JP2015132454A - Evaporation type cooling heat exchanger - Google Patents

Evaporation type cooling heat exchanger Download PDF

Info

Publication number
JP2015132454A
JP2015132454A JP2014005523A JP2014005523A JP2015132454A JP 2015132454 A JP2015132454 A JP 2015132454A JP 2014005523 A JP2014005523 A JP 2014005523A JP 2014005523 A JP2014005523 A JP 2014005523A JP 2015132454 A JP2015132454 A JP 2015132454A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant gas
header pipe
refrigerant liquid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014005523A
Other languages
Japanese (ja)
Inventor
一哉 松尾
Kazuya Matsuo
一哉 松尾
幸夫 宮島
Yukio Miyajima
幸夫 宮島
仁志 阿部
Hitoshi Abe
仁志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP2014005523A priority Critical patent/JP2015132454A/en
Publication of JP2015132454A publication Critical patent/JP2015132454A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporation type cooling heat exchanger which improves gas accumulation of a refrigerant gas, improves the heat exchange efficiency, and efficiently cools a cooled fluid.SOLUTION: An evaporator 100 includes: a heat exchange part 110 having tubes 111, 111 extending along a refrigerant traveling direction D1; a lower header pipe 120 which is connected with lower ends of the tubes 111 and flows a refrigerant liquid supplied to the tubes 111 from the upstream side to the downstream side in a refrigerant liquid inflow direction D2; and an upper header pipe 130 which is connected with upper ends of the tubes 111 and flows a refrigerant gas, which flows thereinto from the tubes 111, from the upstream side to the downstream side in a refrigerant gas discharge direction D3 that is parallel to the refrigerant liquid inflow direction D2 and the same direction as the refrigerant liquid inflow direction D2.

Description

本発明は、蒸発式冷却熱交換器に関する。   The present invention relates to an evaporative cooling heat exchanger.

従来より、サーバ室、クリーンルーム等の密閉された室内の被冷却流体を冷却する冷却装置として、冷媒液の自重により冷媒液を送る自然循環方式の熱交換装置や、送液ポンプで冷媒液を強制的に送るポンプ方式の熱交換装置が知られている。特に、前者の冷却装置は、省エネルギーで運転することができ、広く用いられている。   Conventionally, as a cooling device that cools a fluid to be cooled in a sealed room such as a server room or a clean room, the refrigerant liquid is forced by a natural circulation heat exchange device that sends the refrigerant liquid by its own weight or a liquid feed pump. A pump-type heat exchange device is known. In particular, the former cooling device can be operated with energy saving and is widely used.

このような冷却装置として、例えば、冷媒液を蒸発させる熱交換部を有する蒸発式冷却熱交換器と、冷媒ガスを凝縮させる凝縮器と、冷媒ガスを蒸発式冷却熱交換器から凝縮器に導くガス配管と、冷媒液を凝縮器から蒸発式冷却熱交換器に導く液配管と、を備えたものが知られている。   As such a cooling device, for example, an evaporative cooling heat exchanger having a heat exchange part for evaporating the refrigerant liquid, a condenser for condensing the refrigerant gas, and the refrigerant gas from the evaporative cooling heat exchanger to the condenser A gas pipe and a liquid pipe that guides a refrigerant liquid from a condenser to an evaporative cooling heat exchanger are known.

また、上述したような蒸発式冷却熱交換器として、図8に示すように、鉛直方向Vに対して斜めに配置されて被冷却流体を冷却する熱交換部201と、水平方向Hに沿って延びて熱交換部201の下端に接続され、熱交換部201内に冷媒液を供給する第1のヘッダパイプ202と、水平方向Hに沿って延びて熱交換部201の上端に接続され、熱交換部201から冷媒ガスが流入する第2のヘッダパイプ203と、を備えた蒸発式冷却熱交換器200が知られている。   Further, as an evaporative cooling heat exchanger as described above, as shown in FIG. 8, a heat exchange unit 201 that is disposed obliquely with respect to the vertical direction V and cools the fluid to be cooled, and along the horizontal direction H. The first header pipe 202 that extends and is connected to the lower end of the heat exchanging part 201, supplies the refrigerant liquid into the heat exchanging part 201, and extends along the horizontal direction H and is connected to the upper end of the heat exchanging part 201 to An evaporative cooling heat exchanger 200 including a second header pipe 203 into which refrigerant gas flows from the exchange unit 201 is known.

このような蒸発式冷却熱交換器200では、第1のヘッダパイプ202の上流側端部202aから熱交換部201の下部に流入した冷媒液が、被冷却流体との熱交換によって冷媒ガスに気化し、この冷媒ガスが、冷媒進行方向D1に沿って熱交換部201の上部に抜けて第2のヘッダパイプ203に流入し、第2のヘッダパイプ203の下流側端部203aから抜けるように、平面視で略コ字状に冷媒液及び冷媒ガスを流している。   In such an evaporative cooling heat exchanger 200, the refrigerant liquid that has flowed into the lower portion of the heat exchange unit 201 from the upstream end 202a of the first header pipe 202 is evacuated to the refrigerant gas by heat exchange with the fluid to be cooled. The refrigerant gas flows into the second header pipe 203 through the upper part of the heat exchanging portion 201 along the refrigerant traveling direction D1, and flows out from the downstream end 203a of the second header pipe 203. The refrigerant liquid and the refrigerant gas are allowed to flow in a substantially U shape in plan view.

しかしながら、上述したような蒸発式冷却熱交換器200では、熱交換部201から第2のヘッダパイプ203の上流側に流入する冷媒ガスは、熱交換部201から第2のヘッダパイプ203の下流側に流入する冷媒ガスより流路が長く第2のヘッダパイプ203から受ける摩擦抵抗が大きく流れ難いため、冷媒ガスが、第2のヘッダパイプ203内に送られずに熱交換部201の上部に局所的に溜まって、ガス溜まりGを形成することがあり、このようなガス溜まりGが形成される分だけ、熱交換部201内で飽和冷媒ガスが占める範囲が縮小し、蒸発式冷却熱交換器200の熱交換効率が低下する虞があった。   However, in the evaporative cooling heat exchanger 200 as described above, the refrigerant gas flowing into the upstream side of the second header pipe 203 from the heat exchange unit 201 flows from the heat exchange unit 201 to the downstream side of the second header pipe 203. Since the flow path is longer than the refrigerant gas flowing into the second header pipe 203 and the frictional resistance received from the second header pipe 203 is difficult to flow, the refrigerant gas is not sent into the second header pipe 203 but locally in the upper part of the heat exchange unit 201. In some cases, a gas reservoir G is formed, and the range occupied by the saturated refrigerant gas in the heat exchanging portion 201 is reduced by an amount corresponding to the formation of such a gas reservoir G, and the evaporative cooling heat exchanger The heat exchange efficiency of 200 may be reduced.

そこで、蒸発式冷却熱交換器内での冷媒ガスのガス溜まりを改善して、蒸発式冷却熱交換器の熱交換効率を向上させ、被冷却流体を効率的に冷却するために解決すべき技術的課題が生じてくるのであり、本発明は、この課題を解決することを目的とする。   Therefore, the technology to be solved in order to efficiently cool the fluid to be cooled by improving the gas accumulation of refrigerant gas in the evaporative cooling heat exchanger, improving the heat exchange efficiency of the evaporative cooling heat exchanger The present invention aims to solve this problem.

本発明は、上記目的を達成するために提案するものであり、請求項1記載の発明は、冷媒液を冷媒ガスに気化させて被冷却流体を冷却する蒸発式冷却熱交換器であって、前記冷媒ガスの冷媒進行方向に沿って延びた複数のチューブを有する熱交換部と、前記チューブの下端に接続され、前記冷媒進行方向と略垂直な水平方向に延びて、前記チューブ内に供給される冷媒液を冷媒液流入方向の上流側から下流側に向けて流す下方ヘッダパイプと、前記チューブの上端に接続され、前記水平方向に延びて、前記チューブから流入する冷媒ガスを前記冷媒液流入方向と平行で該冷媒液流入方向と同じ向きの冷媒ガス排出方向の上流側から下流側に向けて流す上方ヘッダパイプと、を備えている蒸発式冷却熱交換器を提供する。   The present invention proposes to achieve the above object, and the invention according to claim 1 is an evaporative cooling heat exchanger that evaporates the refrigerant liquid into the refrigerant gas and cools the fluid to be cooled. A heat exchange part having a plurality of tubes extending along the refrigerant traveling direction of the refrigerant gas, and connected to the lower end of the tube, extends in a horizontal direction substantially perpendicular to the refrigerant traveling direction, and is supplied into the tubes. A lower header pipe that flows the refrigerant liquid from the upstream side to the downstream side in the refrigerant liquid inflow direction, and an upper end of the tube that extends in the horizontal direction and flows the refrigerant gas flowing in from the tube into the refrigerant liquid inflow An evaporative cooling heat exchanger is provided that includes an upper header pipe that flows from the upstream side to the downstream side in the refrigerant gas discharge direction that is parallel to the direction and in the same direction as the refrigerant liquid inflow direction.

この構成によれば、下方ヘッダパイプから熱交換部に供給された冷媒液の流路の長さと熱交換部内で気化された冷媒ガスの流路の長さとの和が、上方ヘッダパイプへの冷媒ガスの流入位置によらず、略等しく設定されていることにより、蒸発式冷却熱交換器内で冷媒液、冷媒ガスが受ける摩擦抵抗が、流れる位置にかかわらず略等しくなるため、冷媒液を下方ヘッダパイプの上流側端部から供給し、冷媒ガスを上方ヘッダパイプの下流側端部から抜く蒸発式冷却熱交換器と比較して、冷媒ガスが熱交換部内及び上方ヘッダパイプ内を抜け易くなり、熱交換部内での冷媒ガスのガス溜まりの発生を抑制することができる。   According to this configuration, the sum of the length of the flow path of the refrigerant liquid supplied from the lower header pipe to the heat exchange section and the length of the flow path of the refrigerant gas vaporized in the heat exchange section is the refrigerant to the upper header pipe. Regardless of the gas inflow position, the frictional resistance received by the refrigerant liquid and refrigerant gas in the evaporative cooling heat exchanger is substantially equal regardless of the flow position. Compared to an evaporative cooling heat exchanger that supplies from the upstream end of the header pipe and draws the refrigerant gas from the downstream end of the upper header pipe, the refrigerant gas can easily escape through the heat exchange section and the upper header pipe. In addition, it is possible to suppress the occurrence of a refrigerant gas pool in the heat exchange unit.

請求項1記載の発明は、熱交換部内での冷媒ガスのガス溜まりが抑制されるため、蒸発式冷却熱交換器と被冷却流体との熱交換効率を向上させることができる。   According to the first aspect of the present invention, since the accumulation of the refrigerant gas in the heat exchange part is suppressed, the heat exchange efficiency between the evaporative cooling heat exchanger and the fluid to be cooled can be improved.

本発明の一実施例を示す蒸発式冷却熱交換器を用いた冷却装置を示す模式図。The schematic diagram which shows the cooling device using the evaporative cooling heat exchanger which shows one Example of this invention. 蒸発式冷却熱交換器を示す平面図。The top view which shows an evaporative cooling heat exchanger. 図2に示す蒸発式冷却熱交換器の正面図。The front view of the evaporative cooling heat exchanger shown in FIG. 図2に示す蒸発式冷却熱交換器の左側面図。The left view of the evaporative cooling heat exchanger shown in FIG. 本発明の冷却装置に用いられた蒸発式冷却熱交換器の冷媒ガス、冷媒液の分布を示す模式図。The schematic diagram which shows distribution of the refrigerant gas of the evaporative cooling heat exchanger used for the cooling device of this invention, and a refrigerant | coolant liquid. 直線状のチューブを適用した蒸発式冷却熱交換器を示す斜視図。The perspective view which shows the evaporative cooling heat exchanger to which the linear tube is applied. 側面視でZ字状に折り返されたチューブを適用した蒸発式冷却熱交換器を示す斜視図。The perspective view which shows the evaporative cooling heat exchanger to which the tube folded in Z shape by the side view is applied. 従来の冷却装置に用いられた蒸発式冷却熱交換器を示す模式図。The schematic diagram which shows the evaporative cooling heat exchanger used for the conventional cooling device.

本発明は、蒸発式冷却熱交換器内での冷媒ガスのガス溜まりを改善して、蒸発式冷却熱交換器の熱交換効率を向上させ、被冷却流体を効率的に冷却するという目的を達成するために、冷媒液を冷媒ガスに気化させて被冷却流体を冷却する蒸発式冷却熱交換器であって、冷媒ガスの冷媒進行方向に沿って延びた複数のチューブを有する熱交換部と、チューブの下端に接続され、冷媒進行方向と略垂直な水平方向に延びて、チューブ内に供給される冷媒液を冷媒液流入方向の上流側から下流側に向けて流す下方ヘッダパイプと、チューブの上端に接続され、水平方向に延びて、チューブから流入する冷媒ガスを冷媒液流入方向と平行で冷媒液流入方向と同じ向きの冷媒ガス排出方向の上流側から下流側に向けて流す上方ヘッダパイプと、を備えていることにより実現した。   The present invention achieves the purpose of improving the heat exchange efficiency of the evaporative cooling heat exchanger and efficiently cooling the fluid to be cooled by improving the gas reservoir of the refrigerant gas in the evaporative cooling heat exchanger. In order to do so, an evaporative cooling heat exchanger that evaporates the refrigerant liquid into the refrigerant gas and cools the fluid to be cooled, the heat exchange unit having a plurality of tubes extending along the refrigerant traveling direction of the refrigerant gas; A lower header pipe connected to the lower end of the tube, extending in a horizontal direction substantially perpendicular to the refrigerant traveling direction, and flowing the refrigerant liquid supplied into the tube from the upstream side to the downstream side in the refrigerant liquid inflow direction; An upper header pipe that is connected to the upper end and extends in the horizontal direction and allows the refrigerant gas flowing in from the tube to flow from the upstream side to the downstream side in the refrigerant gas discharge direction that is parallel to the refrigerant liquid inflow direction and in the same direction as the refrigerant liquid inflow direction. And with It was realized by Rukoto.

以下、本発明の一実施例に係る蒸発式冷却熱交換としての蒸発器100を用いた冷却装置1について、図1に基づいて説明する。なお、本実施例では、多数のサーバラックr内及びこれらサーバラックrを収容するサーバ室R内を冷却する冷却装置1について説明するが、冷却装置1をドライルームやクリーンルーム等に適用しても構わない。   Hereinafter, a cooling device 1 using an evaporator 100 as an evaporative cooling heat exchange according to an embodiment of the present invention will be described with reference to FIG. In the present embodiment, the cooling device 1 that cools the inside of a large number of server racks r and the server room R that accommodates these server racks r will be described, but the cooling device 1 may be applied to a dry room or a clean room. I do not care.

サーバ室Rには、図示しない電子機器を夫々搭載する複数のサーバラックrが収容されている。サーバラックr内に設置された図示しないファンが通信装置を空冷し、被冷却流体としての暖かい空気A1をサーバラックr外に放出すると共にサーバラックr外の冷たい空気A2をサーバラックr内に取り入れる。電子機器の発熱により暖められた暖かい空気A1は、冷却装置1で冷却されて、再びサーバ室R内に戻ることで、サーバ室R内は温度が一定に保たれ、電子機器は、所定の許容温度範囲内で動作するようになっている。   The server room R accommodates a plurality of server racks r each mounting an electronic device (not shown). A fan (not shown) installed in the server rack r cools the communication device, releases warm air A1 as a fluid to be cooled to the outside of the server rack r, and takes in cool air A2 outside the server rack r into the server rack r. . The warm air A1 warmed by the heat generated by the electronic device is cooled by the cooling device 1 and returned to the server room R again, so that the temperature in the server room R is kept constant. It is designed to operate within the temperature range.

冷却装置1は、サーバ室R内を冷却する自然循環方式の熱交換装置である。冷却装置1は、サーバ室R内に設けられた蒸発式冷却熱交換器としての蒸発器100と、サーバ室R外に設けられた凝縮器10と、蒸発器100から凝縮器10に冷媒ガスを導くガス配管20と、凝縮器10から蒸発器100に冷媒液を導く液配管30と、を備えている。   The cooling device 1 is a natural circulation heat exchange device that cools the inside of the server room R. The cooling device 1 includes an evaporator 100 as an evaporative cooling heat exchanger provided in the server room R, a condenser 10 provided outside the server room R, and refrigerant gas from the evaporator 100 to the condenser 10. A gas pipe 20 for guiding and a liquid pipe 30 for guiding the refrigerant liquid from the condenser 10 to the evaporator 100 are provided.

蒸発器100は、ケーシング101内に収容されて、ラックrの上方に配置されるようにサーバ室Rの天井や側壁に取り付けられる。蒸発器100は、液配管30を介して凝縮器10から流入する冷媒液を冷媒ガスに気化させて、温かい空気A1を冷たい空気A2に冷却する。   The evaporator 100 is accommodated in the casing 101 and attached to the ceiling or side wall of the server room R so as to be disposed above the rack r. The evaporator 100 vaporizes the refrigerant liquid flowing from the condenser 10 via the liquid pipe 30 into the refrigerant gas, and cools the warm air A1 to the cold air A2.

凝縮器10は、ガス配管20を介して蒸発器10から送られた冷媒ガスを冷媒液に凝縮させる。具体的には、凝縮器10は、図示しない冷却塔や冷凍機等で冷却された冷却水を循環させており、この冷却水に凝縮熱を放出させることで、冷媒ガスを冷媒液に凝縮させる。   The condenser 10 condenses the refrigerant gas sent from the evaporator 10 via the gas pipe 20 into a refrigerant liquid. Specifically, the condenser 10 circulates cooling water cooled by a cooling tower or a refrigerator (not shown), and condenses the refrigerant gas into the refrigerant liquid by releasing condensation heat to the cooling water. .

液配管30には、冷媒液を蒸発器100に送る送液ポンプを設けても構わない。なお、凝縮器10が蒸発器100より上方に配置されている場合には、冷媒液を強制的に送る送液ポンプを設ける必要がある。   The liquid pipe 30 may be provided with a liquid feed pump that sends the refrigerant liquid to the evaporator 100. In addition, when the condenser 10 is arrange | positioned above the evaporator 100, it is necessary to provide the liquid feed pump which forcibly sends a refrigerant liquid.

次に、蒸発器100の構成について、図2乃至5に基づいて説明する。   Next, the configuration of the evaporator 100 will be described with reference to FIGS.

蒸発器100は、矩形枠体である基台102を介してケーシング101に固定されている。ケーシング101は、底面101aに形成されて暖かい空気A1を吸い込む円形状の吸い込み口101bと、側面101cに形成されて冷たい空気A2を吐き出す格子状の吐き出し口101dと、が形成されている。   The evaporator 100 is fixed to the casing 101 via a base 102 that is a rectangular frame. The casing 101 is formed with a circular suction port 101b that is formed on the bottom surface 101a and sucks warm air A1, and a lattice-shaped discharge port 101d that is formed on the side surface 101c and discharges cold air A2.

ケーシング101の吸い込み口101bの上方には、回転軸A回りに回転して蒸発器100に暖かい空気A1を取り込むファン103が取り付けられている。また、ケーシング101内には、図示しない温度センサにより検知された暖かい空気A1の吸込温度に応じて、ファン103の回転数を制御し、蒸発器100を通過する通風量を変化させる制御装置104が配置されている。   A fan 103 that rotates around the rotation axis A and takes in warm air A1 into the evaporator 100 is attached above the suction port 101b of the casing 101. Further, in the casing 101, there is a control device 104 that controls the rotational speed of the fan 103 and changes the amount of air passing through the evaporator 100 according to the suction temperature of the warm air A1 detected by a temperature sensor (not shown). Has been placed.

基台102は、ケーシング101の底面101aに立設されて、蒸発器100内の冷媒ガスが冷媒の進行方向Dに沿って鉛直方向Vの上方に上昇するように、ケーシング101の底面101aに対して蒸発器100を斜めに固定している。これにより、蒸発器100の熱交換面積を増加させて、サーバ室R内の暖かい空気A1を効率的に冷却することができる。   The base 102 is erected on the bottom surface 101a of the casing 101 so that the refrigerant gas in the evaporator 100 rises in the vertical direction V along the traveling direction D of the refrigerant with respect to the bottom surface 101a of the casing 101. Thus, the evaporator 100 is fixed obliquely. Thereby, the heat exchange area of the evaporator 100 can be increased and the warm air A1 in the server room R can be efficiently cooled.

蒸発器100は、冷媒ガスの冷媒進行方向D1に沿って延びた複数のチューブ111、111を有する熱交換部110と、チューブ111の下端に接続されて、液配管30から流入する冷媒液をチューブ111に供給する下方ヘッダパイプ120と、チューブ111の上端に接続されて、チューブ111から流入する冷媒ガスをガス配管20に流す上方ヘッダパイプ130と、を備えている。   The evaporator 100 is connected to the heat exchanging unit 110 having a plurality of tubes 111 and 111 extending along the refrigerant traveling direction D1 of the refrigerant gas, and the lower end of the tube 111, and the refrigerant liquid flowing in from the liquid pipe 30 is tubed. A lower header pipe 120 to be supplied to 111, and an upper header pipe 130 that is connected to the upper end of the tube 111 and flows the refrigerant gas flowing in from the tube 111 to the gas pipe 20.

熱交換部110は、冷媒進行方向D1に沿って延びる複数のチューブ111、111を、冷媒進行方向D1と略直角な水平方向Hに沿って互いに隙間を空けて列設して構成されている。熱交換部110内の冷媒液は、冷媒進行方向D1に沿って上昇するにしたがって、暖かい空気A1との間で熱交換されて、飽和蒸気の冷媒ガス、加熱蒸気の冷媒ガスの順に変化する。即ち、熱交換部110内の冷媒液・冷媒ガスは、図6に示すように、下方ヘッダパイプ120から流入する冷媒液が占める領域F1と、飽和蒸気の冷媒ガスが占める領域F2と、上方ヘッダパイプ130に流入する加熱蒸気の冷媒ガスが占める領域F3と、に分かれて存在する。なお、蒸発器100の熱効率は、飽和蒸気の冷媒ガスが占める領域F2の大きさに比例して増加するため、飽和蒸気の冷媒ガスが占める領域F2は、広い方が好ましい。   The heat exchanging unit 110 is configured by arranging a plurality of tubes 111 and 111 extending along the refrigerant traveling direction D1 with a gap therebetween along a horizontal direction H substantially perpendicular to the refrigerant traveling direction D1. As the refrigerant liquid in the heat exchanging unit 110 rises along the refrigerant traveling direction D1, heat is exchanged with the warm air A1, and the refrigerant gas changes in the order of saturated vapor refrigerant gas and heated vapor refrigerant gas. That is, as shown in FIG. 6, the refrigerant liquid / refrigerant gas in the heat exchanging unit 110 includes a region F <b> 1 occupied by the refrigerant liquid flowing in from the lower header pipe 120, a region F <b> 2 occupied by the saturated vapor refrigerant gas, and the upper header. It is divided into a region F3 occupied by the refrigerant gas of the heating steam flowing into the pipe 130. Note that the thermal efficiency of the evaporator 100 increases in proportion to the size of the region F2 occupied by the saturated vapor refrigerant gas, so that the region F2 occupied by the saturated vapor refrigerant gas is preferably wider.

下方ヘッダパイプ120は、水平方向Hに沿って延びており、冷媒液流入方向D2の上流側の上流側端部121で液配管30と接続されている。下方ヘッダパイプ120内に供給された冷媒液は、冷媒液流入方向D2の上流側から下流側に向かって流れて、チューブ111、111に流入するようになっている。なお、下方ヘッダパイプ120の上流側端部121の上流側に、冷媒ガスの過熱度を一定に保つように冷媒液の流量を制御する電子膨張弁を設けても構わない。これにより、冷媒液を完全に蒸発させて、冷媒液の蒸発潜熱で効率的に暖かい空気A1を冷却することができる。   The lower header pipe 120 extends along the horizontal direction H, and is connected to the liquid pipe 30 at the upstream end 121 on the upstream side in the refrigerant liquid inflow direction D2. The refrigerant liquid supplied into the lower header pipe 120 flows from the upstream side to the downstream side in the refrigerant liquid inflow direction D <b> 2 and flows into the tubes 111 and 111. An electronic expansion valve that controls the flow rate of the refrigerant liquid may be provided on the upstream side of the upstream end 121 of the lower header pipe 120 so as to keep the degree of superheat of the refrigerant gas constant. Thereby, the refrigerant liquid can be completely evaporated, and the warm air A1 can be efficiently cooled by the latent heat of vaporization of the refrigerant liquid.

上方ヘッダパイプ130は、水平方向Hに沿って延びており、冷媒液流入方向D2と平行で冷媒液流入方向D2と同じ向きの冷媒ガス排出方向D3の下流側の下流側端部131がガス配管20に接続されている。上方ヘッダパイプ130内に流入した冷媒ガスは、冷媒ガス排出方向D3の上流側から下流側に向かって流れて、ガス配管20に流入するようになっている。ここで、上方ヘッダパイプ130の上流側端部132は、平面視で、下方ヘッダパイプ120の上流側端部121と水平方向Hにおいて同じ側方(図3中の紙面右側)に配置されている。また、上方ヘッダパイプ130の下流側端部131は、平面視で、下方ヘッダパイプ120の下流側端部122水平方向Hにおいて同じ側方(図3中の紙面左側)に配置されている。
これにより、下方ヘッダパイプ120から熱交換部110に供給された冷媒液の流路の長さと熱交換部内で気化された冷媒ガスの流路の長さとの和が、上方ヘッダパイプ130への冷媒ガスの流入位置によらず、略等しく設定されていることにより、蒸発器100内で冷媒液、冷媒ガスが受ける摩擦抵抗が、冷媒液、冷媒ガスが流れる位置にかかわらず略等しくなるため、平面視で略コ字状に冷媒液及び冷媒ガスを流す従来の蒸発式冷却熱交換器と比較して、冷媒ガスが熱交換部110内及び上方ヘッダパイプ130内を抜け易くなっている。
The upper header pipe 130 extends along the horizontal direction H, and a downstream end 131 on the downstream side of the refrigerant gas discharge direction D3 parallel to the refrigerant liquid inflow direction D2 and in the same direction as the refrigerant liquid inflow direction D2 is a gas pipe. 20 is connected. The refrigerant gas that has flowed into the upper header pipe 130 flows from the upstream side to the downstream side in the refrigerant gas discharge direction D3 and flows into the gas pipe 20. Here, the upstream end 132 of the upper header pipe 130 is disposed on the same side in the horizontal direction H as the upstream end 121 of the lower header pipe 120 (on the right side in FIG. 3) in plan view. . Further, the downstream end 131 of the upper header pipe 130 is disposed on the same side (left side in FIG. 3) in the horizontal direction H in the downstream end 122 of the lower header pipe 120 in plan view.
Thereby, the sum of the length of the flow path of the refrigerant liquid supplied from the lower header pipe 120 to the heat exchange section 110 and the length of the flow path of the refrigerant gas vaporized in the heat exchange section is the refrigerant to the upper header pipe 130. Since the frictional resistance received by the refrigerant liquid and the refrigerant gas in the evaporator 100 is substantially equal regardless of the position where the refrigerant liquid and the refrigerant gas flow, the plane is flat. Compared with a conventional evaporative cooling heat exchanger in which the refrigerant liquid and the refrigerant gas flow in a substantially U shape as viewed, the refrigerant gas can easily escape through the heat exchanger 110 and the upper header pipe 130.

上述した本実施例に係る蒸発器100は、冷媒ガスが熱交換部110内及び上方ヘッダパイプ130内を抜け易くなってため、熱交換部110内での冷媒ガスのガス溜まりの発生を抑制して、蒸発器100の熱交換効率を向上させることができる。   In the evaporator 100 according to the above-described embodiment, the refrigerant gas easily escapes from the heat exchanging unit 110 and the upper header pipe 130, so that the occurrence of a refrigerant gas pool in the heat exchanging unit 110 is suppressed. Thus, the heat exchange efficiency of the evaporator 100 can be improved.

また、本実施例に係る冷却装置1は、熱交換効率に優れた蒸発器100を用いて、サーバ室Rを効率よく冷却することができる。   Moreover, the cooling device 1 according to the present embodiment can efficiently cool the server room R using the evaporator 100 having excellent heat exchange efficiency.

また、本実施例におけるチューブ111は、図6に示すように、下方から上方に直線状に1列に延びたものを採択しているが、熱交換部に用いられるチューブの形状は直線状の1列に限定されず、例えば、強制循環方式の冷却装置に用いられるチューブ111であれば、図7に示すように、上下に2回屈曲させて側面視でZ字状の3列であっても、上下2回以上の偶数回屈曲させた奇数列であっても構わない。   In addition, as shown in FIG. 6, the tube 111 in the present embodiment adopts a straight line extending from the bottom to the top as shown in FIG. 6. However, the shape of the tube used for the heat exchange unit is a straight line. For example, in the case of the tube 111 used in the forced circulation cooling device, as shown in FIG. 7, the tube 111 is bent up and down twice and has three Z-shaped rows in a side view. Alternatively, it may be an odd-numbered row that is bent twice or more even times.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変をなすことができ、そして、本発明が該改変されたものにも及ぶことは当然である。   The present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

1 ・・・ 冷却装置
10・・・ 凝縮器
20・・・ ガス配管
21・・・ バイパス配管
30・・・ 液配管
100・・・ 蒸発器(蒸発式冷却熱交換器)
101・・・ ケーシング
102・・・ 基台
103・・・ ファン
104・・・ 制御装置
110・・・ 熱交換部
111・・・ チューブ
120・・・ 下方ヘッダパイプ
121・・・ (下方ヘッダパイプの)上流側端部
122・・・ (下方ヘッダパイプの)下流側端部
130・・・ 上方ヘッダパイプ
131・・・ (上方ヘッダパイプの)下流側端部
132・・・ (上方ヘッダパイプの)上流側端部
R ・・・ サーバ室
r ・・・ サーバラック
F1・・・ 冷媒液が占める領域
F2・・・ 飽和蒸気が占める領域
F3・・・ 加熱蒸気が占める領域
A1・・・ 暖かい空気
A2・・・ 冷たい空気
D1・・・ 冷媒進行方向
D2・・・ 冷媒液流入方向
D3・・・ 冷媒ガス排出方向
H ・・・ 水平方向
V ・・・ 鉛直方向
DESCRIPTION OF SYMBOLS 1 ... Cooling device 10 ... Condenser 20 ... Gas piping 21 ... Bypass piping 30 ... Liquid piping 100 ... Evaporator (evaporative cooling heat exchanger)
101 ... casing 102 ... base 103 ... fan 104 ... control device 110 ... heat exchange part 111 ... tube 120 ... lower header pipe 121 ... (lower header pipe ) Upstream end 122 ... Downstream end 130 (of lower header pipe) ... Upper header pipe 131 ... Downstream end 132 (of upper header pipe) ... (Upper header pipe) Upstream end R ... Server room r ... Server rack F1 ... Area occupied by refrigerant liquid F2 ... Area occupied by saturated steam F3 ... Area occupied by heated steam A1 ... Warm air A2 ... Cold air D1 ... Refrigerant traveling direction D2 ... Refrigerant liquid inflow direction D3 ... Refrigerant gas discharge direction H ... Horizontal direction V ... Vertical direction

Claims (1)

冷媒液を冷媒ガスに気化させて被冷却流体を冷却する蒸発式冷却熱交換器であって、
前記冷媒ガスの冷媒進行方向に沿って延びた複数のチューブを有する熱交換部と、
前記チューブの下端に接続され、前記冷媒進行方向と略垂直な水平方向に延びて、前記チューブ内に供給される冷媒液を冷媒液流入方向の上流側から下流側に向けて流す下方ヘッダパイプと、
前記チューブの上端に接続され、前記水平方向に延びて、前記チューブから流入する冷媒ガスを前記冷媒液流入方向と平行で該冷媒液流入方向と同じ向きの冷媒ガス排出方向の上流側から下流側に向けて流す上方ヘッダパイプと、
を備えていることを特徴とする蒸発式冷却熱交換器。
An evaporative cooling heat exchanger that evaporates a refrigerant liquid into a refrigerant gas and cools a fluid to be cooled.
A heat exchanging section having a plurality of tubes extending along the refrigerant traveling direction of the refrigerant gas;
A lower header pipe connected to the lower end of the tube, extending in a horizontal direction substantially perpendicular to the refrigerant traveling direction, and flowing the refrigerant liquid supplied into the tube from the upstream side to the downstream side in the refrigerant liquid inflow direction; ,
Connected to the upper end of the tube, extends in the horizontal direction, and flows the refrigerant gas flowing in from the tube in parallel with the refrigerant liquid inflow direction and in the same direction as the refrigerant liquid inflow direction from the upstream side to the downstream side An upper header pipe that flows toward
An evaporative cooling heat exchanger comprising:
JP2014005523A 2014-01-16 2014-01-16 Evaporation type cooling heat exchanger Pending JP2015132454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014005523A JP2015132454A (en) 2014-01-16 2014-01-16 Evaporation type cooling heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014005523A JP2015132454A (en) 2014-01-16 2014-01-16 Evaporation type cooling heat exchanger

Publications (1)

Publication Number Publication Date
JP2015132454A true JP2015132454A (en) 2015-07-23

Family

ID=53899782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014005523A Pending JP2015132454A (en) 2014-01-16 2014-01-16 Evaporation type cooling heat exchanger

Country Status (1)

Country Link
JP (1) JP2015132454A (en)

Similar Documents

Publication Publication Date Title
JP7137555B2 (en) Active/passive cooling system
JP6749398B2 (en) Heat exchangers and air conditioning systems
JPWO2011122207A1 (en) Electronic device exhaust cooling system and cooling system
WO2017110677A1 (en) Heat exchanger and cooling tower
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
BR112014015074B1 (en) air conditioning unit
JP2017040389A (en) Heat exchanger of heat pump application apparatus
JP2010010204A (en) Ebullient cooling device
JP2008095976A (en) Two-stage absorption refrigerating machine
JP2013016589A (en) Boil cooling device, and cooling system for vehicle using boil cooling device
JP2012017967A (en) Air conditioning device
JP6501149B2 (en) Refrigeration system
US20100212346A1 (en) Wicking condensate evaporator for an air conditioning system
JP3789815B2 (en) High temperature regenerator and absorption chiller / heater equipped with the same
JP2016023925A (en) Evaporation air conditioning system
JP2015132454A (en) Evaporation type cooling heat exchanger
JP2015148395A (en) Cooling device
JP2015114042A (en) Evaporation type cooling heat exchanger
JP2015114044A (en) Evaporation type cooling heat exchanger
KR20080041552A (en) Air-conditioning apparatus and method
JP2015114041A (en) Evaporation type cooling heat exchanger
CN106839534A (en) Condenser
CN113531895A (en) Air-conditioning type heat pump water heater
JP2013016590A (en) Boil cooling device, and cooling system for vehicle using boil cooling device
JP2019113306A (en) Freezer