JP2015140660A - Motor compressor - Google Patents

Motor compressor Download PDF

Info

Publication number
JP2015140660A
JP2015140660A JP2014012081A JP2014012081A JP2015140660A JP 2015140660 A JP2015140660 A JP 2015140660A JP 2014012081 A JP2014012081 A JP 2014012081A JP 2014012081 A JP2014012081 A JP 2014012081A JP 2015140660 A JP2015140660 A JP 2015140660A
Authority
JP
Japan
Prior art keywords
iron core
stator
insulation cover
axial direction
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014012081A
Other languages
Japanese (ja)
Inventor
謙治 竹澤
Kenji Takezawa
謙治 竹澤
利行 寺井
Toshiyuki Terai
利行 寺井
直洋 土屋
Naohiro Tsuchiya
直洋 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014012081A priority Critical patent/JP2015140660A/en
Publication of JP2015140660A publication Critical patent/JP2015140660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor compressor capable of reducing an oil content, that is, oil rate of refrigerant discharged from a hermetic vessel.SOLUTION: A motor compressor according to the present invention comprises: a compressor mechanism compressing refrigerant; an electric motor driving the compressor mechanism to rotate; and a rotary shaft transmitting a turning force of the electric motor to the compressor mechanism, the electric motor including a stator and a rotor arranged inside of the stator and rotatable about the rotary shaft, the stator including an iron core, a coil wound around the iron core, an insulator isolating an end face of the iron core from the coil in an axial direction of the rotary shaft, and an insulator cover disposed on an end of the insulator opposite to the iron core and having an opening formed in a central portion thereof, and a projected portion by projecting an air gap formed between an inner circumference of the stator and an outer circumference of the stator in the axial direction of the rotary shaft being entirely superimposed on a projected portion by projecting the insulator cover in the axial direction of the rotary shaft.

Description

本発明は、冷凍空調機器等に用いられる電動圧縮機に関する。   The present invention relates to an electric compressor used for a refrigeration air conditioner or the like.

特許文献1に記載の圧縮機では、密閉容器内に電動機及び電動機により回転駆動される圧縮機構部を備え、電動機の固定子は鉄心と巻線とを絶縁するインシュレータを有し、このインシュレータの外側ガイド部を内側ガイド部よりも高く構成する。固定子と回転子との間の空間を圧縮機構部から吐出された冷媒と冷凍機油の往路とし、固定子と密閉容器との間の空間を冷凍機油の復路とすることにより、冷凍機油を圧縮機下部の油溜りに戻し、油面切れを防止する。   In the compressor described in Patent Document 1, an electric motor and a compression mechanism that is rotationally driven by the electric motor are provided in a hermetic container, and the stator of the electric motor has an insulator that insulates the iron core from the winding, and the outside of the insulator The guide portion is configured to be higher than the inner guide portion. The space between the stator and the rotor is used as the forward path for the refrigerant discharged from the compression mechanism and the refrigerator oil, and the space between the stator and the sealed container is used as the return path for the refrigerator oil, thereby compressing the refrigerator oil. Return to the oil sump at the bottom of the machine to prevent the oil from running out.

特開2008-121487号公報JP 2008-121487 A

しかしながら、回転子と固定子との空間から電動機上部に持ち上げられた冷凍機油が、固定子と密閉容器との間の空間から圧縮機下部へ戻らず、吐出パイプから圧縮機外部へ吐出される場合がある。圧縮機外に冷凍機油が吐出されると、油面切れによる信頼性の低下や、冷凍サイクルにおける熱交換の阻害、冷媒ガスの流動性低下による圧力損失を生じ、機器の効率を低下させる要因となる。   However, when the refrigeration oil lifted up from the space between the rotor and stator to the upper part of the motor does not return to the lower part of the compressor from the space between the stator and the sealed container, but is discharged from the discharge pipe to the outside of the compressor There is. If the refrigerating machine oil is discharged outside the compressor, it will cause a decrease in reliability due to the lack of oil level, a hindrance to heat exchange in the refrigeration cycle, and a pressure loss due to a decrease in refrigerant gas fluidity. Become.

本発明は、密閉容器から吐出される冷媒中の油含有率、即ちオイルレートを低減した電動圧縮機を提供することを目的とする。   An object of this invention is to provide the electric compressor which reduced the oil content rate in the refrigerant | coolant discharged from an airtight container, ie, an oil rate.

本発明の電動圧縮機は、冷媒を圧縮する圧縮機構部と、圧縮機構部を回転駆動する電動機と、電動機部の回転力を圧縮機構部に伝達する回転軸と、を備え、電動機は、固定子と、固定子の内側に配置され回転軸周りに回転可能な回転子と、を有し、固定子は、鉄心と、鉄心に巻回される巻線と、回転軸の軸方向における鉄心の端面と巻線とを絶縁するインシュレータと、インシュレータの鉄心と反対側の端部に配置され中心部に開口を有するインシュカバーと、を有し、固定子内周と回転子外周の間に形成されたエアギャップを回転軸の軸方向に投影した投影部が、インシュカバーを回転軸の軸方向に投影した投影部にすべて重なるように構成される。   An electric compressor of the present invention includes a compression mechanism unit that compresses a refrigerant, an electric motor that rotationally drives the compression mechanism unit, and a rotary shaft that transmits the rotational force of the electric motor unit to the compression mechanism unit, and the electric motor is fixed And a rotor that is disposed inside the stator and is rotatable around a rotation axis. The stator includes an iron core, a winding wound around the iron core, and an iron core in the axial direction of the rotation axis. An insulator that insulates the end face and the winding; and an insulating cover that is disposed at an end opposite to the iron core of the insulator and has an opening at the center, and is formed between the stator inner periphery and the rotor outer periphery. The projection unit that projects the air gap in the axial direction of the rotation axis is configured to overlap with the projection unit that projects the insulation cover in the axial direction of the rotation axis.

本発明の電動圧縮機によれば、密閉容器から吐出される冷媒中の油含有率を低減することができる。   According to the electric compressor of the present invention, the oil content in the refrigerant discharged from the sealed container can be reduced.

実施例1の縦形ロータリ圧縮機の電動機部縦断面図Electric motor unit longitudinal cross-sectional view of the vertical rotary compressor of Example 1 実施例1の縦形ロータリ圧縮機の電動機上部での断面図Sectional drawing in the electric motor upper part of the vertical rotary compressor of Example 1. FIG. 実施例1の縦形ロータリ圧縮機の全体構成を示す縦断面図1 is a longitudinal sectional view showing the overall configuration of a vertical rotary compressor of Embodiment 1. FIG. 従来の縦形ロータリ圧縮機の電動機上部での断面図Sectional view at the top of the motor of a conventional vertical rotary compressor 実施例2の縦形ロータリ圧縮機の電動機部縦断面図Electric motor part longitudinal cross-sectional view of the vertical rotary compressor of Example 2 実施例2の縦形ロータリ圧縮機の電動機上部での断面図Sectional drawing in the motor upper part of the vertical rotary compressor of Example 2. FIG. 実施例2の縦形ロータリ圧縮機の電動機部縦断面図における冷凍機油の流れを示す概念図The conceptual diagram which shows the flow of the refrigeration oil in the motor part longitudinal cross-sectional view of the vertical rotary compressor of Example 2. FIG. 実施例2のインシュカバー凸形状部Insulated cover convex part of Example 2 実施例2のインシュカバー凸形状部Insulated cover convex part of Example 2 縦形スクロール圧縮機の全体構成を示す縦断面図Vertical sectional view showing the overall configuration of the vertical scroll compressor

本実施例の電動圧縮機は、冷媒を圧縮する圧縮機構部と、圧縮機構部を回転駆動する電動機と、電動機部の回転力を圧縮機構部に伝達する回転軸と、を備え、電動機は、固定子と、固定子の内側に配置され回転軸周りに回転可能な回転子と、を有し、固定子は、鉄心と、鉄心に巻回される巻線と、回転軸の軸方向における鉄心の端面と巻線とを絶縁するインシュレータと、インシュレータの鉄心と反対側の端部に配置され中心部に開口を有するインシュカバーと、を有し、固定子内周と回転子外周の間に形成されたエアギャップを回転軸の軸方向に投影した投影部がインシュカバーを回転軸の軸方向に投影した投影部にすべて重なるように構成したので、エアギャップを通過する冷媒がインシュカバーと衝突して油が分離され易くなり、その結果、密閉容器から吐出される冷媒中の油含有率を低減することができる。   The electric compressor of the present embodiment includes a compression mechanism portion that compresses the refrigerant, an electric motor that rotationally drives the compression mechanism portion, and a rotating shaft that transmits the rotational force of the electric motor portion to the compression mechanism portion. A stator, a rotor disposed inside the stator and rotatable about a rotation axis, the stator including an iron core, a winding wound around the iron core, and an iron core in an axial direction of the rotation axis And an insulator cover that is disposed at an end opposite to the iron core of the insulator and has an opening at the center, and is formed between the inner periphery of the stator and the outer periphery of the rotor Since the projection unit that projects the air gap that is projected in the axial direction of the rotation axis overlaps with the projection unit that projects the insulation cover in the axial direction of the rotation axis, the refrigerant that passes through the air gap collides with the insulation cover. The oil is easily separated Result, it is possible to reduce the oil content in the refrigerant discharged from the sealed container.

以下、本発明の各実施例について図面を用いて説明する。まず、本発明の第1実施例の圧縮機について、図1〜図4を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings. First, a compressor according to a first embodiment of the present invention will be described with reference to FIGS.

図1はロータリ圧縮機の縦断面、図2は電動機上部での断面図、図3はロータリ圧縮機の縦断面図、図4は従来のロータリ圧縮機での電動機上部での断面図である。本実施例のロータリ圧縮機は、図1-3に示すように、密閉容器1に、電動要素(電動機)と、回転軸(クランク軸)5により電動要素に連結された圧縮機構部とを内包する。密閉容器1は、筒体1A、蓋体1B及び底体1Cにより構成される。筒体1Aに蓋体1Bと底体1Cが嵌合され、その嵌合部が溶接されて内部が密閉される。電動要素は、筒体1Aに焼嵌等で固定された固定子3と、回転軸5に圧入等で固定された回転子4とから構成される。圧縮機構部は、主軸受6、回転軸5、副軸受10、シリンダ7、ローラ11及びベーン13を主要要素として構成する。   1 is a longitudinal section of the rotary compressor, FIG. 2 is a sectional view of the upper part of the electric motor, FIG. 3 is a longitudinal sectional view of the rotary compressor, and FIG. 4 is a sectional view of the upper part of the electric motor in the conventional rotary compressor. As shown in FIG. 1C, the rotary compressor of the present embodiment includes an airtight container 1 that includes an electric element (electric motor) and a compression mechanism connected to the electric element by a rotating shaft (crankshaft) 5. To do. The sealed container 1 includes a cylindrical body 1A, a lid body 1B, and a bottom body 1C. The lid body 1B and the bottom body 1C are fitted to the cylindrical body 1A, and the fitting portion is welded to seal the inside. The electric element includes a stator 3 fixed to the cylindrical body 1A by shrink fitting or the like, and a rotor 4 fixed to the rotary shaft 5 by press fitting or the like. The compression mechanism section includes the main bearing 6, the rotating shaft 5, the auxiliary bearing 10, the cylinder 7, the roller 11, and the vane 13 as main elements.

回転軸5は、一方には主軸受6に嵌入される主軸受嵌入部5Bを有し、他方には副軸受10に嵌入される副軸受嵌入部5Cを有する。さらに、回転軸5は、主軸受嵌入部5Bと副軸受嵌入部5Cとの間の偏心部5Aと一体で形成される。回転軸5の偏心部5Aには、ローラ11が回転自在に嵌入される。ローラ11の外周に当接するように、シリンダ7にベーン13が嵌合される。   The rotary shaft 5 has a main bearing insertion portion 5B that is inserted into the main bearing 6 on one side, and a sub bearing insertion portion 5C that is inserted into the sub bearing 10 on the other side. Furthermore, the rotating shaft 5 is formed integrally with the eccentric portion 5A between the main bearing insertion portion 5B and the sub-bearing insertion portion 5C. A roller 11 is rotatably fitted in the eccentric portion 5 </ b> A of the rotating shaft 5. A vane 13 is fitted into the cylinder 7 so as to contact the outer periphery of the roller 11.

主軸受嵌入部5B及び副軸受嵌入部5Cを主軸受6及び副軸受10にそれぞれ嵌入することにより、回転軸5が回転自在に配置される。シリンダ7は、主軸受締付ボルト15により、主軸受6に締結される。また、副軸受締付ボルト16により、副軸受10がシリンダ7に締結される。主軸受6の外周が筒体1Aに溶接等で固定されることにより、圧縮機構部が密閉容器1内に固定される。密閉容器1内には、必要量の冷凍機油が封入される。   By inserting the main bearing insertion portion 5B and the auxiliary bearing insertion portion 5C into the main bearing 6 and the auxiliary bearing 10, respectively, the rotary shaft 5 is rotatably arranged. The cylinder 7 is fastened to the main bearing 6 by main bearing fastening bolts 15. Further, the sub bearing 10 is fastened to the cylinder 7 by the sub bearing tightening bolt 16. The outer periphery of the main bearing 6 is fixed to the cylindrical body 1 </ b> A by welding or the like, so that the compression mechanism is fixed in the sealed container 1. A required amount of refrigerating machine oil is enclosed in the sealed container 1.

固定子3の鉄心3Aには、鉄心3Aとコイル3Eとを絶縁するインシュレータ3Bが配置される。また、インシュレータ3Bの鉄心3Aと反対側の端部には、コイル3Eの結線部を収納して飛出しを防止するためのインシュカバー3Cが配置される。インシュカバー3Cは中心部に開口を有する。   An insulator 3B for insulating the iron core 3A and the coil 3E is disposed on the iron core 3A of the stator 3. Further, an insulator cover 3C for housing the wire connection portion of the coil 3E and preventing jumping out is disposed at the end of the insulator 3B opposite to the iron core 3A. The insulation cover 3C has an opening at the center.

アキュムレータ2が圧縮機構部の吸込口30の手前に配置される。アキュムレー2は、密閉容器1に結合された板状部材24と溶接することにより、密閉容器1に固定される。   The accumulator 2 is disposed in front of the suction port 30 of the compression mechanism unit. The accumulator 2 is fixed to the sealed container 1 by welding with a plate-like member 24 coupled to the sealed container 1.

アキュムレータ2を介してシリンダ7に吸い込まれた冷媒は、圧縮要素において吸込圧力から吐出圧力まで圧縮される。その後、圧縮された冷媒は、密閉容器1内に吐出された後、蓋体1Bに設置された吐出パイプ17から空気調和機等の冷凍サイクルへ吐出される。   The refrigerant sucked into the cylinder 7 via the accumulator 2 is compressed from the suction pressure to the discharge pressure in the compression element. Thereafter, the compressed refrigerant is discharged into the hermetic container 1 and then discharged from a discharge pipe 17 installed in the lid 1B to a refrigeration cycle such as an air conditioner.

一般に、冷媒と冷凍機油を分離するために、冷媒の流速を落として油を落下させる。また、回転子4が発生する旋回流による遠心力で筒体1Aの内壁等に油を衝突させ滴下させることにより、冷媒と冷凍機油を分離することもできる。また、冷凍機油はミスト化することで冷媒とともに吐出されやすくなるため、回転子4のバランスウェイト4Aを円環形状とするなどして、冷媒及び冷凍機油の攪拌を低減する。   Generally, in order to separate the refrigerant and the refrigerating machine oil, the oil is dropped by reducing the flow rate of the refrigerant. In addition, the refrigerant and the refrigerating machine oil can be separated by causing the oil to collide with the inner wall or the like of the cylindrical body 1A by the centrifugal force generated by the swirling flow generated by the rotor 4 and dropping it. Further, since the refrigeration oil is easily discharged together with the refrigerant by being misted, the stirring of the refrigerant and the refrigeration oil is reduced by making the balance weight 4A of the rotor 4 into an annular shape.

圧縮機構部にて圧縮された冷媒は、筒体1Aと固定子3からなる空間23、及び、固定子3と回転子4からなる空間22を通過する。固定子3と回転子4からなる空間22は、一般にエアギャップ22と称される。エアギャップ22を通過した冷媒及び冷凍機油は、径方向中心付近に吹き上げられる。吐出パイプ17はオイルレート低減の目的から径方向中心付近に配置されることが多いが、エアギャップ22を通過した冷凍機油が吐出パイプ17から吐出されやすい。一方、筒体1Aと固定子3からなる空間23では、冷凍機油は筒体1A内壁に付着することで滴下するため分離されやすい。また、インシュレータ内壁3F、コイル3E、インシュレータ外壁3G、及び、インシュカバー3Cにより形成される空間(インシュレータ内部空間)は流速が低く、冷凍機油はコイル3Eやインシュレータ外壁3Gに付着し滴下しやすい。即ち、エアギャップ22を通過する冷媒及び冷凍機油をインシュレータ内部空間へ導くことで、冷凍機油の分離、落下を促進し、吐出パイプ17からの冷凍機油の吐出を抑制することができる。   The refrigerant compressed by the compression mechanism section passes through the space 23 composed of the cylindrical body 1 </ b> A and the stator 3 and the space 22 composed of the stator 3 and the rotor 4. A space 22 composed of the stator 3 and the rotor 4 is generally referred to as an air gap 22. The refrigerant and refrigerating machine oil that have passed through the air gap 22 are blown up near the center in the radial direction. Although the discharge pipe 17 is often arranged near the center in the radial direction for the purpose of reducing the oil rate, the refrigeration oil that has passed through the air gap 22 is easily discharged from the discharge pipe 17. On the other hand, in the space 23 composed of the cylindrical body 1A and the stator 3, the refrigerating machine oil is dripped by adhering to the inner wall of the cylindrical body 1A and thus is easily separated. Further, the space formed by the insulator inner wall 3F, the coil 3E, the insulator outer wall 3G, and the insulator cover 3C (insulator inner space) has a low flow velocity, and the refrigerating machine oil easily adheres to the coil 3E and the insulator outer wall 3G and drops. That is, by guiding the refrigerant and the refrigerating machine oil passing through the air gap 22 to the insulator internal space, the separation and dropping of the refrigerating machine oil can be promoted, and the discharge of the refrigerating machine oil from the discharge pipe 17 can be suppressed.

つまり、圧縮機においては、エアギャップ22を通過した冷凍機油が吐出パイプ17から吐出され、オイルレートを増加させる要因となりやすい。そこで、本実施例の電動圧縮機においては、図1に示すように、インシュカバー3Cの内径を回転子4の外径よりも小さく形成する(つまり、固定子内周と回転子外周の間に形成されたエアギャップを回転軸の軸方向に投影した投影部が、インシュカバーを回転軸の軸方向に投影した投影部にすべて重なるように構成する。)。即ち、図2に示すように、エアギャップ22上方にインシュカバー3Cが配置され、鉛直上方から見たとき、インシュカバー3Cによりエアギャップ22は見えなくなる。このように構成することにより、エアギャップ22を通過した冷媒及び冷凍機油は、電動機上部の空間に流出する前に、インシュカバー3Cに衝突するので、冷凍機油が滴下し、落下しやすくなる。さらに、冷凍機油は、回転子4上部のインシュレータ内部空間及び筒体1A内径方向に導かれるため、冷凍機油がより落下しやすくなる。従って、吐出パイプ17から圧縮機外部に吐出される冷凍機油、即ちオイルレートを低減することができる。   That is, in the compressor, the refrigerating machine oil that has passed through the air gap 22 is discharged from the discharge pipe 17 and tends to increase the oil rate. Therefore, in the electric compressor of the present embodiment, as shown in FIG. 1, the inner diameter of the insulation cover 3 </ b> C is formed smaller than the outer diameter of the rotor 4 (that is, between the stator inner periphery and the rotor outer periphery). The projection part which projected the formed air gap to the axial direction of a rotating shaft overlaps with the projection part which projected the insulation cover to the axial direction of the rotating shaft. That is, as shown in FIG. 2, the insulation cover 3C is disposed above the air gap 22, and the air gap 22 becomes invisible by the insulation cover 3C when viewed from above. By configuring in this way, the refrigerant and the refrigerating machine oil that have passed through the air gap 22 collide with the insulation cover 3C before flowing out into the space above the electric motor, so that the refrigerating machine oil drops and easily falls. Furthermore, since refrigeration oil is guide | induced to the insulator internal space of the rotor 4 upper part and the cylinder 1A inner-diameter direction, refrigeration oil becomes easy to fall more. Therefore, the refrigeration oil discharged from the discharge pipe 17 to the outside of the compressor, that is, the oil rate can be reduced.

次に、本発明の第2実施例について図5−8を用いて説明する。本実施例の電動圧縮機においては、図5及び図6に示すように、インシュカバー3Cの内周付近に鉄心側(図5では紙面下方)に向かう凸形状部3D(インシュカバー凸部)を設ける。つまり、インシュカバー3Cは、固定子内周よりも内側において、軸方向の鉄心側に向かって凸形状となる凸形状部3Dを有する。   Next, a second embodiment of the present invention will be described with reference to FIGS. In the electric compressor of the present embodiment, as shown in FIGS. 5 and 6, a convex shape portion 3 </ b> D (insulation cover convex portion) directed toward the iron core side (downward on the paper surface in FIG. 5) is provided in the vicinity of the inner periphery of the insulation cover 3 </ b> C. Provide. That is, the insulation cover 3 </ b> C has a convex shape portion 3 </ b> D that is convex toward the iron core side in the axial direction on the inner side of the inner periphery of the stator.

本実施例における冷凍機油の流動経路を図7中の矢印で示す。エアギャップ22を通過しインシュカバー3Cに衝突した冷凍機油が圧縮機中心側へ持ち出されるのを抑制する。   The flow path of the refrigerating machine oil in the present embodiment is indicated by arrows in FIG. Refrigerating machine oil that has passed through the air gap 22 and collided with the insulation cover 3 </ b> C is prevented from being taken out toward the compressor center.

凸形状部3Dとして、例えば、回転軸に平行な円筒部で構成することがきる。具体的には、インシュカバー3Cは、回転子外周よりも内側において、回転軸の軸方向の鉄心側(図5では紙面下方)に向かうインシュカバー垂直部(上記円筒部。図示せず。)を有し、このインシュカバー垂直部により凸形状部3Dが形成される。インシュカバー垂直部を含むインシュカバー3Cにより、エアギャップ22を通過してインシュカバー3Cに衝突した冷凍機油が、圧縮機中心側へ持ち出されるのを抑制することができる。   For example, the convex portion 3D can be configured by a cylindrical portion parallel to the rotation axis. Specifically, the insulation cover 3 </ b> C has an insulation cover vertical portion (the cylindrical portion, not shown) directed toward the iron core side in the axial direction of the rotation shaft (downward in FIG. 5) inside the outer periphery of the rotor. The convex portion 3D is formed by the vertical portion of the insulation cover. By means of the insulation cover 3C including the insulation cover vertical portion, it is possible to suppress the refrigerating machine oil that has passed through the air gap 22 and collided with the insulation cover 3C from being taken out toward the compressor center.

また、傾斜部を用いて凸形状部3Dを構成することもできる。具体的には、インシュカバー3Cは、エアギャップ22を回転軸の軸方向に投影した位置に、中心側に向かって回転軸の軸方向の鉄心側に傾斜するインシュカバー傾斜部を有し、このインシュカバー傾斜部により凸形状部3Dが形成される。インシュカバー垂直部を形成した場合と同様に、インシュカバー傾斜部を含むインシュカバー3Cにより、エアギャップ22を通過してインシュカバー3Cに衝突した冷凍機油が、圧縮機中心側へ持ち出されるのを抑制することができる。特に、凸形状部3Dを傾斜部により構成したことにより、インシュレータ内部空間や筒体1A方向に冷凍機油をよりスムーズに導くことができる。また、急な流れ方向の変化により発生する圧力損失や騒音の発生を抑制することができる。   Moreover, convex-shaped part 3D can also be comprised using an inclination part. Specifically, the insulation cover 3 </ b> C has an insulation cover inclined portion that is inclined toward the iron core side in the axial direction of the rotation shaft toward the center at a position where the air gap 22 is projected in the axial direction of the rotation shaft. A convex portion 3D is formed by the insul cover inclined portion. As with the case where the insulation cover vertical part is formed, the insulation cover 3C including the insulation cover inclined part suppresses the refrigerating machine oil that has passed through the air gap 22 and collided with the insulation cover 3C from being taken out to the compressor center side. can do. In particular, since the convex portion 3D is configured by the inclined portion, the refrigerating machine oil can be guided more smoothly in the insulator internal space and the cylindrical body 1A direction. Further, it is possible to suppress the generation of pressure loss and noise caused by a sudden change in the flow direction.

ここで、インシュカバー傾斜部は、曲面で構成されていても良いし、斜面の角度や曲率の異なる面を組み合わせても良い。例えば、図9に示すように、中心側に近いほど、回転軸とのなす角度が小さくなるように構成する。このように構成することで、冷媒及び冷凍機油をよりスムーズにインシュレータ内部空間に導くことができるため、より効果的に冷凍機油を分離することができる。   Here, the insulation cover inclined portion may be formed of a curved surface, or may be combined with surfaces having different slope angles and curvatures. For example, as shown in FIG. 9, the closer to the center side, the smaller the angle formed with the rotation axis. By comprising in this way, since a refrigerant | coolant and refrigerating machine oil can be guide | induced to an insulator internal space more smoothly, refrigerating machine oil can be isolate | separated more effectively.

以上説明したように、図8に例として示すと、インシュカバー3Cの内周側端部における接線と回転軸とのなす角度を0°≦θ<90°(θ=0°:インシュカバー垂直部、0°<θ<90°:インシュカバー傾斜部)として、凸形状部3Dを構成することができる。   As described above, as shown in FIG. 8 as an example, the angle formed between the tangent at the inner peripheral side end of the insulation cover 3C and the rotation axis is 0 ° ≦ θ <90 ° (θ = 0 °: the insulation cover vertical portion) , 0 ° <θ <90 °: Insulating cover inclined portion), the convex portion 3D can be configured.

尚、インシュレータ3B及びインシュカバー3Cの内周に、互いに対となるインシュレータ内壁3F及びインシュカバー突起3Hを設けることができる。インシュレータ内壁3F及びインシュカバー突起3Hを設けることにより、コイル3Eや結線部を収納するとともに、バランスウェイト4A付近との空間を仕切り、インシュレータ内部空間の流速を下げて、冷凍機油を落下させやすくすることができる。   In addition, an insulator inner wall 3F and an insulation cover projection 3H that are paired with each other can be provided on the inner periphery of the insulation 3B and the insulation cover 3C. By providing the insulator inner wall 3F and the insulation cover projection 3H, the coil 3E and the connection portion are accommodated, the space with the balance weight 4A is partitioned, the flow velocity in the insulator internal space is lowered, and the refrigerating machine oil is easily dropped. Can do.

上記各実施例においては、密閉型の縦形ロータリ圧縮機を例として説明したが、本発明はこれに限定されることなく、例えば非密閉型ロータリ圧縮機やスクロール圧縮機等にも適用できる。例えば、スクロール圧縮機においては、図10に示すように、圧縮機下部からエアギャップ22を通り噴き上げる冷凍機油を分離し、吐出パイプ17から吐出される冷凍機油を低減することができる。   In each of the above embodiments, a sealed vertical rotary compressor has been described as an example. However, the present invention is not limited to this, and can be applied to, for example, a non-sealed rotary compressor, a scroll compressor, and the like. For example, in the scroll compressor, as shown in FIG. 10, the refrigerating machine oil ejected from the lower part of the compressor through the air gap 22 can be separated, and the refrigerating machine oil discharged from the discharge pipe 17 can be reduced.

1…密閉容器、1A…筒体、1B…蓋体、1C…底体、2…アキュムレータ、3…固定子、3A…鉄心、3B…インシュレータ、3C…インシュカバー、3D…凸形状部、3E…コイル、3F…インシュレータ内壁、3G…インシュレータ外壁、3H…インシュカバー突起、4…回転子、4A…バランスウェイト、5…回転軸、5A…偏心部、5B…主軸受嵌入部、5C…副軸受嵌入部、6…主軸受、7…シリンダ、10…副軸受、11…ローラ、13…ベーン、15…主軸受締付ボルト、16…副軸受締付ボルト、17…吐出パイプ、22…エアギャップ、23…筒体と固定子からなる空間、24…板状部材 DESCRIPTION OF SYMBOLS 1 ... Airtight container, 1A ... Cylindrical body, 1B ... Cover body, 1C ... Bottom body, 2 ... Accumulator, 3 ... Stator, 3A ... Iron core, 3B ... Insulator, 3C ... Insulation cover, 3D ... Convex-shaped part, 3E ... Coil, 3F ... Insulator inner wall, 3G ... Insulator outer wall, 3H ... Insulation cover projection, 4 ... Rotor, 4A ... Balance weight, 5 ... Rotating shaft, 5A ... Eccentric part, 5B ... Main bearing insertion part, 5C ... Sub-bearing insertion , 6 ... main bearing, 7 ... cylinder, 10 ... secondary bearing, 11 ... roller, 13 ... vane, 15 ... main bearing clamping bolt, 16 ... secondary bearing clamping bolt, 17 ... discharge pipe, 22 ... air gap, 23: Space consisting of a cylinder and a stator, 24 ... Plate member

Claims (6)

冷媒を圧縮する圧縮機構部と、
前記圧縮機構部を回転駆動する電動機と、
前記電動機部の回転力を前記圧縮機構部に伝達する回転軸と、
を備え、
前記電動機は、固定子と、前記固定子の内側に配置され前記回転軸周りに回転可能な回転子と、を有し、
前記固定子は、鉄心と、前記鉄心に巻回される巻線と、前記回転軸の軸方向における前記鉄心の端面と前記巻線とを絶縁するインシュレータと、前記インシュレータの前記鉄心と反対側の端部に配置されたインシュカバーと、を有し、
前記固定子内周と前記回転子外周の間に形成されたエアギャップを前記回転軸の軸方向に投影した投影部が、前記インシュカバーを前記回転軸の軸方向に投影した投影部にすべて重なるように構成された電動圧縮機。
A compression mechanism for compressing the refrigerant;
An electric motor that rotationally drives the compression mechanism,
A rotating shaft that transmits the rotational force of the electric motor section to the compression mechanism section;
With
The electric motor includes a stator, and a rotor disposed inside the stator and rotatable around the rotation axis,
The stator includes an iron core, a winding wound around the iron core, an insulator that insulates the end face of the iron core in the axial direction of the rotating shaft and the winding, and the insulator on the side opposite to the iron core. An insulation cover disposed at the end,
The projection unit that projects an air gap formed between the inner periphery of the stator and the outer periphery of the rotor in the axial direction of the rotation shaft overlaps with the projection unit that projects the insulation cover in the axial direction of the rotation shaft. An electric compressor configured as described above.
冷媒を圧縮する圧縮機構部と、
前記圧縮機構部を回転駆動する電動機と、
前記電動機部の回転力を前記圧縮機構部に伝達する回転軸と、
を備え、
前記電動機は、固定子と、前記固定子の内側に配置され前記回転軸周りに回転可能な回転子と、を有し、
前記固定子は、鉄心と、前記鉄心に巻回される巻線と、前記回転軸の軸方向における前記鉄心の端面と前記巻線とを絶縁するインシュレータと、前記インシュレータの前記鉄心と反対側の端部に配置されたインシュカバーと、を有し、
前記インシュカバーは中心部に開口を有し、前記インシュカバーの内径が前記回転子の外径よりも内側に位置するように構成した電動圧縮機。
A compression mechanism for compressing the refrigerant;
An electric motor that rotationally drives the compression mechanism,
A rotating shaft that transmits the rotational force of the electric motor section to the compression mechanism section;
With
The electric motor includes a stator, and a rotor disposed inside the stator and rotatable around the rotation axis,
The stator includes an iron core, a winding wound around the iron core, an insulator that insulates the end face of the iron core in the axial direction of the rotating shaft and the winding, and the insulator on the side opposite to the iron core. An insulation cover disposed at the end,
The electric cover is configured such that the insulating cover has an opening at a central portion thereof, and an inner diameter of the insulating cover is positioned inside an outer diameter of the rotor.
請求項1又は2において、前記インシュカバーは、前記固定子内周よりも内側において、前記回転軸の軸方向の前記鉄心側に向かって凸形状となるインシュカバー凸部を有する電動圧縮機。   3. The electric compressor according to claim 1, wherein the insulation cover includes an insulation cover convex portion that is convex toward the iron core side in the axial direction of the rotation shaft, on the inner side of the inner periphery of the stator. 請求項3において、前記インシュカバーは、前記回転子外周よりも内側において、前記回転軸の軸方向と平行して前記鉄心側に向かうインシュカバー垂直部を有し、前記インシュカバー垂直部によりインシュカバー凸部が形成される電動圧縮機。   4. The insulation cover according to claim 3, wherein the insulation cover has an insulation cover vertical portion that is directed to the iron core side in parallel with the axial direction of the rotation shaft inside the outer periphery of the rotor. An electric compressor in which convex portions are formed. 請求項3において、前記インシュカバーは、前記エアギャップを前記回転軸の軸方向に投影した位置に、中心側に向かって前記回転軸の軸方向の前記鉄心側に傾斜するインシュカバー傾斜部を有し、前記インシュカバー傾斜部によりインシュカバー凸部が形成される電動圧縮機。   4. The insulation cover according to claim 3, wherein the insulation cover has an insulation cover inclined portion that is inclined toward the iron core in the axial direction of the rotary shaft toward the center at a position where the air gap is projected in the axial direction of the rotary shaft. An electric compressor in which an insulation cover convex part is formed by the insulation cover inclined part. 請求項5において、前記インシュカバー傾斜部は、中心側に近いほど、前記回転軸の軸心とのなす角度が小さくなるように構成した電動圧縮機。   6. The electric compressor according to claim 5, wherein the angle of the insulating cover inclined portion and the axis of the rotating shaft is smaller as it is closer to the center.
JP2014012081A 2014-01-27 2014-01-27 Motor compressor Pending JP2015140660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012081A JP2015140660A (en) 2014-01-27 2014-01-27 Motor compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012081A JP2015140660A (en) 2014-01-27 2014-01-27 Motor compressor

Publications (1)

Publication Number Publication Date
JP2015140660A true JP2015140660A (en) 2015-08-03

Family

ID=53771202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012081A Pending JP2015140660A (en) 2014-01-27 2014-01-27 Motor compressor

Country Status (1)

Country Link
JP (1) JP2015140660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180089778A (en) 2017-02-01 2018-08-09 엘지전자 주식회사 Hermetic compressor
WO2019073659A1 (en) * 2017-10-10 2019-04-18 パナソニックIpマネジメント株式会社 Closed electrically driven compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143987U (en) * 1984-08-28 1986-03-22 株式会社東芝 hermetic compressor
JPS63134193U (en) * 1987-02-25 1988-09-02
US6631617B1 (en) * 2002-06-27 2003-10-14 Tecumseh Products Company Two stage hermetic carbon dioxide compressor
JP2004270668A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2007159192A (en) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd Brushless motor, and sealed compressor equipped with it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143987U (en) * 1984-08-28 1986-03-22 株式会社東芝 hermetic compressor
JPS63134193U (en) * 1987-02-25 1988-09-02
US6631617B1 (en) * 2002-06-27 2003-10-14 Tecumseh Products Company Two stage hermetic carbon dioxide compressor
JP2004270668A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2007159192A (en) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd Brushless motor, and sealed compressor equipped with it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180089778A (en) 2017-02-01 2018-08-09 엘지전자 주식회사 Hermetic compressor
WO2019073659A1 (en) * 2017-10-10 2019-04-18 パナソニックIpマネジメント株式会社 Closed electrically driven compressor

Similar Documents

Publication Publication Date Title
US9816505B2 (en) Scroll compressor with shaft eccentric lubrication
US10648471B2 (en) Scroll compressor
KR101236656B1 (en) Compressor
KR102226457B1 (en) compressor
US10788037B2 (en) Scroll compressor
JP6349623B2 (en) Compressor
JP2013137004A (en) Compressor
WO2018035732A1 (en) Motor rotor for use in compressor, motor for use in compressor, and compressor
JP2015140660A (en) Motor compressor
JP5557759B2 (en) Hermetic electric compressor
JP3992071B1 (en) Compressor
WO2014108973A1 (en) Scroll compressor
WO2018131088A1 (en) Compressor
JP2008248717A (en) Refrigerant compression device
KR100807283B1 (en) Refrigerant compressing apparatus and air conditioner having the same
JP2006336463A (en) Compressor
JP2011038485A (en) Hermetic compressor
JP6270080B1 (en) Hermetic rotary compressor
JP2016031024A (en) Compressor
CN112177933A (en) Compressor with a compressor housing having a plurality of compressor blades
KR101499959B1 (en) Hermetic Compressor
JP5559839B2 (en) Hermetic scroll compressor
JP5104783B2 (en) Hermetic compressor
JP2019015214A (en) Rotary compressor
JP4497956B2 (en) Hermetic compressor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180515