負極合剤23の亜鉛合金粉末として粒度が75μm以下の粒子を25〜40質量%の範囲で含むものを用いることでアルカリ電池1の放電性能が大きく向上することを確認できた。
<Effect>
As described above, when the concentration of potassium hydroxide in the positive electrode mixture 21 is higher than the concentration of potassium hydroxide in the negative electrode mixture 23, the discharge performance of the alkaline battery 1 is increased, and further, as the zinc alloy powder of the negative electrode mixture 23. It was confirmed that the discharge performance of the alkaline battery 1 was greatly improved by using particles containing particles having a particle size of 75 μm or less in the range of 25 to 40% by mass.

また正極合剤21の水酸化カリウムの濃度が35〜50質量%、かつ、負極合剤23に含まれている水酸化カリウムの濃度が30〜45質量%の範囲において高い放電性能が得られることを確認できた。   Further, high discharge performance can be obtained when the concentration of potassium hydroxide in the positive electrode mixture 21 is 35 to 50% by mass and the concentration of potassium hydroxide contained in the negative electrode mixture 23 is in the range of 30 to 45% by mass. Was confirmed.

また負極合剤23として用いる亜鉛合金粉末としてビスマスを0.01〜0.03質量%の範囲で含むものを用いることで高い放電性能が得られ、耐漏液性能も確保されることを確認できた。   Moreover, it was confirmed that by using a zinc alloy powder used as the negative electrode mixture 23 containing bismuth in the range of 0.01 to 0.03% by mass, high discharge performance was obtained and leakage resistance was ensured. .

尚、以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。   In addition, the above description is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.

1 アルカリ電池、11 正極缶、12 正極端子部、20 発電要素、21 正極合剤、22 セパレータ、23 負極合剤、31 負極集電子、32 負極端子板、35 封口ガスケット DESCRIPTION OF SYMBOLS 1 Alkaline battery, 11 Positive electrode can, 12 Positive electrode terminal part, 20 Power generation element, 21 Positive electrode mixture, 22 Separator, 23 Negative electrode mixture, 31 Negative electrode current collector, 32 Negative electrode terminal plate, 35 Sealing gasket

Claims (3)

有底筒状の正極缶内に装填される正極合剤と、前記正極合剤の内周側に設けられるセパレータと、前記セパレータの内周側に充填される、亜鉛を主成分とする粉末を含む負極合剤と、前記負極合剤に挿入される負極集電体と、前記正極缶の開口部を封口する負極端子板と、水酸化カリウムを含む電解液と、を備えて構成されるアルカリ電池であって、
前記正極合剤に含まれている前記水酸化カリウムの濃度が前記負極合剤に含まれている前記水酸化カリウムの濃度よりも大きく、
前記粉末に粒度が75μm以下の粒子が25〜40質量%の範囲で含まれている
ことを特徴とするアルカリ電池。
A positive electrode mixture loaded in a bottomed cylindrical positive electrode can; a separator provided on an inner peripheral side of the positive electrode mixture; and a powder containing zinc as a main component, which is filled on the inner peripheral side of the separator. An alkali comprising: a negative electrode mixture comprising: a negative electrode current collector inserted into the negative electrode mixture; a negative electrode terminal plate sealing the opening of the positive electrode can; and an electrolyte containing potassium hydroxide. A battery,
The concentration of the potassium hydroxide contained in the positive electrode mixture is greater than the concentration of the potassium hydroxide contained in the negative electrode mixture;
An alkaline battery, wherein the powder contains particles having a particle size of 75 μm or less in a range of 25 to 40% by mass.
請求項1に記載のアルカリ電池であって、
前記正極合剤に含まれている前記水酸化カリウムの濃度が35〜50質量%であり、前記負極合剤に含まれている前記水酸化カリウムの濃度が30〜45質量%の範囲である
ことを特徴とするアルカリ電池。
The alkaline battery according to claim 1,
The concentration of the potassium hydroxide contained in the positive electrode mixture is 35-50% by mass, and the concentration of the potassium hydroxide contained in the negative electrode mixture is in the range of 30-45% by mass. An alkaline battery.
請求項1または2に記載のアルカリ電池であって、
前記粉末には、ビスマスが0.01〜0.03質量%の範囲で含まれている
ことを特徴とするアルカリ電池。
The alkaline battery according to claim 1 or 2,
The alkaline powder characterized in that the powder contains bismuth in a range of 0.01 to 0.03% by mass.
JP2014016171A 2014-01-30 2014-01-30 Alkaline battery Active JP6322430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016171A JP6322430B2 (en) 2014-01-30 2014-01-30 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016171A JP6322430B2 (en) 2014-01-30 2014-01-30 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2015141889A true JP2015141889A (en) 2015-08-03
JP6322430B2 JP6322430B2 (en) 2018-05-09

Family

ID=53772114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016171A Active JP6322430B2 (en) 2014-01-30 2014-01-30 Alkaline battery

Country Status (1)

Country Link
JP (1) JP6322430B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK178533B1 (en) 2014-06-30 2016-06-06 Schur Tech As Bag web and method of packing a product in foil bags using such a bag web
AU2021273919A1 (en) 2020-05-22 2022-10-06 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030068552A1 (en) * 2001-09-17 2003-04-10 Anglin David L Alkaline cell with improved cathode
JP2004047321A (en) * 2002-07-12 2004-02-12 Hitachi Maxell Ltd Alkaline battery and its manufacturing method
JP2007115701A (en) * 2006-11-13 2007-05-10 Hitachi Maxell Ltd Alkaline battery
JP2008041490A (en) * 2006-08-08 2008-02-21 Fdk Energy Co Ltd Alkaline battery
JP2009064756A (en) * 2007-09-10 2009-03-26 Panasonic Corp Alkaline dry battery
JP2009151958A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Alkaline battery
JP2010153287A (en) * 2008-12-26 2010-07-08 Hitachi Maxell Ltd Alkaline battery
JP2010218946A (en) * 2009-03-18 2010-09-30 Hitachi Maxell Ltd Alkaline storage battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030068552A1 (en) * 2001-09-17 2003-04-10 Anglin David L Alkaline cell with improved cathode
JP2004047321A (en) * 2002-07-12 2004-02-12 Hitachi Maxell Ltd Alkaline battery and its manufacturing method
JP2008041490A (en) * 2006-08-08 2008-02-21 Fdk Energy Co Ltd Alkaline battery
JP2007115701A (en) * 2006-11-13 2007-05-10 Hitachi Maxell Ltd Alkaline battery
JP2009064756A (en) * 2007-09-10 2009-03-26 Panasonic Corp Alkaline dry battery
JP2009151958A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Alkaline battery
JP2010153287A (en) * 2008-12-26 2010-07-08 Hitachi Maxell Ltd Alkaline battery
JP2010218946A (en) * 2009-03-18 2010-09-30 Hitachi Maxell Ltd Alkaline storage battery

Also Published As

Publication number Publication date
JP6322430B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2009151958A (en) Alkaline battery
JP2018156854A (en) Alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP6259670B2 (en) Alkaline battery
JP6322430B2 (en) Alkaline battery
US11387496B2 (en) Method of making alkaline battery with gap between pellets
JP2007128707A (en) Alkaline battery
JP6691738B2 (en) Alkaline battery
JP5081384B2 (en) Manufacturing method of zinc alloy powder for battery, zinc alloy powder for battery, and alkaline battery
JP2007227011A (en) Alkaline cell
JP2008041490A (en) Alkaline battery
JP6622976B2 (en) Alkaline battery
JP6335531B2 (en) Alkaline battery
JPWO2019181538A1 (en) Alkaline battery
JP6883441B2 (en) Flat alkaline primary battery
JP2009043461A (en) Alkaline battery
JP5802489B2 (en) Alkaline battery
JP2007048623A (en) Alkaline dry cell
CN103730646B (en) Electrochemical cell with zinc indium electrode
JP6349192B2 (en) Steel plate for battery electrode terminal and battery constructed using the same
JP2013246958A (en) Alkaline dry battery
JP2007220373A (en) Sealed alkaline zinc primary cell
JP2017069097A (en) Alkaline battery
JP2021002500A (en) Alkali battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6322430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250