JP2015137788A - Blasting construction method - Google Patents

Blasting construction method Download PDF

Info

Publication number
JP2015137788A
JP2015137788A JP2014008761A JP2014008761A JP2015137788A JP 2015137788 A JP2015137788 A JP 2015137788A JP 2014008761 A JP2014008761 A JP 2014008761A JP 2014008761 A JP2014008761 A JP 2014008761A JP 2015137788 A JP2015137788 A JP 2015137788A
Authority
JP
Japan
Prior art keywords
blasting
time difference
detonation
vibration
dominant frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014008761A
Other languages
Japanese (ja)
Other versions
JP6328433B2 (en
Inventor
圭太 岩野
Keita Iwano
圭太 岩野
考晃 小渕
Takaaki Kobuchi
考晃 小渕
康成 手塚
Yasunari Tezuka
康成 手塚
俊幸 越川
Toshiyuki Koshikawa
俊幸 越川
功一 末吉
Koichi Sueyoshi
功一 末吉
安藤 宏
Hiroshi Ando
宏 安藤
孔弘 森山
Kouko Moriyama
孔弘 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Orica Japan Co Ltd
Original Assignee
Kajima Corp
Orica Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Orica Japan Co Ltd filed Critical Kajima Corp
Priority to JP2014008761A priority Critical patent/JP6328433B2/en
Publication of JP2015137788A publication Critical patent/JP2015137788A/en
Application granted granted Critical
Publication of JP6328433B2 publication Critical patent/JP6328433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blasting construction method capable of reducing vibrations generated on a predetermined spot on the surrounding in accordance with blasting even when a position of a blasting object area is changed.SOLUTION: A dominant frequency at predetermined spots P1, P2 of vibrations transmitted between a working place A and the predetermined spots P1, P2 are determined beforehand and stepwise blasting of the working place A is performed according to the difference of blasting second at which a peak frequency different from the dominant frequency is generated. The dominant frequency at the predetermined spots P1, P2 is measured in such a state that the positional relationship between the working place A and the predetermined spots P1, P2 is determined and, therefore, even when the position of the working place A is changed, the dominant frequency can be precisely measured under distance or ground conditions in accordance with the positional relationship. Accordingly, resonance between the peak frequency produced by the difference of blasting second when performing the stepwise blasting of the working place A and the dominant frequency on the predetermined spots P1, P2 is avoided and vibrations generated on the predetermined spots P1, P2 are reduced.

Description

本発明は、発破工法に関し、特に、発破対象領域の発破に伴って周辺の所定地点で生じる振動を低減する発破工法に関する。   The present invention relates to a blasting method, and more particularly, to a blasting method that reduces vibrations that occur at predetermined points around the blasting target region.

トンネル掘削工事では、掘削対象の岩盤(切羽)が極めて堅硬な場合、発破工法が採用される。発破工法では、切羽に複数の装薬孔を穿ち、装薬孔に爆薬を装填し、爆発させる。発破工法では、周辺環境への振動や音の影響を低減するため、様々な方策が提案されている。   In tunnel excavation work, the blasting method is adopted when the rock (face) to be excavated is extremely hard. In the blasting method, a plurality of charge holes are made in the face, and an explosive is loaded into the charge hole to cause an explosion. In the blasting method, various measures have been proposed to reduce the influence of vibration and sound on the surrounding environment.

下記非特許文献1に記載されるように、発破工法における振動低減対策として、段発発破に使用される電気雷管の段数を増やすことにより段当たりの薬量を減らす方法が知られている。電気雷管では、管体内の延時薬により発破秒時が設定される。電気雷管としては、たとえば、秒時間隔が250msのDS雷管と、秒時間隔が25msのMS雷管が知られている。一方、より短い秒時間隔を設定可能な電子雷管が知られている。電子雷管では、管体内のICチップによる電気タイマーによって秒時間隔が設定される。   As described in Non-Patent Document 1 below, as a vibration reduction measure in the blasting method, there is known a method for reducing the dose per step by increasing the number of steps of the electric detonator used for the stage blasting. In electric detonators, the blast time is set by the delay agent in the tube. As an electrical detonator, for example, a DS detonator with a time interval of 250 ms and an MS detonator with a time interval of 25 ms are known. On the other hand, an electronic detonator capable of setting a shorter second time interval is known. In the electronic detonator, the second time interval is set by an electric timer using an IC chip in the tube.

電気雷管では、延時薬を用いているため、実際の秒時間隔が設定された秒時間隔に対し大きくばらつくことがある。この場合、現起爆孔と次起爆孔の秒時が重なるなど、斉発性が低い。一方、電子雷管では、1ms単位で秒時間隔を設定することができ、斉発性が高い。近年では、切羽での実施工に即し、秒時の設定を切羽にて任意に変更・設定できる機能を有した新たな電子雷管も知られている。   Since electrical detonators use time delay drugs, the actual time interval may vary greatly from the set time interval. In this case, the coincidence is low, for example, the seconds of the current initiation hole and the next initiation hole overlap. On the other hand, in the electronic detonator, the second time interval can be set in units of 1 ms, and the simultaneous property is high. In recent years, a new electronic detonator having a function capable of arbitrarily changing and setting the setting of the second time at the face according to the work performed at the face is also known.

下記特許文献1〜4に記載されるように、電子雷管を用いた種々の発破工法が知られている。たとえば特許文献1に記載される工法では、段発発破の振動から単発発破の振動を予測し、それを基に特定の条件を満たす段発発破起爆秒時列を算出している。また特許文献2に記載される工法では、M系列と呼ばれる疑似乱数式に従って、基本周期τに対して起爆秒時差を設定することにより、振動パワースペクトル(周波数毎の振動の大きさ)を低減している。また特許文献3,4に記載される工法では、トンネル切羽の装薬孔の側部にスロットを設けるとともに、各装薬孔も一定間隔で削孔した上で予め爆薬を試験起爆させ、発生した振動波のシミュレーションによって、振動波のエネルギーまたは振幅が最小となる起爆秒時間隔を決定している。   As described in Patent Documents 1 to 4 below, various blasting methods using an electron detonator are known. For example, in the construction method described in Patent Document 1, the single-shot blast vibration is predicted from the single-shot blast vibration, and the step-by-step explosion start time sequence satisfying a specific condition is calculated based on the predicted vibration. In the construction method described in Patent Document 2, the vibration power spectrum (the magnitude of vibration at each frequency) is reduced by setting the time difference between the initiation period and the fundamental period τ according to a pseudo-random number formula called M series. ing. In addition, in the construction methods described in Patent Documents 3 and 4, a slot was provided in the side portion of the charge hole of the tunnel face, and each charge hole was drilled at a constant interval, and the explosive was preliminarily tested and generated. Oscillation wave simulation determines the time interval of the initiation second that minimizes the energy or amplitude of the vibration wave.

これらの発破工法では、電子雷管を用いることで秒時間隔を正確に設定し、振動の重ね合わせによって波の打消し効果を生じさせ、この波の打消し効果によって振動増幅を抑えている。   In these blasting methods, an electron detonator is used to set the time interval accurately, and a wave canceling effect is generated by superposition of vibrations, and vibration amplification is suppressed by this wave canceling effect.

国際公開98/21544号公報International Publication No. 98/21544 特開平2−302066号公報Japanese Patent Laid-Open No. 2-302066 特開2001−21300号公報JP 2001-21300 A 特開2001−21298号公報JP 2001-21298 A

日本火薬工業会、「あんな発破 こんな発破 発破事例集」、平成14年3月、p.10−13Japan Explosives Manufacturers Association, “Such Blasting, Such Blasting Blast Case Collection”, March 2002, p. 10-13

発破工法を採用するトンネル現場では、近隣民家等に対する発破振動の低減が重要である。そのため、上述した発破工法のように、電子雷管を用いて起爆秒時間隔を正確に設定し、斉発性を高め、各起爆孔における波形の干渉による振動低減がなされている。しかしながら、実際には、トンネル切羽は掘削サイクルに準じて日々進行するため、発破の度に地上構造物との距離または地盤条件が異なってくる。従って、上記特許文献1のように、段発発破の振動波形から単発発破の振動波形を予測したり、上記特許文献3のように、試験起爆で発生した振動波のシミュレーションにより、発破ごとに起爆秒時差を求めたりすることは、技術的にも作業的にも困難である。   At tunnel sites that use the blasting method, it is important to reduce the blasting vibration of neighboring houses. For this reason, as in the blasting method described above, an electron detonator is used to accurately set the time interval for the initiation of the explosion, to improve the coincidence, and to reduce the vibration due to the interference of the waveforms at each initiation hole. However, in practice, since the tunnel face advances every day according to the excavation cycle, the distance from the ground structure or the ground condition differs every time the blasting occurs. Therefore, the vibration waveform of single blasting is predicted from the vibration waveform of stepwise blasting as in Patent Document 1 above, or the blasting is started for each blasting by simulation of the vibration wave generated in the test explosion as in Patent Document 3 above. Obtaining the time difference in seconds is difficult both technically and work-wise.

本発明は、発破対象領域の位置が変化する場合であっても、発破に伴い周辺の所定地点で生じる振動を低減することができる発破工法を提供することを目的とする。   An object of this invention is to provide the blasting method which can reduce the vibration which arises in the surrounding predetermined points with blasting, even if the position of a blasting object area | region changes.

本発明は、発破対象領域の発破に伴って周辺の所定地点で生じる振動を低減する発破工法であって、発破対象領域の単発発破により生じる振動の所定地点における卓越周波数を測定する工程と、卓越周波数とは異なるピーク周波数が生じるように段発発破の起爆秒時差を設定する工程と、起爆秒時差で発破対象領域の段発発破を行う工程と、を含むことを特徴とする。   The present invention relates to a blasting method for reducing vibration generated at a predetermined point in the vicinity of a blast target region, and measuring a dominant frequency at a predetermined point of vibration generated by a single blast of the blast target region; A step of setting a detonation second time difference of the stage blasting and blasting so as to generate a peak frequency different from the frequency, and a step of performing a stepwise blasting of the blasting target region by the detonation second time difference.

この発破工法によれば、発破対象領域と所定地点との間を伝わる振動の所定地点における卓越周波数が予め求められ、その卓越周波数とは異なるピーク周波数が生じるように設定された起爆秒時差で、発破対象領域の段発発破が行われる。このように、発破対象領域と所定地点との位置関係が決まった状態で所定地点における卓越周波数が測定されるため、発破対象領域の位置が変化する場合であっても、その位置関係に応じた距離または地盤条件のもとで卓越周波数が正確に測定される。よって、発破対象領域の段発発破を行った際、その起爆秒時差によって生じるピーク周波数と所定地点における卓越周波数との共振が回避され、その結果、所定地点で生じる振動を低減することができる。   According to this blasting method, the prevailing frequency at the predetermined point of vibration transmitted between the blasting target area and the predetermined point is obtained in advance, and the time difference between the initiation seconds is set so that a peak frequency different from the prevailing frequency is generated. Step-by-step blasting is performed in the blasting target area. In this way, since the dominant frequency at the predetermined point is measured in a state where the positional relationship between the blasting target region and the predetermined point is determined, even if the position of the blasting target region changes, it corresponds to the positional relationship. The dominant frequency is accurately measured under distance or ground conditions. Therefore, when staged blasting of the blasting target area is performed, resonance between the peak frequency caused by the time difference between the explosion seconds and the dominant frequency at the predetermined point is avoided, and as a result, vibration generated at the predetermined point can be reduced.

発破対象領域はトンネル掘削における切羽であり、卓越周波数を測定するための少なくとも1回の単発発破と段発発破とを連続して行ってもよい。トンネル掘削が進捗すると切羽の位置が変化するが、トンネル周辺の所定地点に保安物件がある場合でも、その保安物件の地点における卓越周波数が、トンネル掘削の進捗に合わせて測定される。よって、トンネル掘削の進捗に合わせて、所定地点の保安物件に対する振動の影響を軽減できる。また、少なくとも1回の単発発破と段発発破とが連続して行われるので、段発発破によるトンネル掘削を行いつつ、単発発破によって、その時点の切羽の位置に応じた適切な起爆秒時差を設定できる。よって、トンネル掘削の進捗に合わせて、所定地点で生じる振動を確実に低減することができる。   The blast target area is a face in tunnel excavation, and at least one single blast and step blast for measuring the dominant frequency may be performed continuously. As tunnel excavation progresses, the position of the face changes, but even if there is a security property at a predetermined location around the tunnel, the dominant frequency at the location of the security property is measured in accordance with the progress of tunnel excavation. Therefore, it is possible to reduce the influence of vibration on the security property at a predetermined point as the tunnel excavation progresses. In addition, since at least one single blast and step blast are performed continuously, tunnel excavation by stage blasting is performed, and an appropriate explosive second time difference according to the position of the face at that time is obtained by single blasting. Can be set. Therefore, the vibration generated at the predetermined point can be surely reduced in accordance with the progress of the tunnel excavation.

少なくとも1回の単発発破と段発発破との間に100ms以上の間隔を設けてもよい。この場合、単発発破と段発発破との間に100ms以上の間隔を設けることで、所定地点における卓越周波数の測定に対する段発発破の影響を排除できる。   An interval of 100 ms or more may be provided between at least one single blast and step blast. In this case, by setting an interval of 100 ms or more between the single blast and the step blast, the influence of the step blast on the measurement of the dominant frequency at a predetermined point can be eliminated.

所定地点は2以上の地点であり、卓越周波数を測定する工程では、発破対象領域の単発発破により生じる振動の所定地点のそれぞれにおける卓越周波数を測定し、起爆秒時差を設定する工程では、所定地点のそれぞれに対応する2種類以上の起爆秒時差を設定し、段発発破を行う工程では、発破対象領域を所定地点のそれぞれに対応させて区分し、設定した起爆秒時差でそれぞれの区分の段発発破を行ってもよい。この場合、2以上の地点のそれぞれに対応する区分ごとに、卓越周波数が測定され、起爆秒時差が設定される。よって、発破対象領域と各地点との距離または地盤条件が異なっていても、それらの条件が加味されて起爆秒時差が設定される。よって、各地点のそれぞれにおいて振動を低減することができる。   The predetermined points are two or more points. In the step of measuring the dominant frequency, in the step of measuring the dominant frequency at each of the predetermined points of vibration caused by single blasting of the blasting target region, In the process of setting two or more types of detonation seconds corresponding to each of the above, and performing the step-by-step blasting, the blasting target area is classified according to each of the predetermined points, and the stage of each division is determined by the set detonation second time difference. You may blast. In this case, the dominant frequency is measured for each category corresponding to each of two or more points, and the time difference between the initiation seconds is set. Therefore, even if the distance between the blasting target area and each point or the ground conditions are different, the time difference between the explosion seconds is set in consideration of those conditions. Therefore, vibration can be reduced at each point.

起爆秒時差は10ms以下であり、段発発破の全起爆時間は3sec以下であると、発破に必要な所望の段数を確保しつつ、全起爆時間が短縮される。よって、所定地点で生じる振動を低減し、しかも振動の発生時間を短縮することができる。   If the time difference between the detonation seconds is 10 ms or less and the total detonation time for the stage blasting is 3 sec or less, the total detonation time is shortened while ensuring the desired number of stages necessary for the blasting. Therefore, it is possible to reduce the vibration generated at the predetermined point and to reduce the generation time of the vibration.

起爆秒時差を設定する工程において、ピーク周波数が、起爆秒時差の逆数または起爆秒時差の逆数の倍数とすることにより求められてもよい。この場合、ピーク周波数と所定地点における卓越周波数との共振を回避し得るような起爆秒時差を容易に設定することができる。   In the step of setting the detonation second time difference, the peak frequency may be obtained by setting the reciprocal of the detonation second time difference or a multiple of the reciprocal of the detonation second time difference. In this case, it is possible to easily set a time difference between initiation seconds so that resonance between the peak frequency and the dominant frequency at a predetermined point can be avoided.

本発明によれば、発破対象領域の位置が変化する場合であっても、発破に伴い周辺の所定地点で生じる振動を低減することができる。   According to the present invention, even if the position of the blasting target region changes, vibrations that occur at predetermined points around the blasting can be reduced.

本発明の一実施形態に係る発破工法が適用されたトンネル掘削現場を示す模式図である。It is a mimetic diagram showing a tunnel excavation field where a blasting method concerning one embodiment of the present invention was applied. 図1中の切羽における起爆孔の配置例を示す正面図である。It is a front view which shows the example of arrangement | positioning of the initiation hole in the face in FIG. 起爆孔における爆薬および雷管の配置例を示す断面図である。It is sectional drawing which shows the example of arrangement | positioning of the explosive and detonator in a detonation hole. 本発明の他の実施形態に係る発破工法が適用されたトンネル掘削現場を示す模式図である。It is a schematic diagram which shows the tunnel excavation site where the blasting method which concerns on other embodiment of this invention was applied. 図3中の切羽における起爆孔の配置例を示す正面図である。It is a front view which shows the example of arrangement | positioning of the initiation hole in the face in FIG. 実施例1に係る発破による振動データを示す図である。It is a figure which shows the vibration data by the blast based on Example 1. FIG. (a)〜(c)は、図6中の3回の単発発破における周波数解析結果を示す図である。(A)-(c) is a figure which shows the frequency-analysis result in the single blasting of 3 times in FIG. 図6中の段発発破における周波数解析結果を示す図である。It is a figure which shows the frequency analysis result in the stage blasting in FIG. 実施例3に係る発破による振動データを示す図である。It is a figure which shows the vibration data by the blast based on Example 3. FIG. 図9中の段発発破における周波数解析結果を示す図である。It is a figure which shows the frequency analysis result in the stage blasting in FIG.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted.

図1に示されるように、本実施形態の発破工法は、堅硬な岩盤からなる地層Xに対するトンネル掘削に適用される工法である。この発破工法は、トンネル掘削が行われる際、トンネルTNLの周囲(たとえば丘陵上)に位置する所定地点P1,P2で生じる振動を低減させる。たとえば、図1に示される例では、トンネル掘削の発破対象領域である切羽Aの周辺には、所定地点P1,P2に住居1,2が建っている。この発破工法は、所定地点P1または所定地点P2および住居1または住居2において生じる振動を低減させることを目的としている。   As shown in FIG. 1, the blasting method according to the present embodiment is a method applied to tunnel excavation for the stratum X made of hard rock. This blasting method reduces vibration generated at predetermined points P1 and P2 located around the tunnel TNL (for example, on a hill) when tunnel excavation is performed. For example, in the example shown in FIG. 1, dwellings 1 and 2 are built at predetermined points P <b> 1 and P <b> 2 around a face A that is a blasting target area for tunnel excavation. This blasting method is intended to reduce vibrations generated at the predetermined point P1 or the predetermined point P2 and the residence 1 or the residence 2.

図2に示されるように、発破を行う際、切羽Aには、複数の起爆孔10が設けられる。複数の起爆孔10は、切羽Aにおいて、段発発破を行うための複数の起爆孔群B1〜B6を成している。切羽A中央の起爆孔群B1,B2は芯抜きのためのものである。図2に示される起爆孔10の配列はあくまで一例であり、個数および配列パターンは適宜変更できる。複数の起爆孔10の段数および配列は、公知の方法に基づいて決定することができる。各起爆孔10には、たとえば図3に示されるように、孔11内に配置された複数の爆薬(いわゆる親ダイおよび増ダイ)12と、奥側の爆薬(いわゆる親ダイ)12に設けられた雷管13と、爆薬12の手前側に設けられた込め物14とが設けられている。   As shown in FIG. 2, when performing blasting, the face A is provided with a plurality of initiation holes 10. The plurality of initiation holes 10 form a plurality of initiation hole groups B <b> 1 to B <b> 6 for performing staged blasting at the face A. Explosion hole groups B1 and B2 in the center of face A are for centering. The arrangement of the initiation holes 10 shown in FIG. 2 is merely an example, and the number and arrangement pattern can be changed as appropriate. The number and arrangement of the plurality of initiation holes 10 can be determined based on a known method. For example, as shown in FIG. 3, each initiation hole 10 is provided with a plurality of explosives (so-called parent die and increase die) 12 disposed in the hole 11 and a back-side explosive (so-called parent die) 12. A detonator 13 and a container 14 provided on the front side of the explosive 12 are provided.

本実施形態の発破工法では、雷管13としては、1ms単位での起爆秒時設定が可能な電子雷管を用いる。この電子雷管は、切羽Aでの実施工に即し、起爆秒時設定を切羽Aにて任意に変更・設定できる機能を有している。この電子雷管では、たとえば1ms〜30msの範囲において、起爆秒時差を1ms単位で設定可能である。電子雷管を採用することにより、段発発破で生じるピーク周波数をコントロール可能になっており、その結果として、地点P1または地点P2で生じる振動を低減することができる。   In the blasting method of the present embodiment, an electronic detonator capable of setting the detonation second in 1 ms units is used as the detonator 13. This electronic detonator has a function that allows the setting of the detonation seconds to be arbitrarily changed and set at the face A in accordance with the work performed at the face A. In this electronic detonator, for example, in the range of 1 ms to 30 ms, it is possible to set the time difference between the initiation seconds in units of 1 ms. By adopting the electronic detonator, it is possible to control the peak frequency generated by the stage blasting, and as a result, the vibration generated at the point P1 or the point P2 can be reduced.

さらに、本実施形態の発破工法では、段発発破に用いられる複数の起爆孔群B1〜B6とは別に、単発発破に用いられる複数の起爆孔20が切羽Aに設けられている。起爆孔20は、切羽A中央に設けられた起爆孔群B1,B2の上方近傍に設けられている。各起爆孔20の構成は、上記した起爆孔10の構成と同様であるが、孔11の内部に配置された雷管13が単発発破用のタイミングに設定される点で、起爆孔10の雷管13とは異なっている。これらの起爆孔20は、切羽Aの単発発破により生じる振動の所定地点P1または地点P2における卓越周波数を測定するために設けられている。   Furthermore, in the blasting method of the present embodiment, a plurality of blast holes 20 used for single blasting are provided in the face A apart from the plurality of blast hole groups B1 to B6 used for stage blasting. The initiation hole 20 is provided in the upper vicinity of the initiation hole groups B1 and B2 provided in the center of the face A. The structure of each detonation hole 20 is the same as that of the detonation hole 10 described above, except that the detonator 13 of the detonation hole 10 is set at the timing for single blasting. Is different. These initiation holes 20 are provided to measure the dominant frequency at a predetermined point P1 or P2 of vibration caused by single blasting of the face A.

図2に示される例では、起爆孔20を3個設けているが、単発発破に用いられる起爆孔20は1個または2個であってもよいし、4個以上であってもよい。起爆孔20は、切羽A中央または中央付近に設けられる場合に限られず、切羽Aの外周側に設けられてもよい。起爆孔20による単発発破と起爆孔10による段発発破との間には、一定時間の間隔が設けられる。すなわち、単発発破を行う起爆孔20の最後の起爆と、段発発破を行う起爆孔10の最初の起爆は、一定時間の間隔で実施される。   In the example shown in FIG. 2, three initiation holes 20 are provided, but the number of initiation holes 20 used for single blasting may be one or two, or four or more. The initiation hole 20 is not limited to being provided at or near the center of the face A, and may be provided on the outer peripheral side of the face A. A certain time interval is provided between the single blasting by the detonation hole 20 and the step blasting by the detonation hole 10. That is, the last detonation of the detonation hole 20 that performs single blasting and the first detonation of the detonation hole 10 that performs staged blasting are performed at regular time intervals.

続いて、本実施形態の発破工法の手順について説明する。まず、切羽Aに対し、起爆孔10と起爆孔20とを設ける。すなわち、上述したように、単発発破用の複数の起爆孔20と、段発発破用の複数の起爆孔10を切羽Aに設ける。ここで、単発発破と段発発破との間には、100ms以上の間隔が設けられる。単発発破と段発発破との間隔は、300ms以上であることが好ましい。一方、単発発破と段発発破との間隔は大きすぎても、発破時間(単発発破と段発発破の全起爆時間の合計)が長くなるので、最大でも1000msである。言い換えれば、単発発破と段発発破との間の間隔は、100〜1000msに設定される。この間隔は、たとえば500msに設定される。地点P1,P2のそれぞれには振動計を設置しておき、切羽Aの発破に応じて発生する変位速度を測定する。   Then, the procedure of the blasting method of this embodiment is demonstrated. First, the initiation hole 10 and the initiation hole 20 are provided for the face A. That is, as described above, a plurality of initiation holes 20 for single-shot blasting and a plurality of initiation holes 10 for step-by-step blasting are provided in the face A. Here, an interval of 100 ms or more is provided between the single blast and the step blast. The interval between the single blast and the step blast is preferably 300 ms or more. On the other hand, even if the interval between single blasting and step blasting is too large, the blasting time (the sum of all blasting times for single blasting and step blasting) becomes long, so the maximum is 1000 ms. In other words, the interval between single shot blasting and stage blasting is set to 100-1000 ms. This interval is set to 500 ms, for example. A vibration meter is installed at each of the points P1 and P2, and the displacement speed generated in response to the blast of the face A is measured.

続いて、複数の起爆孔20による単発発破と複数の起爆孔群B1〜B6による段発発破とを連続して行う。この際、この発破が当該トンネル掘削現場における最初の発破である場合には、前もって切羽Aでの単発発破を実施し、その振動の地点P1,P2における卓越周波数を測定する。また、卓越周波数は、周波数解析(FFT解析)により求めることもできる。そして、段発発破における起爆秒時差の逆数または起爆秒時差の逆数の倍数とすることによってピーク周波数を求め、そのピーク周波数が卓越周波数と異なるように、起爆秒時差を設定しておく。最初の発破では、このように予め設定した起爆秒時差で段発発破を行う。   Subsequently, single blasting with a plurality of detonation holes 20 and step blasting with a plurality of detonation hole groups B1 to B6 are continuously performed. At this time, if this blasting is the first blasting at the tunnel excavation site, a single blasting at the face A is performed in advance and the dominant frequency at the vibration points P1 and P2 is measured. The dominant frequency can also be obtained by frequency analysis (FFT analysis). Then, the peak frequency is obtained by taking the reciprocal of the detonation second time difference in the stage blasting or a multiple of the reciprocal of the detonation second time difference, and the detonation second time difference is set so that the peak frequency is different from the dominant frequency. In the first blasting, the staged blasting is performed with the time difference of the explosive seconds set in advance as described above.

起爆秒時差とピーク周波数の関係について説明すると、本発明者らは、起爆秒時差をT(ms)として段発発破を行ったときに、以下の知見を見出した。その一点目は、測定される振動値が起爆秒時差Tの逆数の周波数(f=1/T)及び起爆秒時差Tの逆数の倍数(2f、3f・・・)の周波数で高いピークを有することである。また、二点目は、高いピークを有する周波数のうち、特に起爆秒時差Tの逆数の1倍が最も高いピークを有することである。三点目は、電子雷管の起爆秒時差の正確性が高いことにより、上記のような関係性が成立することである。そして、四点目は、起爆秒時差を調整することにより、振動値のピーク周波数(段発発破による振動値の卓越周波数)を任意にコントロールできることである。   Explaining the relationship between the initiation time difference and the peak frequency, the present inventors have found the following findings when performing staged blasting with the initiation time difference as T (ms). The first point is that the vibration value to be measured has a high peak at a frequency that is the reciprocal of the detonation time difference T (f = 1 / T) and a frequency that is a multiple of the reciprocal of the detonation time difference T (2f, 3f...). That is. The second point is that, among the frequencies having a high peak, particularly the reciprocal of the time difference T of the initiation seconds has the highest peak. The third point is that the above relationship is established by the high accuracy of the time difference between the detonation seconds of the electron detonator. The fourth point is that the peak frequency of the vibration value (the dominant frequency of the vibration value due to the stage blasting) can be arbitrarily controlled by adjusting the time difference between the initiation seconds.

トンネル掘削では、上記した単発発破と段発発破とを連続させた発破作業を繰り返す。繰り返す頻度は、例えば1日に2〜10回という程度である。2回目以降の発破では、前回の発破の単発発破で測定された地点P1,P2における卓越周波数に基づいて、段発発破の起爆秒時差を設定する。ここでも、前回の単発発破を実施した際の振動の地点P1,P2における卓越周波数と、段発発破における起爆秒時差の逆数の整数倍(すなわちピーク周波数)とが異なるように、起爆秒時差を設定する。好ましくは、起爆秒時差の逆数が卓越周波数より大きくなるように設定する。   In tunnel excavation, the blasting operation in which single blasting and step blasting are continuously performed is repeated. The frequency of repetition is, for example, about 2 to 10 times a day. In the second and subsequent blasting, the time difference between the explosive seconds for the staged blasting is set based on the dominant frequency at the points P1 and P2 measured by the single blasting of the previous blasting. Again, the time difference of the initiation seconds is set so that the dominant frequency at the vibration points P1 and P2 at the time of the previous single blasting and the integral multiple of the reciprocal time difference of the explosion blasting at the stage blasting (ie peak frequency) are different. Set. Preferably, it is set so that the reciprocal of the initiation time difference is larger than the dominant frequency.

電子雷管である雷管13によれば、起爆秒時差を1ms単位で、しか現場で設定できるため、地点P1,P2における振動の卓越周波数に応じて、それとの共振を回避できるような起爆秒時差を設定することができる。電子雷管は斉発性が高いため、現起爆孔と次起爆孔との発破秒時を明確に分離できる。   According to the detonator 13 which is an electronic detonator, the detonation second time difference can be set in the field only in 1 ms units, so that the detonation second time difference that can avoid resonance with the vibration frequency at the points P1 and P2 can be avoided. Can be set. Since the electron detonator has high coincidence, it is possible to clearly separate the blast time between the current initiation hole and the next initiation hole.

そして、複数の起爆孔20による単発発破と、設定した起爆秒時差での起爆孔群B1〜B6による段発発破とを連続して行う。このようにして、本実施形態の発破工程が実施される。   And the single blasting by the several detonation holes 20 and the stage blasting by the detonation hole group B1-B6 in the set detonation second time difference are performed continuously. Thus, the blasting process of this embodiment is implemented.

なお、単発発破と段発発破との組み合わせを毎回繰り返す場合に限られず、たとえば2回の発破のうち1回のみ単発発破を組み込んでもよい。起爆秒時差を設定するにあたり、直前の単発発破による卓越周波数を用いる場合に限られず、2回以上前の単発発破で得られた卓越周波数を用いてもよい。トンネル掘削においては、1回に掘り進む距離はたとえば1〜2mであるが、地点P1または地点P2との間の距離や地盤条件の観点では、一または数回前の切羽Aと現在の切羽Aとは同一の位置にあると考えることができる。つまり、地点P1,P2の卓越周波数が同じと想定される区間については、単発発破は必要としない。   In addition, it is not restricted to repeating the combination of single shot blasting and stage blasting every time, for example, single shot blasting may be incorporated only once out of two blasting. In setting the time difference of the detonation seconds, it is not limited to the case of using the prevailing frequency by the single shot blasting immediately before, and the prevailing frequency obtained by the single shot blasting two or more times before may be used. In tunnel excavation, the distance traveled at one time is, for example, 1 to 2 m. From the viewpoint of the distance between the point P1 or the point P2 and the ground conditions, the previous face A and the current face A Can be considered to be in the same position. That is, the single blasting is not required for the section in which the dominant frequencies at the points P1 and P2 are assumed to be the same.

また、単発発破と段発発破とを連続して行わず、分離して行ってもよい。すなわち、地点P1または地点P2における卓越周波数を把握するために、段発発破を伴わない単発発破を行ってもよい。   Further, the single blast and the step blast may not be performed continuously but may be performed separately. That is, in order to grasp the dominant frequency at the point P1 or the point P2, single shot blasting without step blasting may be performed.

本実施形態の発破工法では、段発発破の起爆秒時差は、30ms以下とされる。起爆秒時差が大き過ぎると、段発発破により発生する振動の高い振動値を示す周波数fが小さくなり、所定地点における卓越周波数と異なるピーク周波数を設定することが難しくなる。段発発破の起爆秒時差は10ms以下であることが好ましく、7ms以下であることが更に好ましい。トンネル発破に伴って周辺の所定地点で生じる振動の卓越周波数は50〜150Hzに分布し、更に大部分は80〜120Hzに分布することから、起爆秒時差を10ms以下に設定し、更に好ましくは7ms以下に設定することで、段発発破により発生する振動の高い振動値を示す周波数fの倍数(2倍以上)を考慮する必要がなくなる。   In the blasting method according to the present embodiment, the time difference between detonation seconds for blasting is 30 ms or less. If the time difference between the start-up seconds is too large, the frequency f indicating the high vibration value generated by the stage blasting becomes small, and it becomes difficult to set a peak frequency different from the dominant frequency at a predetermined point. It is preferable that the time difference between detonation seconds for burst blasting is 10 ms or less, more preferably 7 ms or less. The prevailing frequency of vibration generated at a predetermined point in the vicinity of tunnel blasting is distributed in the range of 50 to 150 Hz, and most of the frequency is distributed in the range of 80 to 120 Hz. Therefore, the time difference between the initiation seconds is set to 10 ms or less, more preferably 7 ms. By setting to the following, it becomes unnecessary to consider a multiple (twice or more) of the frequency f indicating a high vibration value of vibration generated by step-by-step blasting.

一方、段発発破の起爆秒時差は、3msより大きいことが好ましい。起爆秒時差が小さ過ぎると段発発破により発生する振動の高い振動値を示す周波数fが大きくなり、振動値が大きくなる。起爆秒時差は、更に好ましくは5ms以上である。   On the other hand, it is preferable that the time difference between detonation and blasting is greater than 3 ms. If the time difference between the initiation seconds is too small, the frequency f indicating a high vibration value of vibration generated by stage blasting increases and the vibration value increases. The time difference between initiation seconds is more preferably 5 ms or more.

本実施形態の発破工法では、段発発破の起爆秒時差を短く設定することで、全起爆時間も短くできる。発破において所定の段数を確保しつつ、全起爆時間が短縮できる。段発発破の全起爆時間は、5sec以下に設定される。段発発破の全起爆時間は、好ましくは3sec以下に設定される。段発発破の全起爆時間が長すぎると、発破による振動の時間も長くなるからである。   In the blasting method of the present embodiment, the total initiation time can also be shortened by setting the time difference between initiation and detonation times of step blasting short. The total detonation time can be shortened while ensuring a predetermined number of steps in blasting. The total detonation time for blasting is set to 5 sec or less. The total detonation time for step-by-step blasting is preferably set to 3 sec or less. This is because if the total detonation time for step-by-step blasting is too long, the vibration time due to blasting also becomes longer.

本実施形態の発破工法によれば、切羽Aと所定地点P1または所定地点P2との間を伝わる振動の所定地点P1または所定地点P2における卓越周波数が予め求められ、その卓越周波数とは異なるピーク周波数が生じるように設定された起爆秒時差で、切羽Aの段発発破が行われる。このように、切羽Aと所定地点P1または所定地点P2との位置関係が決まった状態で所定地点P1または所定地点P2における卓越周波数が測定されるため、切羽Aの位置が変化する場合であっても、その位置関係に応じた距離または地盤条件のもとで卓越周波数が正確に測定される。よって、切羽Aの段発発破を行った際、その起爆秒時差によって生じるピーク周波数と所定地点P1または所定地点P2における卓越周波数との共振が回避され、その結果、所定地点P1または所定地点P2で生じる振動が低減される。   According to the blasting method of the present embodiment, a dominant frequency at the predetermined point P1 or the predetermined point P2 of vibration transmitted between the face A and the predetermined point P1 or the predetermined point P2 is obtained in advance, and a peak frequency different from the dominant frequency is obtained. The face A is stepped and blasted with the time difference of the detonation seconds set so as to occur. Thus, since the dominant frequency at the predetermined point P1 or the predetermined point P2 is measured in a state where the positional relationship between the face A and the predetermined point P1 or the predetermined point P2 is determined, the position of the face A changes. In addition, the dominant frequency is accurately measured under a distance or ground condition corresponding to the positional relationship. Therefore, when the face A is blasted and blasted, resonance between the peak frequency caused by the time difference between the start-up seconds and the dominant frequency at the predetermined point P1 or the predetermined point P2 is avoided, and as a result, at the predetermined point P1 or the predetermined point P2. The resulting vibration is reduced.

このように、本実施形態では、電子雷管の起爆秒時差の正確性の高さを利用し、起爆秒時差の調整による段発発破の振動のピーク周波数を任意にコントロールする(言い換えれば、距離や地盤条件に固有の卓越周波数からシフトさせる)ことで振動低減効果が高められている。この発想は、振動波形の重ね合わせ(干渉)による振動低減を行おうとしていた従来の発破工法とは異なった技術的思想である。振動波形の重ね合わせによる振動低減は、理論上は可能であっても実際に実現するのは困難であった。この点、本実施形態では、卓越周波数に対してピーク周波数を外すという簡便な制御により振動低減を実現可能であるため、従来の発破工法に比して、実用性および汎用性が高い。   As described above, in the present embodiment, the peak frequency of the vibration of the stage blasting is adjusted arbitrarily by adjusting the timing of the detonation seconds using the high accuracy of the detonation time difference of the electron detonator (in other words, the distance and The effect of reducing vibration is enhanced by shifting from the dominant frequency inherent to the ground conditions). This idea is a technical idea different from the conventional blasting method which tried to reduce vibration by superimposing (interference) vibration waveforms. Although it is theoretically possible to reduce vibration by superimposing vibration waveforms, it has been difficult to actually realize it. In this respect, in the present embodiment, vibration can be reduced by simple control of removing the peak frequency from the dominant frequency, and therefore, practicality and versatility are high as compared with the conventional blasting method.

トンネル掘削が進捗すると切羽Aの位置が変化するが、トンネルTNL周辺の所定地点P1,P2に保安物件である住居(地上構造物)1,2(図1参照)がある場合でも、住居1または住居2の地点P1または地点P2における卓越周波数が、トンネル掘削の進捗に合わせて測定される。よって、トンネル掘削の進捗に合わせて、所定地点P1または所定地点P2の住居1または住居2に対する振動の影響が軽減される。また、少なくとも1回の単発発破と段発発破とが連続して行われるので、段発発破によるトンネル掘削を行いつつ、単発発破によって、その時点の切羽Aの位置に応じた適切な起爆秒時差を設定できる。すなわち、振動の伝搬経路や伝搬距離が両発破(単発発破と段発発破)で差がないため、周波数の評価が容易である。したがって、トンネル掘削の進捗に合わせて、所定地点P1または所定地点P2で生じる振動が確実に低減される。   As tunnel excavation progresses, the position of face A changes, but even if there are residences (ground structures) 1 and 2 (see FIG. 1) that are security properties at predetermined points P1 and P2 around tunnel TNL, residence 1 or The dominant frequency at the point P1 or the point P2 of the residence 2 is measured in accordance with the progress of the tunnel excavation. Therefore, according to the progress of tunnel excavation, the influence of vibration on the dwelling 1 or dwelling 2 at the predetermined point P1 or the predetermined point P2 is reduced. In addition, since at least one single blast and step blast are continuously performed, tunnel excavation by stage blasting is performed, and the appropriate time difference between the start-up seconds corresponding to the position of the face A at that time is achieved by single blasting. Can be set. That is, since the vibration propagation path and propagation distance are the same for both blasts (single blast and step blast), the frequency can be easily evaluated. Therefore, the vibration generated at the predetermined point P1 or the predetermined point P2 is reliably reduced in accordance with the progress of the tunnel excavation.

また、単発発破と段発発破との間には100ms以上の間隔が設けられる。単発発破と段発発破との間に100ms以上の間隔を設けることで、所定地点における卓越周波数の測定に対する段発発破の影響が排除できる。間隔が短い場合、単発発破により生じる振動の所定地点における卓越周波数の測定時に単発発破により生じる振動と段発発破による振動が重複して、卓越周波数の測定が正確にできない。   In addition, an interval of 100 ms or more is provided between single blasting and step blasting. By providing an interval of 100 ms or more between single blasting and step blasting, it is possible to eliminate the influence of stage blasting on the measurement of the dominant frequency at a predetermined point. When the interval is short, the vibration caused by the single blast and the vibration caused by the step blast are overlapped when measuring the dominant frequency at a predetermined point of the vibration caused by the single blast, and the measurement of the dominant frequency cannot be performed accurately.

起爆秒時差は10ms以下であり、段発発破の全起爆時間は3sec以下であると、所定地点P1,P2で生じる振動が低減され、しかも、所定地点P1または所定地点P2で振動が発生している時間が短縮される。   If the time difference between the detonation seconds is 10 ms or less and the total detonation time of the stage blasting is 3 sec or less, the vibration generated at the predetermined points P1 and P2 is reduced, and the vibration is generated at the predetermined point P1 or the predetermined point P2. The time spent is shortened.

また、ピーク周波数を大きくする(すなわち起爆秒時差を小さくする)ことで距離減衰が大きくなる(すなわち、高周波であれば距離減衰しやすい)。この場合、起爆秒時差を小さくすることで全体の発破継続時間の短縮が図られ、周辺環境(たとえば住居・民家等)への影響を軽減できる。また、起爆秒時差を小さくすることにより、各振動波形の重ね合わせによる振動増幅が懸念される場合は、単発振動の振動振幅値と比較することで、波の干渉による増幅度を都度確認できる。   In addition, increasing the peak frequency (that is, reducing the time difference between initiation seconds) increases the distance attenuation (that is, the distance attenuation is likely to occur at high frequencies). In this case, by reducing the time difference between the explosion seconds, the overall blasting duration can be shortened, and the influence on the surrounding environment (for example, a residence, a private house, etc.) can be reduced. In addition, if there is a concern about vibration amplification due to superposition of each vibration waveform by reducing the time difference between initiation seconds, the amplification degree due to wave interference can be confirmed each time by comparing with the vibration amplitude value of single vibration.

また、ピーク周波数が、起爆秒時差の逆数または起爆秒時差の逆数の倍数とすることにより求められるため、ピーク周波数と所定地点P1または所定地点P2における卓越周波数との共振を回避し得るような起爆秒時差を容易に設定することができる。   In addition, since the peak frequency is obtained by making the reciprocal of the time difference of the detonation seconds or a multiple of the reciprocal of the time difference of the detonation seconds, the detonation that can avoid resonance between the peak frequency and the dominant frequency at the predetermined point P1 or the predetermined point P2. The time difference in seconds can be set easily.

図4および図5は、本発明の他の実施形態に係る発破工法を示す図である。この実施形態において、卓越周波数を測定する工程では、切羽Aの単発発破により生じる振動の所定地点P1,P2のそれぞれにおける卓越周波数を測定する。そして、起爆秒時差を設定する工程では、所定地点P1,P2のそれぞれに対応する2種類以上の起爆秒時差を設定し、段発発破を行う工程では、切羽Aを所定地点のそれぞれに対応させて2つに区分し(第1区分A1および第2区分A2)、各第1区分A1,A2の段発発破を行う。   4 and 5 are diagrams showing a blasting method according to another embodiment of the present invention. In this embodiment, in the step of measuring the dominant frequency, the dominant frequency at each of the predetermined points P1 and P2 of vibration caused by single blasting of the face A is measured. Then, in the step of setting the detonation second time difference, two or more types of detonation second time differences corresponding to each of the predetermined points P1 and P2 are set, and in the step of performing step blasting, the face A is made to correspond to each of the predetermined points. Are divided into two (first section A1 and second section A2), and the first section A1 and A2 are staged and blasted.

より具体的には、図5に示されるように、第1区分A1における段発発破(図示左型の起爆孔群B2〜B6)と、第2区分A2における段発発破(図示道側の起爆孔群B2〜B6)とで起爆秒時差を個別に設定する。   More specifically, as shown in FIG. 5, the stage blasting in the first section A1 (illustrated left-type detonation hole groups B2 to B6) and the stage blasting in the second section A2 (detonation on the road side shown in the figure) The time difference between the initiation seconds is set individually for the hole groups B2 to B6).

切羽Aの区分は、所定地点P1,P2の位置関係により区分する。例えば、トンネルTNLの左側に位置する地点P1、右側に位置する地点P2に対応するために、切羽Aを中央垂直に区分してもよいし、切羽Aの区分が左右均等でなくてもよい。また、トンネル中心の下側から周方向に複数に区分してもよい。   The face A is divided according to the positional relationship between the predetermined points P1 and P2. For example, in order to correspond to the point P1 located on the left side of the tunnel TNL and the point P2 located on the right side, the face A may be sectioned vertically in the center, and the section of the face A may not be equal left and right. Moreover, you may divide into multiple in the circumferential direction from the lower side of a tunnel center.

このような発破工法によっても、上記した先の実施形態の発破工法と同様の作用効果が奏される。また、2以上の地点P1,P2ごとに、卓越周波数が測定され、区分A1,A2ごとに起爆秒時差が設定されるため、切羽Aと各地点P1,P2との距離または地盤条件が異なっていても、それらの条件が加味されて起爆秒時差が設定されることになる。よって、各地点P1,P2のそれぞれにおいて振動を低減することができる。   Also by such a blasting method, the same effect as the blasting method of the previous embodiment is exhibited. In addition, the prevailing frequency is measured for each of two or more points P1 and P2, and the time difference between the start face A and each point P1 and P2 is different because the explosive second time difference is set for each of sections A1 and A2. However, taking these conditions into account, the time difference between the detonation seconds is set. Therefore, vibration can be reduced at each of the points P1 and P2.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限られない。たとえば、段発発破における起爆秒時差の設定は、等間隔の起爆秒時差に限られない。たとえば、起爆秒時差を3ms、5ms、7ms、11ms、13ms・・・等と素数にすることで段発発破による振動のピーク周波数を発生させないようにしてもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, the setting of the detonation second time difference in the stage blasting is not limited to the equidistant detonation second time difference. For example, the peak frequency of vibration due to step-by-step blasting may be prevented by generating a prime time difference of 3 ms, 5 ms, 7 ms, 11 ms, 13 ms, etc.

(実施例1)
実際のトンネル掘削において発破による振動試験を行った。実施例1では、起爆孔1孔あたりの薬量は約800gとした。単発発破間の間隔、及び単発発破と段発発破の間隔を500msとした。切羽Aから振動測定地点までの距離は36mであった。
Example 1
Vibration test by blasting was conducted in actual tunnel excavation. In Example 1, the dosage per initiation hole was about 800 g. The interval between single blasts and the interval between single blasts and stage blasts was 500 ms. The distance from face A to the vibration measurement point was 36 m.

図7(a)〜(c)に示されるように、単発発破において測定された卓越周波数は112〜136Hzであった。これに対し、段発発破の起爆孔を92孔とし、起爆孔1孔あたりの薬量を約800gとして、各起爆の起爆秒時差を5ms(起爆秒時差の逆数であるピーク周波数は200Hz)に設定した。卓越周波数に対してピーク周波数を高い側に外した。その結果、図6に示されるように、最大振動値は0.356cm/sであった。図8に示されるように、段発発破における振動値の増幅は見られなかった。なお、段発発破に伴い周辺に生じる振動を低減するためには、振動値の増幅を起さないようすることが重要であった。秒時差の大きい段発発破は一般に振動値の増幅を起しやすいとする知見を得た。   As shown in FIGS. 7A to 7C, the dominant frequency measured in single blasting was 112 to 136 Hz. On the other hand, the number of explosion holes for staged blasting is 92 holes, the dose per hole is about 800 g, and the time difference between each initiation is 5 ms (the peak frequency that is the reciprocal of the time difference between initiations is 200 Hz). Set. The peak frequency was removed to the higher side with respect to the dominant frequency. As a result, as shown in FIG. 6, the maximum vibration value was 0.356 cm / s. As shown in FIG. 8, there was no amplification of the vibration value in the stage blasting. It should be noted that in order to reduce the vibration generated in the vicinity due to the stage blasting, it was important not to cause the vibration value to be amplified. It was found that staged blasting with a large second time difference generally tends to amplify vibration values.

単発発破により生じる振動の卓越周波数の測定において、段発発破の影響もなく良好に卓越周波数を測定することができた。なお、段発発破の全起爆時間は約500msである。段発発破における起爆孔の配置は図2に示すとおりであって、図中の1孔が段発発破における起爆孔2孔に相当するものとした。   In the measurement of the dominant frequency of vibration caused by single blasting, the dominant frequency could be measured well without the influence of step blasting. In addition, the total detonation time for step-by-step blasting is about 500 ms. The arrangement of the initiation holes in the staged blasting is as shown in FIG. 2, and one hole in the figure corresponds to two initiation holes in the staged blasting.

(実施例2)
実施例2では、実施例1に先だって、切羽Aから振動測定地点までの距離が80mである地点で単発発破を行った。起爆孔1孔あたりの薬量は800gとした。単発発破において測定された卓越周波数は102〜118Hzであった。これに対し、段発発破の起爆秒時差を7ms(起爆秒時差の逆数であるピーク周波数は約142Hz)に設定して、実施例1と同様に発破した。その結果、実施例1と同様に、段発発破による振動値の増幅は見られなかった。
(Example 2)
In Example 2, prior to Example 1, single blasting was performed at a point where the distance from the face A to the vibration measurement point was 80 m. The dose per initiation hole was 800 g. The dominant frequency measured in a single blast was 102-118 Hz. On the other hand, the explosion time difference of the stage blasting was set to 7 ms (the peak frequency which is the reciprocal of the explosion time difference was about 142 Hz), and the explosion was carried out in the same manner as in Example 1. As a result, as in Example 1, amplification of vibration value due to step-by-step blasting was not observed.

(実施例3)
実施例3では、単発発破(3回)と起爆秒時差10msの段発発破を行った。切羽Aから振動測定地点までの距離は34mであった。この距離は、実施例1を行ったときの距離と大きく変わらない。装薬条件は実施例1と略同じである。単発発破同士間の間隔を500msとし、3回目の単発発破から段発発破の開始までの間隔も500msとした。なお、段発発破の全起爆時間は約1000msである。
(Example 3)
In Example 3, single-shot blasting (three times) and step-by-step blasting with an explosive second time difference of 10 ms were performed. The distance from face A to the vibration measurement point was 34 m. This distance is not significantly different from the distance when Example 1 is performed. The charging conditions are substantially the same as in Example 1. The interval between single blasts was 500 ms, and the interval from the third single blast to the start of stage blast was also 500 ms. In addition, the total detonation time for step-by-step blasting is about 1000 ms.

図7(a)〜(c)からわかるように、この地点において、単発発破で測定される卓越周波数は112〜136Hz程度である。これに対し、10msの起爆秒時差(すなわちピーク周波数は100Hz)とすることで、卓越周波数に対してピーク周波数を低い側に外した。その結果、図9に示されるように、最大振動値は0.483cm/sであった。また、図10に示されるように、段発発破における周波数は、100Hz付近で重なっており、これが振動値の増幅につながったと考えられる。このように、卓越周波数と起爆秒時差の設定によるピーク周波数とが近い場合には、振動値が増大する傾向が見られた。   As can be seen from FIGS. 7A to 7C, the dominant frequency measured by single blasting at this point is about 112 to 136 Hz. On the other hand, the peak frequency was removed to the lower side with respect to the dominant frequency by setting the time difference of the initiation time of 10 ms (ie, the peak frequency was 100 Hz). As a result, as shown in FIG. 9, the maximum vibration value was 0.483 cm / s. Further, as shown in FIG. 10, the frequencies in the stage blasting are overlapped in the vicinity of 100 Hz, which is considered to have led to the amplification of the vibration value. Thus, when the dominant frequency was close to the peak frequency set by the time difference between the initiation seconds, the vibration value tended to increase.

(実施例4)
実施例4では、切羽Aが振動測定地点の再近傍を通過して、切羽Aから振動測定地点までの距離が80mに達する地点で単発発破を行った。起爆孔1孔あたりの薬量は800gとした。単発発破において測定された卓越周波数は102〜118Hzであった。これに対し、段発発破の起爆秒時差を7ms(起爆秒時差の逆数であるピーク周波数は約142Hz)に設定して、実施例1,2と同様に発破した。その結果、実施例1,2と同様に、段発発破による振動値の増幅は見られなかった。
Example 4
In Example 4, the face A passed through the vicinity of the vibration measurement point, and single blasting was performed at a point where the distance from the face A to the vibration measurement point reached 80 m. The dose per initiation hole was 800 g. The dominant frequency measured in a single blast was 102-118 Hz. On the other hand, the explosion time difference of the stage blasting was set to 7 ms (the peak frequency which is the reciprocal of the explosion time difference was about 142 Hz), and the explosion was carried out in the same manner as in Examples 1 and 2. As a result, as in Examples 1 and 2, amplification of vibration value due to step-by-step blasting was not observed.

以上の結果より、一般的に、同じ地盤条件であれば、切羽Aから振動測定地点までの距離が大きいほど、卓越周波数は小さくなり、切羽Aから振動測定地点までの距離が小さいほど、卓越周波数は大きくなる傾向が見られた。このような傾向が見られる場合には、トンネル掘削の進行状況に合わせて、切羽Aから振動測定地点が近づくほど、起爆秒時差を小さくし、切羽Aから振動測定地点が遠ざかるほど、起爆秒時差を大きくすることができる。   From the above results, in general, under the same ground conditions, the dominant frequency decreases as the distance from the face A to the vibration measurement point increases, and the dominant frequency decreases as the distance from the face A to the vibration measurement point decreases. Tended to be larger. When such a tendency is observed, the time difference between the start of the excavation seconds decreases as the vibration measurement point approaches the face A, and the time difference between the vibration measurement points moves away from the face A according to the progress of the tunnel excavation. Can be increased.

なお、振動測定地点までの距離は35mである切羽Aにおいて、単発発破(3回)と起爆秒時差3msの段発発破を行ったところ、最大振動値は1.05cm/sであった。地盤条件から決まる卓越周波数は90Hz付近であったが、3msと起爆秒時差を小さくしたために、段発発破同士の波形が重なったことで振動速度が大きくなったと考えられる。   In the face A where the distance to the vibration measurement point was 35 m, single blasting (3 times) and step-by-step blasting with an explosive second time difference of 3 ms were performed, and the maximum vibration value was 1.05 cm / s. The dominant frequency determined from the ground conditions was around 90 Hz. However, since the time difference between the explosion and the explosive seconds was reduced to 3 ms, the vibration speed was thought to have increased due to the overlapping of the waveforms between the stage blasts.

(実施例5)
地盤条件の異なるトンネルの実施例5では、切羽Aの単発発破により生じる振動を図4に示すように所定地点P1,P2のそれぞれにおいて卓越周波数を測定した。起爆孔1孔あたりの薬量は約1000gとした。地点P1は切羽Aに向かって左側に位置して、地点P2は切羽Aに向かって右側に位置するようにした。切羽Aから地点P1までの距離は100mで、切羽Aから地点P2までの距離は60mであった。単発発破において測定された卓越周波数は地点P1では66〜74Hz、地点P2では96〜108Hzであった。
(Example 5)
In Example 5 of the tunnel with different ground conditions, the dominant frequency was measured at each of the predetermined points P1 and P2 as shown in FIG. The dose per initiation hole was about 1000 g. The point P1 is located on the left side toward the face A, and the point P2 is located on the right side toward the face A. The distance from face A to point P1 was 100 m, and the distance from face A to point P2 was 60 m. The dominant frequency measured in single blasting was 66-74 Hz at point P1, and 96-108 Hz at point P2.

そして、段発発破の起爆秒時差を設定する工程では、切羽Aを地点P1(左側)、地点P2(右側)に対応させて、図5に示すように、中央垂直に2つに区分して左側を区分A1とし、右側を区分A2とした。起爆秒時差の設定では、区分A1の起爆孔42孔に退位して起爆孔1孔あたりの薬量を約1000gとし、各起爆の起爆秒時差を10msに設定した。一方、区分A2の起爆孔42孔に対して起爆孔1孔あたりの薬量を約1000gとし、各起爆の起爆秒時差を7msに設定した。以上の条件で発破を行った。その結果、左右対称の起爆孔42孔に対して起爆孔1孔あたりの薬量を1000gとして、左右対称の起爆孔のそれぞれを起爆秒時差10msと設定した比較例1、及び左右対称の起爆孔のそれぞれを起爆秒時差7msに設定した比較例2に対して、最大振動値をそれぞれ1/5及び1/4に低減することができた。   Then, in the step of setting the time difference between the blasting blasts, the face A is associated with the point P1 (left side) and the point P2 (right side), and is divided into two vertically in the center as shown in FIG. The left side was set as section A1, and the right side was set as section A2. In the setting of the initiation time difference, the displacement was made to the initiation hole 42 in the category A1, the amount per initiation hole was about 1000 g, and the initiation time difference for each initiation was set to 10 ms. On the other hand, with respect to 42 initiation holes in section A2, the amount per initiation hole was about 1000 g, and the initiation time difference between each initiation was set to 7 ms. Blasting was performed under the above conditions. As a result, Comparative Example 1 in which the amount per unit of the initiation hole is set to 1000 g with respect to the 42 symmetrical opening holes, and each of the symmetrical opening holes is set to 10 ms of the initiation time difference, and the symmetrical opening hole. The maximum vibration values were reduced to 1/5 and 1/4, respectively, with respect to Comparative Example 2 in which each of these was set to a detonation second time difference of 7 ms.

10…起爆孔(段発発破用の起爆孔)、20…起爆孔(単発発破用の起爆孔)、12…爆薬、13…雷管、A…切羽(発破対象領域)、A1…第1区分、A2…第2区分、P1,P2…地点(所定地点)、TNL…トンネル。   10 ... detonation holes (detonation holes for blast blasting), 20 ... detonation holes (detonation holes for single blasting), 12 ... explosives, 13 ... detonator, A ... working face (blasting target area), A1 ... first division, A2 ... second section, P1, P2 ... point (predetermined point), TNL ... tunnel.

Claims (6)

発破対象領域の発破に伴って周辺の所定地点で生じる振動を低減する発破工法であって、
前記発破対象領域の単発発破により生じる振動の前記所定地点における卓越周波数を測定する工程と、
前記卓越周波数とは異なるピーク周波数が生じるように段発発破の起爆秒時差を設定する工程と、
前記起爆秒時差で前記発破対象領域の段発発破を行う工程と、を含むことを特徴とする発破工法。
It is a blasting method that reduces vibrations that occur at a predetermined point around the blasting target area,
Measuring a dominant frequency at the predetermined point of vibration caused by a single blast of the blast target region;
Setting the detonation second time difference of stage blasting so that a peak frequency different from the dominant frequency is generated;
And a step of performing stepwise blasting of the blasting target region with the time difference of the explosion seconds.
前記発破対象領域はトンネル掘削における切羽であり、
前記卓越周波数を測定するための少なくとも1回の単発発破と前記段発発破とを連続して行う、請求項1に記載の発破工法。
The blasting target area is a face in tunnel excavation,
The blasting method according to claim 1, wherein at least one single-shot blast and the step-by-step blast for measuring the dominant frequency are continuously performed.
前記少なくとも1回の単発発破と前記段発発破との間に100ms以上の間隔を設ける、請求項2に記載の発破工法。   The blasting method according to claim 2, wherein an interval of 100 ms or more is provided between the at least one single blast and the step blast. 前記所定地点は2以上の地点であり、
前記卓越周波数を測定する工程では、前記発破対象領域の単発発破により生じる振動の前記所定地点のそれぞれにおける卓越周波数を測定し、
前記起爆秒時差を設定する工程では、前記所定地点のそれぞれに対応する2種類以上の起爆秒時差を設定し、
前記段発発破を行う工程では、前記発破対象領域を前記所定地点のそれぞれに対応させて区分し、設定した起爆秒時差でそれぞれの区分の段発発破を行う、請求項1〜3のいずれか一項に記載の発破工法。
The predetermined point is two or more points,
In the step of measuring the dominant frequency, the dominant frequency at each of the predetermined points of vibration caused by single blasting of the blasting target region is measured,
In the step of setting the detonation second time difference, two or more types of detonation second time differences corresponding to each of the predetermined points are set,
The step of blasting and blasting divides the blasting target region in correspondence with each of the predetermined points, and performs blasting and blasting of each category with a set time difference of detonation. The blasting method described in one item.
前記起爆秒時差は10ms以下であり、前記段発発破の全起爆時間は3sec以下である、請求項1〜4のいずれか一項に記載の発破工法。   The blasting method according to any one of claims 1 to 4, wherein a time difference between the initiation seconds is 10 ms or less, and a total initiation time for the staged blasting is 3 seconds or less. 前記起爆秒時差を設定する工程において、前記ピーク周波数は、前記起爆秒時差の逆数または前記起爆秒時差の逆数の倍数とすることにより求められる、請求項1〜5のいずれか一項に記載の発破工法。   In the step of setting the detonation second time difference, the peak frequency is obtained by setting the reciprocal of the detonation second time difference or a multiple of the reciprocal of the detonation second time difference as claimed in any one of claims 1 to 5. Blasting method.
JP2014008761A 2014-01-21 2014-01-21 Blasting method Active JP6328433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008761A JP6328433B2 (en) 2014-01-21 2014-01-21 Blasting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008761A JP6328433B2 (en) 2014-01-21 2014-01-21 Blasting method

Publications (2)

Publication Number Publication Date
JP2015137788A true JP2015137788A (en) 2015-07-30
JP6328433B2 JP6328433B2 (en) 2018-05-23

Family

ID=53768905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008761A Active JP6328433B2 (en) 2014-01-21 2014-01-21 Blasting method

Country Status (1)

Country Link
JP (1) JP6328433B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014422A (en) * 2016-05-24 2016-10-12 北京科技大学 Method for determining safety construction section of urban tunnel blasting explosive dosage based on controlled vibration velocity
CN106021937A (en) * 2016-05-24 2016-10-12 北京科技大学 Calculation method for tunnel blasting explosive quantities under different vibration velocities for building structures
JP2018100823A (en) * 2016-12-19 2018-06-28 西松建設株式会社 Blasting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261900A (en) * 1986-05-08 1987-11-14 旭化成株式会社 Method of blasting construction
WO1998021544A1 (en) * 1996-11-12 1998-05-22 Asahi Kasei Kogyo Kabushiki Kaisya Excavation method by blasting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261900A (en) * 1986-05-08 1987-11-14 旭化成株式会社 Method of blasting construction
WO1998021544A1 (en) * 1996-11-12 1998-05-22 Asahi Kasei Kogyo Kabushiki Kaisya Excavation method by blasting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014422A (en) * 2016-05-24 2016-10-12 北京科技大学 Method for determining safety construction section of urban tunnel blasting explosive dosage based on controlled vibration velocity
CN106021937A (en) * 2016-05-24 2016-10-12 北京科技大学 Calculation method for tunnel blasting explosive quantities under different vibration velocities for building structures
CN106021937B (en) * 2016-05-24 2018-12-18 重庆巨能建设(集团)有限公司 It is a kind of for construction of structures difference vibration velocity require under Tunnel Blasting medicine calculation method
JP2018100823A (en) * 2016-12-19 2018-06-28 西松建設株式会社 Blasting method
JP6998014B2 (en) 2016-12-19 2022-01-18 西松建設株式会社 Blasting method

Also Published As

Publication number Publication date
JP6328433B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
CN109115061A (en) A kind of initiation control method reducing blasting vibration
CN103615941B (en) The blasting method of modernized railway shallow-buried sector
CN107843158A (en) The construction method of the low vibration velocity exact requirements of Tunnel Blasting is realized with common on-electric detonator
EP1009967B3 (en) Sequential detonation of explosive charges
CN107130966B (en) Tunnel blasting excavates damage forecast method and blasting scheme optimization regulating method
JP6328433B2 (en) Blasting method
CN108332626A (en) Method for calculating reasonable delay of electronic detonator single-hole interval differential vibration-damping blasting
JP4021101B2 (en) Low vibration crushing method by blasting
Wu et al. Parameter calculation of the initiating circuit with mixed use of nonel detonators and electronic detonators in tunnel controlled-blasting
JP6998014B2 (en) Blasting method
JP2019113309A (en) Blast construction method
JP4021102B2 (en) Low vibration crushing method by blasting
JP6484089B2 (en) Vibration prediction method
CN110671980B (en) Method for determining delay time of blast holes in adjacent rows of differential blasting
CN105953670A (en) Rectangular tunnel full-section blasting excavation construction method
KR100682049B1 (en) Vibration controlled open-cut method using hole with narrow and wide interval
JP6342749B2 (en) Blasting method
Wang et al. Experimental Study of Blast‐Induced Vibration Characteristics Based on the Delay‐Time Errors of Detonator
KR20090047912A (en) Blasting method of contour holes in two parts with time delay of 20~25ms
JP5981218B2 (en) Blasting method and blasting system
Battison et al. Reducing crest loss at Barrick Cowal gold mine
KR101704013B1 (en) Single and complex free surface in phase expansion and a series of free surface blasting method using a differential delay
JP6408388B2 (en) Blasting method
Silva et al. Improved signature hole analysis for blast vibration control in open pit mines
KR20180070277A (en) Riprap protection blasting method using electronic detonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180418

R150 Certificate of patent or registration of utility model

Ref document number: 6328433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250