JP2015138790A - Thermoelectric conversion power generator - Google Patents

Thermoelectric conversion power generator Download PDF

Info

Publication number
JP2015138790A
JP2015138790A JP2014007735A JP2014007735A JP2015138790A JP 2015138790 A JP2015138790 A JP 2015138790A JP 2014007735 A JP2014007735 A JP 2014007735A JP 2014007735 A JP2014007735 A JP 2014007735A JP 2015138790 A JP2015138790 A JP 2015138790A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
fin
fins
main plate
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2014007735A
Other languages
Japanese (ja)
Inventor
昌尚 冨永
Masanao Tominaga
昌尚 冨永
孝広 地主
Takahiro Jinushi
孝広 地主
征央 根岸
Motohiro Negishi
征央 根岸
石島 善三
Zenzo Ishijima
善三 石島
森 正芳
Masayoshi Mori
正芳 森
山上 武
Takeshi Yamagami
武 山上
松田 洋
Hiroshi Matsuda
洋 松田
寛治 松本
Kanji Matsumoto
寛治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014007735A priority Critical patent/JP2015138790A/en
Publication of JP2015138790A publication Critical patent/JP2015138790A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress damage on a thermoelectric conversion element effectively by reducing a stress applied to the thermoelectric conversion element, while holding enhancement of power generation efficiency by a fin in a tube body.SOLUTION: In a power generator generating power by providing a cooling jacket 3 on the outer surface side of a tube body 25, sandwiching a thermoelectric conversion module 4 between a pair of main plates 251 of the tube body 25 and the cooling jacket 3, and giving a temperature difference to the thermoelectric conversion module 4 by the tube body 25 heated by heating fluid H and the cooling jacket 3, a heat collection fin 7 disposed in the conduit 253 in the tube body 25 is divided into a fin coming into contact with the main plate 251 on one side, and a fin coming into contact with the main plate 251 on the other side, which are not bonded to each other. The main plate 251 is made to deform easily by suppressing increase in the rigidity of the main plate 251 at the fin 7 to be bonded, and a thermoelectric conversion element 41 of the thermoelectric conversion module 4 is made less likely to be damaged.

Description

本発明は、熱電変換モジュールに温度差を与えて熱エネルギーを電気エネルギーに変換する熱電変換式発電装置に関する。   The present invention relates to a thermoelectric power generation apparatus that converts a thermal energy into an electrical energy by giving a temperature difference to a thermoelectric conversion module.

熱電変換素子を用いて熱エネルギーを電気エネルギーに変換する発電技術が知られている。熱電変換素子は、離間した部位に温度差を与えることで高温部と低温部との間に電位差を生じさせるといったゼーベック効果を利用したもので、温度差が大きいほど発電量が大きくなる。このような熱電変換素子は、複数を電極によって接合した熱電変換素子モジュールという形態で用いられる。例えば、管体の外面に熱電変換モジュールと冷却部とを積層して管体の内部に加熱流体を導入することで、加熱される管体(高温部)と冷却部(低温部)との間に挟んだ熱電変換モジュールに温度差を生じさせて電気を取り出す構成の熱電変換式発電装置が知られている(特許文献1)。   A power generation technique for converting thermal energy into electrical energy using a thermoelectric conversion element is known. The thermoelectric conversion element uses a Seebeck effect that causes a potential difference between a high temperature part and a low temperature part by giving a temperature difference to a separated part, and the power generation amount increases as the temperature difference increases. Such a thermoelectric conversion element is used in the form of a thermoelectric conversion element module in which a plurality are joined by electrodes. For example, by laminating a thermoelectric conversion module and a cooling part on the outer surface of the pipe body and introducing a heating fluid into the pipe body, the space between the heated pipe body (high temperature part) and the cooling part (low temperature part) 2. Description of the Related Art A thermoelectric conversion power generator having a configuration in which electricity is extracted by causing a temperature difference in a thermoelectric conversion module sandwiched between two is known (Patent Document 1).

特開2006−217756号公報JP 2006-217756 A

上記構成の熱電変換式発電装置にあっては、管体の内面にフィンを接合し、加熱流体の熱をフィンが集熱して管体に伝達することで高温部の温度をより高温化させ、発電効率を向上させている。ところで、高温部と低温部とによって温度差が与えられる熱電変換モジュールの熱電変換素子には熱膨張差による熱応力が生じる。熱電変換素子は高温側の電極を介して管体に接合されているため、熱電変換素子に生じた熱応力は管体に伝わり、管体を変形させようとする。しかし、管体はフィンが接合されていることで剛性が高くなっていることから変形しにくくなっており、このため熱電変換素子は管体から応力を受けることになり、その結果、熱電変換素子に割れや破損が生じる場合があった。   In the thermoelectric conversion power generation device having the above configuration, the fin is joined to the inner surface of the tubular body, the heat of the heating fluid is collected by the fin and transferred to the tubular body, and the temperature of the high temperature part is further increased, Power generation efficiency is improved. By the way, the thermal stress by a thermal expansion difference arises in the thermoelectric conversion element of the thermoelectric conversion module to which a temperature difference is given by a high temperature part and a low temperature part. Since the thermoelectric conversion element is joined to the tubular body via the high temperature side electrode, the thermal stress generated in the thermoelectric conversion element is transmitted to the tubular body and tries to deform the tubular body. However, the tube body is hard to be deformed because the rigidity is increased by the fins being joined, and therefore, the thermoelectric conversion element receives stress from the tube body, and as a result, the thermoelectric conversion element In some cases, cracks or breakage occurred.

本発明は上記事情に鑑みてなされたもので、その主たる課題は、管体内の管路に配設するフィンによる発電効率の向上を保持しながら、熱電変換素子にかかる応力を減少させて熱電変換素子の破損を効果的に抑えることができる熱電変換式発電装置を提供することにある。   The present invention has been made in view of the above circumstances, and the main problem is that thermoelectric conversion is achieved by reducing the stress applied to the thermoelectric conversion element while maintaining improvement in power generation efficiency by the fins arranged in the pipes in the pipe body. An object of the present invention is to provide a thermoelectric conversion power generation device that can effectively prevent damage to elements.

本発明の熱電変換式発電装置は、対向する一対の加熱板部を少なくとも備え、内部に加熱流体が流される管路が形成された管体と、前記加熱板部の外面側に配設される冷却部と、前記加熱板部と前記冷却部との間に配設される熱電変換素子を有する熱電変換モジュールと、前記管体の内部に配設されて前記加熱板部に接合され、前記加熱流体の熱を集熱して該加熱板部に伝達するフィンと、を備え、前記加熱板部と前記冷却部とによって前記熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、前記フィンは、前記一対の加熱板部の一方側および他方側に、互いに非接合状態で分割されており、これら分割されたフィンには、互いに対向する側に開口し、かつ、前記管路の方向と交差する方向に沿ったスリットが形成されているとともに、少なくとも該管路の方向と交差する方向の両端部に、前記スリットによって該フィンを分断させない連結部が設けられていることを特徴とする。本発明のフィンは、コルゲート板で構成されている形態を含む。   The thermoelectric conversion power generation device of the present invention includes at least a pair of opposed heating plate portions, a tube body in which a pipe line through which a heating fluid flows is formed, and an outer surface side of the heating plate portion. A cooling unit, a thermoelectric conversion module having a thermoelectric conversion element disposed between the heating plate unit and the cooling unit, and disposed inside the tube and joined to the heating plate unit, and the heating In the thermoelectric conversion power generation apparatus, the fins that collect heat of the fluid and transmit the heat to the heating plate portion, and generate electricity by giving a temperature difference to the thermoelectric conversion module by the heating plate portion and the cooling portion. The fins are divided in a non-bonded state on one side and the other side of the pair of heating plate portions, and the divided fins open to the sides facing each other, and the pipe line In the direction that intersects the direction of With bets are formed at both ends in the direction orthogonal to the direction of at least the conduit, wherein the connecting portion is provided that does not divide the fin by the slit. The fin of this invention contains the form comprised with the corrugated board.

本発明では、管体内の管路に流される加熱流体によって加熱板部が加熱され、その熱が熱電変換モジュールの内面側(管体側)に伝わって加熱される。一方、冷却部によって熱電変換モジュールの外面側が冷却され、これにより熱電変換モジュールに温度差が生じ、発電する。管体の内部に流される加熱流体の熱はフィンで集熱されて一対の加熱板部に伝わり、加熱板部の高温化が促進され発電効率が向上する。   In the present invention, the heating plate portion is heated by the heating fluid flowing through the pipe line in the pipe body, and the heat is transmitted to the inner surface side (pipe body side) of the thermoelectric conversion module and heated. On the other hand, the outer surface side of the thermoelectric conversion module is cooled by the cooling unit, thereby generating a temperature difference in the thermoelectric conversion module and generating power. The heat of the heating fluid flowing inside the tube is collected by the fins and transmitted to the pair of heating plate portions, and the heating plate portions are increased in temperature and the power generation efficiency is improved.

本発明のフィンは管体の一対の加熱板部の一方側および他方側に分割されており、これら分割されたフィンどうしは非接合状態である。このため一対の加熱板部には分割されたフィンが接合されてはいるが、これらフィンを介して一対の加熱板部が一体的に結合された状態にはなっておらず、加熱板部はフィンによる拘束が低下し、剛性が高くなることが抑えられる。これにより加熱板部は、特に管体の管路の方向(加熱流体の流れ方向)と交差する方向に対して反る、あるいは歪むという形態の変形が生じやすくなる。一方、分割された各フィンには、管路の方向と交差する方向に沿ったスリットが形成されており、これによっても加熱板部の剛性が高くなることが抑えられ、特に管路の方向に対して反る、あるいは歪むという形態の変形が生じやすくなる。この場合、加熱板部が管路の方向に対して反る、あるいは歪むという形態で変形しようとすると、フィンはスリットが狭くなったり広がったりすることで加熱板部に追従して変形し、このため加熱板部はフィンに拘束されずに変形する。   The fin of this invention is divided | segmented into the one side and other side of a pair of heating plate part of a tubular body, and these divided | segmented fins are a non-joining state. For this reason, although the divided fins are joined to the pair of heating plate portions, the pair of heating plate portions are not integrally joined via these fins, and the heating plate portion is The restraint by the fins is reduced and the rigidity is suppressed from increasing. As a result, the heating plate portion tends to be deformed in a form that warps or distorts, particularly with respect to the direction intersecting the direction of the pipe line of the tube (the flow direction of the heating fluid). On the other hand, each of the divided fins is formed with a slit along the direction intersecting the direction of the pipe line, which also suppresses the increase in rigidity of the heating plate part, particularly in the direction of the pipe line. On the other hand, the deformation in the form of warping or distortion is likely to occur. In this case, if the heating plate part is deformed in a form of warping or distorting with respect to the direction of the pipeline, the fin is deformed following the heating plate part due to the slit becoming narrower or wider, Therefore, the heating plate portion is deformed without being restricted by the fins.

以上のようにフィンが加熱板部の一方側および他方側に分割され、かつ、これらフィンに管体の管路の方向と交差する方向に沿ったスリットが形成されていることにより、加熱板部はフィンが接合されていても剛性が高くなることが抑えられ、管体の管路の方向、および管路と交差する方向のいずれの方向にも変形が生じやすくなり、すなわち概ねあらゆる方向への変形が可能である。したがって熱電変換素子に加わる熱応力に応じて加熱板部は変形し、このため熱電変換素子が加熱板部から受ける応力が従来より減少する。その結果、熱電変換素子の破損が効果的に抑えられる。なお、フィンに形成するスリットは、管路の方向に間隔をおいて複数形成されていると、フィンおよび加熱板部が変形しやすく好ましい。   As described above, the fin is divided into one side and the other side of the heating plate portion, and a slit is formed in these fins along the direction intersecting the direction of the pipe line of the tubular body, so that the heating plate portion Is restrained from increasing the rigidity even if the fins are joined, and is likely to be deformed in both the direction of the pipe line and the direction intersecting the pipe line, that is, in almost all directions. Deformation is possible. Therefore, the heating plate portion is deformed in accordance with the thermal stress applied to the thermoelectric conversion element, and the stress that the thermoelectric conversion element receives from the heating plate portion is reduced as compared with the conventional case. As a result, damage to the thermoelectric conversion element can be effectively suppressed. Note that it is preferable that a plurality of slits formed in the fins are formed at intervals in the direction of the pipe line so that the fins and the heating plate portion are easily deformed.

また、分割された各フィンは、管路の方向と交差する方向の両端部に設けた連結部により、スリットが形成されていても分断されてはおらず、連結部を介して一体ものに構成されている。例えばフィンがスリットによって分断された構成であると、分断されたものをスリットを設けながら管路方向に沿った整列状態に取り付けることが難しいが、一体ものとなっているため整列状態で容易に取り扱うことができ、このためフィンを管体の内部に組み付ける作業が容易となる。また、フィンが分断されることでフィンが管路方向に沿った整列状態にならない場合、フィンの断面積が大きくなり、結果として管路の有効断面積が狭くなって加熱流体の圧力損失が増加することになるが、本発明ではそのような不具合を招くことがない。   Each of the divided fins is not divided by a connecting portion provided at both ends in a direction intersecting the direction of the pipe line, even if a slit is formed, and is configured as an integral one via the connecting portion. ing. For example, if the fins are divided by slits, it is difficult to attach the divided pieces in an aligned state along the pipeline direction while providing slits, but they are easily handled in an aligned state because they are integrated. Therefore, the work of assembling the fins into the tube body is facilitated. Also, if the fins are not aligned due to the division of the fins, the fin cross-sectional area will increase, and as a result, the effective cross-sectional area of the pipe will become narrower and the pressure loss of the heated fluid will increase. However, such a problem does not occur in the present invention.

本発明によれば、管体内の管路に配設するフィンによる発電効率の向上を保持しながら、熱電変換素子にかかる応力を減少させて熱電変換素子の破損を効果的に抑えることができるといった効果を奏する。   According to the present invention, it is possible to reduce the stress applied to the thermoelectric conversion element and effectively suppress the breakage of the thermoelectric conversion element while maintaining the improvement of the power generation efficiency by the fins disposed in the pipe line in the pipe body. There is an effect.

本発明の一実施形態に係る熱電変換式発電装置の全体斜視図である。1 is an overall perspective view of a thermoelectric conversion power generator according to an embodiment of the present invention. 図1のII方向矢視図である。It is an II directional arrow line view of FIG. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図2のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 同発電装置が備える密閉容器の筐体の構成を示す斜視図である。It is a perspective view which shows the structure of the housing | casing of the airtight container with which the same electric power generating apparatus is provided. 図4の一部拡大図であって、熱電変換モジュールおよびフィンの構成を示す断面図である。FIG. 5 is a partially enlarged view of FIG. 4, and is a cross-sectional view illustrating a configuration of a thermoelectric conversion module and fins. 一実施形態のフィンの形状を示す(a)斜視図、(b)スリット部分の断面図である。It is (a) perspective view which shows the shape of the fin of one Embodiment, (b) It is sectional drawing of a slit part. 一実施形態のフィンの連結部の厚さを変えた変形例を示す(a)斜視図、(b)スリット部分の断面図である。It is the (a) perspective view which shows the modification which changed the thickness of the connection part of the fin of one Embodiment, (b) It is sectional drawing of a slit part. 一実施形態のフィンの連結部の位置を変えた他の変形例を示す(a)斜視図、(b)スリット部分の断面図である。It is (a) perspective view which shows the other modification which changed the position of the connection part of the fin of one Embodiment, (b) It is sectional drawing of a slit part. 図9のフィンの製法例を説明する図であってフィンの素材の板材を示す平面図である。It is a figure explaining the example of a manufacturing method of the fin of FIG. 9, Comprising: It is a top view which shows the board | plate material of the raw material of a fin. スリットで分断されている比較例のフィンであって、(a)フィン分割体が整列状態の斜視図、(b)フィン分割体が屈曲方向にずれている状態の斜視図、(c)(b)フィン分割体が屈曲方向にずれている状態の正面図である。It is the fin of the comparative example divided | segmented by the slit, Comprising: (a) The perspective view of a fin division body in the alignment state, (b) The perspective view of the state which the fin division body has shifted | deviated to the bending direction, (c) (b FIG. 4 is a front view showing a state where the fin divided body is displaced in the bending direction. 本発明の他の実施形態に係るフィンを示す図である。It is a figure which shows the fin which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係るフィンを示す図であって、(a)管体の内部への取り付け状態を示す図、(b)フィンの素材であるコルゲート板を示す図である。It is a figure which shows the fin which concerns on other embodiment of this invention, Comprising: (a) The figure which shows the attachment state to the inside of a tubular body, (b) The figure which shows the corrugated board which is the raw material of a fin.

以下、図面を参照して本発明の一実施形態を説明する。
[1]熱電変換式発電装置の構成
図1〜図4は、一実施形態の熱電変換式発電装置(以下、発電装置)1を示しており、図1は全体斜視図、図2は図1のII方向矢視図、図3、図4はそれぞれ図2のIII−III断面図、IV−IV断面図である。この発電装置1は全体が扁平な直方体状(図1、図3、図4でX方向が長手方向)に形成されており、水冷ジャケット(冷却部)3と、水冷ジャケット3内に収納された密閉容器2を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[1] Configuration of Thermoelectric Conversion Power Generation Device FIGS. 1 to 4 show a thermoelectric conversion power generation device (hereinafter referred to as a power generation device) 1 according to an embodiment. FIG. 1 is an overall perspective view, and FIG. II direction view, FIG. 3 and FIG. 4 are a III-III sectional view and an IV-IV sectional view of FIG. 2, respectively. This power generator 1 is formed in a flat rectangular parallelepiped shape (the X direction is the longitudinal direction in FIGS. 1, 3, and 4), and is housed in a water cooling jacket (cooling portion) 3 and the water cooling jacket 3. A sealed container 2 is provided.

密閉容器2は、扁平管状の筐体20内の中央部に同じく扁平管状の管体25が収納された二重管構造を呈しており、筐体20と管体25との間の空間は減圧空間29とされ、この減圧空間29のX方向両端の開口が封止カバー26で気密的に閉塞されている。水冷ジャケット3は密閉容器2の外形にほぼ沿った扁平管状に形成されたもので、その内部に収納された密閉容器2は、開口側の両端部が水冷ジャケット3の両端開口から突出している。   The sealed container 2 has a double tube structure in which a flat tubular tube 25 is housed in the center of the flat tubular housing 20, and the space between the housing 20 and the tubular body 25 is decompressed. The opening at both ends in the X direction of the decompression space 29 is hermetically closed by the sealing cover 26. The water-cooling jacket 3 is formed in a flat tubular shape substantially along the outer shape of the sealed container 2, and the sealed container 2 housed therein has both end portions on the opening side projecting from both end openings of the water-cooled jacket 3.

筐体20は、図5に示すように、主体となる剛性部21と、剛性部21に接合される長方形状の薄板22とから構成されている。剛性部21は、長方形状の外枠板部211と外枠板部211内を長手方向(X方向)に分かれた長方形状の2つの孔213に仕切る内枠板部212とを有する一対の枠板210が、上下方向(Z方向)に間隔を空けて互いに平行に対面し、外枠板部211の長手方向に沿った端縁どうしが側板部215で連結され、長手方向の両端部に開口218を形成する開口管部217を有するものである。   As shown in FIG. 5, the housing 20 is composed of a rigid portion 21 as a main body and a rectangular thin plate 22 joined to the rigid portion 21. The rigid portion 21 includes a pair of frames having a rectangular outer frame plate portion 211 and an inner frame plate portion 212 that partitions the inside of the outer frame plate portion 211 into two rectangular holes 213 divided in the longitudinal direction (X direction). The plates 210 face each other in parallel in the vertical direction (Z direction), the edges along the longitudinal direction of the outer frame plate portion 211 are connected by the side plate portions 215, and open at both ends in the longitudinal direction. It has the opening pipe part 217 which forms 218. FIG.

薄板22は、可撓性を有する弾性変形可能な板材によって剛性部21の2つの孔213を覆う大きさの長方形状に形成されたものである。薄板22は、各枠板210の外面の孔213の周囲にろう付け等の接合手段で接合され、これにより2つの孔213は1枚の薄板22で塞がれている。薄板22の材料としては、SUS444等のステンレスあるいはアルミニウム等の耐熱性、耐酸化性を有する金属板が好ましく、その板厚は、例えば0.1mm程度のものが用いられる。   The thin plate 22 is formed in a rectangular shape having a size that covers the two holes 213 of the rigid portion 21 with a flexible elastically deformable plate material. The thin plate 22 is joined to the periphery of the hole 213 on the outer surface of each frame plate 210 by a joining means such as brazing, whereby the two holes 213 are closed by the single thin plate 22. The material of the thin plate 22 is preferably a metal plate having heat resistance and oxidation resistance, such as stainless steel or aluminum such as SUS444, and the thickness thereof is, for example, about 0.1 mm.

筐体20の内部に収納された管体25は、図3および図4に示すように、筐体20の上下の枠板210と平行な上下一対の平板な長方形状の主板部251の長手方向に沿った端縁どうしが筐体20の側板部215と平行な側板部252で連結されたもので、両端開口縁の外面が、筐体20の剛性部21の開口管部217の内面に、断面が内側にへこんだ断面U字状で全体としては長円状の封止カバー26を介して接合されている。   As shown in FIGS. 3 and 4, the tubular body 25 accommodated in the housing 20 is formed in a longitudinal direction of a pair of upper and lower flat rectangular main plate portions 251 parallel to the upper and lower frame plates 210 of the housing 20. Are connected by a side plate portion 252 parallel to the side plate portion 215 of the housing 20, and the outer surfaces of both end opening edges are on the inner surface of the opening tube portion 217 of the rigid portion 21 of the housing 20. The cross section is U-shaped with a concave inward, and is joined through an oval sealing cover 26 as a whole.

管体25の内部は、加熱流体H(図3および図4参照)が一方の開口から他方の開口へ向かって流される管路253として形成されており、この管路253には、加熱流体Hの熱を集熱して管体25に伝える一対のフィン7が配設されている。   The inside of the pipe body 25 is formed as a pipe line 253 through which the heating fluid H (see FIGS. 3 and 4) flows from one opening toward the other opening. A pair of fins 7 that collect and transfer the heat to the tubular body 25 are provided.

図6に示すように、一対のフィン7は同じ構造であって、同図において上下に分割された形態であり、管体25の上側の主板部251に接触するものと下側の主板部251に接触するものとの上下一対とされる。   As shown in FIG. 6, the pair of fins 7 have the same structure and are divided in the vertical direction in the same figure, and are in contact with the upper main plate portion 251 of the tube body 25 and the lower main plate portion 251. A pair of upper and lower contacts with those in contact with each other.

図7に示すように、1つのフィン7は、1枚の板材を折り曲げ加工することにより、断面略V字状に屈曲するV字部71が並列する蛇腹状のコルゲート板で構成されている。フィン7のV字部71は、屈曲しながら延びるフィン7の屈曲方向(図7(a):矢印Y1方向)に沿って、屈曲する先端部711が上下に交互に向いて並列している。V字部71の高さ、すなわちフィン7全体の高さは、管体25の上下の主板部251間の間隔の半分よりもやや小さい寸法に設定されている。V字部71の内部のトンネル状の空間712は、屈曲方向に直交し、その直交方向が直線である直線方向(図7(a):矢印X1方向)に延びている。なお、図7はフィン7の形状をわかりやすく説明するための図であって、V字部71の断面形状や数等については適宜に設計される。   As shown in FIG. 7, one fin 7 is formed of a bellows-like corrugated plate in which V-shaped portions 71 bent in a substantially V-shaped cross section are formed by bending one plate material. The V-shaped portions 71 of the fins 7 are arranged in parallel so that the front end portions 711 that are bent are alternately turned up and down along the bending direction (FIG. 7A: arrow Y1 direction) of the fin 7 that extends while being bent. The height of the V-shaped portion 71, that is, the height of the entire fin 7 is set to a dimension slightly smaller than half of the interval between the upper and lower main plate portions 251 of the tube body 25. The tunnel-shaped space 712 inside the V-shaped portion 71 is orthogonal to the bending direction, and extends in a linear direction (FIG. 7A: arrow X1 direction) in which the orthogonal direction is a straight line. FIG. 7 is a view for explaining the shape of the fin 7 in an easy-to-understand manner, and the cross-sectional shape and number of the V-shaped portion 71 are appropriately designed.

フィン7には、屈曲方向および直線方向に直交する高さ方向(図7(a):矢印Z1方向)で形成される面内に沿った複数のスリット72が、直線方向に等間隔をおいて形成されている。スリット72は、図7(b)に示すように高さ方向の下側の一端部(以下、連結部と称する)721を残して上側のほとんどの領域に切り込んで形成されている。この場合、連結部721は、フィン7の屈曲方向の両端部、および両端部間の図7において下側に突出する各V字部71の先端部711に設けられており、これら連結部721によってフィン7はスリット72によって分断されず、一体ものとして構成されている。この場合の連結部721は、フィン7の板厚程度を残してスリット72を形成することにより設けられている。   In the fin 7, a plurality of slits 72 along the plane formed in the height direction (FIG. 7A: arrow Z1 direction) orthogonal to the bending direction and the linear direction are equally spaced in the linear direction. Is formed. As shown in FIG. 7B, the slit 72 is formed by cutting in most of the upper region, leaving a lower end (hereinafter referred to as a connecting portion) 721 in the height direction. In this case, the connecting portion 721 is provided at both end portions of the fin 7 in the bending direction, and the tip portion 711 of each V-shaped portion 71 protruding downward in FIG. 7 between the both end portions. The fins 7 are not divided by the slits 72 and are configured as one piece. In this case, the connecting portion 721 is provided by forming the slit 72 leaving the plate thickness of the fin 7.

上記構成のフィン7は2つ1組とされ、図6に示すように、管体25の内部の管路253に、連結部721側を各主板部251に向けて接触させ、かつ、空間712を管路253の方向(図1および図3でX方向)と平行にした状態とされ、直線方向に延びる各連結部721を主板部251にろう付け等の接合手段で接合されることで、管体25に固定される。   As shown in FIG. 6, the fins 7 having the above-described configuration are made into a set, and as shown in FIG. 6, the connecting portion 721 side is brought into contact with the pipe 253 inside the tube body 25 toward each main plate portion 251, and the space 712 is formed. Is made parallel to the direction of the pipe line 253 (X direction in FIGS. 1 and 3), and each connecting portion 721 extending in the linear direction is joined to the main plate portion 251 by joining means such as brazing, It is fixed to the tube body 25.

このように管路253内で上下に分割されて配設された各フィン7は、互いに対向する側であってスリット72が形成されたV字部71の先端部711が互いに対向するように屈曲方向が調整されて配設されている。フィン7の高さは主板部251間の間隔の半分よりもやや小さい寸法であることから、対向する先端部711の間には間隔が形成され、各フィン7は互いに接合されない状態となっている(図2および図4では先端部711どうしが接触しているが、実際には間隔が空いている)。このようなフィン7の配設状態により、スリット72は互いに対向する側に開口し、管路253の方向と交差する方向に沿って形成されたものとなっている。そして連結部721は、管路253の方向と交差する図2でY方向の両端部と、両端部間の主板部251に接触して接合されたV字部71の先端部711に連結部721が設けられたものとなっている。管路253に流される加熱流体Hは、フィン7のトンネル状の空間712を、主板部251やフィン7に接触しながら通過する。   In this way, the fins 7 that are divided in the vertical direction in the pipe 253 are bent so that the tip portions 711 of the V-shaped portion 71 in which the slits 72 are formed are opposed to each other. The direction is arranged and adjusted. Since the height of the fin 7 is slightly smaller than half of the interval between the main plate portions 251, an interval is formed between the front end portions 711 facing each other, and the fins 7 are not joined to each other. (In FIG. 2 and FIG. 4, the tip portions 711 are in contact with each other, but are actually spaced apart). Due to the arrangement state of the fins 7, the slits 72 are opened on opposite sides, and are formed along the direction intersecting the direction of the pipe line 253. The connecting portion 721 is connected to the both ends in the Y direction in FIG. 2 intersecting the direction of the pipe line 253 and the tip portion 711 of the V-shaped portion 71 joined to the main plate portion 251 between both ends. Is provided. The heating fluid H flowing through the pipe 253 passes through the tunnel-like space 712 of the fin 7 while contacting the main plate portion 251 and the fin 7.

フィン7は、例えば上記薄板22と同様に、SUS444等のステンレスあるいはアルミニウム等の耐熱性、耐酸化性を有し、板厚が例えば0.1mm程度の金属板を用いて作製される。   The fin 7 is manufactured using a metal plate having a heat resistance and an oxidation resistance such as stainless steel such as SUS444 or aluminum and having a plate thickness of, for example, about 0.1 mm, for example, like the thin plate 22.

なお、本実施形態では、図7(b)に示すように連結部721の厚さtはフィン7の板厚程度に設定しているが、図8に示すようにフィン7の板厚の2倍程度に設定してもよい。また、連結部721をV字部71の先端部711には残さず、図9に示すように屈曲方向の両端部のみに、例えば厚さtがフィン7の板厚の2倍程度となるように設けてもよい。この場合、スリット72はV字部71の全体に切り込んで形成される。なお、連結部721の厚さtは、具体的には0.1〜1.0mm程度が好ましい。   In the present embodiment, the thickness t of the connecting portion 721 is set to about the plate thickness of the fin 7 as shown in FIG. 7B. However, the thickness t of the fin 7 is 2 as shown in FIG. You may set to about twice. Further, the connecting portion 721 is not left at the tip portion 711 of the V-shaped portion 71, and the thickness t is, for example, about twice the plate thickness of the fin 7 only at both ends in the bending direction as shown in FIG. May be provided. In this case, the slit 72 is formed by cutting the entire V-shaped portion 71. Specifically, the thickness t of the connecting portion 721 is preferably about 0.1 to 1.0 mm.

すなわち連結部721はスリット72によってフィン7を直線方向に分断した状態とせず、フィン7を一体ものとして、V字部71および空間712が直線方向に沿って整列した状態を得るために設けており、本発明では少なくとも屈曲方向の両端部に設けることでその目的は達成される。   That is, the connecting portion 721 is provided in order to obtain a state in which the V-shaped portion 71 and the space 712 are aligned along the linear direction without the fin 7 being divided in the linear direction by the slit 72 and the fin 7 being integrated. In the present invention, the object is achieved by providing at least both ends in the bending direction.

図7および図8に示したフィン7のように屈曲方向の両端部と各V字部71の先端部711に連結部721を残す形態のフィン7は、例えば、平坦な板材を蛇腹状に加工してコルゲート板に形成してから、連結部721を残すようにしてV字部71にスリット72を形成するといった加工方法で得ることができる。また、図9に示した屈曲方向の両端部のみに連結部721を残した形態のフィン7は、図10に示すように、平坦な長方形状の板材7Aに、同図で左右方向の両端部を連結部21として残して複数の平行なスリット72を等間隔をおいて形成し、次いでスリット72に直交する方向に沿って複数のV字部71が形成されるように折り曲げ加工することで得ることができる。   The fins 7 in the form of leaving the connecting portions 721 at both ends in the bending direction and the tip portions 711 of the V-shaped portions 71 as in the fins 7 shown in FIGS. And after forming in a corrugated board, it can obtain by the processing method of forming the slit 72 in the V-shaped part 71 so that the connection part 721 may be left. Further, as shown in FIG. 10, the fin 7 in the form in which the connecting portions 721 are left only at both ends in the bending direction shown in FIG. 9 is formed on a flat rectangular plate material 7A, as shown in FIG. Is obtained by forming a plurality of parallel slits 72 at equal intervals, leaving the connection portion 21, and then bending so that a plurality of V-shaped portions 71 are formed along a direction perpendicular to the slits 72. be able to.

密閉容器2を構成する筐体20の剛性部21、管体25、封止カバー26は、薄板22と同様の材料が用いられる。密閉容器2の、筐体20の薄板22と管体25の主板部251との間には、複数の熱電変換モジュール4がそれぞれ配設されている。   The same material as that of the thin plate 22 is used for the rigid portion 21, the tubular body 25, and the sealing cover 26 of the casing 20 that constitute the sealed container 2. A plurality of thermoelectric conversion modules 4 are respectively disposed between the thin plate 22 of the casing 20 and the main plate portion 251 of the tubular body 25 of the sealed container 2.

熱電変換モジュール4は、図6に示すように、平面状に並べられた複数の熱電変換素子41の、一方側の面および他方側の面を、長方形状の銅板等の金属板からなる電極42によりジグザグ状に直列に連結して構成されたもので、一方の面側の電極42が管体25の主板部251の外面にろう付け等の接合手段で接合されている。また、他方の面側の電極42は筐体20の薄板22の内面に対向し、薄板22と電極42との間には緩衝材5が挟まれて保持されている。薄板22と緩衝材5、および緩衝材5と電極42はいずれも接合されてはおらず、摺動可能に当接している。この場合、熱電変換モジュール4は、筐体20の1つの孔213を塞ぐ薄板22に対して1つが並列して組み込まれ、合計4つが装備されている。また、電極42は管体25および緩衝材5と絶縁されている。   As shown in FIG. 6, the thermoelectric conversion module 4 includes an electrode 42 made of a metal plate such as a rectangular copper plate on one side and the other side of a plurality of thermoelectric conversion elements 41 arranged in a plane. Thus, the electrode 42 on one surface side is joined to the outer surface of the main plate portion 251 of the tubular body 25 by a joining means such as brazing. The electrode 42 on the other side faces the inner surface of the thin plate 22 of the housing 20, and the buffer material 5 is held between the thin plate 22 and the electrode 42. The thin plate 22 and the buffer material 5 and the buffer material 5 and the electrode 42 are not joined, but are in contact with each other so as to be slidable. In this case, one thermoelectric conversion module 4 is incorporated in parallel with the thin plate 22 that closes one hole 213 of the housing 20, and a total of four thermoelectric conversion modules 4 are equipped. The electrode 42 is insulated from the tube body 25 and the buffer material 5.

緩衝材5は可撓性を有するシート状のものが好適であり、例えば薄いカーボンシート等が用いられる。なお、本実施形態では薄板22と熱電変換モジュール4との間に緩衝材5を挟み込んでいるが、緩衝材5は必要に応じて用いられ、薄板22が熱電変換モジュール4に直接当接する形態も選択され得る。   The buffer material 5 is preferably a flexible sheet-like material such as a thin carbon sheet. In the present embodiment, the buffer material 5 is sandwiched between the thin plate 22 and the thermoelectric conversion module 4. However, the buffer material 5 is used as necessary, and the thin plate 22 directly contacts the thermoelectric conversion module 4. Can be selected.

熱電変換モジュール4を構成する熱電変換素子41は、耐熱温度が高い種類が用いられ、例えば、シリコン−ゲルマニウム系、マグネシウム−シリコン系、マンガン−シリコン系、珪化鉄系等が好適に用いられる。熱電変換モジュール4が収納された密閉容器2の減圧空間29は、剛性部21と薄板22とからなる筐体20、管体25および封止カバー26によって気密的に封止される。上記フィン7は、図4に示すように、熱電変換モジュール4に対応する領域の大きさを有し、フィン7の両側に熱電変換モジュール4が配設された状態となっている。   As the thermoelectric conversion element 41 constituting the thermoelectric conversion module 4, a type having a high heat-resistant temperature is used. For example, a silicon-germanium system, a magnesium-silicon system, a manganese-silicon system, an iron silicide system, or the like is preferably used. The decompression space 29 of the sealed container 2 in which the thermoelectric conversion module 4 is housed is hermetically sealed by a casing 20, a tubular body 25, and a sealing cover 26 that are formed of the rigid portion 21 and the thin plate 22. As shown in FIG. 4, the fin 7 has a size corresponding to the thermoelectric conversion module 4, and the thermoelectric conversion module 4 is disposed on both sides of the fin 7.

上記密閉容器2は、水冷ジャケット3内に収納されている。図3および図4に示すように、水冷ジャケット3は、両端の開口縁に形成された内側に屈曲する封止枠部31が、密閉容器2における剛性部21の外枠板部211の外面に、ろう付け等の手段で気密的に接合されている。水冷ジャケット3内の空間、すなわち剛性部21と水冷ジャケット3との間に形成される空間が、冷却水が供給されて薄板22を冷却するための冷却空間32となっている。水冷ジャケット3における筐体20の各側板部215に対応する箇所の中央部には、冷却水の導入出口33が設けられている。   The sealed container 2 is stored in a water-cooled jacket 3. As shown in FIGS. 3 and 4, the water-cooling jacket 3 has a sealing frame portion 31 that is bent inward and formed on the opening edges at both ends, on the outer surface of the outer frame plate portion 211 of the rigid portion 21 in the sealed container 2. And airtightly joined by means such as brazing. A space in the water cooling jacket 3, that is, a space formed between the rigid portion 21 and the water cooling jacket 3 is a cooling space 32 for cooling the thin plate 22 by supplying cooling water. A cooling water inlet / outlet 33 is provided at a central portion of the water cooling jacket 3 corresponding to each side plate portion 215 of the housing 20.

密閉容器2内には、合計4つの熱電変換モジュール4が収納されているが、これら熱電変換モジュール4は直列に接続されている。そして、図1〜図3で示す+・−の2本のリード線49から外部に電気が取り出される。リード線49は、密閉容器2の側板部215および水冷ジャケット3を貫通して外部に引き出され、側板部215および水冷ジャケット3のリード線貫通孔は気密的に塞ぐ処理がなされている。   A total of four thermoelectric conversion modules 4 are accommodated in the sealed container 2, and these thermoelectric conversion modules 4 are connected in series. Then, electricity is taken out from the two lead wires 49 of + • − shown in FIGS. The lead wire 49 passes through the side plate portion 215 and the water cooling jacket 3 of the sealed container 2 and is drawn to the outside, and the lead wire through hole of the side plate portion 215 and the water cooling jacket 3 is hermetically closed.

冷却空間32の熱電変換モジュール4に対応する箇所には、熱交換手段6が薄板22に接合されている。熱交換手段6は、冷却空間32に供給されて流れる冷却水が接触することで薄板22を放熱させて冷却を促進させるもので、薄板22の可撓性を妨げない状態で設けられている。   The heat exchange means 6 is joined to the thin plate 22 at a location corresponding to the thermoelectric conversion module 4 in the cooling space 32. The heat exchange means 6 is provided in a state in which the cooling of the thin plate 22 is not hindered by the cooling water supplied to the cooling space 32 being brought into contact to dissipate the thin plate 22 to promote cooling.

熱交換手段6は、薄板22の可撓性を妨げない柔軟性を有するフィン等の熱交換部材からなるものが挙げられる。また、硬いフィン等の熱交換部材であっても、複数の独立した熱交換部材が薄板22に対し点在的に接触して設けられて薄板22の可撓性を妨げないようになされていてもよい。   Examples of the heat exchanging means 6 include a heat exchanging member such as a fin having flexibility that does not hinder the flexibility of the thin plate 22. Moreover, even if it is a heat exchange member such as a hard fin, a plurality of independent heat exchange members are provided in contact with the thin plate 22 in a scattered manner so as not to hinder the flexibility of the thin plate 22. Also good.

上記密閉容器2は、所定箇所に形成された図示せぬ減圧封止口から減圧空間29の空気を吸引して減圧空間29を所定圧力(例えば1〜100Pa程度)に減圧し、減圧封止口を溶接するなどして気密的に封止した状態とされる。これにより密閉容器2においては、減圧空間29の圧力が外部の大気よりも低くなるという圧力差が生じ、この圧力差によって、筐体20の薄板22が熱電変換モジュール4側に加圧される力を受ける。   The sealed container 2 sucks air in the decompression space 29 from a decompression sealing port (not shown) formed at a predetermined location to decompress the decompression space 29 to a predetermined pressure (for example, about 1 to 100 Pa). Are hermetically sealed by welding or the like. As a result, in the sealed container 2, a pressure difference is generated in which the pressure in the decompression space 29 is lower than that in the outside atmosphere, and the force that pressurizes the thin plate 22 of the housing 20 toward the thermoelectric conversion module 4 due to the pressure difference. Receive.

[2]発電装置の作用
上記構成からなる発電装置1では、管体25の管路253に、一方の開口から他方の開口に向けて高温の加熱流体Hを流して管体25を加熱する。また、水冷ジャケット3の一方の導入出口33から冷却水を冷却空間32に導入するとともに他方の導入出口33から冷却水を排出させ、冷却空間32に冷却水を充満させた状態で流すことにより密閉容器2の薄板22を冷却する。
[2] Action of Power Generation Device In the power generation device 1 having the above-described configuration, the pipe body 25 is heated by flowing a high-temperature heating fluid H from one opening to the other opening in the pipe line 253 of the pipe body 25. In addition, the cooling water is introduced into the cooling space 32 from one introduction outlet 33 of the water cooling jacket 3, the cooling water is discharged from the other introduction outlet 33, and the cooling space 32 is filled with the cooling water to be sealed. The thin plate 22 of the container 2 is cooled.

管路253に流される加熱流体Hの熱は、管体25の対向する一対の主板部251を直接加熱し、また、フィン7によって集熱されて各主板部251に伝わり、主板部251の高温化が促進される。加熱された管体25の主板部251の熱は熱電変換モジュール4の内面側に伝わり、熱電変換モジュール4の内面側が加熱される。一方、薄板22は冷却水で冷却される熱交換手段6により冷却が促進される。冷却された薄板22の熱は熱電変換モジュール4の外面側に伝わり、熱電変換モジュール4の外面側が冷却される。これにより、熱電変換モジュール4の熱電変換素子41には、内面側が高温、外面側が低温というように温度差が与えられる。   The heat of the heating fluid H that flows through the pipe 253 directly heats the pair of opposing main plate portions 251 of the tube body 25, and is collected by the fins 7 and transmitted to each main plate portion 251, and the high temperature of the main plate portion 251. Is promoted. Heat of the main plate portion 251 of the heated tube body 25 is transmitted to the inner surface side of the thermoelectric conversion module 4, and the inner surface side of the thermoelectric conversion module 4 is heated. On the other hand, the cooling of the thin plate 22 is promoted by the heat exchange means 6 that is cooled by cooling water. The heat of the cooled thin plate 22 is transmitted to the outer surface side of the thermoelectric conversion module 4, and the outer surface side of the thermoelectric conversion module 4 is cooled. Thereby, a temperature difference is given to the thermoelectric conversion element 41 of the thermoelectric conversion module 4 so that the inner surface side is high temperature and the outer surface side is low temperature.

密閉容器2においては上記のように内部の減圧空間29が減圧されて外部と圧力差が生じることにより、筐体20の薄板22が熱電変換モジュール4側に加圧される。これにより、筐体20の薄板22が緩衝材5に加圧されて密着し、緩衝材5は熱電変換モジュール4側に加圧された状態で密着する。   In the hermetic container 2, the internal decompression space 29 is decompressed as described above to generate a pressure difference with the outside, whereby the thin plate 22 of the housing 20 is pressurized toward the thermoelectric conversion module 4. Thereby, the thin plate 22 of the housing | casing 20 is pressurized and closely_contact | adhered to the shock absorbing material 5, and the shock absorbing material 5 closely_contact | adheres in the state pressurized to the thermoelectric conversion module 4 side.

上記のようにして熱電変換モジュール4の外面側と内面側に温度差が与えられることで、熱電変換モジュール4は発電し、リード線49から電気が取り出される。   As described above, a temperature difference is given between the outer surface side and the inner surface side of the thermoelectric conversion module 4, so that the thermoelectric conversion module 4 generates power and electricity is extracted from the lead wire 49.

本実施形態の発電装置1は、例えば工場やゴミ焼却炉で発生する排熱ガスや、自動車の排気ガスなどが、上記加熱流体Hとして利用される。   In the power generation apparatus 1 of this embodiment, for example, exhaust heat gas generated in a factory or a garbage incinerator, automobile exhaust gas, or the like is used as the heating fluid H.

[3]一実施形態の作用効果
上記実施形態の発電装置1においては、管体25の管路253に流される加熱流体Hの熱はフィン7で集熱されて一対の主板部251に伝わり、主板部251の高温化が促進されることで熱電変換モジュール4に生じる温度差が大きくなり、発電効率が向上する。
[3] Advantageous Effects of One Embodiment In the power generation apparatus 1 of the above embodiment, the heat of the heating fluid H that flows through the pipe line 253 of the pipe body 25 is collected by the fins 7 and transmitted to the pair of main plate portions 251. The temperature difference generated in the thermoelectric conversion module 4 is increased by increasing the temperature of the main plate portion 251 and the power generation efficiency is improved.

ところで、温度差が与えられる熱電変換モジュール4の熱電変換素子41には熱膨張差による熱応力が生じ、その熱応力は管体25の主板部251に伝わって主板部251を変形させようとする。ここで、従来ではフィンが接合された管体は剛性が上がって変形しにくくなっており、このため熱電変換素子は管体から応力を受けて割れや破損が生じるという問題があった。   By the way, a thermal stress due to a thermal expansion difference is generated in the thermoelectric conversion element 41 of the thermoelectric conversion module 4 to which a temperature difference is given, and the thermal stress is transmitted to the main plate portion 251 of the tubular body 25 and tries to deform the main plate portion 251. . Here, conventionally, the tubular body to which the fins are joined has increased in rigidity and is difficult to be deformed. For this reason, the thermoelectric conversion element has a problem that it receives a stress from the tubular body and is cracked or broken.

しかし本実施形態のフィン7は、管体25の一対の主板部251の一方側および他方側に分割されており、分割されたフィン7どうしは間隔が空いて非接合状態である。このため一対の主板部251には分割されたフィン7がそれぞれ接合されてはいるが、これらフィン7を介して一対の主板部251が一体的に結合された状態にはなっておらず、したがって主板部251はフィン7による拘束が低下し、剛性が高くなることが抑えられる。これにより主板部251は、特に管体25の管路253の方向(加熱流体Hの流れ方向)と交差する方向(図3でY方向)に対して反る、あるいは歪むという形態の変形が生じやすい。   However, the fin 7 of the present embodiment is divided into one side and the other side of the pair of main plate portions 251 of the tube body 25, and the divided fins 7 are spaced apart from each other and are in a non-joined state. For this reason, although the divided fins 7 are joined to the pair of main plate portions 251, the pair of main plate portions 251 are not integrally coupled via these fins 7, and therefore The main plate portion 251 is restrained from being restricted by the fins 7 and having high rigidity. As a result, the main plate portion 251 is deformed in such a manner that it warps or warps with respect to a direction (Y direction in FIG. 3) that intersects with the direction of the conduit 253 (flow direction of the heated fluid H) of the tubular body 25 in particular. Cheap.

一方、分割された各フィン7には、接合されている主板部251とは反対側に開口する複数のスリット72が管路253と交差する方向に沿って形成されており、これによっても主板部251の剛性が高くなることが抑えられる。フィン7にスリット72が形成されていないとすると、管路253の方向に延びる各連結部721が主板部251に接合されているため、その場合のフィン7は管路253の方向に対して反るなどの変形は生じにくい。しかし本実施形態ではフィン7に複数のスリット72が形成されていることで、主板部251は管路253の方向(図3および図4でX方向)に対して反る、あるいは歪むという形態の変形が生じやすい。すなわち、主板部251が管路253の方向に対して反る、あるいは歪むという形態で変形しようとすると、フィン7はスリット72が狭くなったり広がったりすることで主板部251に追従して変形し、このため主板部251はフィン7に拘束されずに変形する。   On the other hand, each of the divided fins 7 is formed with a plurality of slits 72 that open to the opposite side of the joined main plate portion 251 along the direction intersecting the pipe 253, and this also causes the main plate portion to be formed. It is suppressed that the rigidity of 251 becomes high. If the slits 72 are not formed in the fin 7, the connecting portions 721 extending in the direction of the pipe line 253 are joined to the main plate part 251, so that the fin 7 in that case is opposite to the direction of the pipe line 253. Deformation is unlikely to occur. However, in the present embodiment, the plurality of slits 72 are formed in the fin 7 so that the main plate portion 251 is warped or distorted with respect to the direction of the duct 253 (X direction in FIGS. 3 and 4). Deformation tends to occur. That is, if the main plate portion 251 is deformed in a form of warping or distorting with respect to the direction of the duct 253, the fin 7 deforms following the main plate portion 251 due to the slit 72 becoming narrower or wider. Therefore, the main plate portion 251 is deformed without being restrained by the fins 7.

以上のようにフィン7が管体25の主板部251の一方側および他方側に分割され、かつ、これらフィン7に管体25の管路253の方向と交差する方向に沿ったスリット72が形成されていることにより、主板部251はフィン7が接合されていても剛性が高くなることが抑えられ、管路253の方向、および管路253と交差する方向のいずれの方向にも変形が生じやすく、すなわち概ねあらゆる方向への変形が可能である。したがって熱電変換素子41に加わる熱応力に応じて主板部251は変形し、このため熱電変換素子41が主板部251から受ける応力が従来より減少する。その結果、熱電変換素子41の破損が効果的に抑えられる。   As described above, the fin 7 is divided into one side and the other side of the main plate portion 251 of the tube body 25, and the slit 72 is formed in the fin 7 along the direction intersecting the direction of the duct 253 of the tube body 25. As a result, the main plate portion 251 is restrained from increasing in rigidity even if the fins 7 are joined, and the main plate portion 251 is deformed in both the direction of the pipe 253 and the direction intersecting the pipe 253. It is easy, that is, it can be deformed in almost any direction. Therefore, the main plate portion 251 is deformed in accordance with the thermal stress applied to the thermoelectric conversion element 41, so that the stress that the thermoelectric conversion element 41 receives from the main plate portion 251 is reduced as compared with the conventional case. As a result, damage to the thermoelectric conversion element 41 is effectively suppressed.

また、分割された各フィン7はスリット72が形成されていても連結部721によって分断されてはおらず、連結部721を介して一体ものに構成されている。図11(a)に示すフィン9のようにスリット72によって分断された構成であると、分断されたフィン分割体89をスリット72を設けながらV字部71および空間712が管路253方向に沿った状態に整列させて主板部251に接合することは難しい。このため、図11(b)、(c)に示すように各フィン分割体89が屈曲方向にずれて配設されやすい。しかし本実施形態のフィン7は、連結部721を設けてスリット72で完全に分断されない一体ものであるため、V字部71は整列状態が保持されてフィン7を容易に取り扱うことができ、フィン7を管体25の内部に組み付ける作業が容易となる。   In addition, each of the divided fins 7 is not divided by the connecting portion 721 even if the slit 72 is formed, and is configured integrally with the connecting portion 721. 11A, the V-shaped portion 71 and the space 712 extend along the direction of the pipe 253 while providing the slit 72 in the divided fin divided body 89. It is difficult to align the main plate portion 251 so that the main plate portion 251 is aligned. For this reason, as shown to FIG.11 (b), (c), each fin division body 89 tends to shift | deviate and be arrange | positioned in a bending direction. However, since the fin 7 of the present embodiment is an integral part provided with the connecting portion 721 and not completely divided by the slit 72, the V-shaped portion 71 is maintained in an aligned state and can be easily handled. The work of assembling 7 inside the tubular body 25 becomes easy.

また、フィン7が分断されることでV字部71が管路253の方向に沿った状態にならない場合、フィン7の断面積が大きくなり、結果として図11(c)に示すように加熱流体Hが流れる空間712の有効断面積が狭くなって加熱流体Hの圧力損失が増加することになる。しかし本実施形態ではV字部71が管路253の方向に整列しており、空間712が狭くならないため、加熱流体Hの圧力損失は増加せず、圧力損失による発電効率の低下といった不具合を招くことがない。   Further, when the V-shaped portion 71 is not in a state along the direction of the pipe line 253 due to the division of the fin 7, the cross-sectional area of the fin 7 becomes large, and as a result, as shown in FIG. The effective cross-sectional area of the space 712 in which H flows becomes narrow, and the pressure loss of the heating fluid H increases. However, in the present embodiment, the V-shaped portions 71 are aligned in the direction of the pipe line 253, and the space 712 is not narrowed. Therefore, the pressure loss of the heating fluid H does not increase, leading to problems such as a decrease in power generation efficiency due to the pressure loss. There is nothing.

[4]他の実施形態
本発明に係る一対のフィンの配設状態や形状は上記実施形態に限定はされず、一対の加熱板部(上記実施形態では主板部251)の一方側および他方側に、互いに非接合状態で分割されており、各フィンに、互いに対向する側に開口し、かつ、管路253の方向と交差する方向に沿ったスリットが形成されているとともに、少なくとも管路253の方向と交差する方向の両端部に、スリットによってフィンを分断させない連結部が設けられているものであれば、いかなる形態のものであってよい。
[4] Other Embodiments The arrangement state and shape of the pair of fins according to the present invention are not limited to the above embodiment, and one side and the other side of the pair of heating plate portions (main plate portion 251 in the above embodiment). In addition, the fins are divided in a non-joined state, and each fin is formed with a slit that is open on a side facing each other and that intersects the direction of the pipe 253, and at least the pipe 253. As long as the connection part which does not divide a fin with a slit is provided in the both ends of the direction which cross | intersects this direction, what kind of form may be sufficient.

例えば図12に示すように上記一対のフィン7を、先端部711どうしが対向せず、屈曲方向に互いに半ピッチずらして空間712に先端部711が対応する状態に配設してもよい。また、図13(a)に示すフィン8A,8Bは、図13(b)に示す一対の主板部251間の間隔と同等の高さを有する1枚のコルゲート板8の高さ方向中央部を、間隔が空くように切断して形成したもので、V字部81の先端部811を、それぞれ各主板部251に接合している。   For example, as shown in FIG. 12, the pair of fins 7 may be arranged in such a manner that the tip portions 711 do not face each other and are shifted by a half pitch in the bending direction so that the tip portions 711 correspond to the spaces 712. Moreover, fin 8A, 8B shown to Fig.13 (a) has the height direction center part of the sheet | seat corrugate board 8 which has the height equivalent to the space | interval between a pair of main plate parts 251 shown in FIG.13 (b). The tip portion 811 of the V-shaped portion 81 is joined to each main plate portion 251 respectively.

1…熱電変換式発電装置
25…管体
251…主板部(加熱板部)
253…管路
3…水冷ジャケット(冷却部)
4…熱電変換モジュール
41…熱電変換素子
7、8A、8B…フィン
72…スリット
721…連結部
H…加熱流体
DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion type electric power generation apparatus 25 ... Tube 251 ... Main plate part (heating plate part)
253 ... Pipe line 3 ... Water cooling jacket (cooling part)
DESCRIPTION OF SYMBOLS 4 ... Thermoelectric conversion module 41 ... Thermoelectric conversion element 7, 8A, 8B ... Fin 72 ... Slit 721 ... Connection part H ... Heating fluid

Claims (2)

対向する一対の加熱板部を少なくとも備え、内部に加熱流体が流される管路が形成された管体と、
前記加熱板部の外面側に配設される冷却部と、
前記加熱板部と前記冷却部との間に配設される熱電変換素子を有する熱電変換モジュールと、
前記管体の内部に配設されて前記加熱板部に接合され、前記加熱流体の熱を集熱して該加熱板部に伝達するフィンと、を備え、
前記加熱板部と前記冷却部とによって前記熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、
前記フィンは、前記一対の加熱板部の一方側および他方側に、互いに非接合状態で分割されており、
これら分割されたフィンには、互いに対向する側に開口し、かつ、前記管路の方向と交差する方向に沿ったスリットが形成されているとともに、少なくとも該管路の方向と交差する方向の両端部に、前記スリットによって該フィンを分断させない連結部が設けられていること
を特徴とする熱電変換式発電装置。
A pipe body that includes at least a pair of opposed heating plate portions, and in which a pipe line through which a heating fluid flows is formed;
A cooling part disposed on the outer surface side of the heating plate part;
A thermoelectric conversion module having a thermoelectric conversion element disposed between the heating plate portion and the cooling portion;
A fin disposed inside the tubular body and joined to the heating plate portion, collecting heat of the heating fluid and transmitting it to the heating plate portion, and
In the thermoelectric conversion power generator that generates power by giving a temperature difference to the thermoelectric conversion module by the heating plate part and the cooling part,
The fins are divided in a non-bonded state to one side and the other side of the pair of heating plate portions,
Each of the divided fins is formed with slits that open on opposite sides and extend along the direction intersecting the direction of the pipe line, and at least both ends in the direction intersecting the direction of the pipe line The thermoelectric power generation apparatus according to claim 1, further comprising a connecting portion that does not divide the fin by the slit.
前記フィンはコルゲート板で構成されていることを特徴とする請求項1に記載の熱電変換式発電装置。   The thermoelectric conversion power generator according to claim 1, wherein the fin is formed of a corrugated plate.
JP2014007735A 2014-01-20 2014-01-20 Thermoelectric conversion power generator Abandoned JP2015138790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007735A JP2015138790A (en) 2014-01-20 2014-01-20 Thermoelectric conversion power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007735A JP2015138790A (en) 2014-01-20 2014-01-20 Thermoelectric conversion power generator

Publications (1)

Publication Number Publication Date
JP2015138790A true JP2015138790A (en) 2015-07-30

Family

ID=53769623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007735A Abandoned JP2015138790A (en) 2014-01-20 2014-01-20 Thermoelectric conversion power generator

Country Status (1)

Country Link
JP (1) JP2015138790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210080912A (en) * 2019-12-23 2021-07-01 최우진 Fire sensing device having peltier element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210080912A (en) * 2019-12-23 2021-07-01 최우진 Fire sensing device having peltier element
KR102370005B1 (en) * 2019-12-23 2022-03-03 최우진 Fire sensing device having peltier element

Similar Documents

Publication Publication Date Title
JP6078412B2 (en) Thermoelectric power generator
US10777725B2 (en) Thermoelectric generator
US20150280097A1 (en) Thermoelectric conversion generating device
JP2015527729A (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
JP6039348B2 (en) Thermoelectric power generator
US10629794B2 (en) Thermoelectric power generation device and method for manufacturing same
JP2015138790A (en) Thermoelectric conversion power generator
JP2015138793A (en) Thermoelectric conversion power generator
JP6039346B2 (en) Thermoelectric power generator
JP6358209B2 (en) Thermoelectric generator
JP4923997B2 (en) Thermoelectric generator
JP6039347B2 (en) Thermoelectric power generator
JP2015138792A (en) Thermoelectric conversion power generator
JP2015135928A (en) Thermoelectric conversion power generator
JP2018206881A (en) Heat receiving unit and electrothermal power generation device with heat receiving unit
JP2017063091A (en) Thermoelectric conversion system
JP2016063104A (en) Thermoelectric converter
JP2014212167A (en) Thermoelectric conversion type power generator
JP5972743B2 (en) Thermoelectric power generator
JP2015138794A (en) Thermoelectric conversion type power generator
WO2017047562A1 (en) Thermoelectric power generation device and method for manufacturing same
WO2016093238A1 (en) Thermoelectric conversion device
JP6001988B2 (en) Thermoelectric power generator
JP2014075555A (en) Thermoelectric conversion power generator
WO2016093239A1 (en) Thermoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161011

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20170531