JP2014075555A - Thermoelectric conversion power generator - Google Patents

Thermoelectric conversion power generator Download PDF

Info

Publication number
JP2014075555A
JP2014075555A JP2012223635A JP2012223635A JP2014075555A JP 2014075555 A JP2014075555 A JP 2014075555A JP 2012223635 A JP2012223635 A JP 2012223635A JP 2012223635 A JP2012223635 A JP 2012223635A JP 2014075555 A JP2014075555 A JP 2014075555A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
heating
cooling
conversion module
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2012223635A
Other languages
Japanese (ja)
Inventor
Masanao Tominaga
昌尚 冨永
Takahiro Jinushi
孝広 地主
Zenzo Ishijima
善三 石島
Masayoshi Mori
正芳 森
Takeshi Yamagami
武 山上
Hiroshi Matsuda
洋 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012223635A priority Critical patent/JP2014075555A/en
Publication of JP2014075555A publication Critical patent/JP2014075555A/en
Ceased legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion power generator in which reduction of power generation performance can be minimized by reducing thermal effect on the heating part from a cooling part.SOLUTION: On both sides of a heating part 35A where a heating passage 351 is formed in a distribution pipe 35, a thermoelectric conversion module 4, and cooling parts 5A, 5B are disposed, respectively, and a power is generated by giving a temperature difference to the thermoelectric conversion module 4. In such a thermoelectric conversion power generator, a compartment 39 separated from the cooling parts 5A, 5B is provided on at least one side at respective ends on the side of the heating passage 351 corresponding to the upstream side and downstream side thereof in the cooling parts 5A, 5B. Thermal effect on the cooling parts 5A, 5B from the heating part 35A is reduced by insulating thermally in the compartment 39.

Description

本発明は、熱電変換モジュールに温度差を与えて熱エネルギーを電気エネルギーに変換する熱電変換式発電装置に関する。   The present invention relates to a thermoelectric power generation apparatus that converts a thermal energy into an electrical energy by giving a temperature difference to a thermoelectric conversion module.

熱電変換素子を用いて熱エネルギーを電気エネルギーに変換する発電技術が知られている。熱電変換素子は、離間した部位に温度差を与えることで高温部と低温部との間に電位差を生じさせるといったゼーベック効果を利用したもので、温度差が大きいほど発電量も大きくなる。このような熱電変換素子は、複数を接合した熱電変換素子モジュールという形態で用いられる。そして、熱電変換モジュールを加熱部と冷却部との間に挟み、熱電変換モジュールを加熱部によって加熱するとともに冷却部によって冷却することにより熱電変換モジュールに温度差を与えて、熱電変換モジュールから電気を得るといった熱電変換式発電装置が構成される(特許文献1等参照)。   A power generation technique for converting thermal energy into electrical energy using a thermoelectric conversion element is known. The thermoelectric conversion element uses a Seebeck effect in which a potential difference is generated between a high-temperature part and a low-temperature part by giving a temperature difference to a separated part, and the power generation amount increases as the temperature difference increases. Such a thermoelectric conversion element is used in the form of a thermoelectric conversion element module in which a plurality of thermoelectric conversion elements are joined. Then, the thermoelectric conversion module is sandwiched between the heating unit and the cooling unit, and the thermoelectric conversion module is heated by the heating unit and cooled by the cooling unit, thereby giving a temperature difference to the thermoelectric conversion module, and electricity from the thermoelectric conversion module is obtained. A thermoelectric conversion power generation device is obtained (see Patent Document 1).

特開2009−088408号公報JP 2009-088408 A

この種の発電装置においては、例えば車両に搭載されてエンジンの排気ガス等の排熱を利用して発電するよう用いられる。その場合には、発電装置は全体として管状に形成され、排熱である加熱流体を中心の加熱流路に流して加熱部を構成し、加熱部の周囲に熱電変換モジュール、および冷却水が供給される冷却部を配設した構造となる。このような構造においては、加熱部によって冷却部が加熱されると大きな温度差を得ることができにくくなり、発電性能の低下を招くといった問題が生じる。   In this type of power generation device, for example, it is mounted on a vehicle and used to generate power using exhaust heat such as exhaust gas from an engine. In that case, the power generator is formed in a tubular shape as a whole, and a heating fluid is flowed through the central heating flow path to form a heating unit, and a thermoelectric conversion module and cooling water are supplied around the heating unit. It becomes the structure which arrange | positioned the cooling part. In such a structure, when the cooling unit is heated by the heating unit, it becomes difficult to obtain a large temperature difference, which causes a problem that power generation performance is reduced.

本発明は上記事情に鑑みてなされたもので、その主たる課題は、冷却部が加熱部から受ける熱影響を少なくして発電性能の低下を抑えることができる熱電変換式発電装置を提供することにある。   The present invention has been made in view of the above circumstances, and a main problem thereof is to provide a thermoelectric conversion power generation device that can reduce a thermal effect that the cooling unit receives from the heating unit and suppress a decrease in power generation performance. is there.

本発明の熱電変換式発電装置は、熱電変換モジュールの両側に加熱部および冷却部がそれぞれ配設され、これら加熱部および冷却部によって熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、前記加熱部は加熱流体が流される加熱流路を有し、この加熱流路の側方であって前記冷却部における該加熱流路の上流側および下流側に対応する各端部の少なくとも一方側に、該加熱部と該冷却部とを隔てる隔室が設けられていることを特徴とする。   The thermoelectric conversion power generation apparatus of the present invention is provided with a heating unit and a cooling unit on both sides of the thermoelectric conversion module, respectively, and the thermoelectric conversion type generates electricity by giving a temperature difference to the thermoelectric conversion module by the heating unit and the cooling unit. In the power generation device, the heating unit has a heating channel through which a heating fluid flows, and each end corresponding to an upstream side and a downstream side of the heating channel in the cooling unit at a side of the heating channel. On at least one side, a compartment that separates the heating unit and the cooling unit is provided.

本発明によれば、加熱部と冷却部との間に設けられた隔室の断熱効果によって加熱部から冷却部への熱影響が抑えられ、発電性能の低下が抑えられる。   According to the present invention, the heat effect from the heating unit to the cooling unit is suppressed by the heat insulating effect of the compartment provided between the heating unit and the cooling unit, and the decrease in power generation performance is suppressed.

本発明では、前記隔室内に、前記熱電変換モジュールから引き出される電気導線が配線されている形態を含む。この形態によれば、隔室内に配線された電気導線が加熱部からの熱影響を受けにくくなるため、電気導線の劣化が抑えられ、装置の信頼性を向上させることができる。   The present invention includes a mode in which an electrical lead drawn from the thermoelectric conversion module is wired in the compartment. According to this aspect, since the electric conducting wire wired in the compartment is hardly affected by the heat from the heating unit, deterioration of the electric conducting wire can be suppressed and the reliability of the apparatus can be improved.

また、本発明では、前記隔室は、前記加熱流路の下流側に配設されており、この下流側の隔室に前記電気導線が配線されている形態を含む。この形態によれば、加熱流体は上流側よりも下流側の方が温度が低下しているため、隔室が上流側に配設されている場合よりも電気導線への温度影響を低減させることができ、電気導線の劣化を抑える点で、より有効である。   Moreover, in this invention, the said compartment is arrange | positioned in the downstream of the said heating flow path, and the form by which the said electrical conducting wire is wired by this downstream compartment is included. According to this embodiment, since the temperature of the heated fluid is lower on the downstream side than on the upstream side, the temperature influence on the electrical conductor can be reduced more than when the compartment is arranged on the upstream side. This is more effective in terms of suppressing deterioration of the electrical conductor.

また、本発明では、前記熱電変換モジュールは密閉容器内に収容され、該密閉容器の外側に、前記加熱部、前記冷却部および前記隔室が設けられ、該密閉容器が減圧される形態を含む。この形態によれば、熱電変換モジュールが加熱されにくくなるため耐酸化性が向上し、熱電変換モジュールの劣化が抑えられて発電性能の向上が図られる。また、隔室内は大気状態でよいため、電気導線を隔室から装置外部へ貫通させる部分に高い気密性は求められない。また、電気導線を冷却部に通す構造ではないため、電気導線を冷却部に貫通させる気密封止の構造も不要である。これらの点で、装置の簡素化が図られるとともに信頼性が向上する。   In the present invention, the thermoelectric conversion module is housed in a sealed container, and the heating unit, the cooling unit, and the compartment are provided outside the sealed container, and the sealed container is decompressed. . According to this form, since the thermoelectric conversion module is hardly heated, oxidation resistance is improved, deterioration of the thermoelectric conversion module is suppressed, and power generation performance is improved. In addition, since the compartment may be in an atmospheric state, high airtightness is not required in the portion where the electric conducting wire penetrates from the compartment to the outside of the apparatus. Further, since the electric conducting wire is not passed through the cooling unit, an airtight sealing structure that allows the electric conducting wire to pass through the cooling unit is unnecessary. In these respects, the apparatus is simplified and the reliability is improved.

本発明によれば、冷却部が加熱部から受ける熱影響を少なくして発電性能の低下を抑えることができる熱電変換式発電装置が提供されるといった効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that the thermoelectric conversion type electric power generating apparatus which can reduce the thermal influence which a cooling part receives from a heating part, and can suppress the fall of electric power generation performance is provided.

本発明の一実施形態に係る熱電変換式発電装置の外側カバーを外した状態の全体斜視図である。It is the whole perspective view in the state where the outer side cover of the thermoelectric conversion type power generator concerning one embodiment of the present invention was removed. 図1と同じ状態である同装置の他方向斜視図である。It is the other direction perspective view of the same apparatus which is the same state as FIG. 一実施形態の熱電変換式発電装置の側面図である。It is a side view of the thermoelectric conversion power generation device of one embodiment. 図3のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 一実施形態の熱電変換式発電装置の正面図である。It is a front view of the thermoelectric conversion type generator of one embodiment. 図5のVI−VI断面図である。It is VI-VI sectional drawing of FIG. (a)一実施形態の熱電変換式発電装置を構成する発電ユニットの正面図、(b)フィンを除いた側面図である。(A) It is a front view of the electric power generation unit which comprises the thermoelectric conversion type electric power generating apparatus of one Embodiment, (b) It is the side view except a fin. 図6の一部拡大図であって、加熱部と冷却部、および隔室を示す断面図である。FIG. 7 is a partially enlarged view of FIG. 6, which is a cross-sectional view showing a heating unit, a cooling unit, and a compartment.

以下、図面を参照して本発明の一実施形態を説明する。
[1]熱電変換式発電装置の全体構成
図1〜図6は、一実施形態の熱電変換式発電装置(以下、発電装置)1を示している。この発電装置1は、密閉容器3を有する複数の発電ユニット2が図中Y方向に冷却部5Aを挟んで並列状態で積層され、装置1全体の両側面、すなわちY方向両端部にも冷却部5Bが配設された構成となっている。発電ユニット2の数は任意であり、この場合は4つの発電ユニット2を積層して発電装置1を構成している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[1] Overall Configuration of Thermoelectric Conversion Power Generation Device FIGS. 1 to 6 show a thermoelectric conversion power generation device (hereinafter referred to as a power generation device) 1 according to an embodiment. In this power generation device 1, a plurality of power generation units 2 each having a sealed container 3 are stacked in a parallel state with a cooling unit 5A sandwiched in the Y direction in the figure, and cooling units are also provided on both side surfaces of the entire device 1, that is, both ends in the Y direction. 5B is arranged. The number of the power generation units 2 is arbitrary, and in this case, the power generation apparatus 1 is configured by stacking four power generation units 2.

密閉容器3は、縦断面(Y−Z断面)がZ方向に長い略直方体の箱状の筐体30と、筐体30内の中央部に配設された縦断面がZ方向に長い扁平管状の流通管35と、X方向両端の開口を塞ぐ封止カバー38(図6参照)とから構成されている。筐体30および流通管35はいずれもX方向の両端が開口しており、流通管35の内部が、後述する加熱流体がX方向に流される加熱流路351となっている。   The hermetic container 3 includes a substantially rectangular parallelepiped box-shaped casing 30 whose longitudinal section (YZ section) is long in the Z direction, and a flat tube whose longitudinal section disposed in the center of the casing 30 is long in the Z direction. And a sealing cover 38 (see FIG. 6) that closes the openings at both ends in the X direction. Both the casing 30 and the flow pipe 35 are open at both ends in the X direction, and the inside of the flow pipe 35 is a heating flow path 351 through which a heating fluid described later flows in the X direction.

図7に示すように、筐体30は、X−Z面と平行な互いに対向する一対の可動板部31と、可動板部31の上下の端縁を連結する平板状の一対の端板部32とにより、略直方形の箱状に形成されている。また、流通管35は、X−Z面と平行な互いに対向する一対の内板部36と、内板部36の上下の端縁を連結する断面半円弧状の一対の湾曲部37とにより、扁平管状に形成されている。   As shown in FIG. 7, the housing 30 includes a pair of movable plate portions 31 that are parallel to the XZ plane and that face each other, and a pair of flat end plate portions that connect upper and lower edges of the movable plate portion 31. 32 is formed in a substantially rectangular box shape. Further, the flow pipe 35 includes a pair of inner plate portions 36 parallel to the XZ plane and facing each other, and a pair of curved portions 37 having a semicircular cross section that connects the upper and lower end edges of the inner plate portion 36. It is formed in a flat tubular shape.

流通管35の内部、すなわち密閉容器3内の加熱流路351には、フィン352が配設されている。フィン352は、例えば板材を折り曲げ加工して波板状に形成したもので、屈曲部の外側が内板部36の内面に当接した状態でろう付け等の接合手段で接合されている。本実施形態では、加熱流路351にフィン352が配設され、加熱流体が流される流通管35によって加熱部35Aが構成されている。   Fins 352 are disposed inside the flow pipe 35, that is, in the heating flow path 351 in the sealed container 3. The fins 352 are formed, for example, by bending a plate material into a corrugated plate shape, and are joined by a joining means such as brazing while the outer side of the bent portion is in contact with the inner surface of the inner plate portion 36. In the present embodiment, fins 352 are disposed in the heating flow path 351, and the heating section 35A is configured by the flow pipe 35 through which the heating fluid flows.

密閉容器3内、すなわち筐体30の内面と流通管35の外面との間には、縦断面がZ方向に長い略環状の内部空間3aが形成されている。そして、この内部空間3aにおけるY方向両側には、筐体30の可動板部31と流通管35の内板部36との間に挟まれた状態で、熱電変換モジュール4がそれぞれ配設されている。   A substantially annular inner space 3a having a longitudinal section that is long in the Z direction is formed in the sealed container 3, that is, between the inner surface of the housing 30 and the outer surface of the flow pipe 35. And the thermoelectric conversion module 4 is each arrange | positioned in the state pinched | interposed between the movable plate part 31 of the housing | casing 30, and the inner plate part 36 of the flow pipe 35 in the Y direction both sides in this internal space 3a. Yes.

内部空間3aのY方向両側の領域に熱電変換モジュール4が一対の状態で配設された複数の密閉容器3は、図4および図6に示すように、可動板部31間に冷却部5Aを挟んでY方向に並列して積層される。また、Y方向両端の可動板部31の外面にも、それぞれ冷却部5Bが配設される。以下、密閉容器3間の冷却部5Aを中間冷却部5A、Y方向両端部の冷却部5Bを端部冷却部5Bと称する。   As shown in FIGS. 4 and 6, the plurality of sealed containers 3 in which the thermoelectric conversion modules 4 are disposed in a pair of states in regions on both sides in the Y direction of the internal space 3 a include the cooling unit 5 </ b> A between the movable plate units 31. They are stacked in parallel in the Y direction. In addition, cooling units 5B are also disposed on the outer surfaces of the movable plate 31 at both ends in the Y direction. Hereinafter, the cooling unit 5A between the sealed containers 3 is referred to as an intermediate cooling unit 5A, and the cooling units 5B at both ends in the Y direction are referred to as end cooling units 5B.

熱電変換モジュール4は、図8に示すように、平面状に並べられた複数の熱電変換素子41の、一方側の面および他方側の面を、銅等からなる電極42によりジグザグ状に連結して構成されたもので、一方の面側の電極42が流通管35の内板部36の内面にろう付け等の接合手段で接合されている。また、熱電変換モジュール4の他方の面側の電極42は、筐体30の可動板部31の、後述する内側剛性部312の内面に当接している。すなわち、熱電変換モジュール4は内側剛性部312と非接合状態であり、双方は互いの当接面に沿って相対移動可能となっている。   As shown in FIG. 8, the thermoelectric conversion module 4 connects one surface and the other surface of a plurality of thermoelectric conversion elements 41 arranged in a plane in a zigzag manner by an electrode 42 made of copper or the like. The electrode 42 on one surface side is joined to the inner surface of the inner plate portion 36 of the flow pipe 35 by a joining means such as brazing. The electrode 42 on the other surface side of the thermoelectric conversion module 4 is in contact with the inner surface of the inner rigid portion 312 described later of the movable plate portion 31 of the housing 30. That is, the thermoelectric conversion module 4 is in a non-bonded state with the inner rigid portion 312, and both can move relative to each other along the contact surface.

熱電変換モジュール4を構成する熱電変換素子41は、耐熱温度が高い種類が用いられ、例えば、シリコン−ゲルマニウム系、マグネシウム−シリコン系、マンガン−シリコン系、珪化鉄系等が好適に用いられる。図7(a)に示すように、流通管35の両側の熱電変換モジュール4は、下端部が接続導線45で接続されており、これら両側の熱電変換モジュール4で、1つの発電ユニット2の電源を構成する。そして、図6に示すように、流通管35の両側の各熱電変換モジュール4からは、リード線(本発明の電気導線)46が、それぞれ1つずつ接続されている。   As the thermoelectric conversion element 41 constituting the thermoelectric conversion module 4, a type having a high heat-resistant temperature is used. For example, a silicon-germanium system, a magnesium-silicon system, a manganese-silicon system, an iron silicide system, or the like is preferably used. As shown in FIG. 7 (a), the thermoelectric conversion modules 4 on both sides of the flow pipe 35 are connected at the lower ends by connecting wires 45, and the thermoelectric conversion modules 4 on both sides are used to supply power to one power generation unit 2. Configure. As shown in FIG. 6, one lead wire (electrical conducting wire of the present invention) 46 is connected to each thermoelectric conversion module 4 on both sides of the flow pipe 35.

[2]密閉容器の構成
上記密閉容器3の筐体30を構成する可動板部31は、図7に示すように、外形が長方形の枠状に形成された外側剛性部311と、外側剛性部311の内側に配設された外側剛性部311と同じ厚さの内側剛性部312と、外側剛性部311と内側剛性部312との間に形成される一定幅の隙間314を塞ぐ状態に配設された各剛性部311,312の厚さよりも薄い変形部313とを有している。
[2] Configuration of Airtight Container As shown in FIG. 7, the movable plate portion 31 constituting the casing 30 of the airtight container 3 includes an outer rigid portion 311 formed in a rectangular frame shape, and an outer rigid portion. The inner rigid portion 312 having the same thickness as the outer rigid portion 311 disposed on the inner side of 311 and the gap 314 having a constant width formed between the outer rigid portion 311 and the inner rigid portion 312 are closed. The deformed portion 313 is thinner than the thickness of each rigid portion 311, 312.

外側剛性部311の内縁311aは略長円形状に形成されており、内側剛性部312の外縁312aは、外側剛性部311の内縁311aから一定の隙間314を空けて略長円形状に形成されている。内側剛性部312の外面には、可撓性を有する薄板315がろう付け等の接合手段で接合されている。この薄板315は各剛性部311,312の間の隙間314を覆って外側剛性部311の外面に達する大きさを有しており、外縁部が外側剛性部311の外面にろう付け等の接合手段で接合されている。この薄板315により剛性部311,312どうしが同一平面内に存在するように連結された状態となっている。本実施形態では剛性部311,312どうしが同一平面内に存在しているが、各剛性部311,312の位置関係はこれに限定されず、いずれか一方が内側にずれた状態で薄板315により連結されている構成であってもよい。   The inner edge 311a of the outer rigid portion 311 is formed in a substantially oval shape, and the outer edge 312a of the inner rigid portion 312 is formed in a substantially oval shape with a certain gap 314 from the inner edge 311a of the outer rigid portion 311. Yes. A flexible thin plate 315 is joined to the outer surface of the inner rigid portion 312 by a joining means such as brazing. The thin plate 315 has a size that covers the gap 314 between the rigid portions 311, 312 and reaches the outer surface of the outer rigid portion 311, and the outer edge portion is joined to the outer surface of the outer rigid portion 311 such as brazing. It is joined with. The thin plates 315 are connected so that the rigid portions 311 and 312 are in the same plane. In the present embodiment, the rigid portions 311 and 312 are present in the same plane, but the positional relationship between the rigid portions 311 and 312 is not limited to this, and one of the rigid portions 311 and 312 is displaced inward by the thin plate 315. The connected structure may be sufficient.

薄板315の隙間314を覆う部分が可撓性を有する略環状の変形部313を構成している。図8に示すように、変形部313の幅方向中央部には、内側に向けて突出する凸条部313aが全周にわたって形成されている(二点鎖線)。   A portion of the thin plate 315 covering the gap 314 constitutes a substantially annular deformed portion 313 having flexibility. As shown in FIG. 8, a convex strip 313 a that protrudes inward is formed at the center in the width direction of the deformable portion 313 (two-dot chain line).

外側剛性部311のZ方向の両側の端縁は端板部32に一体化した状態に形成されている。すなわち上下一対の端板部32に両側の外側剛性部311が一体成形されており、外側剛性部311に薄板315を介して内側剛性部312が接合されて、筐体30が構成されている。内側剛性部312は、熱電変換モジュール4を覆う大きさを有し、熱電変換モジュール4の片面全面に当接した状態となっている。   Edges on both sides in the Z direction of the outer rigid portion 311 are formed so as to be integrated with the end plate portion 32. That is, the outer rigid portion 311 on both sides is integrally formed with the pair of upper and lower end plate portions 32, and the inner rigid portion 312 is joined to the outer rigid portion 311 via the thin plate 315 to constitute the housing 30. The inner rigid portion 312 has a size that covers the thermoelectric conversion module 4 and is in contact with the entire surface of one side of the thermoelectric conversion module 4.

密閉容器3の上側の端板部32には複数の減圧封止口321が設けられており、これら減圧封止口321を利用して密閉容器3内の内部空間3aは減圧される。密閉容器3内が減圧されると、可撓性を有する変形部313は図8の実線に示すように凸条部313aが内側にさらに突出するように変形する。   A plurality of decompression sealing ports 321 are provided in the upper end plate portion 32 of the sealed container 3, and the internal space 3 a in the sealed container 3 is decompressed using these decompression sealing ports 321. When the inside of the hermetic container 3 is depressurized, the deformable portion 313 having flexibility is deformed so that the protruding strip portion 313a further protrudes inward as shown by a solid line in FIG.

図6に示すように、密閉容器3の内部空間3aのX方向両側の開口は、断面が内側にへこんだ断面U字状で全体としては長円環状の封止カバー38で塞がれている。封止カバー38は、可動板部31の外側剛性部311の内面と、流通管35のX方向端部の外面に気密的に接合されている。密閉容器3の内部空間3aは、筐体30、流通管35および封止カバー38によって気密的に封止されている。そして、各密閉容器3の筐体30のX方向両端面には、図5および図6に示すように外側カバー33が接合され、本装置1のX方向両側が、この外側カバー33で覆われている。各流通管35のX方向両端部は各筐体30から突出しており、この突出端部は、外側カバー33に形成された流通管挿入孔331を貫通して外部に突出している。なお、図1および図2の装置全体図では、密閉容器3内や中間冷却部5Aを示すために、外側カバー33を図示していない。   As shown in FIG. 6, the openings on both sides in the X direction of the internal space 3 a of the sealed container 3 are closed by a sealing cover 38 which is U-shaped and has an oval cross section as a whole. . The sealing cover 38 is airtightly joined to the inner surface of the outer rigid portion 311 of the movable plate portion 31 and the outer surface of the end portion in the X direction of the flow pipe 35. The internal space 3 a of the sealed container 3 is hermetically sealed by the housing 30, the distribution pipe 35 and the sealing cover 38. Then, as shown in FIGS. 5 and 6, an outer cover 33 is joined to both end surfaces of the casing 30 of each sealed container 3 in the X direction, and both sides of the apparatus 1 in the X direction are covered with the outer cover 33. ing. Both end portions in the X direction of each flow pipe 35 protrude from each housing 30, and the protruding end portions pass through flow pipe insertion holes 331 formed in the outer cover 33 and protrude to the outside. 1 and 2 do not show the outer cover 33 in order to show the inside of the hermetic container 3 and the intermediate cooling part 5A.

本実施形態においては、図8に示すように、熱電変換モジュール4の内側に加熱部35Aが配設され、熱電変換モジュール4の外側に冷却部5A,5Bが配設されている。加熱部35Aの流通管35内の加熱流路351内には、加熱流体Hが一方向(この場合、左から右)に流され、加熱流路351の側方の冷却部5A,5Bにおける加熱流路351の上流側および下流側に対応する各端部、すなわち冷却部5A,5BのX方向両側の端部には、封止カバー38と外側カバー33とによって仕切られる隔室39が、それぞれ形成されている。これら隔室39は、加熱部35Aおよび冷却部5A,5Bと隔てられている。   In the present embodiment, as shown in FIG. 8, the heating unit 35 </ b> A is disposed inside the thermoelectric conversion module 4, and the cooling units 5 </ b> A and 5 </ b> B are disposed outside the thermoelectric conversion module 4. The heating fluid H is allowed to flow in one direction (in this case, from left to right) in the heating channel 351 in the flow pipe 35 of the heating unit 35A, and heating in the cooling units 5A and 5B on the side of the heating channel 351 is performed. At each end corresponding to the upstream side and the downstream side of the flow path 351, that is, at both ends in the X direction of the cooling parts 5A and 5B, compartments 39 partitioned by the sealing cover 38 and the outer cover 33 are respectively provided. Is formed. These compartments 39 are separated from the heating part 35A and the cooling parts 5A and 5B.

図6および図8に示すように、下流側の各隔室39には、各熱電変換モジュール4から引き出されたリード線46が挿入されて配線されている。これらリード線46のうち、中間冷却部5Aの両側のリード線46は隔室39内で接続されており、端部冷却部5B側のリード線46は外側カバー33を貫通して装置外に引き出されている(図1および図2参照)。したがって本装置1では、内部の複数の熱電変換モジュール4が直列に接続され、+・−の2本の外部リード線46が装置外に引き出されており、これらリード線46から電気が取り出されるようになっている。隔室39は環状に形成されており、図1および図2に示すように、リード線46はこれら図で流通管35の上端部に対応する位置において熱電変換モジュール4から引き出され、配線されている。   As shown in FIGS. 6 and 8, lead wires 46 drawn from the thermoelectric conversion modules 4 are inserted and wired in the downstream compartments 39. Of these lead wires 46, the lead wires 46 on both sides of the intermediate cooling section 5A are connected in the compartment 39, and the lead wires 46 on the end cooling section 5B side penetrate the outer cover 33 and are drawn out of the apparatus. (See FIGS. 1 and 2). Therefore, in this apparatus 1, a plurality of internal thermoelectric conversion modules 4 are connected in series, and two external lead wires 46 of + and − are drawn out of the apparatus so that electricity can be taken out from these lead wires 46. It has become. The compartment 39 is formed in an annular shape, and as shown in FIGS. 1 and 2, the lead wire 46 is drawn from the thermoelectric conversion module 4 at a position corresponding to the upper end portion of the flow pipe 35 in these drawings and wired. Yes.

密閉容器3は、減圧封止口321から内部の空気を吸引して密閉容器3内の内部空間3aを所定圧力(例えば1〜100Pa程度)に減圧し、減圧封止口321を溶接するなどして気密的に封止した状態とされる。密閉容器3内が減圧されると、可動板部31の可撓性を有する変形部313は、図8の実線に示すように凸条部313aが内側にさらに突出するように変形し、これにより内側剛性部312は熱電変換モジュール4に均一に密着した状態となる。   The sealed container 3 sucks the internal air from the decompression sealing port 321 to decompress the internal space 3a in the sealed container 3 to a predetermined pressure (for example, about 1 to 100 Pa), and welds the decompression sealing port 321. And hermetically sealed. When the inside of the sealed container 3 is depressurized, the deformable portion 313 having flexibility of the movable plate portion 31 is deformed so that the protruding portion 313a further protrudes inward as shown by the solid line in FIG. The inner rigid portion 312 is in close contact with the thermoelectric conversion module 4.

[3]冷却部
中間冷却部5Aおよび端部冷却部5Bは、それぞれ冷却ケース53A,53Bを備えている。中間冷却部5Aの冷却ケース53Aは、可動板部31の外側剛性部311の周縁に沿った枠状に形成されており、隣接する外側剛性部311の間に挟まれ、これら外側剛性部311の外面周縁部に接合されている。すなわち本装置1においては、隣接する筐体30は、隣接する外側剛性部311どうしが冷却ケース53Aを介して接合された状態となっている。冷却ケース53Aと、冷却ケース53Aを挟む両側の可動板部31とで囲まれた中間冷却部5Aの内部には、冷却水の流路となって可動板部31を冷却する冷却ジャケット53aが形成されている。
[3] Cooling unit The intermediate cooling unit 5A and the end cooling unit 5B include cooling cases 53A and 53B, respectively. The cooling case 53A of the intermediate cooling part 5A is formed in a frame shape along the periphery of the outer rigid part 311 of the movable plate part 31, and is sandwiched between adjacent outer rigid parts 311. It is joined to the outer peripheral edge. That is, in the present apparatus 1, the adjacent casings 30 are in a state where the adjacent outer rigid portions 311 are joined together via the cooling case 53A. A cooling jacket 53a is formed inside the intermediate cooling part 5A surrounded by the cooling case 53A and the movable plate parts 31 on both sides sandwiching the cooling case 53A to cool the movable plate part 31 as a cooling water flow path. Has been.

一方、端部冷却部5Bの冷却ケース53Bは、端部の可動板部31を覆う蓋状に形成されており、片面側に形成された浅い凹所を可動板部31側に向けて、端縁が外側剛性部311の外面周縁部に接合されている。冷却ケース53Bの内面と可動板部31とで囲まれた端部冷却部5Bの内部には、冷却水が供給されて可動板部31を冷却する冷却ジャケット53bが形成されている。   On the other hand, the cooling case 53B of the end cooling unit 5B is formed in a lid shape that covers the movable plate 31 at the end, and the shallow recess formed on one side is directed toward the movable plate 31 to end the cooling plate 53B. The edge is joined to the outer peripheral edge of the outer rigid portion 311. A cooling jacket 53 b that is supplied with cooling water to cool the movable plate portion 31 is formed in the end cooling portion 5 </ b> B surrounded by the inner surface of the cooling case 53 </ b> B and the movable plate portion 31.

中間冷却部5Aおよび端部冷却部5Bの各冷却ケース53A,53Bの、下端面には冷却水供給口51が、また、上端面には冷却水排水口52が、それぞれ形成されている。冷却水供給口51および冷却水排水口52はX方向の中央に形成されており、冷却水供給口51および冷却水排水口52には、それぞれ図示せぬ冷却水供給管および排水管が接続される。   In each of the cooling cases 53A and 53B of the intermediate cooling unit 5A and the end cooling unit 5B, a cooling water supply port 51 is formed at the lower end surface, and a cooling water drain port 52 is formed at the upper end surface. The cooling water supply port 51 and the cooling water drain port 52 are formed in the center in the X direction, and a cooling water supply pipe and a drain pipe (not shown) are connected to the cooling water supply port 51 and the cooling water drain port 52, respectively. The

中間冷却部5Aおよび端部冷却部5Bの冷却ジャケット53a,53b内には、可動板部31の内側剛性部312と熱電変換モジュール4に当接するフィン7が複数設けられている。   A plurality of fins 7 that contact the inner rigid portion 312 of the movable plate portion 31 and the thermoelectric conversion module 4 are provided in the cooling jackets 53a and 53b of the intermediate cooling portion 5A and the end cooling portion 5B.

[4]発電装置の作用
上記構成からなる発電装置1では、各冷却ジャケット53a,53b内に冷却水を供給して流通させ、密閉容器3の可動板部31を冷却する。一方、各流通管35の加熱流路351に、一端側から他端側に向けて高温の加熱流体Hを流して流通管35を加熱する。冷却された可動板部31の温度は熱電変換モジュール4の外面側に伝わり、熱電変換モジュール4の外面側が冷却され、一方、加熱された流通管35の内板部36の温度は熱電変換モジュール4の内面側に伝わり、熱電変換モジュール4の内面側が加熱される。加熱流体Hは加熱流路351を流れることで拡散せず、流通管35の内板部36が効率よく加熱される。
[4] Action of Power Generation Device In the power generation device 1 having the above-described configuration, cooling water is supplied and circulated in the cooling jackets 53a and 53b, and the movable plate portion 31 of the hermetic container 3 is cooled. On the other hand, a high-temperature heating fluid H is flowed from one end side to the other end side through the heating flow path 351 of each flow pipe 35 to heat the flow pipe 35. The temperature of the cooled movable plate portion 31 is transmitted to the outer surface side of the thermoelectric conversion module 4, and the outer surface side of the thermoelectric conversion module 4 is cooled, while the temperature of the inner plate portion 36 of the heated flow pipe 35 is heated. The inner surface side of the thermoelectric conversion module 4 is heated. The heating fluid H does not diffuse by flowing through the heating flow path 351, and the inner plate portion 36 of the flow pipe 35 is efficiently heated.

本実施形態では、筐体30の可動板部31が冷却側の板部材となり、流通管35の内板部36が加熱側の板部材を構成する。このようにして熱電変換モジュール4の外面側と内面側に温度差が与えられることで、熱電変換モジュール4は発電し、外部リード線46から電気が取り出される。   In the present embodiment, the movable plate portion 31 of the housing 30 serves as a cooling-side plate member, and the inner plate portion 36 of the flow pipe 35 constitutes a heating-side plate member. In this way, a temperature difference is given between the outer surface side and the inner surface side of the thermoelectric conversion module 4, whereby the thermoelectric conversion module 4 generates power and electricity is taken out from the external lead wire 46.

本実施形態の発電装置1は、例えば工場やゴミ焼却炉で発生する排熱ガスや、自動車の排気ガスなどが、上記加熱流体Hとして利用される。   In the power generation apparatus 1 of this embodiment, for example, exhaust heat gas generated in a factory or a garbage incinerator, automobile exhaust gas, or the like is used as the heating fluid H.

[5]一実施形態の作用効果
上記一実施形態の発電装置1によれば、加熱部35Aと冷却部5A,5Bとの間に設けられた隔室39の断熱効果によって加熱部35Aから冷却部5A,5Bへの熱影響が抑えられ、発電性能の低下が抑えられる。特に、加熱流体Hの上流側に隔室39が配されていることにより、下流側よりも高温である加熱流体Hからの高熱の影響を冷却部5A,5Bは受けにくい構造となっている。
[5] Operational Effect of One Embodiment According to the power generation apparatus 1 of the above-described embodiment, the cooling unit 35A is cooled by the heat insulating effect of the compartment 39 provided between the heating unit 35A and the cooling units 5A and 5B. The influence of heat on 5A and 5B is suppressed, and the decrease in power generation performance is suppressed. In particular, since the compartment 39 is arranged on the upstream side of the heating fluid H, the cooling units 5A and 5B are less likely to be affected by the high heat from the heating fluid H that is higher in temperature than the downstream side.

また、下流側の隔室39内に、熱電変換モジュールから引き出されるリード線46が配線されており、このため、リード線46が加熱部からの熱影響を受けにくくリード線46の劣化が抑えられ、装置の信頼性を向上させることができる。本実施形態では、下流側の隔室39内にリード線46が配線されているため、下流側の加熱流体Hは上流側よりも温度が低下しており、したがってリード線46への温度影響をより低減させることができ、劣化を抑える点で、より有効となっている。   Moreover, the lead wire 46 drawn out from the thermoelectric conversion module is wired in the downstream compartment 39, so that the lead wire 46 is hardly affected by the heat from the heating portion, and the deterioration of the lead wire 46 is suppressed. The reliability of the apparatus can be improved. In this embodiment, since the lead wire 46 is wired in the downstream compartment 39, the temperature of the downstream heated fluid H is lower than that of the upstream side. It can be further reduced, and is more effective in suppressing deterioration.

また、熱電変換モジュール4は減圧される密閉容器3内に収容されているため、熱電変換モジュール4は加熱部39Aから加熱されにくく、その結果、耐酸化性が向上して劣化が抑えられ、この点でも発電性能の向上が図られる。また、隔室39内は大気状態であることから、リード線46を隔室39から装置外部へ貫通させる部分の気密性は不要である。また、リード線46を冷却部5A,5Bに通す構造ではないため、リード線46を冷却部5A,5Bに貫通させる気密封止の構造も不要である。これらの点で、装置の簡素化が図られるとともに信頼性の向上が図られる。   Further, since the thermoelectric conversion module 4 is housed in the sealed container 3 to be decompressed, the thermoelectric conversion module 4 is hardly heated from the heating portion 39A, and as a result, the oxidation resistance is improved and deterioration is suppressed. This also improves the power generation performance. In addition, since the inside of the compartment 39 is in the atmospheric state, the airtightness of the portion through which the lead wire 46 penetrates from the compartment 39 to the outside of the apparatus is unnecessary. Further, since the lead wire 46 is not structured to pass through the cooling parts 5A and 5B, an airtight sealing structure that allows the lead wire 46 to penetrate the cooling parts 5A and 5B is not necessary. In these respects, the apparatus can be simplified and the reliability can be improved.

なお、上記実施形態においては、熱電変換モジュール4と、冷却側の板部材(この場合、密閉容器3における可動板部31の内側剛性部312)および加熱側の板部材(この場合、密閉容器3における流通管35の内板部36)の少なくとも一方との間に、例えば柔軟性を有する材料からなる緩衝材を配設する構成としてもよい。このような構成の場合には、密閉容器3が該緩衝材を介して熱電変換モジュール4に加圧状態で当接し、熱電変換モジュール4が緩衝材で保護される。   In the above embodiment, the thermoelectric conversion module 4, the cooling side plate member (in this case, the inner rigid portion 312 of the movable plate portion 31 in the sealed container 3), and the heating side plate member (in this case, the sealed container 3). For example, a cushioning material made of a flexible material may be disposed between at least one of the inner plate portions 36) of the flow pipe 35 in FIG. In the case of such a configuration, the sealed container 3 abuts against the thermoelectric conversion module 4 through the buffer material in a pressurized state, and the thermoelectric conversion module 4 is protected by the buffer material.

1…熱電変換式発電装置
3…密閉容器
35A…加熱部
351…加熱流路
39…隔室
4…熱電変換モジュール
46…リード線(電気導線)
5A,5B…冷却部
H…加熱流体
DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion type generator 3 ... Sealed container 35A ... Heating part 351 ... Heating flow path 39 ... Compartment 4 ... Thermoelectric conversion module 46 ... Lead wire (electrical conductor)
5A, 5B ... Cooling part H ... Heated fluid

Claims (4)

熱電変換モジュールの両側に加熱部および冷却部がそれぞれ配設され、これら加熱部および冷却部によって熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、
前記加熱部は加熱流体が流される加熱流路を有し、
この加熱流路の側方であって前記冷却部における該加熱流路の上流側および下流側に対応する各端部の少なくとも一方側に、該加熱部と該冷却部とを隔てる隔室が設けられていることを特徴とする熱電変換式発電装置。
In the thermoelectric conversion power generator that generates power when a heating unit and a cooling unit are respectively disposed on both sides of the thermoelectric conversion module and a temperature difference is given to the thermoelectric conversion module by the heating unit and the cooling unit.
The heating unit has a heating channel through which a heating fluid flows,
A compartment that separates the heating unit and the cooling unit is provided at a side of the heating channel and at least one end of each end of the cooling unit corresponding to the upstream side and the downstream side of the heating channel. A thermoelectric conversion power generation device characterized by being provided.
前記隔室内に、前記熱電変換モジュールから引き出される電気導線が配線されていることを特徴とする請求項1に記載の熱電変換式発電装置。   The thermoelectric conversion power generator according to claim 1, wherein an electrical lead drawn from the thermoelectric conversion module is wired in the compartment. 前記隔室は、前記加熱流路の下流側に配設されており、この下流側の隔室に前記電気導線が配線されていることを特徴とする請求項2に記載の熱電変換式発電装置。   The thermoelectric conversion power generator according to claim 2, wherein the compartment is disposed on the downstream side of the heating flow path, and the electric conducting wire is wired in the compartment on the downstream side. . 前記熱電変換モジュールは密閉容器内に収容され、該密閉容器の外側に、前記加熱部、前記冷却部および前記隔室が設けられ、該密閉容器が減圧されることを特徴とする請求項1〜3のいずれかに記載の熱電変換式発電装置。   The thermoelectric conversion module is housed in a sealed container, the heating unit, the cooling unit, and the compartment are provided outside the sealed container, and the sealed container is depressurized. 4. The thermoelectric conversion power generation device according to any one of 3 above.
JP2012223635A 2012-10-05 2012-10-05 Thermoelectric conversion power generator Ceased JP2014075555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223635A JP2014075555A (en) 2012-10-05 2012-10-05 Thermoelectric conversion power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223635A JP2014075555A (en) 2012-10-05 2012-10-05 Thermoelectric conversion power generator

Publications (1)

Publication Number Publication Date
JP2014075555A true JP2014075555A (en) 2014-04-24

Family

ID=50749489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223635A Ceased JP2014075555A (en) 2012-10-05 2012-10-05 Thermoelectric conversion power generator

Country Status (1)

Country Link
JP (1) JP2014075555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972783A (en) * 2017-04-22 2017-07-21 华南理工大学 High-power IGBT device electric energy reclaims heat abstractor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189774A (en) * 1986-02-17 1987-08-19 Komatsu Ltd Thermoelectric generator
JP2009033806A (en) * 2007-07-24 2009-02-12 Toyota Motor Corp Thermoelectric generator
JP2011086913A (en) * 2009-09-18 2011-04-28 Esuto:Kk Thermoelectric conversion device and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189774A (en) * 1986-02-17 1987-08-19 Komatsu Ltd Thermoelectric generator
JP2009033806A (en) * 2007-07-24 2009-02-12 Toyota Motor Corp Thermoelectric generator
JP2011086913A (en) * 2009-09-18 2011-04-28 Esuto:Kk Thermoelectric conversion device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972783A (en) * 2017-04-22 2017-07-21 华南理工大学 High-power IGBT device electric energy reclaims heat abstractor

Similar Documents

Publication Publication Date Title
JP6078412B2 (en) Thermoelectric power generator
CA2906160C (en) Thermoelectric device
WO2014054640A1 (en) Thermoelectric generator
JP6117342B2 (en) Heat exchanger with thermoelectric generator
JP4683003B2 (en) Power module and power converter using the same
US20150303365A1 (en) Thermoelectric conversion module
JP2015117884A (en) Water heater
JP6039348B2 (en) Thermoelectric power generator
JP2005277206A (en) Thermoelectric converter
JP6039346B2 (en) Thermoelectric power generator
JP6039347B2 (en) Thermoelectric power generator
JP2014075555A (en) Thermoelectric conversion power generator
JP6001988B2 (en) Thermoelectric power generator
JP5972743B2 (en) Thermoelectric power generator
JP6002623B2 (en) Thermoelectric conversion module
JP2014075552A (en) Thermoelectric conversion power generator
JP7044781B2 (en) Heat transfer equipment
WO2017212822A1 (en) Thermoelectric generator
JP5988827B2 (en) Thermoelectric conversion module
JP2015138793A (en) Thermoelectric conversion power generator
US20160305304A1 (en) Thermoelectric module, thermoelectric device, heat exchanger and egr loop
JP2016063104A (en) Thermoelectric converter
WO2013103069A1 (en) Thermoelectric generator
JP2014212167A (en) Thermoelectric conversion type power generator
JP2015138790A (en) Thermoelectric conversion power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170308

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20170721