JP2015135170A - Pipe joint structure for refrigerant - Google Patents

Pipe joint structure for refrigerant Download PDF

Info

Publication number
JP2015135170A
JP2015135170A JP2014007448A JP2014007448A JP2015135170A JP 2015135170 A JP2015135170 A JP 2015135170A JP 2014007448 A JP2014007448 A JP 2014007448A JP 2014007448 A JP2014007448 A JP 2014007448A JP 2015135170 A JP2015135170 A JP 2015135170A
Authority
JP
Japan
Prior art keywords
pipe
concave
circumferential groove
cap nut
concave circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014007448A
Other languages
Japanese (ja)
Inventor
井上 智史
Tomohito Inoue
智史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Sudare Co Ltd
Original Assignee
Inoue Sudare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Sudare Co Ltd filed Critical Inoue Sudare Co Ltd
Priority to JP2014007448A priority Critical patent/JP2015135170A/en
Publication of JP2015135170A publication Critical patent/JP2015135170A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pipe joint structure for refrigerant in the case that a pipe is formed of a copper tube, no flare work is set at an end part and a strong connection can be attained rapidly.SOLUTION: The present invention relates to a refrigerant pipe joint structure for connecting a copper pipe Pcomprising a male-threaded joint main body 1 and a cap nut 3 engaged in thread with a male thread 2 of the joint main body 1 in which it has a compression deforming sleeve 7 stored in an inner storing space 10 of the cap nut 3, having a concave peripheral groove 9 at an outer circumferential surface, receiving a compression force F in an axial direction from the joint main body 1 and the cap nut 3 when the cap nut 3 and the male thread 2 of the joint main body 1 are engaged to each other in thread, a thin wall part 13 of the concave peripheral groove shows a plastic deformation in a radial inner direction, bites from the outer circumferential surface 14 of the copper pipe Pto perform anti-loosening and there is provided a stainless steel rotation stopping cylindrical body 50 in correspondence with the second concave circumferential groove 92 at an outer end side. Further, after the first concave circumferential groove 91 shows a plastic deformation, the second concave circumferential groove 92 shows a plastic deformation.

Description

本発明は、冷媒用管継手構造に関する。   The present invention relates to a pipe joint structure for refrigerant.

管継手の一種として、フレア継手が古くから用いられている(例えば、特許文献1参照)。
一般に、図19に示すように、雄ネジ付き継手本体30のテーパ面31と、継手本体30の雄ネジ32に螺着される袋ナット33のテーパ面34の間に、銅製パイプ35の端部を拡径テーパ状に塑性加工して成るフレア端部37を、挟持させて圧接力により密封する構成である。
しかし、フレア加工を現場で行う必要があったため、配管作業能率アップが阻害されていた。
As one type of pipe joint, a flare joint has been used for a long time (for example, see Patent Document 1).
In general, as shown in FIG. 19, the end portion of the copper pipe 35 is between the tapered surface 31 of the male threaded joint body 30 and the tapered surface 34 of the cap nut 33 screwed onto the male thread 32 of the joint body 30. The flare end portion 37 formed by plastic working is expanded and tapered so as to be sandwiched and sealed with a pressing force.
However, since it was necessary to perform flare processing in the field, the improvement of piping work efficiency was hindered.

そこで、本発明者は、従来の(図19に示すような)フレア継手の上記欠点を解決し、さらに、部品点数も少なくて、シンプルな部品形状の管継手構造として、かつて図20に示すような発明を提案している(特許文献2参照)。
即ち、図20に於て、袋ナット38の内部収納空間39に圧縮変形用スリーブ40を内有させて、袋ナット38を継手本体41の雄ネジ42に螺進させ、この螺進させる際に、継手本体1のテーパ状先端面43と、袋ナット38の内鍔38Aによって、アキシャル方向の強い圧縮力を付与させることで、上記スリーブ40の2個の外周凹溝44,44のアキシャル方向幅寸法を減少させつつ、この外周凹溝44の溝底薄壁部45をラジアル内方向へ塑性変形させて、挿入されているパイプ46の外周面に、塑性変形した溝底薄壁部45を食い込ませて、(図20のように)パイプ46の引抜けを阻止する構造である。なお、47は、PTFE等を塗装したシール層であり、溝底薄壁部45のパイプ46の外周面への食い込み変形に伴って、強く圧縮されて密封作用を増加させている。
Therefore, the present inventor has solved the above-mentioned drawbacks of the conventional flare joint (as shown in FIG. 19), and further has a small number of parts and a simple part-shaped pipe joint structure as shown in FIG. Proposed an invention (see Patent Document 2).
That is, in FIG. 20, when a compression deformation sleeve 40 is provided in the internal storage space 39 of the cap nut 38 and the cap nut 38 is screwed onto the male screw 42 of the joint body 41, By applying a strong compressive force in the axial direction by the tapered distal end surface 43 of the joint body 1 and the inner flange 38A of the cap nut 38, the axial width of the two outer circumferential grooves 44, 44 of the sleeve 40 is given. While reducing the size, the groove bottom thin wall portion 45 of the outer circumferential groove 44 is plastically deformed radially inward, and the plastically deformed groove bottom thin wall portion 45 is bitten into the outer peripheral surface of the inserted pipe 46. Therefore, the pipe 46 is prevented from being pulled out (as shown in FIG. 20). Reference numeral 47 denotes a seal layer coated with PTFE or the like, which is strongly compressed to increase the sealing action as the groove bottom thin wall portion 45 bites into the outer peripheral surface of the pipe 46.

特開2005−42858号公報Japanese Patent Laid-Open No. 2005-42858 特許第5276215号公報Japanese Patent No. 5276215

図20に示した冷媒用管継手は、(図19に示した)フレア継手に代わり得る優れた発明ではあるが、次のような改良すべき点が残っている点に本発明者は気付いた。即ち、(i)パイプ46の耐引抜力は冷媒用配管用として十分であると考えられるが、冷媒用気体の密封性に関して、(後述する図11のような使用状況下で、)少し不安がある点、(ii)図20に示したシール層47の被覆作業が面倒かつコスト高であり、しかも、図20に示したような溝底薄壁部45の塑性変形に伴って部分的にシール層47が破壊する場合も考えられ、密封性能が低下する点、(iii)図20は圧縮変形用スリーブ40の圧縮状態を示しているが、未圧縮状態から袋ナット38を螺進させつつ圧縮変形させる途中に於て、2個の外周凹溝44,44が同時に塑性変形を行うために、溝底薄壁部45のラジアル内方向への変形以外に、(特にアキシャル外方側の外周凹溝44に於て)アキシャル方向への移動を発生して、大き目の凹部が、パイプ46の外周面に形成されることが判明した。即ち、このような大き目の凹部がパイプ46の外周面に形成されることによって、冷媒密封性能が低下し、外部漏洩を発生し、さらに、パイプ46の軸心廻りの回転に伴って、一層、外部漏洩が増加する点。(この改良すべき点(iii)に関しては、図16〜図18に於て後述する。)   Although the refrigerant pipe joint shown in FIG. 20 is an excellent invention that can replace the flare joint (shown in FIG. 19), the present inventor has noticed that the following points to be improved remain. . That is, (i) the pull-out force of the pipe 46 is considered to be sufficient for the refrigerant piping, but there is a little concern about the sealing performance of the refrigerant gas (under the usage conditions as shown in FIG. 11 described later). At a certain point, (ii) the covering operation of the sealing layer 47 shown in FIG. 20 is troublesome and expensive, and the sealing is partially performed with the plastic deformation of the groove bottom thin wall portion 45 as shown in FIG. (Iii) FIG. 20 shows the compression state of the compression deformation sleeve 40, but compression is performed by screwing the cap nut 38 from the uncompressed state. In the middle of the deformation, in order to simultaneously plastically deform the two outer circumferential grooves 44, 44, in addition to the deformation of the groove bottom thin wall portion 45 in the radial inward direction (especially the outer circumferential concave on the axial outer side). Along the axial direction (in the groove 44), a large recess is formed on the outer peripheral surface of the pipe 46. It is was found. That is, by forming such a large recess in the outer peripheral surface of the pipe 46, the refrigerant sealing performance is reduced, external leakage occurs, and further, along with the rotation of the pipe 46 around the axis, Increased external leakage. (This point (iii) to be improved will be described later with reference to FIGS. 16 to 18).

本発明は、雄ネジ付き継手本体と、該継手本体の雄ネジに螺着される袋ナットと、を備え、上記袋ナットの内部収納空間に収納されると共に、外周面に凹周溝を有し、上記袋ナットと上記継手本体の雄ネジを螺着させる際に上記継手本体と上記袋ナットからアキシャル方向の圧縮力を受けて、凹周溝底薄壁部がラジアル内方向へ塑性変形して、挿入されている金属パイプの外周面側から食い込んで抜止めする圧縮変形用スリーブを有する冷媒用管継手構造に於て、上記凹周溝は、アキシャル内方向側の第1凹周溝と、アキシャル外方向側の第2凹周溝とを、有し、上記第1凹周溝を先に、第2凹周溝を後として、順番に、上記塑性変形を起こさせるシーケンシャル制御用カバー部材を、上記圧縮変形用スリーブに、外嵌させた構成である。   The present invention comprises a joint body with a male thread and a cap nut screwed onto the male thread of the joint body, and is housed in the internal housing space of the cap nut and has a concave circumferential groove on the outer peripheral surface. When the cap nut and the male screw of the joint body are screwed together, an axial compression force is received from the joint body and the cap nut, and the concave circumferential groove bottom thin wall portion is plastically deformed radially inward. In the refrigerant pipe joint structure having a compression deformation sleeve that bites in from the outer peripheral surface side of the inserted metal pipe and prevents it from being removed, the concave circumferential groove is a first concave circumferential groove on the axial inward side. And a second concave circumferential groove on the axial outer direction side, and the sequential concave cover member that causes the plastic deformation in order with the first concave circumferential groove first and the second concave circumferential groove behind. Is externally fitted to the compression deformation sleeve.

また、上記圧縮変形用スリーブは、上記第1凹周溝と第2凹周溝の間の中間外周面部に於て、アキシャル外方向へ縮径するテーパ面が形成され、上記シーケンシャル制御用カバー部材は、アキシャル外方向の端部の内鍔部と、未圧縮状態下で上記圧縮変形用スリーブの上記テーパ面に対応して外嵌されるテーパ面を、備えている。   The sleeve for compression deformation is formed with a tapered surface that is reduced in diameter in an axially outward direction at an intermediate outer peripheral surface portion between the first concave groove and the second concave groove, and the sequential control cover member. Includes an inner flange portion at an end portion in the axial outer direction, and a tapered surface that is fitted in correspondence with the tapered surface of the compression deformation sleeve in an uncompressed state.

また、上記圧縮変形用スリーブのアキシャル方向外端側から予め挿入されて上記第2凹周溝の凹周溝底薄壁部に対応する深さまで最内端縁部が到達しているステンレス鋼製の切れ目を有するC型の廻り止め円筒状体を備え、かつ、円筒状体は、アキシャル方向の最内端縁部と最外端縁部に、パイプ食い込み用凹部及び/又は凸部を有する。
また、上記シーケンシャル制御用カバー部材は、上記袋ナットの内周面と、上記圧縮変形用スリーブの外周面との相対的回転滑りを助長する機能を兼備している。
Further, the innermost edge is made of stainless steel, which is inserted in advance from the outer end side in the axial direction of the compression deformation sleeve and reaches the depth corresponding to the thin groove bottom wall of the second concave groove. The cylindrical body has a C-shaped non-rotating cylindrical body having a notch, and has a pipe biting recess and / or a protrusion on the innermost edge and the outermost edge in the axial direction.
The sequential control cover member also has a function of promoting relative rotational slip between the inner peripheral surface of the cap nut and the outer peripheral surface of the compression deformation sleeve.

本発明によれば、(第1凹周溝は言うまでもなく)第2凹周溝の溝底薄壁部がパイプ外周面に対して(主として)ラジアル内方向へ塑性変形して、アキシャル方向に小寸法の食込凹溝を形成しつつ食い込み、大きい耐引抜力と密封性能と回転阻止力を発揮する。また、従来のシール層(図20の符号47)を省略しても十分なシール性(密封性能)を発揮できる。つまり、前記改良すべき点(iii)及び(i)(ii)を解決できる。
また、(請求項3によれば、)パイプに回転トルクが作用した場合にも、パイプの回転は、第2凹周溝の溝底薄壁部の位置に於て確実に阻止できる。これによって、第1凹周溝の溝底薄壁部の塑性変形部位と、パイプ外周面の食い込み部位との間も全く相対的回転を生じないので、冷媒等の洩れ易い気体も、確実に安定して、密封(シール)される。
また、シール層の被覆も不要であり、さらに、ゴム等のシール材を省略できて、耐久性も優れ、コストダウンも達成できる。勿論、フレア加工、溶接、ろう付け等の現場作業も不要である。
特に、エアコン屋外機が倒れた場合には、パイプは約90°の捩れを生じ、パイプに回転トルクが作用するが、本発明では、第2凹周溝の溝底薄壁部とパイプとの間の強力な廻り止めにより、パイプの回転は遮断阻止され、少なくとも(奥側の)第1凹周溝の溝底薄壁部とパイプとの間の相対的回転は(微小角度さえ)発生せず、密封性(シール性)は、長期にわたって安定して維持できる。
According to the present invention, the groove bottom thin wall portion of the second concave groove (not to mention the first concave groove) is plastically deformed (mainly) radially inward with respect to the outer peripheral surface of the pipe, and small in the axial direction. It bites in while forming a dent groove with dimensions, and exhibits a large pull-out resistance, sealing performance, and anti-rotation force. Further, even if the conventional sealing layer (reference numeral 47 in FIG. 20) is omitted, sufficient sealing performance (sealing performance) can be exhibited. That is, the points (iii) and (i) and (ii) to be improved can be solved.
Further, even when rotational torque acts on the pipe (according to claim 3), the rotation of the pipe can be reliably prevented at the position of the groove bottom thin wall portion of the second concave circumferential groove. As a result, there is no relative rotation between the plastic deformation portion of the thin groove bottom wall portion of the first concave circumferential groove and the biting portion of the outer peripheral surface of the pipe. And sealed.
Further, it is not necessary to cover the sealing layer, and furthermore, a sealing material such as rubber can be omitted, the durability is excellent, and the cost can be reduced. Of course, field work such as flaring, welding, and brazing is not necessary.
In particular, when the outdoor unit of the air conditioner falls, the pipe is twisted by about 90 °, and rotational torque acts on the pipe. In the present invention, the groove bottom thin wall portion of the second concave circumferential groove and the pipe The powerful rotation stop between the pipes prevents the rotation of the pipe, and at least the relative rotation between the thin wall of the bottom groove of the first concave groove (at the back) and the pipe (even a minute angle) does not occur. In addition, the sealing property (sealability) can be stably maintained over a long period of time.

本発明の実施の一形態を示す断面図であり、軸心線より上半部は袋ナット未締付状態の断面図を示し、軸心線より下半部は締付完了状態の断面図である。It is sectional drawing which shows one Embodiment of this invention, The upper half part from an axial center line shows sectional drawing of a cap nut untightened state, and the lower half part from an axial center line is sectional drawing of a clamping completion state is there. 廻り止め円筒状体の一実施例を示し、(A)は正面図、(B)は断面側面図である。One Example of a rotation prevention cylindrical body is shown, (A) is a front view, (B) is a cross-sectional side view. 廻り止め円筒状体の他の実施例を示し、(A)は正面図、(B)は断面側面図である。The other Example of a rotation prevention cylindrical body is shown, (A) is a front view, (B) is a cross-sectional side view. 廻り止め円筒状体の要部の説明図である。It is explanatory drawing of the principal part of a rotation prevention cylindrical body. 圧縮変形用スリーブを説明するための要部断面図である。It is principal part sectional drawing for demonstrating the sleeve for compression deformation. 圧縮変形用スリーブの要部拡大図である。It is a principal part enlarged view of the sleeve for compression deformation. 未圧縮状態の要部の位置関係を示した要部拡大説明図である。It is principal part expansion explanatory drawing which showed the positional relationship of the principal part of an uncompressed state. 圧縮状態を示す要部拡大作用説明図である。It is principal part expansion effect explanatory drawing which shows a compression state. 圧縮状態に於ける圧縮スリーブの要部のみを取出して示した拡大説明図である。FIG. 4 is an enlarged explanatory view showing only a main part of a compression sleeve in a compressed state. パイプに回転トルクを付与する試験方法を説明する斜視説明図である。It is a perspective view explaining the test method which provides rotational torque to a pipe. 従来の問題点及び本発明の利点と作用・効果を説明するための斜視説明図である。It is perspective explanatory drawing for demonstrating the conventional problem and the advantage, effect | action, and effect of this invention. 袋ナット未締付状態の断面図である。It is sectional drawing of a cap nut untightened state. 袋ナット螺進途中の状態(スリーブ圧縮途中の状態)を示す断面図である。It is sectional drawing which shows the state (state in the middle of sleeve compression) in the middle of a cap nut screwing. 袋ナット締付完了状態(スリーブ圧縮状態)を示す断面図である。It is sectional drawing which shows a cap nut fastening completion state (sleeve compression state). 要部説明図であり、(A)はカバー部材の断面説明図、(B)は圧縮変形用スリーブの半截要部説明図であって、点々はテーパ面を示している。It is principal part explanatory drawing, (A) is sectional explanatory drawing of a cover member, (B) is a half-ridge main part explanatory drawing of the sleeve for compression deformation, Comprising: The point has shown the taper surface. 袋ナット締付完了状態(スリーブ圧縮状態)を示す比較例の断面図である。It is sectional drawing of the comparative example which shows a cap nut fastening completion state (sleeve compression state). 比較例の作用(問題点)を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the effect | action (problem) of a comparative example. 本発明の作用を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the effect | action of this invention. 従来例を示す断面図である。It is sectional drawing which shows a prior art example. 他の従来例を示した配管接続完了状態の断面図である。It is sectional drawing of the pipe connection completion state which showed the other conventional example.

以下、図示の実施の形態に基づき本発明を詳説する。
図1は本発明の実施の形態を示し、軸心線L0 より上半部は未締付状態を、軸心線L0
より下半部は締付(接続)完了状態を示す断面図である。さらに、図12〜図14は、未締付状態から、中途状態を経て、締付(接続)完了状態に、順次変化することを示した図である。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
Figure 1 shows an embodiment of the present invention, the upper half than the axial center line L 0 state with non-clamping, axial center line L 0
The lower half is a sectional view showing a tightening (connection) completed state. Further, FIGS. 12 to 14 are diagrams showing a sequential change from an untightened state to an intermediate state and then to a tightening (connection) completed state.

図1、及び、図12〜図14に示す冷媒用管継手構造は、雄ネジ2を一体に有する継手本体1と、この雄ネジ2に螺着される袋ナット3と、を備え、冷媒用金属パイプPを接続するものである。金属パイプPとしては、銅又はアルミニウムから成るが、まず、(銅から成る)銅管PCuの場合から説明する。
銅管PCuの端部5にフレア加工を施すことなく、銅管PCuと管継手が接続される。継手本体1及び袋ナット3は、例えば真鍮から成る。銅管PCu及び管継手の内部をエアコン等の冷媒が流れる。
図1と図5に於て、7は、銅管PCu用として、銅から成る圧縮変形用スリーブであって、外周面8に第1凹周溝91と第2凹周溝92の2本の凹周溝9を有する。スリーブ7の外端側に第2凹周溝92が設けられ、継手本体1側には第1凹周溝91が設けられている。そして、この圧縮変形用スリーブ7は、袋ナット3の内部収納空間10に収納される。
The refrigerant pipe joint structure shown in FIG. 1 and FIG. 12 to FIG. 14 includes a joint main body 1 integrally having a male screw 2 and a cap nut 3 screwed to the male screw 2. The metal pipe P is connected. As the metal pipe P is made of copper or aluminum, will be described first case (made of copper) copper tube P Cu.
The copper pipe P Cu and the pipe joint are connected without flaring the end portion 5 of the copper pipe P Cu . The joint body 1 and the cap nut 3 are made of brass, for example. A refrigerant such as an air conditioner flows through the copper pipe P Cu and the pipe joint.
At a 1 and 5, 7, for the copper tube P Cu, a compressive deformation sleeve made of copper, the first concave peripheral groove 91 on the outer peripheral surface 8 two second concave peripheral groove 92 The concave circumferential groove 9 is provided. A second concave circumferential groove 92 is provided on the outer end side of the sleeve 7, and a first concave circumferential groove 91 is provided on the joint body 1 side. The compression deformation sleeve 7 is stored in the internal storage space 10 of the cap nut 3.

圧縮変形用スリーブ7は、袋ナット3と継手本体1の雄ネジ2を螺着させる際に、図1に於ける軸心線L0 の上半部(自由状態)から、下半部(締付圧縮状態)に示すように、及び、図12から図13を経て図14に示すように、継手本体1と袋ナット3からアキシャル方向の圧縮力(締付力)Fを受けて、凹周溝底薄壁部13がラジアル内方向に塑性変形して(図1及び図8と図14参照)、挿入されている銅管PCuの外周面14側から食い込んで抜止めする。つまり、耐引抜力を発揮して、銅管PCuの引抜けを防止する。この圧縮状態では、銅管PCuの内周面にも小凸条部25が形成される。
圧縮変形用スリーブ7の第1・第2凹周溝91,92の断面形状は、略半円形の場合を図1,図5,図7,図12に例示する。この断面形状としては、U字形としても良く、場合によっては略V字状にしても良い。
When the cap nut 3 and the male screw 2 of the joint body 1 are screwed together, the compression deformation sleeve 7 is changed from the upper half (free state) of the shaft center line L 0 in FIG. As shown in Fig. 14 through Fig. 12 through Fig. 13 and in Fig. 14 as shown in Fig. 14, it receives a compressive force (tightening force) F in the axial direction from the joint body 1 and the cap nut 3, groove bottom thin wall portion 13 is plastically deformed in the radial inward direction (see FIGS. 1 and FIGS. 8 and 14), which retaining fit bite from the outer peripheral surface 14 side of the copper tube P Cu being inserted. That is, exhibit scratch抜力, to prevent pullout of the copper tube P Cu. In this compressed state, small ridges 25 are also formed on the inner peripheral surface of the copper pipe PCu .
The case where the first and second concave circumferential grooves 91 and 92 of the compression deformation sleeve 7 are substantially semicircular is illustrated in FIG. 1, FIG. 5, FIG. 7 and FIG. The cross-sectional shape may be U-shaped, and may be substantially V-shaped depending on the case.

凹周溝91,92の幅寸法Wは、圧縮変形に伴って(塑性変形の際)、減少して、図1の下半部に示すように、あるいは、図8や図14,図18に示すように、凹周溝91,92の溝奥部が溝側面15,15同志が圧接し、溝開口寄りは、狭小U字乃至狭小V字となる。(なお、図示省略するが全体の溝側面15,15相互に圧接しても良い。)
図6(A)と(B)に点々をもって示すように、アキシャル内方向側の第1凹周溝91の溝底薄壁部13には、係止段付Gを有する小突条23が形成され、図1の下半部、又は、図13,図14に示すように、圧縮状態で銅管PCuの外周面14に食い込んで、銅管PCu(パイプP)の耐引抜力を増加させ、かつ、シール性(密封性)も向上させる。
The width dimension W of the concave grooves 91 and 92 decreases with compressive deformation (in the case of plastic deformation), as shown in the lower half of FIG. 1, or in FIG. 8, FIG. 14, and FIG. As shown, the groove back portions of the concave circumferential grooves 91 and 92 are in pressure contact with the groove side surfaces 15 and 15, and a narrow U shape or a narrow V shape is formed near the groove opening. (Although not shown in the drawing, the entire groove side surfaces 15 may be pressed against each other.)
6A and 6B, a small protrusion 23 having a locking step G is formed in the groove bottom thin wall portion 13 of the first concave circumferential groove 91 on the axial inward side. As shown in the lower half of FIG. 1, or as shown in FIGS. 13 and 14, it bites into the outer peripheral surface 14 of the copper pipe P Cu in a compressed state, thereby increasing the pulling resistance of the copper pipe P Cu (pipe P). And improve the sealing performance (sealing performance).

図5に示したスリーブ7の内周面11の縦断面形状に於て、上記小突条23の基端側はストレート部24に凹設され、小突条23の先端側には、緩やかな先端方向に縮径するテーパ26と先端方向に拡径するテーパ27とが順次形成されると共に、拡径テーパ27は(同一内径の)ストレート部28に連続して、このストレート部28が先端に開口している。
ストレート部28と拡径テーパ27との境目線Hの位置は、第2凹周溝92の幅の中央近傍が好ましい。50は、(銅よりも十分に硬度の高い)ステンレス鋼製の廻り止め円筒状体であって、この廻り止め円筒状体50は、図2に示すような切れ目51を有する薄いステンレス鋼製のC型円筒状であって、圧縮変形用スリーブ7にアキシャル方向外端側から予め挿入(内装)されて第2凹周溝92の溝底薄壁部13に対応する深さまで、最内端縁部50Aが到達している。
そして、図2に示すように、C型円筒状体50の最内端縁部50A及び最外端縁部50Bには、矩形状(又はU字状)等のパイプ食い込み用(切欠状)凹部52が設けられている。なお、図示省略するが、パイプ食い込み用凸部(突片部)を設けても良い。
廻り止め円筒状体50のアキシャル方向寸法L50は、前述の図5のストレート部28の深さ寸法と略等しいのが望ましい。つまり、境目線Hの位置まで、円筒状体50の最内端縁部50Aが略一致するように、円筒状体50は圧縮変形用スリーブ7に内装されている。
追加説明すると、図7に示すように、スリーブ7の未圧縮状態では、円筒状体50の最内端縁部50Aのアキシャル方向位置は、第2凹周溝92の先端寄りの溝側面15と、第2凹周溝92の溝幅寸法Wの半分の位置との範囲(1/2・W)内に設定するのが良い。
In the longitudinal cross-sectional shape of the inner peripheral surface 11 of the sleeve 7 shown in FIG. 5, the proximal end side of the small protrusion 23 is recessed in the straight portion 24, and the distal end side of the small protrusion 23 has a gentle shape. A taper 26 that decreases in diameter in the distal direction and a taper 27 that increases in diameter in the distal direction are sequentially formed. The diameter-expanded taper 27 is continuous with the straight portion 28 (having the same inner diameter), and the straight portion 28 is formed at the tip. It is open.
The position of the boundary line H between the straight portion 28 and the enlarged diameter taper 27 is preferably near the center of the width of the second concave circumferential groove 92. 50 is a non-rotating cylindrical body made of stainless steel (which is sufficiently harder than copper), and this non-rotating cylindrical body 50 is made of a thin stainless steel having a cut 51 as shown in FIG. The innermost edge of the C-shaped cylinder, which is inserted (internally) into the compression deformation sleeve 7 from the outer end side in the axial direction in advance and has a depth corresponding to the groove bottom thin wall portion 13 of the second concave circumferential groove 92. Part 50A has reached.
As shown in FIG. 2, the innermost edge portion 50A and the outermost edge portion 50B of the C-shaped cylindrical body 50 have pipe-cut (notch-shaped) recesses such as a rectangular shape (or U-shape). 52 is provided. Although not shown, a pipe biting convex portion (projecting piece portion) may be provided.
Detent cylindrical body axial dimension L 50 of 50, of substantially equal to the depth of the straight portion 28 of FIG. 5 described above is desirable. In other words, the cylindrical body 50 is housed in the compression deformation sleeve 7 so that the innermost edge 50A of the cylindrical body 50 substantially matches up to the position of the boundary line H.
More specifically, as shown in FIG. 7, when the sleeve 7 is in an uncompressed state, the position in the axial direction of the innermost edge portion 50 </ b> A of the cylindrical body 50 is the groove side surface 15 near the tip of the second concave circumferential groove 92. The second concave circumferential groove 92 is preferably set within a range (1/2 · W) from a position half the groove width dimension W.

そして、図1の上半部に示した未圧縮状態から、袋ナット3を継手本体1に対して螺進してゆくと、図1の下半部、及び、図8(図14)に示す如く、最終の接続状態では、第1凹周溝91・第2凹周溝92の溝底薄壁部13が、各々、ラジアル内方向へ、U字状乃至V字状に塑性変形する。この溝底薄壁部13の塑性変形によって、第2凹周溝92では、廻り止め円筒状体50の最内端縁部50Aもラジアル内方向へ塑性変形し、最内端縁部50Aは、U字状(V字状)に塑性変形した溝底薄壁部13の最小径部近傍に対応しつつ、パイプP(銅管PCu)の外周面14に深く食い込み、図8に矢印F50にて示した極めて大きい押込力(食込力)にてパイプP(銅管PCu)に食い込む。なお、パイプP(銅管PCu)側からは同じ大きさの反力F50´が生ずる。 Then, when the cap nut 3 is screwed into the joint body 1 from the uncompressed state shown in the upper half of FIG. 1, the lower half of FIG. 1 and FIG. 8 (FIG. 14) are shown. As described above, in the final connection state, the groove bottom thin wall portions 13 of the first concave circumferential groove 91 and the second concave circumferential groove 92 are plastically deformed in a U shape or a V shape in the radial inward direction. Due to the plastic deformation of the groove bottom thin wall portion 13, in the second concave circumferential groove 92, the innermost edge portion 50A of the non-rotating cylindrical body 50 is also plastically deformed radially inward, and the innermost edge portion 50A is Corresponding to the vicinity of the minimum diameter portion of the groove bottom thin wall portion 13 plastically deformed in a U shape (V shape), it deeply digs into the outer peripheral surface 14 of the pipe P (copper pipe P Cu ), and the arrow F 50 in FIG. It bites into the pipe P (copper pipe P Cu ) with the extremely large pushing force (biting force) shown in. A reaction force F 50 ′ having the same magnitude is generated from the pipe P (copper pipe P Cu ) side.

このように大きい押込力(食い込み力)にて円筒状体50の最内端縁部50Aが食い込むことによって、円筒状体50とパイプP(銅管PCu)との相対的回転は阻止される。
なお、硬質のステンレス鋼の薄肉のC型円筒状体50とスリーブ7との圧接面には、切れ目51にスリーブ7の一部分が食い込み状となり、相互回転は生じない。しかも、縮径方向の塑性変形に伴う微小な皺N(図9参照)が多数存在し、相互の回転は全く生じない。
一方、第1凹周溝91は、小突条23がパイプP(銅管PCu)の外周面14に食い込み、強力な耐引抜力を発揮すると同時に、安定した密封性(シール性)を発揮する。
When the innermost edge 50A of the cylindrical body 50 bites in by such a large pushing force (biting force), relative rotation between the cylindrical body 50 and the pipe P (copper pipe P Cu ) is prevented. .
It should be noted that a portion of the sleeve 7 bites into the cut 51 on the pressure contact surface between the thin C-shaped cylindrical body 50 of hard stainless steel and the sleeve 7, and mutual rotation does not occur. In addition, there are many small ridges N (see FIG. 9) accompanying plastic deformation in the direction of diameter reduction and no mutual rotation occurs.
On the other hand, in the first concave circumferential groove 91, the small protrusions 23 bite into the outer peripheral surface 14 of the pipe P (copper pipe P Cu ), exhibiting a strong pull-out resistance, and at the same time exhibiting a stable sealing performance (sealing performance). To do.

以上、パイプPが銅管PCuの場合について説明したが、パイプPがアルミニウム管PAlの場合は、電蝕防止の面から、圧縮変形用スリーブ7の材質を、アルミニウムとするか、又は、アルミニウム層を被覆した銅とするが、これ以外の構成及び作用効果と機能は、銅管PCuと同様である。(従って、重複説明を省略する。) As described above, the case where the pipe P is the copper pipe P Cu has been described. However, when the pipe P is the aluminum pipe P Al , the material of the compression deformation sleeve 7 is aluminum from the viewpoint of electrolytic corrosion prevention, or Although copper which coat | covers the aluminum layer is used, the structure of other than this, an effect, and a function are the same as that of the copper pipe PCu . (Therefore, duplicate explanation is omitted.)

次に、図3に示す他の実施例のように、切れ目51を有するC型の廻り止め円筒状体50として、最内端縁部50A及び最外端縁部50Bには、(図2よりも多くの)小凹凸を形成するも好ましい。この際、図4(A)のような四角の凹凸波型をローレットや打抜加工や圧潰加工にて形成したり、図4(B)の三角の三角凹凸波型を同様の加工にて形成したり、あるいは、図4(C)に示すように研削やヤスリ加工によって、微小凹凸のある粗面加工としても良い。
図18に示したように、(スリーブの)圧縮状態で、廻り止め円筒状体50の最内端縁部50Aのみならず最外端縁部50Bも、パイプPの外周面14へ食い込む。従って、軸心線L0 廻りにパイプPが回転しようとした場合に、強力な廻り止め阻止力を発揮する。なお、このとき、切れ目51を有することによって、切れ目51にスリーブ7の内周面の一部が食い込んで、スリーブと円筒状体50との相対回転は強く阻止されている。なお、最内外両端縁部50A,50Bに対称に、凹部52、及び/又は、凸部を配設すれば、組立時に、円筒状体50の組込間違いを生じない。
Next, as in the other embodiment shown in FIG. 3, the innermost edge 50A and the outermost edge 50B have a C-shaped non-rotating cylindrical body 50 having a cut 51 (see FIG. 2). It is also preferable to form a large number of small irregularities. At this time, a square concave / convex waveform as shown in FIG. 4A is formed by knurling, punching or crushing, or a triangular triangular concave / convex waveform as shown in FIG. 4B is formed by similar processing. Alternatively, rough surface processing with minute irregularities may be performed by grinding or file processing as shown in FIG.
As shown in FIG. 18, not only the innermost edge 50A but also the outermost edge 50B of the non-rotating cylindrical body 50 bites into the outer peripheral surface 14 of the pipe P in the compressed state (sleeve). Therefore, when the pipe P tries to rotate around the shaft center line L 0 , a strong detent stop force is exhibited. At this time, by having the cut 51, a part of the inner peripheral surface of the sleeve 7 bites into the cut 51, and the relative rotation between the sleeve and the cylindrical body 50 is strongly prevented. In addition, if the concave portion 52 and / or the convex portion are disposed symmetrically on the innermost and outer end edges 50A and 50B, an erroneous assembly of the cylindrical body 50 does not occur during assembly.

上述したように、第2凹周溝92の溝底薄壁部13の塑性変形によれば、(パイプPの)廻り止め機能(グリップ機能)を発揮し、かつ、(当然ながら)パイプPの耐引抜力、及び、冷媒に対する密封機能(シール性能)を発揮する。他方、第1凹周溝91の溝底薄壁部13の塑性変形によれば、パイプPの耐引抜力が発揮される。しかしながら、冷媒に対する密封機能(シール性能)に関しては、第2凹周溝92の(前述の)廻り止め機能(グリップ機能)の助けが無ければならない。以下、この点について説明する。   As described above, according to the plastic deformation of the groove bottom thin wall portion 13 of the second concave circumferential groove 92, the anti-rotation function (grip function) (of the pipe P) is exhibited, and (naturally) the pipe P Exhibits pull-out resistance and sealing function (seal performance) against refrigerant. On the other hand, according to the plastic deformation of the groove bottom thin wall portion 13 of the first concave circumferential groove 91, the pull-out resistance of the pipe P is exhibited. However, with regard to the sealing function (seal performance) against the refrigerant, it is necessary to assist in the anti-rotation function (grip function) of the second concave groove 92 (described above). Hereinafter, this point will be described.

図9は、図14の圧縮接続完了状態、又は、図1の下半部の圧縮接続完了状態下で、仮にパイプPを除去した場合の圧縮変形用スリーブ7の要部拡大説明図であり、この図9からも明らかなように、第1・第2凹周溝91,92に於ける各溝底薄壁部13の内周面には、U字状又はV字状に塑性変形する際に多数の皺Nが発生する。その理由は、全体に縮径変形であるがために、圧縮変形に伴って、皺Nが発生すると推定される。
当然に、パイプP側の(対応する)圧接部には、凹と凸が逆の皺が発生し、相互に密に凹凸が入り込んでいる。しかし、銅管PCuと銅製スリーブ7はいずれも軟らかく相互の回転阻止力(グリップ機能)は弱い。あるいは、アルミニウム管PAlとアルミニウムスリーブ7はいずれも軟らかく相互の回転阻止力(グリップ機能)は弱い。
9 is an enlarged explanatory view of the main part of the compression deformation sleeve 7 when the pipe P is temporarily removed in the compression connection completed state of FIG. 14 or the compression connection completed state of the lower half of FIG. As apparent from FIG. 9, the inner peripheral surface of each groove bottom thin wall portion 13 in the first and second concave circumferential grooves 91 and 92 is plastically deformed into a U shape or a V shape. In this case, a large number of soot N is generated. The reason is estimated to be that 皺 N is generated along with the compression deformation because the entire diameter is reduced.
Naturally, in the (corresponding) pressure contact portion on the pipe P side, wrinkles having a concave portion and a convex portion are generated, and the concave and convex portions are densely inserted into each other. However, the copper tube PCu and the copper sleeve 7 are both soft and have a weak mutual rotation stopping force (grip function). Alternatively, the aluminum pipe P Al and the aluminum sleeve 7 are both soft and have a weak mutual rotation stopping force (grip function).

第2凹周溝92側の廻り止め円筒状体50の付加による廻り止め機能(グリップ機能)が存在しないと仮定すると、第1凹周溝91側では、銅管PCu・アルミニウム管PAlとスリーブ7とが皺Nによって凹凸が入り込んでいるといえども、簡単にパイプPが回転してしまう。そうすると、凹凸の入り込みが、逆に、極微小間隙を発生させ、冷媒が外部漏洩する。
勿論、第1凹周溝91自体に於ても、廻り止め円筒状体50が存在しなければ、第1凹周溝91の溝底薄壁部13のU字状(又はV字状)の塑性変形部の皺Nによる凹凸と、パイプPの外周面14の対応部の逆凹凸との入り込みも、同様に簡単にパイプPが回転してしまう。
実験の結果、微小な皺Nによる凹凸の入り込み状態から、パイプPが1°〜2°の微小角度の回転が生ずると、冷媒(気体)は外部漏洩を発生することが判明した。
When detent function by the addition of the second concave peripheral groove 92 side detent cylindrical member 50 (the grip function) is assumed not to exist, in the first concave peripheral groove 91 side, and a copper pipe P Cu · aluminum tube P Al Even if the sleeve 7 and the sleeve 7 are uneven, the pipe P easily rotates. If it does so, concavity and convexity will conversely generate a very small gap, and the refrigerant leaks to the outside.
Of course, in the first concave groove 91 itself, if there is no rotation-preventing cylindrical body 50, the U-shaped (or V-shaped) U-shaped (or V-shaped) groove bottom thin wall portion 13 of the first concave circumferential groove 91 is present. Similarly, the pipe P easily rotates when the unevenness caused by the ridge N of the plastic deformation portion and the reverse unevenness of the corresponding portion of the outer peripheral surface 14 of the pipe P enter.
As a result of the experiment, it has been found that when the pipe P is rotated by a minute angle of 1 ° to 2 ° from the state of the unevenness due to the minute ridges N, the refrigerant (gas) causes external leakage.

本発明では、第2凹周溝92の溝底薄壁部13に対応して廻り止め円筒状体50の最内端縁部50Aを具備することで、強力な回転阻止力(グリップ機能)を発揮できて、第1凹周溝91に対して助けを行って、第1凹周溝91の溝底薄壁部13の塑性変形部位と、パイプPとの廻り止めを確保することで、冷媒等の気体に対しても、十分に長期間にわたって、かつ、過酷な使用状況にあっても、密封機能(シール性能)を、第1凹周溝91に於て発揮可能である。   In the present invention, by providing the innermost edge portion 50A of the non-rotating cylindrical body 50 corresponding to the groove bottom thin wall portion 13 of the second concave circumferential groove 92, a strong rotation prevention force (grip function) is provided. The refrigerant can be exerted by helping the first concave groove 91 and securing the plastic deformation site of the thin wall portion 13 of the groove bottom of the first concave groove 91 and the pipe P, thereby The first concave groove 91 can exhibit a sealing function (sealing performance) even for a gas such as a long period of time and under severe use conditions.

次に、図11は本発明に係る管継手構造の使用状態の一例を示す図であって、箱型のエアコン室外機17の側面に、冷媒配管18,18が接続される部位―――図11では、黒丸19,19をもって示す―――に本発明に係る管継手が使用されている。
冷媒配管18は、既述のパイプP(銅管PCu又はアルミニウム管PAl)が相当するが、図11(A)に示した正常姿勢の室外機17に於て、L字(Z字)型等にパイプPは折曲げられており、このような正常姿勢から図11(B)に示すように、地震や他の物体が衝突する等の何らかの原因で矢印C方向へ倒れる事故が発生すると、パイプPの管継手との接続近傍位置では、矢印M方向の捩れが発生する。室外機17の設置面20は通常水平面状であるから、約90°の角度β0 の捩れが管継手(黒丸19参照)とパイプPの接続領域で生ずる。
Next, FIG. 11 is a diagram showing an example of the usage state of the pipe joint structure according to the present invention, where the refrigerant pipes 18 and 18 are connected to the side surface of the box-type air conditioner outdoor unit 17— 11, indicated by black circles 19 and 19, the pipe joint according to the present invention is used.
The refrigerant pipe 18 corresponds to the above-described pipe P (copper pipe P Cu or aluminum pipe P Al ). In the outdoor unit 17 in the normal posture shown in FIG. When the pipe P is bent in a mold or the like, and an accident that falls in the direction of the arrow C for some reason, such as an earthquake or another object collides as shown in FIG. In the vicinity of the connection of the pipe P with the pipe joint, twisting in the direction of the arrow M occurs. Since the installation surface 20 of the outdoor unit 17 is generally horizontal, a twist of an angle β 0 of about 90 ° occurs in the connection region between the pipe joint (see black circle 19) and the pipe P.

図10は、このような事故の状況を本発明者が再現して冷媒外部漏洩実験を行った斜視説明図である。即ち、図10に示すように、管継手Xとして、図20に示した従来―――即ち、本発明の特に廻り止め円筒状体50を具備しないもの―――と、本発明の実施例として、図1と図2に示した構造の管継手とを、エアコン室外機17(に想到する固定壁面)に水平に突出状に固着し、さらに、パイプPを最小可能曲げアール半径R1 にて鉛直上方に曲げた状態で、この曲げアール半径R1 とストレート状となる境目の箇所(2つの三角印21,21にて示す)にて掴持工具で掴持して、矢印M方向に捩りをパイプに与え、しかも冷媒には通常の使用状態に於ける最高使用圧を付与しつつ管継手X及びパイプP内に流して、外部漏洩テストを行った。パイプPはいずれも銅管PCuとアルミニウム管PAlを用いた。 FIG. 10 is an explanatory perspective view of the refrigerant external leakage experiment in which the present inventor reproduced such an accident situation. That is, as shown in FIG. 10, as the pipe joint X, the conventional example shown in FIG. 20--that is, the one that does not include the non-rotating cylindrical body 50 of the present invention--as an embodiment of the present invention. 1 and 2 are fixed to the air conditioner outdoor unit 17 (fixed wall surface conceived) horizontally in a protruding manner, and the pipe P is bent with a minimum bend radius R 1 . In a state of being bent vertically upward, it is gripped by a gripping tool at the boundary of the bend radius R 1 and a straight shape (indicated by two triangular marks 21 and 21) and twisted in the direction of arrow M Was applied to the pipe, and the refrigerant was allowed to flow through the pipe joint X and the pipe P while applying the maximum use pressure in a normal use state, and an external leakage test was performed. As the pipe P, a copper pipe P Cu and an aluminum pipe P Al were used.

実験結果は、次の表1の通りであった。

Figure 2015135170
The experimental results were as shown in Table 1 below.
Figure 2015135170

上記表1から判るように、従来例の管継手では、図11に示した室外機17の倒れ事故の際に、冷媒の外部漏洩が発生する虞が高い。このようにパイプ捩れが加えられた際、密封性に不安がある。これに対し、本発明の実施例では、銅管PCuとアルミニウム管PAlのいずれに於ても、室外機17の倒れ事故にあっても約90°を十分に越えたパイプ捩れ角度βまで冷媒漏洩の心配がなく、安定して優れた密封性能を発揮することが判明した。 As can be seen from Table 1 above, in the conventional pipe joint, there is a high risk of external leakage of the refrigerant in the event of the outdoor unit 17 falling accident shown in FIG. When pipe twist is applied in this way, there is anxiety about the sealing performance. On the other hand, in the embodiment of the present invention, in both the copper pipe P Cu and the aluminum pipe P Al , the pipe twist angle β sufficiently exceeding about 90 ° even if the outdoor unit 17 falls down. It has been found that there is no concern about refrigerant leakage and that stable and excellent sealing performance is exhibited.

なお、図1にもどって追加説明する。継手本体1は、先端にテーパ面48を有し、また、圧縮変形用スリーブ7は、基端部に、上記テーパ面48に対応した同一テーパ角度の圧接シール用テーパ面49を有する。この両テーパ面48,49の圧接による密封は、JIS B8607のフレア継手の場合と同様に良好にシールされる。また、両テーパ面48,49が相互に強く圧接した際に、圧縮変形用スリーブ7の基端部が(ラジアル外方向へ)過大な拡径塑性変形を発生することを防止するために、(図1と図5で明らかなように)補強用内鍔部7Cを有する。
また、図1に於て、圧縮変形用スリーブ7には、基端を除いた外周面径寸法をやや小さく形成して、ステンレス鋼等の硬質金属のカバー部材29が外嵌状に取付けられている。このカバー部材29は、袋ナット3の内周面と、圧縮変形用スリーブ7の外周面との摩擦抵抗(圧着による抵抗)を低減し、滑りを助長する円筒状のものである。
In addition, returning to FIG. The joint body 1 has a tapered surface 48 at the distal end, and the compression deformation sleeve 7 has a pressure contact sealing tapered surface 49 having the same taper angle corresponding to the tapered surface 48 at the proximal end portion. The sealing by the press contact of both the tapered surfaces 48 and 49 is satisfactorily sealed as in the case of the flared joint of JIS B8607. In order to prevent the base end portion of the compression deformation sleeve 7 from generating excessively large diameter plastic deformation (in the radial outward direction) when both the tapered surfaces 48 and 49 are strongly pressed against each other, As can be seen in FIGS. 1 and 5, it has a reinforcing inner collar 7C.
In FIG. 1, the sleeve 7 for compressive deformation is formed with a cover metal 29 made of hard metal such as stainless steel in an outer fitting shape with a slightly smaller outer diameter except for the base end. Yes. The cover member 29 is a cylindrical member that reduces frictional resistance (resistance due to pressure bonding) between the inner peripheral surface of the cap nut 3 and the outer peripheral surface of the compression deformation sleeve 7 and promotes slipping.

本発明の特徴とする構成の一つは、図8と図18等に示したように、スリーブ7が圧縮力Fを受けて、溝底薄壁部13のラジアル内方向へのU字状(又はV字状)に塑性変形するに伴って、その最小径の最大変形部近傍に、C型の廻り止め円筒状体50の最内端縁部50Aを強力に(ラジアル内方向へ押圧しつつ)パイプPの外周面14に最内端縁部50Aを食い込ませ、かつ、最外端縁部50Bをも食い込ませ、パイプP(の外周面14)と、圧縮変形用スリーブ7との相対的回転を阻止する(廻り止めする)構成にある。   One feature of the present invention is that, as shown in FIGS. 8 and 18, etc., the sleeve 7 receives a compressive force F, and the groove bottom thin wall portion 13 has a U-shape in the radial inward direction ( (Or V-shape), the innermost edge 50A of the C-shaped detent cylindrical body 50 is strongly pressed (in the radial inward direction) in the vicinity of the maximum deformed portion of the minimum diameter. ) The innermost end edge portion 50A bites into the outer peripheral surface 14 of the pipe P and the outermost end edge portion 50B also bites into the pipe P (the outer peripheral surface 14 thereof) and the relative compression sleeve 7 It is configured to prevent rotation (stop rotation).

図18(と図14)に示すように、袋ナット3の内鍔部3Aにはテーパ面3Bを形成し、かつ、カバー部材29の外端側内鍔部29Aの内周端縁とパイプPとの間に隙間53を設け、かつ、袋ナット3の内鍔部3Aの内周面とパイプPとの間にも隙間54を設けて、円筒状体50の最外端縁部50Bが隙間53,54へ潜り込み易くして、パイプPの外周面14に食い込むことを助け、かつ、ラジアル内方向へ押し付ける役目を果たす。   As shown in FIG. 18 (and FIG. 14), the inner flange portion 3A of the cap nut 3 is formed with a tapered surface 3B, and the inner peripheral edge of the outer end inner flange portion 29A of the cover member 29 and the pipe P And a gap 54 is also provided between the inner peripheral surface of the inner flange portion 3A of the cap nut 3 and the pipe P so that the outermost edge 50B of the cylindrical body 50 is a gap. It makes it easy to sink into 53 and 54, helps to bite into the outer peripheral surface 14 of the pipe P, and plays the role of pushing inward in the radial direction.

そして、円筒状体50が切れ目51を有することによって、図18と図14に示した圧縮状態に於て、確実に最外端縁部50Bが縮径しつつパイプ外周面14へ食い込む。しかも、切れ目51に対して、スリーブ7の内面の一部位が入り込み、スリーブ7と円筒状体50が強力な回転トルクに耐えて、滑りを生じない。   Since the cylindrical body 50 has the cut 51, the outermost end edge portion 50B surely bites into the pipe outer peripheral surface 14 while being reduced in diameter in the compressed state shown in FIGS. In addition, a portion of the inner surface of the sleeve 7 enters the cut 51, and the sleeve 7 and the cylindrical body 50 endure a strong rotational torque and do not slip.

図9に示したような縮径方向の変形によって発生する小さな皺Nによって、U字状(又はV字状)に塑性変形した溝底薄壁部13と、それに対応したパイプ外周面14が、相互に凹凸に噛み合っているといえども、両者の材質は、銅と銅、又は、アルミニウムとアルミニウムというように、柔らかい材質同志の圧接状態であり、図11(図10)にて述べたような矢印M方向のパイプ捩り力が作用すれば、1°〜2°の僅かな回転滑りを発生してしまって、上記小さな皺Nが、このときは逆に気体(冷媒)が通過する極微小流路を形成し、外部漏洩を発生するものと考えられ、本発明はこのような外部漏洩を、小さな薄肉(厚さ 0
.2mm以下)の短筒状廻り止め円筒状体50にて、簡易にかつ安定して、防止できる。
なお、本発明にあっては各部品を電蝕現象の起こらない材質を組合せている点も、別の特徴である。また、本発明では、ゴムやプラスチック等の冷媒による劣化(腐食)を生ずる材質を用いていない点も他の特徴である。(溶接や銀ロウの作業は全く不要である点もさらなる特徴であるといえる。)
The groove bottom thin wall portion 13 plastically deformed in a U shape (or V shape) by a small ridge N generated by the deformation in the diameter reducing direction as shown in FIG. 9, and the pipe outer peripheral surface 14 corresponding thereto, Even though they are meshed with each other, both materials are in pressure contact with soft materials such as copper and copper or aluminum and aluminum, as described in Fig. 11 (Fig. 10). If the twisting force of the pipe in the direction of the arrow M is applied, a slight rotational slip of 1 ° to 2 ° is generated, and the small ridge N passes through the gas (refrigerant) at this time. It is considered that a path is formed and external leakage is generated, and the present invention prevents such external leakage with a small thin wall (thickness 0).
.2mm or less) can be easily and stably prevented by the short cylindrical non-rotating cylindrical body 50.
In the present invention, it is another feature that the parts are combined with materials that do not cause an electric corrosion phenomenon. Another feature of the present invention is that no material that causes deterioration (corrosion) due to a refrigerant such as rubber or plastic is used. (It can also be said that welding and silver soldering work are completely unnecessary.)

そして、本発明の最大の特徴点について以下説明する。圧縮変形用スリーブ7のアキシャル内方向側の第1凹周溝91の溝底薄壁部13を先に塑性変形させ、その後に、アキシャル外方向側の第2凹周溝92の溝底薄壁部13を塑性変形させるシーケンシャル制御用カバー部材Zを、具備する。このシーケンシャル制御用カバー部材Zは、圧縮変形用スリーブ7に外嵌させた既述の回転滑り助長用カバー部材29をもって、兼用した構成である。
言い換えると、シーケンシャル制御用カバー部材Zは、袋ナット3の内周面3Cと、圧縮変形用スリーブ7の外周面8との相対的回転滑りを助長する機能を兼備している。
The maximum feature point of the present invention will be described below. The groove bottom thin wall 13 of the first concave circumferential groove 91 on the axial inward side of the compression deformation sleeve 7 is first plastically deformed, and then the groove bottom thin wall of the second concave circumferential groove 92 on the axial outer side. The cover member Z for sequential control which plastically deforms the part 13 is provided. This sequential control cover member Z has a configuration in which the above-described cover member 29 for promoting rotational slip that is externally fitted to the compression deformation sleeve 7 is also used.
In other words, the sequential control cover member Z has a function of promoting relative rotational slip between the inner peripheral surface 3C of the cap nut 3 and the outer peripheral surface 8 of the compression deformation sleeve 7.

具体的に説明すれば、圧縮変形用スリーブ7は、(図5と)図12と図15に示す如く、第1凹周溝91と第2凹周溝92の間の中間外周面部55に於て、アキシャル外方向へ縮径するテーパ面56を形成する。他方、シーケンシャル制御用カバー部材Zは、アキシャル外方向の端部に形成された内鍔部29Aと、未圧縮状態下で圧縮変形用スリーブ7の上記テーパ面56に対応して外嵌される(アキシャル外方向へ縮径する)テーパ面57を、有する。図15に於て、テーパ面56,57を強調して示すために「点々」を付加している。このように、本発明に於て、圧縮変形用スリーブ7のテーパ面56、及び、カバー部材Zのテーパ面57から構成されるシーケンシャル制御手段Yを備え、このシーケンシャル制御手段Yによって、第1凹周溝91を先に、第2凹周溝92を後として、順番に、溝底薄壁部13に塑性変形を起こさせる。   More specifically, the compression deformation sleeve 7 is formed in the intermediate outer peripheral surface portion 55 between the first concave circumferential groove 91 and the second concave circumferential groove 92 as shown in FIGS. Thus, a tapered surface 56 that is reduced in diameter outward in the axial direction is formed. On the other hand, the sequential control cover member Z is externally fitted in correspondence with the inner flange portion 29A formed at the end portion in the axially outward direction and the tapered surface 56 of the compression deformation sleeve 7 in an uncompressed state ( It has a tapered surface 57 that is reduced in diameter in the axially outward direction. In FIG. 15, “dots” are added to show the tapered surfaces 56 and 57 in an emphasized manner. As described above, the present invention includes the sequential control means Y composed of the taper surface 56 of the compression deformation sleeve 7 and the taper surface 57 of the cover member Z. By the sequential control means Y, the first concave portion is provided. Plastic deformation is caused in the groove bottom thin wall portion 13 in order, with the circumferential groove 91 first and the second concave circumferential groove 92 behind.

次に、前記シーケンシャル制御手段Yの作用・作動を説明する前に、図16と図17に於て、シーケンシャル制御手段Yを具備していない構成の比較例から、説明する。
図16と図17に於て、圧縮変形用スリーブ77には、図15(B)に示したテーパ面56が無い、ストレート円周面を有し、かつ、カバー部材99には、図15(A)に示したテーパ面57が無い、ストレート円筒部を有する。袋ナット3を雄ネジ2に螺進してゆくと、2個の凹周溝91,92は圧縮力Fを受けて、ほぼ同時に溝底薄壁部83,83がラジアル内方向(縮径方向)へ変形し、パイプPの外周面14に食い込んで食い込み凹部78,79を形成する。
このとき、スリーブ77の圧縮に伴って、第1凹周溝91は小寸法L1 だけ移動し、矢印R1 のように(弯曲変形した)溝底薄壁部83がパイプ外周面14に食い込み、食い込み凹部78との間は密着する。しかし、スリーブ77の圧縮に伴って、第2凹周溝92は大寸法L2 を移動する。即ち、第1凹周溝91と第2凹周溝92のアキシャル方向寸法の減少値が合算された大寸法L2 を移動する。従って、ラジアル内方向へ弯曲しながら溝底薄壁部83は矢印R20のようにパイプ外周面14を削りつつ食い込んで、アキシャル方向に長い食い込み凹部79を形成する。
Next, before describing the operation and operation of the sequential control means Y, a comparative example in which the sequential control means Y is not provided in FIGS. 16 and 17 will be described.
16 and 17, the compression deformation sleeve 77 has a straight circumferential surface without the taper surface 56 shown in FIG. 15B, and the cover member 99 has the structure shown in FIG. A straight cylindrical portion without the tapered surface 57 shown in A) is provided. When the cap nut 3 is screwed into the male screw 2, the two concave circumferential grooves 91 and 92 receive the compressive force F, and at the same time, the groove bottom thin wall portions 83 and 83 are moved radially inward (in the direction of diameter reduction). ) And bite into the outer peripheral surface 14 of the pipe P to form the biting recesses 78 and 79.
At this time, as the sleeve 77 is compressed, the first concave circumferential groove 91 moves by a small dimension L 1, and the groove bottom thin wall portion 83 (curved and deformed) as shown by the arrow R 1 bites into the pipe outer circumferential surface 14. In close contact with the biting recess 78. However, with the compression of the sleeve 77, the second concave peripheral groove 92 moves the major dimension L 2. That is, the large dimension L 2 is added, which is the sum of the reduction values of the axial dimension of the first concave circumferential groove 91 and the second concave circumferential groove 92. Therefore, the groove bottom thin wall portion 83 bites in while radially bending inward while cutting the pipe outer peripheral surface 14 as shown by an arrow R 20 , thereby forming a biting recess 79 that is long in the axial direction.

このように、比較例ではアキシャル方向に長い食い込み凹部79が、外周面14に削られつつ形成されることにより、密封性(シール性能)は低下する。しかも、(上述したように)外周面14を弯曲変形する薄壁部83の食い込み凸部は摩耗を生じ、シャープさを消失して、一層、密封性(シール性能)は低下すると共に、耐引抜力、及び、軸心廻りのパイプ回転阻止力は低下する。   As described above, in the comparative example, the biting recess 79 that is long in the axial direction is formed while being cut on the outer peripheral surface 14, so that the sealing performance (seal performance) is lowered. Moreover, the biting convex portion of the thin wall portion 83 that bends and deforms the outer peripheral surface 14 (as described above) wears, loses sharpness, further reduces the sealing performance (sealing performance), and is resistant to pulling out. The force and the pipe rotation prevention force around the shaft center decrease.

このような比較例(図16と図17)に対して、本発明は、図12に示す未圧縮状態から袋ナット3を螺進してゆけば、カバー部材Zのテーパ面57が、圧縮変形用スリーブ7のテーパ面56に、強く圧接しつつ、袋ナット3からの矢印Fにて示す締付力(圧縮力)を圧縮変形用スリーブ7の中間外周面部55に伝達する。これにより、図13の矢印R1 に示すように、第1凹周溝91の溝底薄壁部13のみがパイプPに食い込み、他方、第2凹周溝92は、ほとんど圧縮力を受けず(変形せず)に、軸心線L0 と平行な方向(矢印Hの方向)に移動して後に、図14と図18に示すように、矢印R2 の如く、ラジアル内方向に溝底薄壁部13が弯曲変形し、パイプPに食い込む。 In contrast to such a comparative example (FIGS. 16 and 17), in the present invention, when the cap nut 3 is screwed from the uncompressed state shown in FIG. 12, the tapered surface 57 of the cover member Z is compressed and deformed. The tightening force (compression force) indicated by the arrow F from the cap nut 3 is transmitted to the intermediate outer peripheral surface portion 55 of the compression deformation sleeve 7 while being in strong pressure contact with the tapered surface 56 of the sleeve 7 for compression. As a result, as indicated by an arrow R 1 in FIG. 13, only the groove bottom thin wall portion 13 of the first concave circumferential groove 91 bites into the pipe P, while the second concave circumferential groove 92 receives almost no compressive force. (Without deformation), after moving in the direction parallel to the axis L 0 (the direction of the arrow H), as shown in FIGS. 14 and 18, the groove bottom in the radial inward direction as shown by the arrow R 2 The thin wall portion 13 bends and bites into the pipe P.

なお、図13に示した第1凹周溝91の溝底薄壁部13の最終的弯曲変形の後に、圧縮力Fが袋ナット3から引続き付与されると、カバー部材Zのテーパ面57は、(カバー部材Zの材質が剛性大なる伸びの小さいステンレス鋼であるので、)圧縮変形用スリーブ7のテーパ面56を越えてゆき、図15(B)に示す同径部(ストレート部)58に乗り上げる。図18に於て、圧縮変形用スリーブ7の二点鎖線にて示した元の同径部(ストレート部)58に、カバー部材Zのテーパ面57が乗り上げた状態を示し、矢印R1 ,R2 方向への縮径押圧力も増加している。 When the compressive force F is continuously applied from the cap nut 3 after the final bending deformation of the groove bottom thin wall portion 13 of the first concave circumferential groove 91 shown in FIG. 13, the tapered surface 57 of the cover member Z is (Because the material of the cover member Z is stainless steel with high rigidity and small elongation), the same diameter portion (straight portion) 58 as shown in FIG. Get on. 18 shows a state where the taper surface 57 of the cover member Z rides on the original same-diameter portion (straight portion) 58 indicated by the two-dot chain line of the compression deformation sleeve 7, and arrows R 1 , R The pressing force in two directions is also increasing.

なお、本発明は、上述の構成に限られず設計変更自由であって、例えば、図1,図12〜図14に図示したように、袋ナット3の内周面3Cとカバー部材Z(29)との間に、周方向小間隙を形成し、かつ、カバー部材Z(29)の剛性を大として、伸びが小さい材質を選択することによって、袋ナット3の回転トルクを低減し、軽く螺進を行い得るようにするも望ましい。しかも、カバー部材Zが共廻りすることを、一層確実に防止できる。   The present invention is not limited to the above-described configuration, and can be freely changed. For example, as shown in FIGS. 1 and 12 to 14, the inner peripheral surface 3C of the cap nut 3 and the cover member Z (29) A small gap in the circumferential direction is formed between them, and the rigidity of the cover member Z (29) is increased, and a material having a small elongation is selected, thereby reducing the rotational torque of the cap nut 3 and lightly screwing It is also desirable to be able to perform. And it can prevent more reliably that the cover member Z rotates together.

接続完了状態を示した図14と図1(下半部)に於て、カバー部材Z(29)の最内端がスリーブ7の外周段付部60に突き当たって、押圧している構成とすれば、凹周溝91,92がさらに潰れて(圧縮変形)したとしても、継手本体1のテーパ面48とスリーブ7のテーパ面49との圧接力が維持され、ここの密封性(シール性能)が保持できる。   14 and 1 (lower half) showing the connection completion state, the innermost end of the cover member Z (29) abuts against the outer peripheral stepped portion 60 of the sleeve 7 and is pressed. For example, even if the concave circumferential grooves 91 and 92 are further crushed (compression deformation), the pressure contact force between the tapered surface 48 of the joint body 1 and the tapered surface 49 of the sleeve 7 is maintained, and the sealing performance (seal performance) here. Can hold.

また、本発明では、軸心線L0 廻りのパイプPとの共廻りは、廻り止め円筒状体50によって確実に阻止され、これによって、第1凹周溝91と第2凹周溝92の両溝底薄壁部13,13の二重シールを構成でき、優れた密封性が得られる。 Further, in the present invention, the co-rotation with the pipe P around the shaft center line L 0 is reliably prevented by the non-rotating cylindrical body 50, whereby the first concave circumferential groove 91 and the second concave circumferential groove 92 are formed. A double seal of the bottom wall portions 13 and 13 of both grooves can be formed, and excellent sealing performance can be obtained.

本発明は、以上詳述したように、雄ネジ付き継手本体1と、該継手本体1の雄ネジ2に螺着される袋ナット3と、を備え、上記袋ナット3の内部収納空間10に収納されると共に、外周面8に凹周溝9を有し、上記袋ナット3と上記継手本体1の雄ネジ2を螺着させる際に上記継手本体1と上記袋ナット3からアキシャル方向の圧縮力Fを受けて、凹周溝底薄壁部13がラジアル内方向へ塑性変形して、挿入されている金属パイプPの外周面14側から食い込んで抜止めする圧縮変形用スリーブ7を有する冷媒用管継手構造に於て、上記凹周溝9は、アキシャル内方向側の第1凹周溝91と、アキシャル外方向側の第2凹周溝92とを、有し、上記第1凹周溝91を先に、第2凹周溝92を後として、順番に、上記塑性変形を起こさせるシーケンシャル制御用カバー部材Zを、上記圧縮変形用スリーブ7に、外嵌させた構成であるので、図20に示した従来の前述の問題点(i)(ii)(iii)を解決でき、大きい耐引抜力を発揮し、密封性能も安定して長期にわたって優れている。しかも、シーケンス制御が簡素な構造で済み、管継手がコンパクトである。   As described in detail above, the present invention includes a joint body 1 with a male thread and a cap nut 3 that is screwed onto the male thread 2 of the joint body 1. It is housed and has a concave circumferential groove 9 on the outer peripheral surface 8. When the cap nut 3 and the male screw 2 of the joint body 1 are screwed together, the joint body 1 and the cap nut 3 compress in the axial direction. Refrigerant having a compression deformation sleeve 7 that receives the force F and plastically deforms the concave circumferential groove bottom thin wall portion 13 radially inward and bites in from the outer peripheral surface 14 side of the inserted metal pipe P to prevent it from being removed. In the pipe joint structure, the concave circumferential groove 9 includes a first concave circumferential groove 91 on the axial inward side and a second concave circumferential groove 92 on the axial outer side, and the first concave circumferential surface. The sequential control cap which causes the plastic deformation in order, with the groove 91 first and the second concave circumferential groove 92 behind. -Since the member Z is externally fitted to the compression deformation sleeve 7, the conventional problems (i), (ii), and (iii) shown in FIG. The sealing performance is stable and excellent for a long time. In addition, the sequence control is a simple structure and the pipe joint is compact.

また、上記圧縮変形用スリーブ7は、上記第1凹周溝91と第2凹周溝92の間の中間外周面部55に於て、アキシャル外方向へ縮径するテーパ面56が形成され、上記シーケンシャル制御用カバー部材Zは、アキシャル外方向の端部の内鍔部29Aと、未圧縮状態下で上記圧縮変形用スリーブ7の上記テーパ面56に対応して外嵌されるテーパ面57を、備えている構成であるので、部品点数が少なく、コンパクトかつ簡素であっても、確実に、第1凹周溝91の変形した後に、第2凹周溝92が順に変形する。   Further, the compression deformation sleeve 7 is formed with a tapered surface 56 whose diameter decreases in the axial outward direction at an intermediate outer peripheral surface portion 55 between the first concave peripheral groove 91 and the second concave peripheral groove 92. The sequential control cover member Z has an inner flange portion 29A at the end portion in the axial outer direction and a tapered surface 57 that is externally fitted in correspondence with the tapered surface 56 of the compression deformation sleeve 7 in an uncompressed state. Even if the number of parts is small and compact and simple, the second concave groove 92 is surely deformed in order after the first concave groove 91 is reliably deformed.

また、上記圧縮変形用スリーブ7のアキシャル方向外端側から予め挿入されて上記第2凹周溝92の凹周溝底薄壁部13に対応する深さまで最内端縁部50Aが到達しているステンレス鋼製の切れ目51を有するC型の廻り止め円筒状体50を備え、かつ、円筒状体50は、アキシャル方向の最内端縁部50Aと最外端縁部50Bに、パイプ食い込み用凹部52及び/又は凸部を有する構成であるので、パイプPの回転に伴って、管継手が共廻りすることを、小さな部品の付加にて、確実に阻止できる。   Further, the innermost edge portion 50A reaches the depth corresponding to the concave circumferential groove bottom thin wall portion 13 of the second concave circumferential groove 92 by being inserted in advance from the axial outer end side of the compression deformation sleeve 7. C-type non-rotating cylindrical body 50 having a cut 51 made of stainless steel, and the cylindrical body 50 is used for pipe biting at the innermost edge 50A and the outermost edge 50B in the axial direction. Since it is the structure which has the recessed part 52 and / or a convex part, it can prevent reliably that a pipe joint rotates together with rotation of the pipe P by addition of a small component.

また、上記シーケンシャル制御用カバー部材Zは、上記袋ナット3の内周面3Cと、上記圧縮変形用スリーブ7の外周面8との相対的回転滑りを助長する機能を兼備することで、部品点数が最少で済み、しかも、優れた共廻りを防止し、かつ、シーケンシャル制御も確実に行われる。   Further, the sequential control cover member Z has a function of promoting relative rotational slip between the inner peripheral surface 3C of the cap nut 3 and the outer peripheral surface 8 of the compression deformation sleeve 7, thereby reducing the number of parts. This minimizes the need for rotation and prevents excellent co-rotation and ensures reliable sequential control.

1 (雄ネジ付き)継手本体
2 雄ネジ
3 袋ナット
3C 内周面
7 圧縮変形用スリーブ
8 外周面
9 凹周溝
91 第1凹周溝
92 第2凹周溝
10 内部収納空間
13 凹周溝底薄壁部
14 外周面
29A 内鍔部
50 廻り止め円筒状体
50A 最内端縁部
50B 最外端縁部
51 切れ目
52 凹部
55 中間外周面部
56 テーパ面
57 テーパ面
F 圧縮力(締付力)
P 冷媒用金属パイプ
Z シーケンシャル制御用カバー部材
1 (with external thread) joint body 2 external thread 3 cap nut 3C inner peripheral surface 7 compression deformation sleeve 8 outer peripheral surface 9 concave peripheral groove
91 1st groove
92 Second concave groove
10 Internal storage space
13 Recessed groove bottom thin wall
14 Outer surface
29A Inner buttock
50 Non-rotating cylindrical body
50A innermost edge
50B Outermost edge
51 cut
52 recess
55 Middle outer peripheral surface
56 Tapered surface
57 Tapered surface F Compression force (clamping force)
P Metal pipe for refrigerant Z Cover member for sequential control

Claims (4)

雄ネジ付き継手本体(1)と、該継手本体(1)の雄ネジ(2)に螺着される袋ナット(3)と、を備え、上記袋ナット(3)の内部収納空間(10)に収納されると共に、外周面(8)に凹周溝(9)を有し、上記袋ナット(3)と上記継手本体(1)の雄ネジ(2)を螺着させる際に上記継手本体(1)と上記袋ナット(3)からアキシャル方向の圧縮力(F)を受けて、凹周溝底薄壁部(13)がラジアル内方向へ塑性変形して、挿入されている金属パイプ(P)の外周面(14)側から食い込んで抜止めする圧縮変形用スリーブ(7)を有する冷媒用管継手構造に於て、
上記凹周溝(9)は、アキシャル内方向側の第1凹周溝(91)と、アキシャル外方向側の第2凹周溝(92)とを、有し、上記第1凹周溝(91)を先に、第2凹周溝(92)を後として、順番に、上記塑性変形を起こさせるシーケンシャル制御用カバー部材(Z)を、上記圧縮変形用スリーブ(7)に、外嵌させたことを特徴とする冷媒用管継手構造。
A joint body (1) with a male thread, and a cap nut (3) screwed onto the male thread (2) of the joint body (1), and an internal storage space (10) of the cap nut (3) And a concave groove (9) on the outer peripheral surface (8), and the joint body when the cap nut (3) and the male screw (2) of the joint body (1) are screwed together. (1) and an axial compression force (F) from the cap nut (3), the concave circumferential groove bottom thin wall portion (13) is plastically deformed radially inward, and the inserted metal pipe ( In the pipe joint structure for refrigerant having a compression deformation sleeve (7) that bites in from the outer peripheral surface (14) side of P) and prevents it from being removed,
The concave circumferential groove (9) has a first concave circumferential groove (91) on the axial inward side and a second concave circumferential groove (92) on the axial outer side, and the first concave circumferential groove ( The sequential control cover member (Z) for causing the plastic deformation is sequentially fitted on the compression deformation sleeve (7) in order, starting with 91) and after the second concave circumferential groove (92). A refrigerant pipe joint structure characterized by that.
上記圧縮変形用スリーブ(7)は、上記第1凹周溝(91)と第2凹周溝(92)の間の中間外周面部(55)に於て、アキシャル外方向へ縮径するテーパ面(56)が形成され、
上記シーケンシャル制御用カバー部材(Z)は、アキシャル外方向の端部の内鍔部(29A)と、未圧縮状態下で上記圧縮変形用スリーブ(7)の上記テーパ面(56)に対応して外嵌されるテーパ面(57)を、備えている請求項1記載の冷媒用管継手構造。
The compression deformation sleeve (7) has a tapered surface that is reduced in diameter in the axial outward direction at an intermediate outer peripheral surface portion (55) between the first concave circumferential groove (91) and the second concave circumferential groove (92). (56) is formed,
The sequential control cover member (Z) corresponds to the inner flange (29A) of the axially outer end and the tapered surface (56) of the compression deformation sleeve (7) in an uncompressed state. The refrigerant pipe joint structure according to claim 1, further comprising a taper surface (57) to be externally fitted.
上記圧縮変形用スリーブ(7)のアキシャル方向外端側から予め挿入されて上記第2凹周溝(92)の凹周溝底薄壁部(13)に対応する深さまで最内端縁部(50A)が到達しているステンレス鋼製の切れ目(51)を有するC型の廻り止め円筒状体(50)を備え、かつ、円筒状体(50)は、アキシャル方向の最内端縁部(50A)と最外端縁部(50B)に、パイプ食い込み用凹部(52)及び/又は凸部を有する請求項1又は2記載の冷媒用管継手構造。   The innermost edge portion (to the depth corresponding to the concave groove bottom thin wall portion (13) of the second concave circumferential groove (92) inserted in advance from the axial outer end side of the compression deformation sleeve (7) ( 50A) is provided with a C-shaped detent cylindrical body (50) having a stainless steel cut (51) to which the cylindrical body (50) has an innermost edge in the axial direction ( 3. The refrigerant pipe joint structure according to claim 1, wherein a pipe biting recess (52) and / or a protrusion is provided at 50 A) and the outermost edge (50 B). 上記シーケンシャル制御用カバー部材(Z)は、上記袋ナット(3)の内周面(3C)と、上記圧縮変形用スリーブ(7)の外周面(8)との相対的回転滑りを助長する機能を兼備する請求項1,2又は3記載の冷媒用管継手構造。   The sequential control cover member (Z) promotes relative rotational slip between the inner peripheral surface (3C) of the cap nut (3) and the outer peripheral surface (8) of the compression deformation sleeve (7). The refrigerant pipe joint structure according to claim 1, 2 or 3.
JP2014007448A 2014-01-20 2014-01-20 Pipe joint structure for refrigerant Pending JP2015135170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007448A JP2015135170A (en) 2014-01-20 2014-01-20 Pipe joint structure for refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007448A JP2015135170A (en) 2014-01-20 2014-01-20 Pipe joint structure for refrigerant

Publications (1)

Publication Number Publication Date
JP2015135170A true JP2015135170A (en) 2015-07-27

Family

ID=53767118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007448A Pending JP2015135170A (en) 2014-01-20 2014-01-20 Pipe joint structure for refrigerant

Country Status (1)

Country Link
JP (1) JP2015135170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188676A (en) * 2020-05-29 2021-12-13 東尾メック株式会社 Pipe joint
CN114719111A (en) * 2022-06-08 2022-07-08 中国航发四川燃气涡轮研究院 Force-bearing oil supply structure behind aircraft engine turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188676A (en) * 2020-05-29 2021-12-13 東尾メック株式会社 Pipe joint
JP7185885B2 (en) 2020-05-29 2022-12-08 東尾メック株式会社 pipe joint
CN114719111A (en) * 2022-06-08 2022-07-08 中国航发四川燃气涡轮研究院 Force-bearing oil supply structure behind aircraft engine turbine

Similar Documents

Publication Publication Date Title
JP5592573B1 (en) Pipe joint structure for refrigerant
JP5306553B1 (en) Pipe joint structure
AU2011265344B2 (en) Press fitting and use thereof
JP5091191B2 (en) Pipe fitting
JP5028394B2 (en) Resin pipe fitting
JP5723470B1 (en) Pipe joint structure for refrigerant
JP5551039B2 (en) Pipe fitting
JP6112842B2 (en) Pipe joint structure
JP2015135170A (en) Pipe joint structure for refrigerant
JP5736499B1 (en) Pipe joint structure
JP2010223347A (en) Resin pipe joint
JP5503797B1 (en) Pipe joint structure for refrigerant
JP5523612B1 (en) Pipe joint structure
JP4005114B1 (en) Flare fastening structure of tube
JP2014109295A (en) Pipe joint structure
JP2023008245A (en) Pipe joint structure
JP6404434B1 (en) Pipe joint structure
JP5775911B2 (en) Pipe fitting
JP2008101675A (en) Hose connecting structure
JP6448229B2 (en) Fitting
JP5934667B2 (en) Pipe fitting
JP7126213B2 (en) pipe joint
JP4198429B2 (en) Pipe retaining ring for thin-walled pipe joint and joint structure using the same
JP7149656B1 (en) Pipe joint structure
WO2020262318A1 (en) Pipe joint