JP2015132447A - Radiation air conditioner - Google Patents

Radiation air conditioner Download PDF

Info

Publication number
JP2015132447A
JP2015132447A JP2014005306A JP2014005306A JP2015132447A JP 2015132447 A JP2015132447 A JP 2015132447A JP 2014005306 A JP2014005306 A JP 2014005306A JP 2014005306 A JP2014005306 A JP 2014005306A JP 2015132447 A JP2015132447 A JP 2015132447A
Authority
JP
Japan
Prior art keywords
far
cooling
heating
infrared
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014005306A
Other languages
Japanese (ja)
Other versions
JP6010786B2 (en
Inventor
崇治 二枝
Takaharu Futaeda
崇治 二枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUTAEDA YOSHIE
Original Assignee
FUTAEDA YOSHIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUTAEDA YOSHIE filed Critical FUTAEDA YOSHIE
Priority to JP2014005306A priority Critical patent/JP6010786B2/en
Priority to PCT/JP2015/050966 priority patent/WO2015108116A1/en
Priority to MYPI2016702322A priority patent/MY190377A/en
Priority to SG11201604943SA priority patent/SG11201604943SA/en
Publication of JP2015132447A publication Critical patent/JP2015132447A/en
Priority to PH12016501354A priority patent/PH12016501354A1/en
Application granted granted Critical
Publication of JP6010786B2 publication Critical patent/JP6010786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Humidification (AREA)
  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation air conditioner capable of cleaning and utilizing such a water droplet that moisture in air is dew condensed and generated on the surface of an air conditioning radiation panel upon a cooling operation.SOLUTION: A radiation air conditioner is configured such that a cooling and/or heating surface is constituted with an air conditioning radiation panel, such water droplet that moisture in air is dew condensed and produced on the surface of the air conditioning radiation panel upon a cooling operation is drained, therefore, a drain port of a water droplet reception part on the under side of the air conditioning radiation panel is provided, a storage tank for storing and reusing the dew condensation water drained from the drain port is prepared and the supplied dew condensation water comes into contact with a far-infrared ray radiation substance and/or is circulated in the storage tank after coming into contact with the far-infrared ray radiation substance.

Description

本発明は、放射冷暖房装置に関する。   The present invention relates to a radiant cooling and heating device.

本発明者は、先に、たとえばラジエーター(冷暖放射パネル)表面に塗布された遠赤外線放射物質と、壁材および/または天井材に含まれる遠赤外線放射物質との間の共鳴を利用して、遠赤外線を直接に人体に作用させて体感温度をコントロールし得る放射冷暖房装置を提案し(たとえば特許文献1)、実用化するに至っている。   The present inventor previously used, for example, a resonance between a far-infrared emitting material applied to the surface of a radiator (cooling / heating radiation panel) and a far-infrared emitting material contained in a wall material and / or a ceiling material, A radiant cooling and heating apparatus that can control the temperature of the sensation by directly applying far infrared rays to the human body has been proposed (for example, Patent Document 1) and has been put into practical use.

このような放射冷暖房装置においては、冷却及び/又は加熱面は、フィンを有するラジエーターで構成されており、冷房運転時にラジエーター表面に空気中の水分が結露して生成した水滴を屋外に排出するために、ラジエーター下方の水滴受部に排水口が設けられている。   In such a radiant cooling and heating apparatus, the cooling and / or heating surface is configured by a radiator having fins, and water droplets generated by condensation of moisture in the air on the radiator surface during cooling operation are discharged outdoors. In addition, a drain outlet is provided in the water droplet receiver below the radiator.

また、遠赤外線放射物質を用いない、従来型の一般的な放射冷暖房装置においても、冷房運転時にラジエーター表面に結露して生成した水滴は排水口から屋外に排出されている。   Further, even in a conventional general radiant cooling and heating apparatus that does not use a far-infrared radiation material, water droplets generated by condensation on the surface of the radiator during cooling operation are discharged to the outside from a drain outlet.

特開2011−106808号公報JP 2011-106808 A

本発明者は、放射冷暖房装置において、冷房運転時に冷暖放射パネル表面に空気中の水分が結露して生成した水滴を、浄化・再利用することを目的とし、本発明に到達したものである。   The present inventor has reached the present invention for the purpose of purifying and reusing water droplets generated by condensation of moisture in the air on the surface of the cooling and heating radiation panel during cooling operation in the radiant cooling and heating apparatus.

本発明は上記の問題を解決するために、以下の発明を提供するものである。
(1)放射冷暖房装置において、冷却および/または加熱面は冷暖放射パネルで構成されており、冷房運転時に冷暖放射パネル表面に空気中の水分が結露して生成した水滴を排出するために、冷暖放射パネル下方の水滴受部の排水口を設けており、かつ、排水口から排出された結露水を貯蔵して再利用するための貯蔵タンクを備えてなり、供給された結露水が貯蔵タンク内で遠赤外線放射物質と接触するように、および/または貯蔵タンク外で遠赤外線放射物質と接触した後に貯蔵タンク内に循環するように、構成されてなる放射冷暖房装置。
(2)冷暖放射パネル表面が遠赤外線放射物質を含む上記(1)に記載の放射冷暖房装置。
(3)貯蔵タンクの内側面が遠赤外線放射物質を含む上記(1)または(2)に記載の放射冷暖房装置。
(4)貯蔵タンクの底部に遠赤外線放射物質が備えられている上記(1)〜(3)のいずれかに記載の放射冷暖房装置。
(5)貯蔵タンクに供給された結露水を貯蔵タンク外で遠赤外線放射物質と接触した後に貯蔵タンク内に循環するように、貯蔵タンク外に遠赤外線放射物質を含むタンクまたは流路を設けてなる上記(1)〜(4)のいずれかに記載の放射冷暖房装置。
(6)排水口から排出された結露水を、さらに遠赤外線放射物質と接触させた後に貯水タンクに供給する上記(1)〜(5)のいずれかに記載の放射冷暖房装置。
(7)放射冷暖房装置が、遠赤外線を放射・吸収し遠赤外線の放射率が0.6以上である遠赤外線放射物質を含む材料で構成された室内面構成部材を有し、
冷暖放射パネル表面が、前記室内面構成部材の前記遠赤外線放射物質と同一の遠赤外線放射物質を含む材料で構成されてなり、
冷暖放射パネル表面が冷却されると、その表面の前記遠赤外線放射物質が前記室内面構成部材の前記遠赤外線放射物質が放射する遠赤外線を吸収し、および/または、
冷暖放射パネル表面が加熱されると、その加熱面の前記遠赤外線放射物質が放射する遠赤外線を前記室内面構成部材の前記遠赤外線放射物質が吸収するように構成されてなる上記(1)〜(6)のいずれかに記載の放射冷暖房装置。
(8)上記(1)〜(7)のいずれかに記載の放射冷暖房装置を用いて浄化された結露水を、浄化水として利用することを特徴とする結露水の利用方法。
The present invention provides the following inventions in order to solve the above problems.
(1) In the radiant cooling and heating apparatus, the cooling and / or heating surface is constituted by a cooling and heating radiant panel, and in order to discharge water droplets generated by condensation of moisture in the air on the cooling and heating radiant panel surface during cooling operation, It has a drain outlet in the water drop receiver below the radiant panel, and has a storage tank for storing and reusing the condensed water discharged from the drain outlet, and the supplied condensed water is stored in the storage tank. A radiant air conditioner configured to be in contact with a far-infrared radiant material and / or to circulate in the storage tank after contacting the far-infrared radiant material outside the storage tank.
(2) The radiant cooling / heating apparatus according to (1), wherein the surface of the cooling / heating radiation panel includes a far-infrared radiation material.
(3) The radiant cooling and heating apparatus according to (1) or (2), wherein the inner side surface of the storage tank contains a far-infrared radiation material.
(4) The radiant cooling and heating apparatus according to any one of (1) to (3), wherein a far-infrared radiation substance is provided at the bottom of the storage tank.
(5) Provide a tank or flow path containing the far-infrared radiation material outside the storage tank so that the condensed water supplied to the storage tank is circulated in the storage tank after contacting the far-infrared radiation material outside the storage tank. The radiant cooling and heating apparatus according to any one of (1) to (4).
(6) The radiant cooling and heating apparatus according to any one of (1) to (5), wherein the condensed water discharged from the drain outlet is further brought into contact with a far-infrared radiation material and then supplied to the water storage tank.
(7) The radiant cooling and heating device has an indoor surface constituent member made of a material containing a far-infrared emitting substance that radiates and absorbs far-infrared rays and has a far-infrared emissivity of 0.6 or more,
The surface of the cooling / heating radiation panel is made of a material containing the same far infrared radiation material as the far infrared radiation material of the indoor surface component,
When the surface of the cooling / heating radiation panel is cooled, the far-infrared radiation material on the surface absorbs the far-infrared radiation emitted by the far-infrared radiation material of the indoor surface component, and / or
When the cooling / heating radiation panel surface is heated, the far-infrared radiation material of the indoor surface constituent member absorbs the far-infrared radiation emitted by the far-infrared radiation material on the heating surface. (6) The radiant cooling and heating device according to any one of (6).
(8) A method for using condensed water, characterized in that condensed water purified using the radiant cooling and heating apparatus according to any one of (1) to (7) is used as purified water.

本発明によれば、冷房運転時に冷暖放射パネル表面に空気中の水分が結露して生成した水滴を、浄化・再利用し得る放射冷暖房装置を提供し得る。   According to the present invention, it is possible to provide a radiant cooling and heating apparatus that can purify and reuse water droplets generated by condensation of moisture in the air on the surface of the cooling and heating radiation panel during cooling operation.

本発明の放射冷暖房装置の一実施態様を示す概略図。Schematic which shows one embodiment of the radiation cooling and heating apparatus of this invention.

本発明の放射冷暖房装置においては、冷却および/または加熱面は冷暖放射パネルで構成されており、冷房運転時に冷暖放射パネル表面に空気中の水分が結露して生成した水滴を排出するために、冷暖放射パネル下方の水滴受部に排水口が設けられる。さらに、排水口から排出された結露水を貯蔵して再利用するための貯蔵タンクが備えられ、その貯蔵タンクは、供給された結露水が貯蔵タンク内で遠赤外線放射物質と接触するように、および/または貯蔵タンク外で遠赤外線放射物質と接触した後に貯蔵タンク内に循環するように、構成されてなる。   In the radiant cooling and heating apparatus of the present invention, the cooling and / or heating surface is constituted by a cooling and heating radiant panel, and in order to discharge water droplets generated by condensation of moisture in the air on the cooling and heating radiant panel surface during cooling operation, A drain outlet is provided in the water droplet receiving portion below the cooling / heating radiation panel. Furthermore, a storage tank for storing and reusing the condensed water discharged from the drain outlet is provided, and the storage tank is arranged so that the supplied condensed water comes into contact with the far-infrared radiation material in the storage tank. And / or configured to circulate in the storage tank after contacting the far-infrared emitting material outside the storage tank.

放射冷暖房装置は、冷水または温水を冷暖放射パネル内に通す形式のものであれば特に制限されないが、本発明においては、好適には、放射冷暖房装置が、遠赤外線を放射・吸収し遠赤外線の放射率が0.6以上である遠赤外線放射物質を含む材料で構成された室内面構成部材を有し、冷暖放射パネル表面が、前記室内面構成部材の前記遠赤外線放射物質と同一の遠赤外線放射物質を含む材料で構成されてなり、冷暖放射パネル表面が冷却されると、その表面の前記遠赤外線放射物質が前記室内面構成部材の前記遠赤外線放射物質が放射する遠赤外線を吸収し、および/または、冷暖放射パネル表面が加熱されると、その加熱面の前記遠赤外線放射物質が放射する遠赤外線を前記室内面構成部材の前記遠赤外線放射物質が吸収するように構成されてなる放射冷暖房装置が採用され得る。以下、この例を1態様として説明する。   The radiant cooling / heating device is not particularly limited as long as it is of a type that passes cold water or hot water through the cooling / heating radiant panel. However, in the present invention, the radiant cooling / heating device preferably radiates and absorbs far infrared rays, A far-infrared ray having an indoor surface constituent member made of a material containing a far-infrared emitting material having an emissivity of 0.6 or more, and a surface of the cooling / heating radiation panel being the same as the far-infrared emitting material of the indoor surface constituent member When the surface of the cooling and heating radiation panel is cooled, the far infrared radiation material on the surface absorbs the far infrared radiation emitted by the far infrared radiation material of the indoor surface component, And / or when the surface of the cooling / heating radiation panel is heated, the far-infrared radiation material of the indoor surface component member absorbs the far-infrared radiation emitted by the far-infrared radiation material on the heating surface. It is to become radiant heating and cooling device may be employed. Hereinafter, this example will be described as one mode.

室内面構成部材は、遠赤外線放射物質で構成されるか、遠赤外線放射物質を混入した材料で構成されるか、または遠赤外線放射物質からなる皮膜を有する。前記冷却および/または加熱源の前記冷却および/または加熱面は、遠赤外線放射物質で構成されるか、遠赤外線放射物質を混入した材料で構成されるか、または遠赤外線放射物質からなる皮膜で構成される。   The indoor surface constituent member is composed of a far infrared radiation material, a material mixed with a far infrared radiation material, or has a film made of a far infrared radiation material. The cooling and / or heating surface of the cooling and / or heating source is made of a far-infrared emitting material, a material mixed with a far-infrared emitting material, or a film made of a far-infrared emitting material. Composed.

本発明において、室内面構成部材とは、環境調整の対象となる密閉空間に露出した面を構成している部材を指す。密閉空間は、その内部と外部との連絡を可能にするドアや窓などのような開閉手段を備えることができる。密閉空間は、特に制限されないが、通常は人間が生活・活動する建物の部屋や廊下などである。室内面構成部材の少なくとも一部は、本発明における室内環境の調整に必要な遠赤外線を放射・吸収する遠赤外線放射物質で構成されるか、遠赤外線放射物質を混入した材料で構成されるか、又は遠赤外線放射物質からなる皮膜を有する。遠赤外線の放射および吸収を効率よく行うため、室内面構成部材に混入される遠赤外線放射物質は、室内空間に露出していることが好ましい。とは言え、室内面構成部材中の遠赤外線放射物質は、室内空間に直接露出されずに、遠赤外線放射物質の遠赤外線の放射・吸収を有意に妨げない程度の保護層(例えば、1mm程度以下の厚さの塗装膜、ニス層、壁紙等)などで覆われていてもよい。   In the present invention, the indoor surface constituent member refers to a member constituting a surface exposed to a sealed space that is an object of environmental adjustment. The sealed space can be provided with opening / closing means such as a door or a window that enables communication between the inside and the outside. The sealed space is not particularly limited, but is usually a room or a corridor of a building where people live and act. Whether at least some of the indoor surface components are made of a far-infrared emitting material that emits or absorbs far-infrared rays necessary for adjusting the indoor environment in the present invention, or is it made of a material mixed with a far-infrared emitting material Or a film made of a far-infrared emitting material. In order to efficiently emit and absorb far-infrared rays, it is preferable that the far-infrared emitting substance mixed in the indoor surface constituent member is exposed to the indoor space. Nonetheless, the far-infrared emitting material in the indoor surface constituent member is not directly exposed to the indoor space, and does not significantly interfere with the far-infrared radiation and absorption of the far-infrared emitting material (for example, about 1 mm) It may be covered with a coating film, varnish layer, wallpaper or the like having the following thickness.

遠赤外線放射物質は遠赤外線を放射・吸収する物質をいうが、本発明で用いる遠赤外線放射物質は、遠赤外線の放射率が0.6以上、好ましくは0.8以上の遠赤外線放射物質である。   The far-infrared emitting material refers to a material that emits and absorbs far-infrared rays. The far-infrared emitting material used in the present invention is a far-infrared emitting material having a far-infrared emissivity of 0.6 or more, preferably 0.8 or more. is there.

このような遠赤外線放射物質は、通常、いわゆる無機材料であり、天然及び人工の鉱物、金属及び半金属の酸化物、窒化物、炭化物、硫化物、水酸化物等、炭酸塩などの塩やそれらの複合物(複塩)、炭などのほか、貝殻などの天然素材なども含まれる。また、本発明の遠赤外線放射物質の殆どは広義のセラミックス材料(金属以外の無機材料をいう。)であるが、有機物や有機物由来の物質であっても上記放射率の条件を満たすならば用いることができる。   Such far-infrared emitting materials are usually so-called inorganic materials, such as natural and artificial minerals, metal and metalloid oxides, nitrides, carbides, sulfides, hydroxides, carbonates and other salts, In addition to these composites (double salt) and charcoal, natural materials such as shells are also included. In addition, most of the far-infrared emitting materials of the present invention are ceramic materials in a broad sense (referring to inorganic materials other than metals). However, even organic materials or substances derived from organic materials are used as long as the above emissivity conditions are satisfied. be able to.

本発明において、遠赤外線放射物質を含む部材中における遠赤外線放射物質の形態は、遠赤外線放射物質を含む部材が遠赤外線を放射・吸収できれば格別に制約はなく、代表的には、遠赤外線放射物質からなる一体物(石材)、遠赤外線放射物質の粒子、粉末、骨材等(これらを粒子ともいう。)を含む部材、遠赤外線放射物質の皮膜を有する部材などの形態であることができる。本発明において、「遠赤外線放射物質からなる石材」とは、天然又は人工の無機材料からなる固体一体物のことであって、通常はパネルまたはタイル状の建材等として用いられる。天然の石材の例としては、花崗岩、玄武岩、などを挙げることができる。人工的に製造した石材でもよいことはいうまでもない。人造パネル等の建材やその他の一体物部材は、石材と考えることができる。   In the present invention, the form of the far-infrared emitting material in the member containing the far-infrared emitting material is not particularly limited as long as the member containing the far-infrared emitting material can emit and absorb far-infrared rays. It can be in the form of a monolithic material (stone), a member containing particles of far-infrared radiation, powder, aggregate, etc. (these are also called particles), a member having a film of far-infrared radiation, etc. . In the present invention, the “stone material made of a far-infrared emitting material” is a solid integrated material made of a natural or artificial inorganic material, and is usually used as a panel or tile-shaped building material. Examples of natural stone materials include granite and basalt. Needless to say, artificially produced stone may be used. Building materials such as artificial panels and other integral members can be considered stone.

本発明において、遠赤外線放射物質を混入した材料とは、構成成分の一部として遠赤外線放射物質を含む材料をいう。この場合の遠赤外線放射物質は、典型的には天然又は人工の無機材料の粒子として、室内面構成部材の製造材料や製造材料中に混入される。   In the present invention, the material mixed with the far-infrared emitting substance means a material containing the far-infrared emitting substance as a part of the constituent components. In this case, the far-infrared emitting substance is typically mixed as a particle of a natural or artificial inorganic material in the manufacturing material or manufacturing material of the indoor surface constituent member.

本発明において、遠赤外線放射物質からなる皮膜とは、室内面構成部材や冷却及び/又は加熱源の表面に形成した遠赤外線放射物質の皮膜をいう。この皮膜は、適当な皮膜形成技術、例えば熔射、蒸着などのPVD(物理蒸着)技術、あるいはCVD(化学蒸着)技術により、遠赤外線放射物質を対象表面にコーティングして形成することができる。   In the present invention, a film made of a far-infrared emitting material means a film of a far-infrared emitting material formed on the surface of an indoor surface constituent member or a cooling and / or heating source. This film can be formed by coating the target surface with a far-infrared emitting substance by an appropriate film forming technique, for example, PVD (physical vapor deposition) technique such as spraying or vapor deposition, or CVD (chemical vapor deposition) technique.

本発明においては、室内面構成部材の遠赤外線放射物質と、冷暖放射パネル表面の遠赤外線放射物質とは、同一である。本発明における放射冷暖房装置は、同一分子種間における熱放射を介した熱移動が、同一分子種間でない場合に比較して高い効率で行われる現象を利用して、室内面構成部材と冷暖放射パネル表面との間で熱放射を介し熱移動を高い効率で行わせることにより、室内環境の調整を実現するものである。よって、本発明の放射冷暖房装置が所期の機能を発揮するためには、それらの間で熱放射を介した熱移動が行われる室内面構成部材と冷暖放射パネル表面とに、同一分子種の物質が存在する必要がある。本発明では、同一分子種で構成されている、室内面構成部材の遠赤外線放射物質と冷却及び/又は加熱源の遠赤外線放射物質のことを、同一物質であると称する。ここで「同一分子種」とは、遠赤外線を放射・吸収する性質を示し、遠赤外線の放射率が0.6以上、好ましくは0.8以上である一方の物質(例えば、室内面構成部材において使用する遠赤外線放射物質)と、遠赤外線を放射・吸収する性質を示し、遠赤外線の放射率が0.6以上、好ましくは0.8以上であるもう一方の物質(冷暖放射パネル表面で使用する遠赤外線放射物質)とが、分子レベルで同一であることをいう。ここでの分子とは、化学結合により結合された原子の集団を意味する。したがって、ここでいう分子には、例えば天然石材を構成する鉱物の結晶なども含まれる。類似元素が置換あるいは固溶した同一鉱物は同一分子種の物質とみなされている。天然の鉱物の場合、複数の化合物で構成されるのが普通であり、しかも巨視的レベルでは鉱物中の部位によりそれらの化合物の結晶構造に違いが見られることもある。とはいえ、この場合は、同じ原産地から切り出した鉱物は、実質的に同じ分子種の物質の実質的に同じ組成の集合体であり、全体として同一分子種の物質と同様に考えてよい。   In the present invention, the far-infrared emitting material of the indoor surface constituent member and the far-infrared emitting material on the surface of the cooling / heating radiation panel are the same. The radiant cooling and heating apparatus according to the present invention uses a phenomenon in which heat transfer via thermal radiation between the same molecular species is performed with higher efficiency than in the case where the same molecular species is not between the same molecular species. Adjustment of the indoor environment is achieved by causing heat transfer to and from the panel surface through heat radiation with high efficiency. Therefore, in order for the radiant cooling / heating device of the present invention to perform its intended function, the indoor surface constituent member and the cooling / heating radiant panel surface where heat transfer is performed between them are used for the same molecular species. The substance needs to be present. In the present invention, the far-infrared emitting material of the indoor surface constituting member and the far-infrared emitting material of the cooling and / or heating source, which are composed of the same molecular species, are referred to as the same material. Here, the “same molecular species” indicates a property of radiating and absorbing far infrared rays, and one substance (for example, an indoor surface constituent member) having far infrared emissivity of 0.6 or more, preferably 0.8 or more. Far-infrared emitting material used in) and the other infrared ray emitting / absorbing material that has a far-infrared emissivity of 0.6 or more, preferably 0.8 or more. This means that the far-infrared emitting material used is the same at the molecular level. The molecule here means a group of atoms bonded by chemical bonds. Therefore, the molecule referred to here includes, for example, a crystal of a mineral constituting a natural stone material. The same mineral with substitution or solid solution of similar elements is regarded as a substance of the same molecular species. In the case of a natural mineral, it is usually composed of a plurality of compounds, and on the macroscopic level, the crystal structure of these compounds may be different depending on the site in the mineral. However, in this case, the mineral cut out from the same place of origin is a collection of substantially the same composition of substances of substantially the same molecular species, and may be considered in the same way as a substance of the same molecular species as a whole.

室内面構成部材、あるいは冷暖放射パネル表面において、上述の遠赤外線放射物質として無機材料粒子を使用する場合、そこには、遠赤外線放射物質としての無機材料粒子以外の物質が共存するのが普通である。例えば、遠赤外線放射物質としての無機材料粒子を含む漆喰により室内面構成部材を形成した場合や、遠赤外線放射物質としての無機材料粒子を含む塗料を冷暖放射パネル表面に塗布した場合、上述の遠赤外線放射物質としての無機材料粒子は、漆喰中の骨材あるいは塗料中のバインダー成分などと共存する。このような場合、上述の遠赤外線放射物質としての無機材料粒子以外の物質も、遠赤外線を多かれ少なかれ放射・吸収する性質を持つ。しかし、本発明では、同一分子種間における熱放射を介した熱移動が同一分子種間でない場合に比較して顕著に高い効率で行われる現象を利用しているので、室内面構成部材と冷暖放射パネル表面の両者に共通に存在しない物質が本発明において果たす役割は、きわめて少ないか、または無視できる程度である。したがって、以下における本発明の説明において「遠赤外線放射物質」に言及する場合、それは室内面構成部材と冷暖放射パネル表面の両者に共通に存在する、遠赤外線放射率0.6以上、好ましくは0.8以上の同一の物質(電磁波を介した同一分子間における分子振動の共鳴現象を引き起こす物質)を指す。   When inorganic material particles are used as the above-mentioned far-infrared radiation material on the interior surface component or the cooling / heating radiation panel surface, it is normal that substances other than inorganic material particles as the far-infrared radiation material coexist there. is there. For example, when the indoor surface constituent member is formed of plaster containing inorganic material particles as a far-infrared emitting material, or when a paint containing inorganic material particles as a far-infrared emitting material is applied to the surface of a cooling / heating radiation panel, The inorganic material particles as the infrared emitting substance coexist with the aggregate in the plaster or the binder component in the paint. In such a case, substances other than the inorganic material particles as the far-infrared emitting substance described above also have the property of emitting or absorbing far-infrared rays more or less. However, the present invention uses a phenomenon in which heat transfer via thermal radiation between the same molecular species is performed with significantly higher efficiency than when the same molecular species is not between the same molecular species. Substances that are not commonly present on both sides of the radiating panel play a very small or negligible role in the present invention. Therefore, when referring to “far-infrared emitting material” in the following description of the present invention, it is common to both the interior surface component and the surface of the cooling / heating panel, and far-infrared emissivity is 0.6 or more, preferably 0. .8 or more identical substances (substances that cause resonance phenomenon of molecular vibrations between identical molecules via electromagnetic waves).

室内面構成部材と冷暖放射パネル表面とで遠赤外線放射物質としてともに無機材料粒子を使用する場合には、双方の粒子の粒径や形状は同一でも異なっていてもよい。室内面構成部材と冷暖放射パネル表面の双方に含まれる無機材料粒子の配合量も、同じである必要はない。また、例えば、室内面構成部材が壁面と天井面を形成していて、遠赤外線放射物質として無機材料粒子を使用する場合、壁面と天井面の遠赤外線放射物質の粒子の粒径や形状は、同一でも異なっていてもよい。この場合、無機材料粒子は、室内面構成部材(たとえば、壁面及び天井面を形成する建材)中に、本発明による同一分子種間での熱放射を介した所期の熱移動を可能にする含有量で配合される。このとき、壁面を形成する建材と天井面を形成する建材とで、無機材料粒子の配合量は同一でも異なっていてもよい。これらは、2以上の壁面のそれぞれにおける遠赤外線放射物質の無機材料粒子についてもいえる。   When inorganic material particles are used as the far-infrared radiation material on the indoor surface component and the cooling / heating radiation panel surface, the particle size and shape of both particles may be the same or different. The blending amount of the inorganic material particles contained in both the indoor surface component and the cooling / heating radiation panel surface need not be the same. Further, for example, when the indoor surface constituent member forms a wall surface and a ceiling surface, and the inorganic material particles are used as the far infrared radiation material, the particle size and shape of the far infrared radiation material particles on the wall surface and the ceiling surface are: It may be the same or different. In this case, the inorganic material particles enable the desired heat transfer through thermal radiation between the same molecular species according to the present invention in the interior surface constituent members (for example, building materials forming the wall surface and the ceiling surface). It is blended by content. At this time, the amount of the inorganic material particles may be the same or different between the building material forming the wall surface and the building material forming the ceiling surface. These also apply to the inorganic material particles of the far-infrared emitting material on each of the two or more wall surfaces.

室内面構成部材と冷暖放射パネル表面において、遠赤外線放射物質は複数種を用いてもよい。遠赤外線放射物質が石材の場合は、室内面構成部材あるいは冷暖放射パネル表面のために、2種以上の石材を組み合わせて用いることができる。遠赤外線放射物質が無機材料粒子の場合は、2種以上の無機材料粒子の混合物を用いることができる。どちらの場合も、室内面構成部材における無機材料粒子の組み合わせと冷暖放射パネル表面における無機材料粒子の組み合わせが同じであれば(同じ組み合わせが含まれていれば)、それらは「同一物質」であると見なされる。   A plurality of kinds of far-infrared emitting materials may be used on the indoor surface constituent member and the cooling / heating radiation panel surface. When the far-infrared radiation material is a stone material, two or more kinds of stone materials can be used in combination for the indoor surface constituent member or the cooling / heating radiation panel surface. When the far-infrared emitting material is inorganic material particles, a mixture of two or more inorganic material particles can be used. In both cases, if the combination of the inorganic material particles in the interior surface component and the combination of the inorganic material particles on the surface of the cooling / heating radiation panel are the same (if the same combination is included), they are “the same substance”. Is considered.

室内面構成部材と冷暖放射パネル表面に含まれる遠赤外線放射物質としての無機材料粒子は、同一分子種間での熱放射を介した所期の熱移動を可能にする量でそれらに存在する。通常、室内面構成部材と冷暖放射パネル表面は、異なる業者により、建設現場以外で製作して建設現場に搬入されるか又は建設現場において施工されることが多いと考えられる。従って、室内面構成部材と冷暖放射パネル表面には、遠赤外線放射物質としての共通の無機材料粒子が、それぞれの製造業者又は施工業者により混入されることが多いと考えられる。このような場合、遠赤外線放射物質としての無機材料粒子の含有量は、それぞれの業者により室内面構成部材と冷暖放射パネル表面の各製造材料に含められる共通の無機材料粒子の量をいう。室内面構成部材中及び冷暖放射パネル表面形成材料中の無機材料粒子含有量は、本発明による熱放射を介した熱移動を実効あるものにする量として決定することができる。その量は、所期の冷房および/または加熱のために必要とされる熱移動量、熱放射を介した熱移動に利用可能な室内面構成部材と冷却及び/又は加熱面の面積、使用する遠赤外線放射物質の熱放射特性などに依存する。下記で説明する計測実験では、遠赤外線放射物質としての無機材料粒子は、室内面構成部材材料中、あるいは冷暖放射パネル表面を形成している材料中に、1重量%以上存在する場合に有効な効果が認められ、3重量%以上存在する場合により好ましい効果が得られた。一方、遠赤外線放射物質として無機材料粒子を用いる場合、その含有量の上限は、室内面構成部材と冷暖放射パネル表面を形成する材料中に実際上含ませることができる無機材料粒子の最大量によって決まり、特に制約はない(理論的には、例えば90重量%でもよい)。   The inorganic material particles as the far-infrared radiation material contained in the interior surface component and the surface of the cooling / heating radiation panel are present in them in an amount that enables the desired heat transfer via thermal radiation between the same molecular species. In general, it is considered that the indoor surface component and the cooling / heating radiation panel surface are often manufactured by a different contractor outside the construction site and carried into the construction site or installed at the construction site. Therefore, it is considered that common inorganic material particles as far-infrared radiation materials are often mixed into the indoor surface constituent member and the cooling / heating radiation panel surface by respective manufacturers or contractors. In such a case, the content of the inorganic material particles as the far-infrared emitting material refers to the amount of the common inorganic material particles included in the respective manufacturing materials of the indoor surface constituent member and the cooling / heating radiation panel surface by each supplier. The content of inorganic material particles in the interior surface constituting member and in the cooling / heating radiation panel surface forming material can be determined as an amount that makes the heat transfer through heat radiation effective according to the present invention. The amount used is the amount of heat transfer required for the desired cooling and / or heating, the interior surface components available for heat transfer via heat radiation and the area of the cooling and / or heating surface. Depends on the thermal radiation characteristics of far-infrared radiation materials. In the measurement experiment described below, the inorganic material particles as the far-infrared radiation material are effective when they are present in the interior surface component material or the material forming the cooling / heating radiation panel surface in an amount of 1% by weight or more. An effect was recognized, and a more preferable effect was obtained when the content was 3% by weight or more. On the other hand, when inorganic material particles are used as the far-infrared emitting material, the upper limit of the content depends on the maximum amount of inorganic material particles that can actually be included in the material forming the indoor surface constituent member and the cooling / heating radiation panel surface. There are no particular restrictions (theoretically, for example, it may be 90% by weight).

本発明では、遠赤外線放射物質の無機材料粒子として、複数種の物質を使用(上述の「分子レベルで同一」である物質を複数種使用)してもよい。この場合には、室内面構成部材と冷暖放射パネル表面とで同じ無機材料粒子の混合物を用いることができる。この場合の室内面構成部材材料と冷暖放射パネル表面を形成している材料における無機材料粒子の含有量は、混合物中の複数種の同じ物質の合計量でもって表される。   In the present invention, a plurality of kinds of substances may be used as the inorganic material particles of the far-infrared emitting substance (a plurality of substances that are “identical at the molecular level” described above are used). In this case, the same mixture of inorganic material particles can be used for the interior surface constituting member and the cooling / heating radiation panel surface. In this case, the content of the inorganic material particles in the material forming the indoor surface constituent member material and the surface of the cooling / heating radiation panel is expressed by the total amount of the same kind of substances in the mixture.

遠赤外線の放射および吸収を効率よく行うためには、遠赤外線放射物質は極力、環境調整する室内空間に露出していることが好ましい。とは言え、遠赤外線放射物質が室内空間に直接露出していなくても、1mm程度以下の保護層(例えば塗装の層、ニスの層、壁紙等)で覆われているのであれば、大きな問題はない。   In order to efficiently emit and absorb far-infrared rays, it is preferable that the far-infrared emitting material is exposed to the indoor space where the environment is adjusted as much as possible. However, if the far-infrared emitting material is not directly exposed to the indoor space, it is a major problem if it is covered with a protective layer of about 1 mm or less (for example, a paint layer, a varnish layer, wallpaper, etc.). There is no.

本発明で使用する遠赤外線放射物質の遠赤外線の放射率は、0.6以上であり、好ましくは0.8以上、より好ましくは0.9以上である。遠赤外線は、波長が3μm〜1000μmの電磁波のことをいう。材料の放射率は、同一条件における理想的な黒体の遠赤外線の放射エネルギーをW0とし、当該材料の遠赤外線の放射エネルギーをWとした場合に、W/W0によって定義される。放射率の値は、本発明のシステムの実際の使用温度に近い室温(例えば25℃)におけるものが好ましく、例えば、人体に対する熱的な作用の大きい10μm付近における値を採用する。 The far-infrared emissivity of the far-infrared emitting material used in the present invention is 0.6 or more, preferably 0.8 or more, more preferably 0.9 or more. Far infrared rays refer to electromagnetic waves having a wavelength of 3 μm to 1000 μm. The emissivity of a material is defined by W / W 0 where W 0 is the ideal black body far-infrared radiation energy under the same conditions and W is the far-infrared radiation energy of the material. The emissivity value is preferably at room temperature (for example, 25 ° C.) close to the actual use temperature of the system of the present invention. For example, a value near 10 μm at which the thermal action on the human body is large is adopted.

本発明の一態様において、冷暖放射パネルのフィンの表面は、遠赤外線放射物質の粉砕物とバインダーとを混合し、それを層状に塗り、乾燥させることでコーティングされている。たとえば、フィンの表面には、遠赤外線の放射率が0.9を超える数値を示す花崗岩を粉砕した粉砕物(以下、石粉という)を混ぜた白い塗料により構成された厚さ約200μmのコーティング層が形成される。コーティング層中の石粉の粒径は、50μm以下である。この石粉のコーティング層における含有率は、塗料の硬化状態(乾燥状態)で20重量%とされている。ここでは、冷却および/または加熱面を有する冷暖放射パネルは、遠赤外線放射物質をコーティングされたフィンを有するラジエーターで構成されており、冷房運転時にラジエーター表面に空気中の水分が結露して生成した水滴を屋外に排出するために、ラジエーター下方の水滴受部の排水口から屋外の排水出口に至る排水系を設けている。   In one embodiment of the present invention, the surfaces of the fins of the cooling / heating radiant panel are coated by mixing a pulverized far-infrared radiant material and a binder, coating them in layers, and drying them. For example, on the surface of the fin, a coating layer having a thickness of about 200 μm composed of a white paint mixed with a pulverized granite (hereinafter referred to as stone powder) whose far-infrared emissivity exceeds 0.9 is obtained. Is formed. The particle size of the stone powder in the coating layer is 50 μm or less. The content of the stone powder in the coating layer is 20% by weight in the cured state (dry state) of the paint. Here, the cooling and heating radiant panel having a cooling and / or heating surface is composed of a radiator having fins coated with a far-infrared radiation material, and moisture in the air is generated on the radiator surface during the cooling operation. In order to discharge water drops outdoors, a drainage system is provided from the drain outlet of the water drop receiver below the radiator to the outdoor drain outlet.

ラジエーターは、たとえば表面をコーティング加工したアルミニウム製のフィンを複数備えている。このフィンは、薄手の板状であり、上下に延在している。フィンは、熱伝導の良好な他の金属または合金材料、例えば鉄や銅、それらの合金など、で製作することもできる。このフィンの表面は、遠赤外線放射物質の粉砕物とバインダーとを混合し、それを層状に塗り、乾燥させることでコーティングされている。   The radiator includes a plurality of aluminum fins whose surfaces are coated, for example. This fin is a thin plate-like shape and extends vertically. The fins can also be made of other metal or alloy materials with good thermal conductivity, such as iron, copper, and alloys thereof. The surface of the fin is coated by mixing a pulverized product of a far-infrared emitting material and a binder, coating it in layers, and drying it.

フィンは、アルミニウム製の支持板と一体形成されている。支持板の裏面側は、冷媒通路に露出している。冷媒通路には、冷媒として冷水が循環する。この冷媒は、冷却源である冷媒冷却装置により冷却される。冷媒冷却装置の冷却機構は、一般的な空調装置や冷蔵庫に利用されているものと同じである。   The fin is integrally formed with an aluminum support plate. The back side of the support plate is exposed to the refrigerant passage. In the refrigerant passage, cold water circulates as a refrigerant. This refrigerant is cooled by a refrigerant cooling device that is a cooling source. The cooling mechanism of the refrigerant cooling device is the same as that used in general air conditioners and refrigerators.

冷却面の下方には、排水口が設けられている。冷媒通路内を冷却水が循環すると、フィンが冷却され、フィンの表面の遠赤外線物質層も冷却され、に含まれた床面、壁面、天井面の室内面構成部材から放射された遠赤外線を吸収して、部屋内の環境の冷却が行われる。また、冷却面の表面に室内空間の空気中に含まれる水分が結露する。この結露した水は、排水口に滴下し、排水口から排水出口へ移動し、室外に排出される。   A drain port is provided below the cooling surface. When the cooling water circulates in the refrigerant passage, the fins are cooled, the far-infrared material layer on the surface of the fins is also cooled, and far-infrared rays radiated from the indoor surface constituent members included in the floor surface, wall surface, and ceiling surface are contained. Absorbs and cools the environment in the room. Further, moisture contained in the air in the indoor space is condensed on the surface of the cooling surface. This condensed water is dripped at the drain outlet, moves from the drain outlet to the drain outlet, and is discharged outside the room.

冷却および/または加熱源のために、冷熱放射装置が好適に使用され、冷放射と熱放射を切り換えて行うことができる。冷放射は、冷却されることで、周囲からの熱放射を吸収する作用のことをいい、熱放射は、加熱されることで、周囲に向かって熱放射を行う作用のことをいう。   For the cooling and / or heating source, a cold radiation device is preferably used, which can be switched between cold radiation and thermal radiation. Cold radiation refers to the action of absorbing heat radiation from the surroundings when cooled, and heat radiation refers to the action of performing heat radiation toward the surroundings when heated.

このような冷熱放射装置は、室外機である冷温水発生装置に接続されている。冷温水発生装置は、ヒートポンプ機能を備え、冷水または温水を発生する。このヒートポンプ機能は、通常のエアコン等に用いられているものと同じ原理により動作する。なお、冷房効果だけを得るのであれば、冷水の発生機能だけでよい。また、暖房効果だけを得るのであれば、温水の発生機能だけでよい。   Such a cold heat radiation apparatus is connected to a cold / hot water generator which is an outdoor unit. The cold / hot water generator has a heat pump function and generates cold water or hot water. This heat pump function operates according to the same principle as that used in ordinary air conditioners and the like. If only the cooling effect is obtained, only the function of generating cold water is required. Moreover, if only the heating effect is obtained, only the function of generating hot water is required.

冷熱放射装置に、冷温水発生装置から冷水が供給されると、フィンが冷やされ、結露による除湿が行われる。また冷却されることで、フィンの表面は、冷放射を行う冷却面として機能する。また、冷熱放射装置に、冷温水発生装置から温水が供給されると、上記フィンが温められ、このフィンの表面が加熱面(熱放射面)として機能する。なお、冷水というのは、冷温水発生装置の冷却機能によって冷却された水のことであり、温水は、冷温水発生装置の加熱機能によって加熱された水のことをいう。上記のように、フィンに結露した水滴は、下方のトレイに滴下させて集められ、排水口から屋外に排水される。   When cold water is supplied from the cold / hot water generator to the cold heat radiating device, the fins are cooled and dehumidification is performed by condensation. Moreover, the surface of a fin functions as a cooling surface which performs cold radiation by being cooled. Further, when hot water is supplied from the cold / hot water generator to the cold heat radiating device, the fin is warmed, and the surface of the fin functions as a heating surface (heat radiating surface). The cold water is water cooled by the cooling function of the cold / hot water generator, and the hot water is water heated by the heating function of the cold / hot water generator. As described above, the water droplets condensed on the fins are collected by being dropped onto the lower tray and drained to the outside from the drain port.

本発明の一態様において、フィンの表面には、遠赤外線の放射率が0.9を超える数値を示す花崗岩を粉砕した粉砕物(以下、石粉という)を混ぜた白い塗料により構成された厚さ約200μmのコーティング層が形成される。コーティング層中の石粉の粒径は、50μm以下である。この石粉のコーティング層における含有率は、塗料の硬化状態(乾燥状態)で20重量%とされている。このコーティング層が冷却除湿面および加熱面として機能する。   In one embodiment of the present invention, the surface of the fin has a thickness composed of a white paint mixed with a pulverized product (hereinafter referred to as stone powder) obtained by pulverizing granite showing a numerical value of emissivity of far infrared rays exceeding 0.9. A coating layer of about 200 μm is formed. The particle size of the stone powder in the coating layer is 50 μm or less. The content of the stone powder in the coating layer is 20% by weight in the cured state (dry state) of the paint. This coating layer functions as a cooling and dehumidifying surface and a heating surface.

そして、本発明の放射冷暖房装置においては、排水口から排出された結露水を供給するための貯蔵タンクを備えてなる。貯蔵タンクは、通常屋外に設置され、供給された結露水がその中で遠赤外線放射物質と接触するように構成されてなる。この遠赤外線放射物質は、冷暖放射パネル表面に含まれる遠赤外線放射物質と異なっていても同一であってもよい。   And in the radiation | emission cooling and heating apparatus of this invention, the storage tank for supplying the dew condensation water discharged | emitted from the drain outlet is provided. The storage tank is usually installed outdoors, and is configured such that the supplied condensed water comes into contact with the far-infrared radiation material. This far-infrared emitting material may be different from or the same as the far-infrared emitting material contained on the surface of the cooling / heating radiation panel.

貯蔵タンク内では、供給された結露水が遠赤外線放射物質と接触するように構成されている。たとえば、貯蔵タンクの内側面が遠赤外線放射物質でコーティングされていてもよく、または貯蔵タンクの底部等に遠赤外線放射物質が備えられていてもよい。貯蔵タンク内に配置される遠赤外線放射物質の形態は、格別に制約はなく、代表的には、遠赤外線放射物質からなる、パネルまたはタイル状等の一体物、遠赤外線放射物質の粒子、粉末、骨材等(これらをもまとめて粒子ともいう。)を含む部材、遠赤外線放射物質の皮膜を有する部材などの形態であることができる。粒子の場合、その直径は通常5〜500μm程度から選ばれる。皮膜は、適当な皮膜形成技術、例えば熔射、蒸着などのPVD技術、あるいはCVD技術により、遠赤外線放射物質を対象表面にコーティングして形成することができる。   In the storage tank, the supplied condensed water is configured to come into contact with the far-infrared radiation material. For example, the inner surface of the storage tank may be coated with a far-infrared emitting material, or a far-infrared emitting material may be provided at the bottom of the storage tank or the like. The form of the far-infrared emitting material disposed in the storage tank is not particularly limited. Typically, the panel is made of far-infrared emitting material, such as a panel or a tile, particles of far-infrared emitting material, powder In addition, it may be in the form of a member including aggregates or the like (also collectively referred to as particles), a member having a far-infrared radiation material coating, and the like. In the case of particles, the diameter is usually selected from about 5 to 500 μm. The film can be formed by coating a far-infrared radiation material on the target surface by an appropriate film forming technique, for example, PVD technique such as spraying or vapor deposition, or CVD technique.

本発明においては、排水口から排出された結露水を、さらに遠赤外線放射物質と接触させた後に貯水タンクに供給することもできる。すなわち、結露水は遠赤外線放射物質充填層を含む流路を経由して貯水タンクに供給されることになる。   In the present invention, the dew condensation water discharged from the drain outlet can be further brought into contact with the far-infrared radiation material and then supplied to the water storage tank. That is, the dew condensation water is supplied to the water storage tank via the flow path including the far-infrared emitting material filling layer.

さらに、本発明においては、貯蔵タンクに供給された結露水を貯蔵タンク外で遠赤外線放射物質と接触した後に貯蔵タンク内に循環するように、貯蔵タンク外に遠赤外線放射物質を含むタンクまたは流路(好適には遠赤外線放射物質充填層を含む)を設けることもできる。   Furthermore, in the present invention, a tank or a stream containing a far-infrared emitting material outside the storage tank is circulated in the storage tank after the condensed water supplied to the storage tank comes into contact with the far-infrared emitting material outside the storage tank. A path (preferably including a far-infrared emitting material-filled layer) can also be provided.

本発明においては、結露水を遠赤外線放射物質と接触させる温度は特に制限されないが、通常5〜25℃である。接触時間も特に制限されず、温度、使用目的により適宜選定され得るが、通常1〜72時間である。このようにして得られる水は、家庭用水、園芸用水として再利用し得る。貯蔵タンクに供給される水は、ラジエーター表面に空気中の水分が結露して生成した結露水であり、さらに上記の浄化処理をされているので、飲料水としても利用可能である。   In the present invention, the temperature at which the condensed water is brought into contact with the far-infrared emitting material is not particularly limited, but is usually 5 to 25 ° C. The contact time is not particularly limited and may be appropriately selected depending on the temperature and the purpose of use, but is usually 1 to 72 hours. The water thus obtained can be reused as domestic water or garden water. The water supplied to the storage tank is condensed water generated by condensation of moisture in the air on the radiator surface, and since it has been subjected to the purification treatment described above, it can also be used as drinking water.

図1は、本発明の放射冷暖房装置の一実施態様を示す概略図である。図1において、冷暖放射パネル1の表面から落下し、水滴受け部2の排水口3から排出された結露水は、流路4を通って貯蔵タンク5に送られ、その底部に配置された遠赤外線放射物質6および貯蔵タンク5の内側表面にコーティングされた遠赤外線放射物質7と接触し、浄化される。遠赤外線放射物質6の形態は、特に制限されない。浄化された結露水は出口8から適宜排出され、目的に応じて利用される。   FIG. 1 is a schematic view showing an embodiment of the radiant cooling and heating apparatus of the present invention. In FIG. 1, the dew condensation water that has fallen from the surface of the cooling / heating panel 1 and discharged from the drain outlet 3 of the water drop receiver 2 is sent to the storage tank 5 through the flow path 4 and is disposed at the bottom thereof. The infrared radiation material 6 and the far-infrared radiation material 7 coated on the inner surface of the storage tank 5 are contacted and purified. The form of the far-infrared emitting material 6 is not particularly limited. The purified condensed water is appropriately discharged from the outlet 8 and used according to the purpose.

本発明によれば、冷房運転時に冷暖放射パネル表面に空気中の水分が結露して生成した水滴を、浄化・利用し得る放射冷暖房装置を提供し得る。   ADVANTAGE OF THE INVENTION According to this invention, the radiation cooling / heating apparatus which can purify | clean and utilize the water droplet which the water | moisture content in the air condensed on the cooling / heating radiation panel surface at the time of air_conditionaing | cooling operation can be provided.

1 冷暖放射パネル
2 水滴受け部
3 排水口
4 流路
5 貯蔵槽タンク
6、7 遠赤外線放射物質
8 出口
DESCRIPTION OF SYMBOLS 1 Cooling / heating radiation panel 2 Water drop receiving part 3 Drain outlet 4 Flow path 5 Storage tank 6 and 7 Far-infrared radiation material 8 Outlet

Claims (8)

放射冷暖房装置において、冷却および/または加熱面は冷暖放射パネルで構成されており、
冷房運転時に冷暖放射パネル表面に空気中の水分が結露して生成した水滴を排出するために、冷暖放射パネル下方の水滴受部の排水口を設けており、かつ、排水口から排出された結露水を貯蔵して再利用するための貯蔵タンクを備えてなり、供給された結露水が貯蔵タンク内で遠赤外線放射物質と接触するように、および/または貯蔵タンク外で遠赤外線放射物質と接触した後に貯蔵タンク内に循環するように、構成されてなる放射冷暖房装置。
In the radiant cooling and heating device, the cooling and / or heating surface is composed of a cooling and heating panel
In order to discharge water droplets generated by condensation of moisture in the air on the surface of the cooling / heating radiant panel during cooling operation, a drain outlet is provided in the water droplet receiving section below the cooling / heating radiant panel, and the condensation discharged from the drain port A storage tank for storing and reusing water is provided, so that the supplied condensed water is in contact with the far-infrared emitting material in the storage tank and / or in contact with the far-infrared emitting material outside the storage tank A radiant cooling and heating device configured to circulate in the storage tank after the operation.
冷暖放射パネル表面が遠赤外線放射物質を含む請求項1に記載の放射冷暖房装置。   The radiant cooling and heating apparatus according to claim 1, wherein the cooling / heating radiation panel surface includes a far-infrared radiation material. 貯蔵タンクの内側面が遠赤外線放射物質を含む請求項1または2に記載の放射冷暖房装置。   The radiant air conditioner according to claim 1 or 2, wherein the inner surface of the storage tank contains a far-infrared radiation material. 貯蔵タンクの底部に遠赤外線放射物質が備えられている請求項1〜3のいずれか1項に記載の放射冷暖房装置。   The radiant cooling and heating device according to any one of claims 1 to 3, wherein a far-infrared radiation material is provided at the bottom of the storage tank. 貯蔵タンクに供給された結露水を貯蔵タンク外で遠赤外線放射物質と接触した後に貯蔵タンク内に循環するように、貯蔵タンク外に遠赤外線放射物質を含むタンクまたは流路を設けてなる請求項1〜4のいずれか1項に記載の放射冷暖房装置。   A tank or flow path containing a far-infrared emitting material is provided outside the storage tank so that the condensed water supplied to the storage tank is circulated in the storage tank after contacting the far-infrared emitting material outside the storage tank. The radiant cooling and heating apparatus according to any one of 1 to 4. 排水口から排出された結露水を、さらに遠赤外線放射物質と接触させた後に貯水タンクに供給する請求項1〜5のいずれか1項に記載の放射冷暖房装置。   The radiant cooling and heating apparatus according to any one of claims 1 to 5, wherein the condensed water discharged from the drain outlet is further brought into contact with a far-infrared radiation material and then supplied to the water storage tank. 放射冷暖房装置が、遠赤外線を放射・吸収し遠赤外線の放射率が0.6以上である遠赤外線放射物質を含む材料で構成された室内面構成部材を有し、
冷暖放射パネル表面が、前記室内面構成部材の前記遠赤外線放射物質と同一の遠赤外線放射物質を含む材料で構成されてなり、
冷暖放射パネル表面が冷却されると、その表面の前記遠赤外線放射物質が前記室内面構成部材の前記遠赤外線放射物質が放射する遠赤外線を吸収し、および/または、
冷暖放射パネル表面が加熱されると、その加熱面の前記遠赤外線放射物質が放射する遠赤外線を前記室内面構成部材の前記遠赤外線放射物質が吸収するように構成されてなる請求項1〜6のいずれか1項に記載の放射冷暖房装置。
The radiant cooling and heating device has an indoor surface constituent member made of a material containing a far-infrared emitting material that radiates and absorbs far-infrared rays and has a far-infrared emissivity of 0.6 or more,
The surface of the cooling / heating radiation panel is made of a material containing the same far infrared radiation material as the far infrared radiation material of the indoor surface component,
When the surface of the cooling / heating radiation panel is cooled, the far-infrared radiation material on the surface absorbs the far-infrared radiation emitted by the far-infrared radiation material of the indoor surface component, and / or
7. When the surface of the cooling / heating radiant panel is heated, the far-infrared radiating material of the indoor surface constituent member absorbs the far-infrared radiated by the far-infrared radiating material on the heating surface. The radiant cooling and heating apparatus according to any one of the above.
請求項1〜7のいずれか1項に記載の放射冷暖房装置を用いて浄化された結露水を、浄化水として利用することを特徴とする結露水の利用方法。   A method for using condensed water, wherein the condensed water purified by using the radiant cooling and heating device according to any one of claims 1 to 7 is used as purified water.
JP2014005306A 2014-01-15 2014-01-15 Purification and reuse of condensed water Expired - Fee Related JP6010786B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014005306A JP6010786B2 (en) 2014-01-15 2014-01-15 Purification and reuse of condensed water
PCT/JP2015/050966 WO2015108116A1 (en) 2014-01-15 2015-01-15 Radiant cooling and heating apparatus
MYPI2016702322A MY190377A (en) 2014-01-15 2015-01-15 Method of purifiying and reusing condensed water
SG11201604943SA SG11201604943SA (en) 2014-01-15 2015-01-15 Radiant cooling and heating apparatus
PH12016501354A PH12016501354A1 (en) 2014-01-15 2016-07-08 Radiant cooling and heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014005306A JP6010786B2 (en) 2014-01-15 2014-01-15 Purification and reuse of condensed water

Publications (2)

Publication Number Publication Date
JP2015132447A true JP2015132447A (en) 2015-07-23
JP6010786B2 JP6010786B2 (en) 2016-10-19

Family

ID=53543001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014005306A Expired - Fee Related JP6010786B2 (en) 2014-01-15 2014-01-15 Purification and reuse of condensed water

Country Status (5)

Country Link
JP (1) JP6010786B2 (en)
MY (1) MY190377A (en)
PH (1) PH12016501354A1 (en)
SG (1) SG11201604943SA (en)
WO (1) WO2015108116A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208925A (en) * 2016-01-14 2017-09-26 吴鹏 A kind of recycling system of air conditioning condensed water

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231879A (en) * 1988-07-19 1990-02-01 Yasuro Kuratomi Device for making, circulating and supplying activated water for activating animal and plant
JPH0216926U (en) * 1988-07-18 1990-02-02
JPH05312350A (en) * 1992-05-01 1993-11-22 Tokyo Metropolis Reutilizing method for condensate in air-conditioner
JPH06210285A (en) * 1993-01-13 1994-08-02 Hitachi Zosen Eng Kk Polluted water treatment
JPH06249457A (en) * 1993-02-26 1994-09-06 Sanyo Electric Co Ltd Air conditioner
JP2008024295A (en) * 2006-07-18 2008-02-07 Volvo Construction Equipment Ab Air conditioner condensed water take-out device in construction apparatus
JP2009002580A (en) * 2007-06-21 2009-01-08 Toshiba Carrier Corp Humidifier and air conditioner
JP2010096485A (en) * 2008-04-23 2010-04-30 Ishinoyu Co Ltd Indoor environment regulation system
JP2013245829A (en) * 2012-05-23 2013-12-09 Sharp Corp Radiant type air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216926U (en) * 1988-07-18 1990-02-02
JPH0231879A (en) * 1988-07-19 1990-02-01 Yasuro Kuratomi Device for making, circulating and supplying activated water for activating animal and plant
JPH05312350A (en) * 1992-05-01 1993-11-22 Tokyo Metropolis Reutilizing method for condensate in air-conditioner
JPH06210285A (en) * 1993-01-13 1994-08-02 Hitachi Zosen Eng Kk Polluted water treatment
JPH06249457A (en) * 1993-02-26 1994-09-06 Sanyo Electric Co Ltd Air conditioner
JP2008024295A (en) * 2006-07-18 2008-02-07 Volvo Construction Equipment Ab Air conditioner condensed water take-out device in construction apparatus
JP2009002580A (en) * 2007-06-21 2009-01-08 Toshiba Carrier Corp Humidifier and air conditioner
JP2010096485A (en) * 2008-04-23 2010-04-30 Ishinoyu Co Ltd Indoor environment regulation system
JP2013245829A (en) * 2012-05-23 2013-12-09 Sharp Corp Radiant type air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208925A (en) * 2016-01-14 2017-09-26 吴鹏 A kind of recycling system of air conditioning condensed water
CN107208925B (en) * 2016-01-14 2019-08-16 广东顺域机电工程有限公司 A kind of recycling system of air conditioning condensed water

Also Published As

Publication number Publication date
PH12016501354B1 (en) 2017-02-06
PH12016501354A1 (en) 2017-02-06
WO2015108116A1 (en) 2015-07-23
SG11201604943SA (en) 2016-07-28
JP6010786B2 (en) 2016-10-19
MY190377A (en) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2015022902A1 (en) Radiant cooling and heating device
EP2281960B1 (en) Indoor environment regulation system
CN106833371B (en) A kind of anti-condensation coating and surface have radiation tail end, radiator and the air-conditioning system of the anti-condensation coating
WO2015147182A1 (en) Heat-insulating, heat-shielding sheet
KR20100062993A (en) An element for emission of thermal radiation
KR100512040B1 (en) Cold and heat device for combined dehumidify
WO2012077687A1 (en) Indoor environment adjustment system
JP6010786B2 (en) Purification and reuse of condensed water
WO2014077122A1 (en) Plant cultivation system
JP2015135197A (en) Radiation air conditioner
JP2014085025A (en) Automatic operation control system of radiation cooling/heating apparatus
Mahmoud et al. Experimental and theoretical model for water desalination by humidification-dehumidification (HDH)
JP2010037922A (en) House having earthen-floor air conditioning structure and photovoltaic power generation system
EP2098654B1 (en) Heating or cooling ceiling with corrugated steel sheet
JP5712233B2 (en) Agricultural and horticultural house
JP2015206526A (en) Radiation air conditioning device
US20090031748A1 (en) Evaporative Cooling System
JP2014085026A (en) Radiation cooling/heating apparatus
US6902611B2 (en) Heat dissipating coating and method for decreasing the inner temperature of buildings and similar constructions
JP2013104615A (en) Far infrared ray radiating and/or absorbing device and room environment adjusting system
WO2017122644A1 (en) Radiant cooling/heating device and radiant cooling device
JP2014028051A (en) Cold storage or warm storage showcase
JP5459701B2 (en) Radiation panel for cooling and cooling device
JP6405584B2 (en) Far-infrared radioactive composition and far-infrared radioactive substrate carrying the same
Azemati et al. Investigation on the effect of building paint on energy shaving in different climates

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 6010786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees