JP2015141201A - Quantified output system of physiological parameter - Google Patents

Quantified output system of physiological parameter Download PDF

Info

Publication number
JP2015141201A
JP2015141201A JP2015014427A JP2015014427A JP2015141201A JP 2015141201 A JP2015141201 A JP 2015141201A JP 2015014427 A JP2015014427 A JP 2015014427A JP 2015014427 A JP2015014427 A JP 2015014427A JP 2015141201 A JP2015141201 A JP 2015141201A
Authority
JP
Japan
Prior art keywords
information
physiological
output system
physiological parameter
quantified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015014427A
Other languages
Japanese (ja)
Other versions
JP6012781B2 (en
Inventor
建昇 劉
Chien Sheng Liu
建昇 劉
蘇▲ユー▼ 朱
Su Yu Chu
蘇▲ユー▼ 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIVESTRONG BIOMEDICAL TECHNOLOGY CO Ltd
Original Assignee
LIVESTRONG BIOMEDICAL TECHNOLOGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIVESTRONG BIOMEDICAL TECHNOLOGY CO Ltd filed Critical LIVESTRONG BIOMEDICAL TECHNOLOGY CO Ltd
Publication of JP2015141201A publication Critical patent/JP2015141201A/en
Application granted granted Critical
Publication of JP6012781B2 publication Critical patent/JP6012781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quantified output system integrating an analysis computation rule and specimen information and applying the integration resultant to physiological parameters, in view of a problem of a background art.SOLUTION: The quantified output system of a physiological parameter is provided which includes: a measuring device that measures a specimen including a specimen of a subject; an input device that receives auxiliary computation information; a computing device that uses an analysis computation law; and an output device that outputs a quantified physiological parameter. The measuring device acquires physiological information of the subject. The computing device computes and analyzes the physiological information and the auxiliary computation information using the analysis computation law and then outputs a physiological parameter quantified by the output device. Thus, the quantified output system allows medical staff to acquire the physiological parameters required for simple clinical examinations, quickly, in real time and easily, and is suitable for application of mass and rapid screening on a public health field, and can more positively and greatly contribute to application of a preventive medicine.

Description

本発明は生理的パラメータの定量化出力システムに関し、特に尿液の試験片からパラメータを読み取り、非線形分析の演算法則と組合わせて腎糸球体濾過率を定量化する生理的パラメータの統合システムに関する。   The present invention relates to a physiological parameter quantification output system, and more particularly to a physiological parameter integration system that reads a parameter from a test piece of urine fluid and quantifies a renal glomerular filtration rate in combination with a calculation rule of nonlinear analysis.

慢性的な非感染性疾患(Chronic noncommuicable diseases、NCDs)は公共衛生及び予防医学における重要な課題であり、経済化と国際化の進展に伴って、NCDsは国の健康に対する負担になっている。また、NCDsの予防・治療に関しては、生活形態を積極的に管理することにより効果を収めることができる。国際連合の推計によれば、現在、全世界では八億六千万人が慢性疾患を罹患しており、75〜85%の医療費用は慢性疾患に関係しており、その中、40%の高齢者は慢性疾患を罹患しており、10年後には倍増し、2030年には、台湾における65才以上の高齢者人口は人口総数の21%を占めると推定されている。   Chronic noncommuicable diseases (NCDs) are an important issue in public health and preventive medicine, and with the progress of economic and internationalization, NCDs have become a burden on national health. In addition, the prevention and treatment of NCDs can be effective by actively managing the lifestyle. According to estimates by the United Nations, 860 million people worldwide currently have chronic illnesses, and 75-85% of medical costs are associated with chronic illnesses, of which 40% Elderly people suffer from chronic illnesses, doubling in 10 years, and by 2030, the elderly population over 65 years old in Taiwan is estimated to account for 21% of the total population.

台湾は腎臓透析が盛んな国であり、腎臓透析の費用は国民健康保険の支給のうちの308億台湾ドルに上っている。また、台湾行政院衛生署の統計によれば、2010年に4105人の国民が「腎炎、ネフローゼ症候群及びネフロパシー」によって死亡し、上位十位の国民死亡要因の第十位であった。また、台湾国民健康局が発行した「慢性腎臓病予防・治療手帳」によれば、台湾において250万近くの人(全人口の11.9%を占める)が慢性腎臓病を罹患しており、そのなか、3.5%の人しか腎臓病を罹患していることを自覚していない。さらに、台湾において6.4%近くの人が第3〜5ステージの慢性腎臓病を罹患しているが、それを自覚している者はその中の10%も満たない。腎臓病初期の症状は通常、軽微であり、例えば、血尿、尿に泡があること(タンパク尿)、排尿量が徐々に増加または減少していること、下半身が浮腫すること、血圧が高いことなどがある。そのため、患者が軽視して早期に診断せず、病状が酷くなってから(例えば、食欲の低下、倦怠感、呼吸困難、または気持ちが悪いと感じる)、治療を求めようとした時、すでに腎臓病の後期段階となっていることはよくある。その時、医療支出が大幅に増加し、さらに、患者の体が衰弱しているために働くことができず、場合によっては家族によるフルタイムの介護が必要となり、個人及び社会のコストにつながる。   Taiwan is a country where kidney dialysis is thriving, and the cost of kidney dialysis is NT $ 30.8 billion of the national health insurance. According to statistics from the Taiwan Bureau of Health, 4105 people died of “nephritis, nephrotic syndrome and nephropathy” in 2010, the 10th most common cause of national death. In addition, according to the Chronic Kidney Disease Prevention and Treatment Notebook published by the Taiwan National Health Service, nearly 2.5 million people (11.9% of the total population) have chronic kidney disease in Taiwan. Among them, only 3.5% are aware that they have kidney disease. Moreover, nearly 6.4% of people in Taiwan suffer from stage 3-5 chronic kidney disease, but less than 10% are aware of it. Symptoms of early kidney disease are usually minor, such as hematuria, foam in the urine (proteinuria), urine output gradually increasing or decreasing, lower body edema, high blood pressure and so on. Therefore, when the patient is neglected and cannot make an early diagnosis and the condition becomes severe (eg, loss of appetite, malaise, difficulty breathing, or feeling uncomfortable), the kidney is already It is often late in the disease. At that time, medical expenditures increase significantly, and the patient's body is debilitating and cannot work, and in some cases full-time care is required by the family, leading to personal and social costs.

慢性腎臓病(Chronic Kidney Disease、CKD)の病状の進行度は、軽度〜重度の順に第1ステージ〜第5ステージに分けられ、進行度の基準は、腎糸球体濾過率(eGFR)(単位:ml/min/1.73平方メートル)とともに、タンパク尿、血尿または映像検査により異常の腎臓形態が発見されることによって、全体的に考慮する。これにより、臨床検査では、腎糸球体濾過率を慢性腎臓病の判断の主な基準としていることが知られている。   The degree of progression of chronic kidney disease (CKD) is divided into the first to fifth stages in the order of mild to severe, and the standard of progression is the glomerular filtration rate (eGFR) (unit: (ml / min / 1.73 square meters), together with proteinuria, hematuria, or imaging, the abnormal kidney morphology is found and considered overall. As a result, it is known in clinical examination that the glomerular filtration rate is the main criterion for the determination of chronic kidney disease.

正常な腎糸球体濾過率は120ml/min/1.73m2であり、年齢の増加に伴って衰退していき、平均的に40才以降は毎年1ml/min/1.73m2で減少する。また、腎糸球体濾過率が小さいほど腎機能が悪い。さらに、一般的には、腎糸球体濾過率の数値を評価するとき、クレアチニンの数値を使用することが必要であり、それを所定の式に代入すれば腎糸球体濾過率が求められる。現在、下記式はよく使用されている。 The normal renal glomerular filtration rate is 120 ml / min / 1.73 m 2 , which declines with increasing age, and on average it decreases at 1 ml / min / 1.73 m 2 annually after age 40. In addition, the smaller the renal glomerular filtration rate, the worse the renal function. Furthermore, generally, when evaluating the numerical value of the glomerular filtration rate, it is necessary to use the numerical value of creatinine, and if it is substituted into a predetermined formula, the renal glomerular filtration rate is obtained. Currently, the following formula is often used.

男性=(140−年齢)×体重(キログラム)/(72×血液クレアチニン濃度)。   Male = (140-age) x body weight (kg) / (72 x blood creatinine concentration).

女性は男性の計算結果にさらに0.85を掛ける必要がある。   Women need to multiply the male calculation by an additional 0.85.

以上から分かるように、腎糸球体濾過率を計算するために、先にクレアチニン数値を取得する必要があり、クレアチニン数値は血液検査でしか得られない。また、慢性腎臓病のスクリーニングは、血液検査の侵入性による反抗感、及び小型診療所には関連検査設備がないことにより、その実行と普及が難しく、多くの慢性腎臓病の早期発見のチャンスが見逃されている。仮に簡易かつ非侵入式のシステムで腎糸球体濾過率を評価することができれば、慢性腎臓病の公共衛生予防・治療及び予防医学の実現には、臨床検査応用における大きい商機がある。   As can be seen from the above, in order to calculate the glomerular filtration rate, it is necessary to first obtain a creatinine value, and the creatinine value can be obtained only by a blood test. In addition, screening for chronic kidney disease is difficult to implement and disseminate due to rebelliousness due to the invasion of blood tests and the lack of related testing facilities in small clinics, and there is an opportunity for early detection of many chronic kidney diseases. It is overlooked. If the glomerular filtration rate can be evaluated with a simple and non-invasive system, there is a great opportunity for clinical laboratory application in the realization of public health prevention / treatment and prevention medicine for chronic kidney disease.

したがって、簡易、便利且つ採血侵入方式を必要としない腎糸球体濾過率数値を得る方法を提案することは、当業者にとって重要な課題となる。   Therefore, it is an important issue for those skilled in the art to propose a method for obtaining a glomerular filtration rate value that is simple, convenient, and does not require a blood collection and entry method.

本発明は上記背景技術の問題を鑑み、試験片情報と分析演算法則を統合して生理的パラメータに応用する定量化出力システムを提供する。これにより、ユーザは従来のパラメータ取得方式に制限されることなく、普及且つ便利な生理的パラメータ取得方式をより広く利用して、分析演算法則を統合した後、取得しようとする生理的パラメータを定量化し得る。   The present invention provides a quantification output system that integrates test piece information and analytical calculation rules and applies them to physiological parameters in view of the problems of the background art. As a result, the user is not limited to the conventional parameter acquisition method, but more widely uses the popular and convenient physiological parameter acquisition method, integrates the analytical operation law, and then quantifies the physiological parameter to be acquired. Can be

本発明の主な発明の目的は、被験者の標本が含まれる試験片を計測し、該被験者の生理的情報を取得する計測装置と、補助演算情報を受信する入力装置と、分析演算法則を利用して該生理的情報と該補助演算情報を処理し、定量化された生理的パラメータを生成する演算装置と、該定量化された生理的パラメータを出力する出力装置と、を有する生理的パラメータの定量化出力システムを構築することである。   The main object of the present invention is to use a measuring device that measures a test piece including a specimen of a subject and obtains physiological information of the subject, an input device that receives auxiliary computation information, and an analytical computation law An arithmetic device that processes the physiological information and the auxiliary calculation information and generates a quantified physiological parameter; and an output device that outputs the quantified physiological parameter. It is to build a quantification output system.

本発明に使用される試験片は非侵入方式で被験者の標本を取得することが好適である。   It is preferable that the test piece used in the present invention obtains a subject's specimen in a non-intrusive manner.

計測装置が取得する生理的情報は、ブドウ糖、プロテイン、ビリルビン、ウロビリノーゲン、クレアチニン、血液、ケトン、比重、pH、亜硝酸塩、白血球などを含むことが好適である。   The physiological information acquired by the measuring device preferably includes glucose, protein, bilirubin, urobilinogen, creatinine, blood, ketone, specific gravity, pH, nitrite, leukocytes, and the like.

補助演算情報は、被験者の年齢、性別、身長、体重および生活習慣などを含むことが好適である。   The auxiliary calculation information preferably includes the subject's age, sex, height, weight, lifestyle, and the like.

演算装置は、非線形分析方式で生理的情報と補助演算情報との間の関連性を演算することが好適である。   It is preferable that the calculation device calculates the relationship between physiological information and auxiliary calculation information by a non-linear analysis method.

計測装置と、入力装置と、演算装置と、出力装置とが一つの演算設備に統合可能であることが好適である。   It is preferable that the measurement device, the input device, the calculation device, and the output device can be integrated into one calculation facility.

上記のように、本発明が提供する試験片情報と分析演算法則を統合して生理的パラメータに応用する定量化出力システムは、以下のメリットを有する。   As described above, the quantification output system that integrates the test piece information and the analytical operation law provided by the present invention and applies them to physiological parameters has the following merits.

従来の検査方式に制限されることなく、ユーザはより便利かつ簡単な検査方式を利用し、分析演算法則と組合わせて、本来の生理的パラメータを得ることができる。   Without being limited to the conventional inspection method, the user can use the more convenient and simple inspection method and obtain the original physiological parameters in combination with the analytical calculation rule.

今までよく利用されていた線形分析方式の代わりに、非線形分析方式を利用することにより、各入力パラメータ間の関連性をより高精度に表すことができると共に、異なるグループの特徴に適応的に合わせ、実際の生理的特性と評価結果にさらに近づかせる。   By using a nonlinear analysis method instead of the linear analysis method that has been used so far, the relationship between each input parameter can be expressed with higher accuracy and adaptively adapted to the characteristics of different groups. Get closer to the actual physiological characteristics and evaluation results.

図1は、本発明にかかる生理的パラメータに応用する定量化出力システムのブロック図である。FIG. 1 is a block diagram of a quantification output system applied to physiological parameters according to the present invention. 図2は、本発明にかかる生理的パラメータに応用する定量化出力システムの別の実施例のブロック図である。FIG. 2 is a block diagram of another embodiment of a quantification output system applied to physiological parameters according to the present invention. 図3は、本発明にかかる生理的パラメータに応用する定量化出力システムにおける分析演算法の構造を模式的に示す図である。FIG. 3 is a diagram schematically showing the structure of an analytical calculation method in a quantification output system applied to physiological parameters according to the present invention. 図4は、本発明にかかる生理的パラメータに応用する定量化出力システムのパフォーマンスを説明するグラフである。FIG. 4 is a graph illustrating the performance of a quantification output system applied to physiological parameters according to the present invention.

以下は特定の具体的な実施例で本発明の実施方式を説明するが、当技術分野を熟知した者は本明細書の記載内容により本発明のメリットと効果を容易に理解することができる。本発明は他の方式により実施されることもでき、すなわち、本発明に開示される範囲内から逸脱していなければ、異なる変更は可能である。   In the following, the implementation method of the present invention will be described with specific specific examples. Those skilled in the art can easily understand the merits and effects of the present invention according to the description of the present specification. The present invention may be implemented in other ways, i.e., different modifications are possible without departing from the scope disclosed in the present invention.

図1のように、本発明にかかる生理的パラメータに応用する定量化出力システムは、計測装置2と、入力装置3と、演算装置4と、出力装置5とを含む。計測装置2は、被験者の標本が含まれる試験片1を計測し、該被験者の生理的情報を取得する。入力装置3は、補助演算情報を受信する。演算装置4は、分析演算方式を利用して該生理的情報と該補助演算情報を処理し、定量化された生理的パラメータを生成する。出力装置5は、該定量化された生理的パラメータを出力する。   As shown in FIG. 1, the quantification output system applied to physiological parameters according to the present invention includes a measurement device 2, an input device 3, a calculation device 4, and an output device 5. The measuring device 2 measures the test piece 1 including the subject's specimen and acquires physiological information of the subject. The input device 3 receives auxiliary calculation information. The calculation device 4 processes the physiological information and the auxiliary calculation information using an analytical calculation method, and generates a quantified physiological parameter. The output device 5 outputs the quantified physiological parameter.

慢性腎臓病の応用を例として、従来では採血でクレアチニンを取得して、所定の式を使用して腎糸球体濾過率を得る。一方、図1のように、本発明は、よく使用される尿液試験片を検査ツールとし、被験者から採取した尿液サンプル標本を利用して、針を挿入して採血するという他の過程を必要とせずに、尿液試験片を利用して計測装置2と組合わせて、尿液中のブドウ糖、プロテイン、ビリルビン、ウロビリノーゲン、クレアチニン、血液、ケトン、比重、pH値、亜硝酸塩、白血球などの生理的情報を読み取り、演算装置4の入力パラメータとする。   Taking an application of chronic kidney disease as an example, conventionally, creatinine is obtained by blood collection, and a renal glomerular filtration rate is obtained using a predetermined formula. On the other hand, as shown in FIG. 1, the present invention uses another commonly used urine fluid test piece as an inspection tool, and uses the urine fluid sample collected from the subject to insert a needle and collect blood. Without using it, in combination with the measuring device 2 using a urine specimen, glucose, protein, bilirubin, urobilinogen, creatinine, blood, ketone, specific gravity, pH value, nitrite, leukocytes, etc. Physiological information is read and used as an input parameter of the arithmetic device 4.

補助演算情報は、例えば、被験者の年齢、性別、身長、体重、および生活習慣などの情報である。   The auxiliary calculation information is information such as the age, sex, height, weight, and lifestyle of the subject, for example.

演算装置4は、非線形分析方式を採用しており、図3に示すニューラルネットワーク分析方式により、計測装置2に読み出された生理的情報及び補助演算情報を利用して入力パラメータ(I1〜Im)とし、まず被験標的の腎糸球体濾過数値は既知である条件において、ニューラルネットワークの反復学習方式により、ニューラルネットワーク隠蔽層の被験標的に対する各重み(W1〜Wn)数値を算出した後、盲サンプルの関連パラメータを入力して、下記計算式により定量化された腎糸球体濾過率数値(O1)を得る。 Arithmetic unit 4 employs a non-linear analysis method, the neural network analysis method shown in FIG. 3, by using the physiological information and the auxiliary arithmetic information read in the measurement device 2 input parameters (I 1 ~I m ), and first calculate the weight (W 1 -W n ) values for the test target of the neural network concealment layer by the iterative learning method of the neural network under the condition that the glomerular filtration rate of the test target is known The relevant parameters of the blind sample are input, and the glomerular filtration rate value (O 1 ) quantified by the following formula is obtained.

数1中、mは選択された入力パラメータの数であり、nは隠蔽層の数である。   In Equation 1, m is the number of selected input parameters, and n is the number of concealment layers.

なお、図2は本発明の他の実施例のブロック図であり、計測装置2と、入力装置3と、演算装置4と、出力装置5とが一つの演算設備Aに統合されている。   FIG. 2 is a block diagram of another embodiment of the present invention, in which the measuring device 2, the input device 3, the computing device 4, and the output device 5 are integrated into one computing facility A.

本発明のパフォーマンスを検証するために、台湾国立台湾大学医学院附設医院にて人体試験を申請して299件のデータを収集し、そのうちの233件のデータをニューラルネットワークの訓練学習に使用し、これにより各入力パラメータ間の重み値を算出して、さらに67件のデータを盲サンプルとし、本方式で計算して得られる腎糸球体濾過率の正確率及びパフォーマンスを調べた。ニューラルネットワークパラメータの設定では、隠蔽層の層数は1層であり、全部で30個の重み値が使用され、学習率(Learning Rate)は0.1であり、反復学習の際に毎回232件本のデータからランダムで100件のデータを選択し、停止条件は二乗平均平方根誤差(root-mean-square error)の値が0.5未満の場合または学習回数が1000万回を越えても収束しない場合である。   In order to verify the performance of the present invention, a human body examination was applied for at the National Taiwan University Medical School attached to Taiwan, and 299 data were collected, of which 233 data were used for neural network training. The weight value between each input parameter was calculated by this, and 67 data were made into a blind sample, and the accuracy rate and performance of the glomerular filtration rate obtained by this method were investigated. In the setting of the neural network parameters, the number of concealment layers is one, a total of 30 weight values are used, the learning rate is 0.1, and 232 cases each time during iterative learning. 100 data are randomly selected from the book data, and the stop condition converges even when the root-mean-square error value is less than 0.5 or the number of learning exceeds 10 million. This is the case.

下表は、連続10回実行し計算して得られた正確率及び平均値と標準偏差を示しており、本方式を利用し定量化して得た腎糸球体濾過率の数値の正確率は平均で83.5%に達し、かつ再現性を有していることが分かる。   The table below shows the accuracy rate, average value, and standard deviation obtained by performing 10 consecutive runs, and the accuracy rate of the numerical value of renal glomerular filtration rate obtained by quantification using this method is the average. It can be seen that it reaches 83.5% and has reproducibility.

図4はランダムで5回実行した結果から得られたROC(Receiver Operator Characteristic)グラフであり、本発明における特異度が88%である時に(円形破線に囲まれた箇所)、対応する感度が84%に達している。   FIG. 4 is a ROC (Receiver Operator Characteristic) graph obtained from the result of five executions at random. When the specificity in the present invention is 88% (a portion surrounded by a circular broken line), the corresponding sensitivity is 84. % Has been reached.

上記実施例は本発明の原理及びその効果を例示的に説明しているのに過ぎず、本発明を限定するものではない。当技術分野を熟知した者であれば、本発明の精神及び範囲から逸脱していない限り、上記実施例を変更することができる。したがって、本発明の保護を請求する範囲は、特許請求の範囲のとおりである。   The above embodiments are merely illustrative of the principle of the present invention and the effects thereof, and are not intended to limit the present invention. Those skilled in the art can modify the above embodiments without departing from the spirit and scope of the present invention. Therefore, the scope of claims for protection of the present invention is as set forth in the claims.

1 試験片
2 計測装置
3 入力装置
4 演算装置
5 出力装置
6 演算設備
DESCRIPTION OF SYMBOLS 1 Test piece 2 Measuring device 3 Input device 4 Arithmetic device 5 Output device 6 Arithmetic equipment

Claims (7)

被験者の標本が含まれる試験片を計測し、該被験者の生理的情報を取得する計測装置と、
補助演算情報を受信する入力装置と、
分析演算法則を利用して前記生理的情報と前記補助演算情報を処理し、定量化された生理的パラメータを生成する演算装置と、
前記定量化された生理的パラメータを出力する出力装置と、を備える生理的パラメータの定量化出力システム。
A measuring device for measuring a test piece including a specimen of a subject and acquiring physiological information of the subject;
An input device for receiving auxiliary calculation information;
An arithmetic device that processes the physiological information and the auxiliary calculation information using an analytical calculation rule to generate a quantified physiological parameter;
An output device for outputting the quantified physiological parameter; and a physiological parameter quantification output system.
前記補助演算情報は、被験者の年齢、性別、身長、体重及び生活習慣である請求項1に記載の生理的パラメータの定量化出力システム。   The physiological parameter quantification output system according to claim 1, wherein the auxiliary calculation information is age, sex, height, weight, and lifestyle of the subject. 前記試験片は、非侵入方式で被験者の標本を取得する請求項1に記載の生理的パラメータの定量化出力システム。   The physiological parameter quantification output system according to claim 1, wherein the test piece acquires a specimen of a subject in a non-intrusive manner. 前記生理的情報は、ブドウ糖、プロテイン、ビリルビン、ウロビリノーゲン、クレアチニン、血液、ケトン、比重、pH、亜硝酸塩、白血球を含む請求項1に記載の生理的パラメータの定量化出力システム。   The physiological parameter quantification output system according to claim 1, wherein the physiological information includes glucose, protein, bilirubin, urobilinogen, creatinine, blood, ketone, specific gravity, pH, nitrite, and leukocyte. 前記分析演算法則は、非線形分析方式であり、前記演算装置は、前記非線形分析方式を利用し、前記生理的情報と前記補助演算情報との間の関連性を演算する請求項1に記載の生理的パラメータの定量化出力システム。   The physiology according to claim 1, wherein the analytical calculation rule is a non-linear analysis method, and the calculation device calculates a relevance between the physiological information and the auxiliary calculation information using the non-linear analysis method. Quantified output system for dynamic parameters. 前記非線形分析方式は、ニューラルネットワーク分析方式である請求項5に記載の生理的パラメータの定量化出力システム。   The physiological parameter quantification output system according to claim 5, wherein the nonlinear analysis method is a neural network analysis method. 前記計測装置と、前記入力装置と、前記演算装置と、前記出力装置とが一つの演算設備に統合される請求項1に記載の生理的パラメータの定量化出力システム。   The physiological parameter quantification output system according to claim 1, wherein the measurement device, the input device, the arithmetic device, and the output device are integrated into one arithmetic equipment.
JP2015014427A 2014-01-29 2015-01-28 Quantitative output system for physiological parameters Expired - Fee Related JP6012781B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103103316 2014-01-29
TW103103316A TW201530139A (en) 2014-01-29 2014-01-29 Physiological parameter quantification outputting system

Publications (2)

Publication Number Publication Date
JP2015141201A true JP2015141201A (en) 2015-08-03
JP6012781B2 JP6012781B2 (en) 2016-10-25

Family

ID=53771630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014427A Expired - Fee Related JP6012781B2 (en) 2014-01-29 2015-01-28 Quantitative output system for physiological parameters

Country Status (2)

Country Link
JP (1) JP6012781B2 (en)
TW (1) TW201530139A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169356A (en) * 1987-12-25 1989-07-04 Hitachi Ltd Method and apparatus for inspecting kidney function
JPH05176932A (en) * 1991-12-27 1993-07-20 Toa Medical Electronics Co Ltd Diagnostic method for cerebral infarction
JPH09257790A (en) * 1996-01-19 1997-10-03 Nakano Vinegar Co Ltd Diagnosis supporting method
JP2001272392A (en) * 2000-03-23 2001-10-05 Japan Science & Technology Corp Method for measuring physiological function and testing food
JP2002318855A (en) * 2000-04-17 2002-10-31 Nec Corp Method and system for providing health management service for person at home
JP2007292718A (en) * 2006-03-28 2007-11-08 Eiken Chem Co Ltd Multi-item test paper and method for detecting test material in specimen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169356A (en) * 1987-12-25 1989-07-04 Hitachi Ltd Method and apparatus for inspecting kidney function
JPH05176932A (en) * 1991-12-27 1993-07-20 Toa Medical Electronics Co Ltd Diagnostic method for cerebral infarction
JPH09257790A (en) * 1996-01-19 1997-10-03 Nakano Vinegar Co Ltd Diagnosis supporting method
JP2001272392A (en) * 2000-03-23 2001-10-05 Japan Science & Technology Corp Method for measuring physiological function and testing food
JP2002318855A (en) * 2000-04-17 2002-10-31 Nec Corp Method and system for providing health management service for person at home
JP2007292718A (en) * 2006-03-28 2007-11-08 Eiken Chem Co Ltd Multi-item test paper and method for detecting test material in specimen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015049817; '日本腎臓学会腎機能(GFR)・尿蛋白測定委員会報告書' 日本腎臓学会誌 Vol.43 No.1, 20010704, p.1-19 *

Also Published As

Publication number Publication date
TW201530139A (en) 2015-08-01
JP6012781B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
de Morton et al. Validity, responsiveness and the minimal clinically important difference for the de Morton Mobility Index (DEMMI) in an older acute medical population
Contenti et al. Effectiveness of arterial, venous, and capillary blood lactate as a sepsis triage tool in ED patients
Steiber Strong or weak handgrip? Normative reference values for the German population across the life course stratified by sex, age, and body height
Batsis et al. Diagnostic accuracy of body mass index to identify obesity in older adults: NHANES 1999–2004
Theofilou Quality of life and mental health in hemodialysis and peritoneal dialysis patients: the role of health beliefs
Ata et al. Clinical validation of smartphone-based activity tracking in peripheral artery disease patients
Kim et al. Muscular grip strength normative values for a Korean population from the Korea National Health and Nutrition Examination Survey, 2014–2015
JP2022540159A (en) Methods of detecting sepsis using vital signs, including systolic blood pressure, blood parameters, and combinations thereof
Whitney et al. The association between differing grip strength measures and mortality and cerebrovascular event in older adults: National Health and Aging Trends Study
Wrigglesworth et al. Brain-predicted age difference is associated with cognitive processing in later-life
Jenkinson Measuring health and medical outcomes: an overview
Flury et al. Quantification of excretory renal function and urinary protein excretion by determination of body cell mass using bioimpedance analysis
An et al. Late stage 3 chronic kidney disease is an independent risk factor for sarcopenia, but not proteinuria
Souza Saraiva et al. Relation between relative handgrip strength, chronological age and physiological age with lower functional capacity in older women
RU2535406C1 (en) Method for monitoring of individual's health
KR101653502B1 (en) Computing apparatus and method for providing classifying of mibyoug
Nolte et al. Vibration threshold in non-diabetic subjects
JP6012781B2 (en) Quantitative output system for physiological parameters
Ahmed et al. Validation of The 30 Second Asthma Test™ as a measure of asthma control
Du et al. Validity of the SARC-F questionnaire in assessing sarcopenia in patients with chronic kidney disease: a cross-sectional study
RU2585164C2 (en) Method for diagnosis of health status and determining level of physical activity
Bayhakki et al. Evaluation of dialysis adequacy, interdialytic weight gain and quality of life of hemodialysis patients within coronavirus disease 2019 pandemic
TWM518332U (en) Physiological parameter quantification outputting system
Kim Validation of Biomarkers and Patient-Reported Outcome Measures to Improve the Diagnosis and Treatment of Eustachian Tube Dysfunction
Khan et al. HbA1c acceptance and awareness in diabetic patients in Pakistan

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6012781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees