JP2015131263A - Organic waste processor, dryer for use in organic waste processor, and processing method of organic waste - Google Patents

Organic waste processor, dryer for use in organic waste processor, and processing method of organic waste Download PDF

Info

Publication number
JP2015131263A
JP2015131263A JP2014003428A JP2014003428A JP2015131263A JP 2015131263 A JP2015131263 A JP 2015131263A JP 2014003428 A JP2014003428 A JP 2014003428A JP 2014003428 A JP2014003428 A JP 2014003428A JP 2015131263 A JP2015131263 A JP 2015131263A
Authority
JP
Japan
Prior art keywords
digestion
gas
organic waste
dryer
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014003428A
Other languages
Japanese (ja)
Other versions
JP6270206B2 (en
Inventor
長沢 英和
Hidekazu Nagasawa
英和 長沢
片岡 正樹
Masaki Kataoka
正樹 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2014003428A priority Critical patent/JP6270206B2/en
Publication of JP2015131263A publication Critical patent/JP2015131263A/en
Application granted granted Critical
Publication of JP6270206B2 publication Critical patent/JP6270206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Treatment Of Sludge (AREA)
  • Drying Of Solid Materials (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic waste processor having reduced loss of effective energy, which heats a digestion tank with dry exhaust gas from drying of dehydrated sludge, without requiring a cyclone (separation of dried sludge from dry exhaust gas) or a dehumidifier (recovery of condensation heat of steam).SOLUTION: The processor includes: a digestion tank 1 which generates a digestion gas B through fermentation of an organic waste A by heating; a digestion gas power generator 2 which generates power by firing the digestion gas B; a dehydrator 3 which dehydrates a digestion sludge D discharged from the digestion tank 1; and a dryer 4 which dries a dehydrated sludge E from the dehydrator 3. The dryer 4 is an indirect heating type dryer which indirectly heats and dries the dehydrated sludge E with a combustion exhaust gas C generated by firing the digestion gas B at the digestion gas power generator 2. The organic waste A in the digestion tank 1 is heated with a dry exhaust gas H generated at the dryer 4.

Description

本発明は、下水汚泥、生ごみ、塵芥、屎尿等の有機性廃棄物を消化槽において加温して発酵させることにより消化汚泥として脱水、乾燥して処理する有機性廃棄物の処理装置、このような有機性廃棄物の処理装置に用いられる乾燥機、および有機性廃棄物の処理方法に関するものである。   The present invention is an organic waste treatment apparatus for dewatering and drying as digested sludge by heating and fermenting organic waste such as sewage sludge, food waste, dust, and manure in a digestion tank, The present invention relates to a dryer used in such an organic waste processing apparatus, and an organic waste processing method.

このような有機性廃棄物の処理装置として、例えば下水汚泥処理の消化設備では、消化槽において有機性廃棄物をメタン発酵させるために一定の温度に加温する必要がある。このときの温度は30℃〜40℃の中温消化が最も多い。このため、消化槽には投入汚泥と消化槽放熱分の熱を加える必要があり、従来は加温用のボイラーを設置して化石燃料や消化槽で発生した消化ガスを燃料として利用し、生じたスチームによって消化槽を加温したり、消化ガス発電設備や焼却設備等が隣接している場合には、その廃熱を利用して消化槽を加温したりしていた。   As such an organic waste treatment apparatus, for example, in a sewage sludge treatment digestion facility, it is necessary to heat the organic waste to a certain temperature in order to ferment the organic waste in the digestion tank. The temperature at this time is most often moderately digested at 30 to 40 ° C. For this reason, it is necessary to apply heat from the input sludge and digestion tank heat to the digestion tank. Conventionally, a boiler for heating is installed and the digestion gas generated in the digestion tank is used as fuel. When the digester is heated by steam, or when digestion gas power generation equipment or incineration equipment is adjacent, the digestion tank is heated using the waste heat.

ところが、化学エネルギーである化石燃料や消化ガスは有効エネルギー効率の高いものであって、同じ有効エネルギー効率の高い電力などのエネルギーに変換すべきであり、ボイラーで化石燃料や消化ガスを燃焼させ、生じたスチームを比較的低温の消化槽加温に用いることは、エネルギー効率の観点からは望ましくない。また、消化ガス発電設備や焼却設備等の廃熱(排ガス)も高温であり、消化槽の加温よりも消化槽から排出された汚泥の乾燥熱源などに用いるのが望ましい。しかしながら、消化ガス発電設備の廃熱をこのような汚泥の乾燥熱源と消化槽加温の熱源との双方に利用しようとすると熱量が不足してしまう。   However, fossil fuel and digestion gas, which are chemical energies, have high effective energy efficiency and should be converted into energy such as electric power with the same effective energy efficiency, and the boiler burns fossil fuel and digestion gas, It is not desirable from the viewpoint of energy efficiency to use the generated steam for heating a relatively low temperature digester. In addition, waste heat (exhaust gas) from digestion gas power generation equipment and incineration equipment is also high temperature, and it is desirable to use it as a heat source for drying sludge discharged from the digestion tank rather than heating the digestion tank. However, if the waste heat of the digestion gas power generation facility is used for both the drying heat source for such sludge and the heat source for heating the digestion tank, the amount of heat is insufficient.

そこで、このような有機性廃棄物の処理装置および処理方法において、例えば特許文献1には、生ごみディスポーザ排水の処理方法として、初沈汚泥とともに生ごみディスポーザ排水を消化槽に投入してメタン発酵処理を行い、消化槽からの消化汚泥を脱水した脱水汚泥を乾燥機で乾燥させ、乾燥機からの乾燥排ガスは消化槽の加温に利用し、消化槽で発生した消化ガスを用いてガス発電を行って、このガス発電で発生した廃熱を乾燥機の熱源として利用することが提案されている。   Therefore, in such an organic waste treatment apparatus and treatment method, for example, in Patent Document 1, as a treatment method for waste disposer wastewater, the waste disposer wastewater is introduced into the digestion tank together with the initial settling sludge and methane fermentation. Dehydrated sludge that has been treated and dehydrated digested sludge from the digester is dried with a dryer, and the dry exhaust gas from the dryer is used to heat the digester, and gas power is generated using the digested gas generated in the digester It has been proposed to use the waste heat generated by the gas power generation as a heat source for the dryer.

特開2004−066094号公報JP 2004-066094 A

ところで、この特許文献1に記載された処理装置および処理方法では、脱水汚泥を乾燥させる乾燥機として、脱水汚泥と循環する乾燥汚泥との混合物を解砕しつつ熱風と接触させて乾燥する解砕機と、解砕された乾燥汚泥を気流搬送しながら熱風と接触させてさらに乾燥する気流搬送ラインとを備えた直接加熱式の気流乾燥機を用いている。そして、この気流乾燥機から排出された乾燥排ガスは、サイクロンによって乾燥汚泥粉が分離されて乾燥排空気として除湿器に供給され、この除湿器で除湿された除湿空気は、ガス発電を行う発電機の燃焼用空気として利用されるとともに、このガス発電で発生した燃焼排ガスと熱交換されて昇温された上で上述のような乾燥機の熱源である上記気流乾燥機の熱風としても利用され、乾燥排空気に含まれて除湿により除かれた水蒸気が消化槽の加温に利用される。   By the way, in the processing apparatus and the processing method described in Patent Document 1, as a dryer for drying dehydrated sludge, a crusher that dries a mixture of dehydrated sludge and circulating dry sludge while bringing it into contact with hot air while crushing the mixture. And a direct heating type air dryer equipped with an air current conveying line for drying the crushed dried sludge while bringing it in air current contact with hot air. The dried exhaust gas discharged from the air dryer is separated into dry sludge powder by a cyclone and supplied to the dehumidifier as dry exhaust air. The dehumidified air dehumidified by the dehumidifier is a generator that performs gas power generation. And also used as hot air for the above-mentioned air dryer, which is a heat source for the dryer as described above, after being heated and heated with the combustion exhaust gas generated by this gas power generation, Water vapor contained in the dry exhaust air and removed by dehumidification is used for heating the digester.

しかしながら、そのような特許文献1に記載された有機性廃棄物の処理装置および処理方法では、気流乾燥機から排出された乾燥排ガスを消化槽の加温に利用するのにサイクロンや除湿器が必要となる。また、消化槽の効率的な加温を図るために乾燥排空気を直接消化槽内に供給して初沈汚泥や生ごみディスポーザ排水を加温しようとすると、水蒸気とともに多くの除湿空気(乾燥ガス)も消化槽に供給されてしまうことが避けられないので、ガス発電機に供給される消化ガスのメタン濃度が低下してしまい、効率的な発電を行うことが困難となるとともに、ガス発電で発生する燃焼排ガスの温度も低下するため、気流乾燥機における脱水汚泥の確実な乾燥が妨げられることになる。   However, in the organic waste processing apparatus and processing method described in Patent Document 1, a cyclone and a dehumidifier are required to use the dry exhaust gas discharged from the air dryer for heating the digestion tank. It becomes. In addition, in order to heat the digester efficiently, if dry exhaust air is supplied directly into the digester and the initial sludge or garbage disposer wastewater is heated, a lot of dehumidified air (dry gas) ) Is also inevitable to be supplied to the digestion tank, so the methane concentration of the digestion gas supplied to the gas generator will decrease, making it difficult to perform efficient power generation. Since the temperature of the generated combustion exhaust gas is also reduced, reliable drying of the dewatered sludge in the air dryer is hindered.

本発明は、このような背景の下になされたもので、有効エネルギーの損失を少なくし、サイクロンや除湿器を要することなく、脱水汚泥を乾燥した乾燥排ガスによって消化槽の加温を行うことが可能な有機性廃棄物の処理装置、有機性廃棄物の処理装置に用いられる乾燥機、および有機性廃棄物の処理方法を提供することを第1の目的とし、またこうして乾燥排ガスを消化槽の加温に用いても、効率的な消化ガス発電と脱水汚泥の確実な乾燥が可能な有機性廃棄物の処理装置、有機性廃棄物の処理装置に用いられる乾燥機、および有機性廃棄物の処理方法を提供することを第2の目的としている。   The present invention has been made under such a background, reducing the loss of effective energy, and heating the digestion tank with dry exhaust gas obtained by drying dewatered sludge without requiring a cyclone or a dehumidifier. It is a first object of the present invention to provide a possible organic waste treatment apparatus, a dryer used in the organic waste treatment apparatus, and a method for treating organic waste, and thus the dried exhaust gas is used in the digester. Organic waste treatment equipment capable of efficient digestion gas power generation and reliable drying of dewatered sludge even when used for heating, dryers used in organic waste treatment equipment, and organic waste The second object is to provide a processing method.

このような課題を解決して、上記第1の目的を達成するために、本発明の有機性廃棄物の処理装置は、有機性廃棄物を加温して発酵させることにより消化ガスを発生させる消化槽と、この消化槽において発生した消化ガスを燃焼することにより発電を行う消化ガス発電機と、上記消化槽から排出される消化汚泥を脱水する脱水機と、この脱水機において脱水した脱水汚泥を乾燥する乾燥機とを備え、この乾燥機は、上記消化ガス発電機において上記消化ガスを燃焼した燃焼排ガスにより上記脱水汚泥を間接的に加熱して乾燥する間接加熱式乾燥機であって、この間接加熱式乾燥機において上記脱水汚泥を乾燥して発生した乾燥排ガスにより上記消化槽において上記有機性廃棄物を加温することを特徴とする。   In order to solve such problems and achieve the first object, the organic waste processing apparatus of the present invention generates digestion gas by heating and fermenting the organic waste. Digestion tank, digestion gas generator that generates electricity by burning digestion gas generated in this digestion tank, dehydrator that dehydrates digested sludge discharged from the digestion tank, and dewatered sludge dehydrated in this dehydrator The dryer is an indirect heating type dryer that indirectly heats and dehydrates the dewatered sludge with combustion exhaust gas obtained by burning the digestion gas in the digestion gas generator, The organic waste is heated in the digestion tank by a dry exhaust gas generated by drying the dewatered sludge in the indirect heating dryer.

また、本発明の乾燥機は、有機性廃棄物を加温して発酵させることにより消化ガスを発生させる消化槽と、この消化槽において発生した消化ガスを燃焼することにより発電を行う消化ガス発電機と、上記消化槽から排出される消化汚泥を脱水する脱水機と、この脱水機において脱水した脱水汚泥を加熱して乾燥する乾燥機とを備えた有機性廃棄物の処理装置に用いられる乾燥機であって、内部に上記脱水汚泥が供給される回転可能な筒状体と、この筒状体の内部または外周部に設けられた加熱路と、上記筒状体の内部にキャリアガスを供給するキャリアガス供給口と、上記筒状体の内部において上記脱水汚泥を乾燥して発生した乾燥排ガスを上記キャリアガスとともに排出する乾燥排ガス排出口とを備え、上記加熱路には、上記消化ガス発電機において上記消化ガスを燃焼した燃焼排ガスが供給されて、上記脱水汚泥を間接的に加熱して乾燥するとともに、上記乾燥排ガス排出口は上記消化槽に接続されて、上記キャリアガスとともに排出される上記乾燥排ガスにより上記消化槽において上記有機性廃棄物を加温することを特徴とする。   The dryer of the present invention is a digester tank that generates digestion gas by heating and fermenting organic waste, and digestion gas power generation that generates power by burning the digestion gas generated in the digester tank. Used in an organic waste processing apparatus comprising: a dehydrator for dewatering the digested sludge discharged from the digestion tank; and a dryer for heating and drying the dewatered sludge dehydrated in the dehydrator A rotatable cylindrical body into which the dehydrated sludge is supplied, a heating path provided inside or outside the cylindrical body, and a carrier gas to the inside of the cylindrical body A carrier gas supply port, and a dry exhaust gas exhaust port for discharging the dry exhaust gas generated by drying the dewatered sludge inside the cylindrical body together with the carrier gas. The combustion exhaust gas combusted in the digestion gas is supplied, and the dehydrated sludge is indirectly heated and dried, and the dry exhaust gas discharge port is connected to the digestion tank and discharged together with the carrier gas. The organic waste is heated in the digester with dry exhaust gas.

さらに、本発明の有機性廃棄物の処理方法は、消化槽において有機性廃棄物を加温して発酵させることにより消化ガスを発生させ、この消化ガスを消化ガス発電機において燃焼することにより発電するとともに、上記消化槽から排出される消化汚泥を脱水機において脱水し、この脱水機において上記消化汚泥を脱水した脱水汚泥を、上記消化ガス発電機において上記消化ガスを燃焼した燃焼排ガスにより間接加熱式乾燥機によって間接的に加熱して乾燥して、この間接加熱式乾燥機において上記脱水汚泥を乾燥して発生した乾燥排ガスを上記消化槽に供給して上記有機性廃棄物を加温することを特徴とする。   Furthermore, the organic waste processing method of the present invention generates digestion gas by heating and fermenting organic waste in a digestion tank, and generating power by burning the digestion gas in a digestion gas generator. In addition, the digested sludge discharged from the digester is dehydrated in a dehydrator, and the dehydrated sludge dehydrated in the dewaterer is indirectly heated by the combustion exhaust gas obtained by burning the digested gas in the digester gas generator. Indirect heating by a dryer, drying the dehydrated sludge in the indirectly heated dryer, supplying the exhaust gas generated to the digester and heating the organic waste It is characterized by.

このような有機性廃棄物の処理装置および処理方法においては、乾燥排ガス中の水蒸気の潜熱によって消化槽が加温されるため、化石燃料等の他の熱源の使用量を削減、あるいは不要とすることができる。さらに、消化ガス発電機の燃焼排ガスの廃熱をまず乾燥機の乾燥熱源に利用し、次にこの乾燥機の乾燥排ガスの廃熱を消化槽の加温熱源へと段階的に利用することにより、高温熱源から低温熱源へと有効エネルギーの効率的な利用を図ることができる。しかも、こうして最初に消化ガス発電機の高温の廃熱を乾燥機の熱源に使用するため、乾燥機での伝熱面積や滞留時間の増加も抑えることができる。   In such an organic waste processing apparatus and processing method, the digestion tank is heated by the latent heat of water vapor in the dry exhaust gas, so the amount of other heat sources such as fossil fuel used is reduced or unnecessary. be able to. Furthermore, the waste heat from the combustion exhaust gas from the digestion gas generator is first used as a drying heat source for the dryer, and then the waste heat from the drying exhaust gas from the dryer is used stepwise as a heating heat source for the digester. The effective energy can be efficiently used from the high temperature heat source to the low temperature heat source. In addition, since the high-temperature waste heat from the digestion gas generator is first used as the heat source of the dryer, an increase in the heat transfer area and residence time in the dryer can be suppressed.

そして、上記構成の有機性廃棄物の処理装置および処理方法では、消化汚泥を脱水した脱水汚泥が、特許文献1に記載された気流乾燥機のような直接加熱式の乾燥機ではなく、間接加熱式乾燥機において消化ガス発電機の燃焼排ガスにより間接的に加熱されて乾燥させられる。間接加熱式乾燥機としては、本発明の乾燥機のように回転可能な筒状体と、この筒状体の内部に加熱路として複数の加熱管を配したスチームチューブドライヤーや、同じく回転可能な筒状体と、この筒状体の外周を覆うケーシングとを設けて、筒状体とケーシングとの間に加熱媒体が流通する加熱路を形成した外熱キルンなどの横型間接加熱式乾燥機を用いることができるが、このような間接加熱式乾燥機では、乾燥排ガス排出口から排出される乾燥排ガスに乾燥汚泥粉が混入することが少なく、気流乾燥機のように乾燥汚泥粉を分離するのにサイクロンを必要とすることがない。また、間接加熱式乾燥機から排出される乾燥排ガスは、殆どが脱水汚泥から蒸発した水蒸気であるので、キャリアガス供給口から供給されるキャリアガスの供給量を適正に調整することにより、除湿器を用いて水蒸気と空気を分離する必要もなくなる。   In the organic waste processing apparatus and processing method configured as described above, the dewatered sludge obtained by dewatering the digested sludge is not a direct heating dryer such as the air dryer described in Patent Document 1, but indirectly heated. It is heated indirectly by the combustion exhaust gas of the digestion gas generator and dried in the type dryer. As an indirect heating type dryer, a rotatable tubular body like the dryer of the present invention, a steam tube dryer in which a plurality of heating pipes are arranged as heating paths inside the tubular body, and the same rotatable A horizontal indirect heating dryer such as an external heat kiln having a cylindrical body and a casing that covers the outer periphery of the cylindrical body and forming a heating path through which a heating medium flows between the cylindrical body and the casing. In such an indirect heating type dryer, dry sludge powder is rarely mixed into the dry exhaust gas discharged from the dry exhaust gas outlet, and the dry sludge powder is separated like an air dryer. There is no need for a cyclone. Moreover, since most of the dry exhaust gas discharged from the indirect heating dryer is water vapor evaporated from dehydrated sludge, the dehumidifier can be adjusted by appropriately adjusting the amount of carrier gas supplied from the carrier gas supply port. It is no longer necessary to separate water vapor and air using the.

さらに、間接加熱式乾燥機から排出される乾燥排ガスの大部分が水蒸気であるので、この乾燥排ガスを消化槽内に直接吹き込んで消化槽内の有機性廃棄物を加温しても、消化ガス中のメタン濃度が低下することはない。従って、消化ガス発電機において効率的な消化ガス発電を行うことが可能であるとともに、この消化ガス発電機で発生した燃焼排ガスによって脱水汚泥を確実に乾燥することができ、上記第2の目的を達成することができる。また、脱水汚泥を乾燥した乾燥排ガスを消化槽に直接吹き込むことにより、乾燥排ガス中の臭気成分が外部に放散するのを防ぐこともできる。ただし、このように乾燥排ガス直接消化槽に吹き込むことなく、消化槽に付設された熱交換器に供給して間接的に有機性廃棄物を加温してもよい。また、上記消化ガス発電機において発生した温水により脱水汚泥を加温して上記間接加熱式乾燥機に供給すれば、一層確実な乾燥を行うことができる。   Furthermore, since most of the dry exhaust gas discharged from the indirectly heated dryer is water vapor, even if this dry exhaust gas is blown directly into the digestion tank and the organic waste in the digestion tank is heated, the digestion gas There is no decrease in the methane concentration. Therefore, it is possible to perform efficient digestion gas power generation in the digestion gas generator, and the dehydrated sludge can be surely dried by the combustion exhaust gas generated by the digestion gas generator, and the second object is achieved. Can be achieved. Moreover, it is possible to prevent the odor components in the dry exhaust gas from being released to the outside by directly blowing the dry exhaust gas from the dehydrated sludge into the digestion tank. However, the organic waste may be indirectly heated by supplying it to a heat exchanger attached to the digestion tank without blowing directly into the dry exhaust gas. Further, if dehydrated sludge is heated with hot water generated in the digestion gas generator and supplied to the indirect heating dryer, more reliable drying can be performed.

なお、本発明の有機性廃棄物の処理方法においては、上記消化槽に供給する上記有機性廃棄物の固形物濃度を2wt%〜4wt%の範囲とするとともに、この有機性廃棄物の固形物中の有機物濃度を80wt%〜99wt%の範囲として上記消化ガスを発生させ、この消化ガスを発電効率20%〜35%の範囲の上記消化ガス発電機において燃焼するとともに、上記消化槽から排出される上記消化汚泥を上記脱水機において含水率が60wt%〜75wt%の範囲に脱水して上記間接加熱式乾燥機により乾燥することで、後述する収支例のように化石燃料等の外部エネルギーを必要とせずに、消化槽で発生した消化ガスのみで乾燥機における乾燥および消化槽の加温を行うことが可能となる。   In the organic waste treatment method of the present invention, the solid waste concentration of the organic waste supplied to the digester is in the range of 2 wt% to 4 wt%, and the solid waste of the organic waste The digestion gas is generated with the organic substance concentration in the range of 80 wt% to 99 wt%, and the digestion gas is burned in the digestion gas generator having a power generation efficiency in the range of 20% to 35% and discharged from the digestion tank. The above-mentioned digested sludge is dehydrated in the dehydrator to a moisture content in the range of 60 wt% to 75 wt% and dried by the indirect heating dryer, so that external energy such as fossil fuel is required as in the balance example described later. Instead, drying in the dryer and heating of the digestion tank can be performed only with the digestion gas generated in the digestion tank.

以上説明したように、本発明によれば、サイクロンや除湿器を必要とすることなく、間接加熱式乾燥機において脱水汚泥を乾燥させ、その乾燥排ガスによって消化槽の有機性廃棄物を加温することができ、有効エネルギーの効率的な利用を図ることができる。また、乾燥排ガスを直接消化槽に吹き込んで有機性廃棄物を加温しても、消化ガスのメタン濃度が低下することもなく、効率的な消化ガス発電と確実な脱水汚泥の乾燥を行うことができる。   As described above, according to the present invention, without requiring a cyclone or a dehumidifier, dehydrated sludge is dried in an indirect heating dryer, and the organic waste in the digester is heated by the dried exhaust gas. And effective utilization of effective energy can be achieved. In addition, even if organic waste is heated by blowing dry exhaust gas directly into the digestion tank, the digestion gas methane concentration does not decrease, and efficient digestion gas power generation and reliable dewatering of sludge are performed. Can do.

本発明の第1の実施形態を示す概略図である。It is the schematic which shows the 1st Embodiment of this invention. 第1の実施形態における熱収支の第1例を示す図である。It is a figure which shows the 1st example of the heat balance in 1st Embodiment. 第1の実施形態における熱収支の第2例を示す図である。It is a figure which shows the 2nd example of the heat balance in 1st Embodiment. 第1の実施形態における熱収支の第3例を示す図である。It is a figure which shows the 3rd example of the heat balance in 1st Embodiment. 本発明の第2の実施形態を示す概略図である。It is the schematic which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す概略図である。It is the schematic which shows the 3rd Embodiment of this invention.

図1は、本発明の有機性廃棄物の処理装置の第1の実施形態を示す概略図であり、以下にこの第1の実施形態の処理装置について説明しながら、本発明の有機性廃棄物の処理方法の実施形態についても説明する。本実施形態においては、処理すべき有機性廃棄物として下水処理場から排出される濃縮汚泥Aが消化槽1に供給され、該消化槽1において加温されつつメタン発酵して消化され、消化ガス(メタンガス)Bが発生する。   FIG. 1 is a schematic view showing a first embodiment of the organic waste processing apparatus of the present invention. The organic waste of the present invention will be described below while explaining the processing apparatus of the first embodiment. An embodiment of this processing method will also be described. In the present embodiment, the concentrated sludge A discharged from the sewage treatment plant as the organic waste to be treated is supplied to the digestion tank 1, digested by methane fermentation while being heated in the digestion tank 1, and digested gas (Methane gas) B is generated.

この消化ガスBは、消化ガス発電機2に供給されて燃焼させられることにより発電を行うとともに、470℃〜600℃程度の高温の燃焼排ガスCを発生する。消化ガス発電機としては、例えばガスエンジンやガスタービン等を用いることが可能である。消化ガス発電機2の種類にもよるが、発電効率が20%〜35%となる発電機が好ましい。35%よりも発電効率が高いと排ガス温度が低くなり、乾燥機に必要な熱源を確保できなくなるおそれがある。また、発電された電力は、次述する脱水機や乾燥機等の当該処理装置の各種機器の動力源や、それ以外の電源としても利用可能である。なお、消化ガス発電機2からは消化ガスBの燃焼によって発生した温水も排出される。   This digested gas B is supplied to the digested gas generator 2 and burned to generate power and generate a high-temperature combustion exhaust gas C of about 470 ° C to 600 ° C. For example, a gas engine or a gas turbine can be used as the digestion gas generator. Although it depends on the type of digestion gas generator 2, a generator having a power generation efficiency of 20% to 35% is preferable. If the power generation efficiency is higher than 35%, the exhaust gas temperature becomes low, and there is a possibility that a heat source necessary for the dryer cannot be secured. In addition, the generated power can be used as a power source for various devices of the processing apparatus such as a dehydrator and a dryer, which will be described below, and as a power source other than that. The digestion gas generator 2 also discharges hot water generated by the combustion of digestion gas B.

消化槽1には固形物濃度(TS)が2wt%〜4wt%、固形物中の有機分が80wt%〜86wt%に調整された濃縮汚泥Aが供給される。固形物濃度が2wt%未満では、大型の消化槽1が必要となることから、放熱量が増え、消化温度維持のために多くの熱が必要となる。一方、固形物濃度が4wt%よりも多いと、濃縮汚泥Aの粘性が高くなり、濃縮汚泥Aの撹拌に多くの動力が必要となるとともに、状況により撹拌できない領域が生じる。また、濃縮汚泥Aには、予め生ごみ等のバイオマスを混合することもでき、この場合の固形物中の有機分濃度は80wt〜99wt%に調整すればよい。消化槽1に供給された濃縮汚泥Aは、30℃〜40℃程度に維持されながら嫌気性発酵により有機物が分解され、メタンを含む消化ガスBを発生する。   The digestion tank 1 is supplied with the concentrated sludge A in which the solid matter concentration (TS) is adjusted to 2 wt% to 4 wt% and the organic content in the solid matter is adjusted to 80 wt% to 86 wt%. If the solid matter concentration is less than 2 wt%, the large digester 1 is required, so that the amount of heat release increases and a large amount of heat is required to maintain the digestion temperature. On the other hand, if the solid concentration is higher than 4 wt%, the viscosity of the concentrated sludge A becomes high, a large amount of power is required for stirring the concentrated sludge A, and an area where stirring cannot be performed occurs depending on the situation. In addition, biomass such as garbage can be mixed in the concentrated sludge A in advance, and the organic content concentration in the solid matter in this case may be adjusted to 80 wt% to 99 wt%. The concentrated sludge A supplied to the digester 1 is decomposed by anaerobic fermentation while being maintained at about 30 ° C. to 40 ° C., and generates digested gas B containing methane.

また、消化槽1から濃縮汚泥Aの消化残渣として抜き出される消化汚泥Dは、脱水機3により含水率が60wt%〜75wt%まで脱水され、水分が一定程度除去された脱水汚泥Eとして乾燥機4に供給されて乾燥させられる。脱水機3としては、遠心脱水機やベルトプレス等を用いることが可能である。なお、消化槽1から抜き出される消化汚泥Dには、生物難分解性の有機物が未消化のまま含まれていても良い。   Further, the digested sludge D extracted from the digester tank 1 as the digested residue of the concentrated sludge A is dehydrated by the dehydrator 3 to a moisture content of 60 wt% to 75 wt%, and dehydrated sludge E from which moisture has been removed to a certain extent. 4 is dried. As the dehydrator 3, a centrifugal dehydrator, a belt press, or the like can be used. In addition, in the digested sludge D extracted from the digestion tank 1, the organic substance of biodegradability may be contained undigested.

そして、乾燥機4としては、被乾燥物である脱水汚泥Eと加熱媒体とが直接接触することのないスチームチューブドライヤーや外熱キルンのような間接加熱式乾燥機が用いられる。このうち、スチームチューブドライヤーは、横置きされた軸線回りに回転可能に支持された該軸線を中心とする主に円筒状の中空の筒状体と、この筒状体の内部に加熱路として配設される複数本の加熱管とから構成される。筒状体の上記軸線方向の一端(図1において左端)には脱水汚泥Eを筒状体内に供給するための供給口と乾燥排ガス排出口とが設けられるとともに、他端(図1において右端)には脱水汚泥Eを乾燥した乾燥汚泥Fの排出口とキャリアガス供給口とが設けられている。また、外熱キルンは、やはり横置きされた軸線回りに回転可能に支持された該軸線を中心とする主に円筒状の中空の筒状体と、この筒状体の外周を覆うケーシングとから構成され、これら筒状体とケーシングとの間に加熱媒体が流通する加熱路が形成される。さらに、スチームチューブドライヤーと同様に、筒状体の一端には脱水汚泥Eの供給口と乾燥排ガス排出口が、他端には乾燥汚泥Fの排出口とキャリアガス供給口が設けられる。   As the dryer 4, an indirect heating type dryer such as a steam tube dryer or an external heat kiln in which the dehydrated sludge E that is an object to be dried and the heating medium are not in direct contact is used. Among these, the steam tube dryer is a hollow cylindrical body mainly having a cylindrical shape centered on the axis that is rotatably supported around a horizontal axis, and a heating path is arranged inside the cylindrical body. And a plurality of heating tubes provided. One end (left end in FIG. 1) of the cylindrical body is provided with a supply port for supplying dehydrated sludge E into the cylindrical body and a dry exhaust gas discharge port, and the other end (right end in FIG. 1). Are provided with a discharge port for dried sludge F obtained by drying dewatered sludge E and a carrier gas supply port. Further, the external heat kiln is composed of a hollow cylindrical body that is mainly cylindrical and centered on the axis that is supported so as to be rotatable around a horizontal axis, and a casing that covers the outer periphery of the cylindrical body. A heating path through which the heating medium flows is formed between the cylindrical body and the casing. Further, similarly to the steam tube dryer, a dehydrated sludge E supply port and a dry exhaust gas discharge port are provided at one end of the cylindrical body, and a dry sludge F discharge port and a carrier gas supply port are provided at the other end.

また、この乾燥機4には、上記加熱媒体として消化ガス発電機2から排出された燃焼排ガスCが上記加熱路に供給されて、筒状体内に供給された脱水汚泥Eを間接的に加熱して乾燥する。また、乾燥機4に供給された脱水汚泥Eが乾燥される際に生じる水蒸気を乾燥機4から外部に排出するために、キャリアガスが上記キャリアガス供給口から乾燥機4に供給される。キャリアガスとしては、空気、二酸化炭素、窒素など種々の気体が適用できるが、焼却炉やボイラ等の燃焼機器からの排ガスなど、可能な限り酸素が少ない気体を用いることが好ましい。乾燥した汚泥は乾燥汚泥Fとして、また脱水汚泥Eを加熱した燃焼排ガスCは低温の排ガスGとして、それぞれ乾燥機4から排出されて処理される。間接加熱式の乾燥機4から排出される乾燥汚泥Fの含水率は、1wt%〜45wt%である。50wt%以上であると、乾燥汚泥Fが間接加熱式の乾燥機4内に付着したり、塊状化したりするため、ハンドリングが困難となる。   Further, the dryer 4 is supplied with the combustion exhaust gas C discharged from the digestion gas generator 2 as the heating medium to the heating path to indirectly heat the dewatered sludge E supplied into the cylindrical body. And dry. Further, in order to discharge water vapor generated when the dewatered sludge E supplied to the dryer 4 is dried to the outside from the dryer 4, a carrier gas is supplied to the dryer 4 from the carrier gas supply port. As the carrier gas, various gases such as air, carbon dioxide, and nitrogen can be used, but it is preferable to use a gas having as little oxygen as possible, such as exhaust gas from combustion equipment such as an incinerator or a boiler. The dried sludge is discharged from the dryer 4 as a dried sludge F, and the combustion exhaust gas C heated from the dewatered sludge E is discharged from the dryer 4 for processing. The moisture content of the dried sludge F discharged from the indirectly heated dryer 4 is 1 wt% to 45 wt%. When it is 50 wt% or more, the dried sludge F adheres to the indirect heating type dryer 4 or is agglomerated, which makes handling difficult.

一方、乾燥機4からは、脱水汚泥Eが乾燥させられる際に蒸発した水蒸気を主とする100℃以上、望ましくは120℃〜260℃程度の乾燥排ガスHが上記乾燥排ガス排出口から排出される。この乾燥排ガスHには、水蒸気とともに、キャリアガス供給口から供給されたキャリアガスが含まれる。そして、この乾燥排ガスHは上記消化槽1に供給されて、該消化槽1に保持された濃縮汚泥Aの加温に用いられる。さらに、本実施形態では、この乾燥排ガスHを消化槽1内に直接吹き込むことにより、該消化槽1内の濃縮汚泥Aを30℃〜40℃程度に加温する。   On the other hand, from the dryer 4, the dried exhaust gas H mainly having a water vapor evaporated when the dewatered sludge E is dried is at least 100 ° C., preferably about 120 ° C. to 260 ° C., is discharged from the dried exhaust gas outlet. . This dry exhaust gas H contains the carrier gas supplied from the carrier gas supply port together with the water vapor. And this dry waste gas H is supplied to the said digestion tank 1, and is used for the heating of the concentrated sludge A hold | maintained in this digestion tank 1. FIG. Furthermore, in this embodiment, the concentrated sludge A in the digestion tank 1 is heated to about 30 ° C. to 40 ° C. by directly blowing this dry exhaust gas H into the digestion tank 1.

このように、上記構成の有機性廃棄物の処理装置、乾燥機4、および有機性廃棄物の処理方法では、消化ガス発電機2で発生した高温の燃焼排ガスCが乾燥機4において脱水汚泥Eの乾燥に利用され、この乾燥機4において発生した、燃焼排ガスCより低温の乾燥排ガスHが消化槽1における濃縮汚泥(有機性廃棄物)Aの加温に利用される。すなわち、消化ガスBを消化ガス発電機2において燃焼させて発生した熱源を段階的に利用することができるので、消化ガスBの有効エネルギー損失が少ない効率的な利用を図ることができる。   Thus, in the organic waste processing apparatus, the dryer 4 and the organic waste processing method configured as described above, the high-temperature combustion exhaust gas C generated in the digestion gas generator 2 is dehydrated sludge E in the dryer 4. The dried exhaust gas H generated in the dryer 4 and having a temperature lower than the combustion exhaust gas C is used for heating the concentrated sludge (organic waste) A in the digestion tank 1. That is, since the heat source generated by burning the digestion gas B in the digestion gas generator 2 can be used step by step, the digest gas B can be efficiently used with less effective energy loss.

このため、これら乾燥機4における脱水汚泥Eの乾燥と消化槽1における濃縮汚泥Aの加温に要する熱量の大部分あるいは全てを、消化ガス発電機2において発生した燃焼排ガスCの廃熱によって賄うことが可能となり、乾燥や加温に用いる化石燃料等の他の熱源の使用量を大幅に削減、あるいは不要とすることができる。また、最初に消化ガス発電機2の高温の燃焼排ガスCの廃熱を乾燥機4の熱源に使用するので、この乾燥機4における伝熱面積や滞留時間の増加も抑えることができる。   For this reason, most or all of the amount of heat required for drying the dewatered sludge E in the dryer 4 and heating the concentrated sludge A in the digester 1 is covered by the waste heat of the combustion exhaust gas C generated in the digestion gas generator 2. Therefore, the amount of other heat sources such as fossil fuel used for drying and heating can be greatly reduced or eliminated. Moreover, since the waste heat of the high-temperature combustion exhaust gas C of the digestion gas generator 2 is first used as the heat source of the dryer 4, an increase in heat transfer area and residence time in the dryer 4 can also be suppressed.

ここで、図2は、第1の実施形態の処理装置および処理方法を用いて濃縮汚泥Aを処理した場合の熱収支の第1例を示すものである。なお、百分率(%)はいずれも重量%(wt%)である。この第1例においては、固形物濃度(TS)2.7wt%、固形物中の有機分80wt%、温度20℃の濃縮汚泥Aが740m/dayで消化槽1に供給され、40℃に加温されて保持されることにより消化されてメタン発酵し、メタン濃度60%、熱量2180kJ/secの消化ガス(メタンガス)Bを8800mN/dayで発生する。この消化ガスBは、消化ガス発電機2において燃焼させられて600kWの電力を発電するとともに、温度510℃、熱量1220kJ/secの燃焼排ガスCを発生する。 Here, FIG. 2 shows the 1st example of the heat balance at the time of processing the concentrated sludge A using the processing apparatus and processing method of 1st Embodiment. All percentages (%) are weight% (wt%). In this first example, a solid matter concentration (TS) of 2.7 wt%, an organic content in the solid matter of 80 wt%, and a concentrated sludge A at a temperature of 20 ° C. are supplied to the digester 1 at 740 m 3 / day, By being heated and held, it is digested and methane-fermented, and digestion gas (methane gas) B having a methane concentration of 60% and a calorific value of 2180 kJ / sec is generated at 8800 m 3 N / day. The digested gas B is burned in the digested gas generator 2 to generate 600 kW of electric power and generate combustion exhaust gas C having a temperature of 510 ° C. and a calorific value of 1220 kJ / sec.

また、消化槽1からは濃度1.6wt%の消化汚泥Dが740m/dayで抜き出されて脱水機3により脱水され、水分75wt%の脱水汚泥Eとして50t/dayで間接加熱式の乾燥機4に供給される。そして、この乾燥機4では、上記燃焼排ガスCを熱媒として脱水汚泥Eが乾燥させられ、水分40wt%、温度約100℃の乾燥汚泥Fとして20.7t/dayで排出されるとともに、燃焼排ガスCは温度80℃にまで冷却されて排ガスGとして5920kg/hourで排出され、それぞれ処理される。 In addition, the digested sludge D having a concentration of 1.6 wt% is extracted from the digester 1 at 740 m 3 / day, dehydrated by the dehydrator 3, and dehydrated sludge E having a moisture content of 75 wt% is dried by indirect heating at 50 t / day. Supplied to the machine 4. In the dryer 4, the dewatered sludge E is dried using the combustion exhaust gas C as a heat medium, and is discharged at a rate of 20.7 t / day as a dry sludge F having a water content of 40 wt% and a temperature of about 100 ° C. C is cooled to a temperature of 80 ° C., discharged as exhaust gas G at 5920 kg / hour, and processed.

一方、乾燥機4において脱水汚泥Eを乾燥することにより蒸発した水分は、温度120℃、熱量920kJ/secの水蒸気を主とする乾燥排ガスHとして1340kg/hourで排出されて消化槽1に直接吹き込まれることにより供給され、消化槽1に保持された濃縮汚泥Aを加温する。消化槽1における濃縮汚泥Aの加温必要熱量は790kJ/secであり、乾燥排ガスHの熱量によって賄うことができるので、消化槽1での加温や乾燥機4における乾燥に化石燃料等を必要とすることがない。   On the other hand, the water evaporated by drying the dewatered sludge E in the dryer 4 is discharged at 1340 kg / hour as dry exhaust gas H mainly composed of water vapor at a temperature of 120 ° C. and a calorie of 920 kJ / sec and directly blown into the digester 1. The concentrated sludge A supplied and held in the digester 1 is heated. The heat required for heating the concentrated sludge A in the digestion tank 1 is 790 kJ / sec and can be covered by the heat of the dry exhaust gas H, so fossil fuel is required for heating in the digestion tank 1 and drying in the dryer 4. And never.

また、図3は、第1の実施形態の処理装置および処理方法を用いて濃縮汚泥Aを処理した場合の熱収支の第2例を示すものであり、第1例と比べて脱水機3における脱水性能を高くして脱水汚泥Eの水分と排出量を低減した場合を示している。なお、この第2例において、濃縮汚泥A、消化ガスB、燃焼排ガスC、および消化汚泥Dの熱収支、排出量(供給量)、および消化ガス発電機2における発電量は第1例と同じである。   Moreover, FIG. 3 shows the 2nd example of the heat balance at the time of processing concentrated sludge A using the processing apparatus and processing method of 1st Embodiment, and compared with a 1st example, in dehydrator 3 The case where the dewatering performance was made high and the water | moisture content and discharge | emission amount of dewatered sludge E were reduced is shown. In this second example, the heat balance, discharge amount (supply amount) of the concentrated sludge A, digestion gas B, combustion exhaust gas C, and digestion sludge D, and the power generation amount in the digestion gas generator 2 are the same as in the first example. It is.

すなわち、この第2例では、脱水機3からは水分70wt%の脱水汚泥Eが50t/dayで乾燥機4に供給されて、この乾燥機4において燃焼排ガスCにより乾燥させられ、第1例よりも低減した10wt%の水分で、温度約100℃の乾燥汚泥Fとして、第1例よりも少ない13.3t/dayの排出量で排出され、処理される。また、燃焼排ガスCは第1例と同様に冷却されて同様の排出量で排出され、処理される。   That is, in this second example, dehydrated sludge E having a water content of 70 wt% is supplied from the dehydrator 3 to the dryer 4 at 50 t / day, and is dried by the combustion exhaust gas C in this dryer 4. The dried sludge F at a temperature of about 100 ° C. is discharged at a reduced discharge amount of 13.3 t / day than the first example and is processed with the reduced 10 wt% moisture. Further, the combustion exhaust gas C is cooled and discharged with the same discharge amount as in the first example, and is processed.

このように脱水機3における脱水性能を高くして脱水汚泥Eの水分、排出量が低減すると、乾燥機4から排出される乾燥排ガスHの排出量も低減するが、乾燥機4において乾燥に要する熱量に余裕が生じるので、この第2例では乾燥排ガスHの温度を高くして消化槽1における加温必要熱量790kJ/secを賄うことができる。第2例では、温度240℃、熱量920kJ/secの乾燥排ガスHが1220kg/hourで消化槽1に直接吹き込まれることにより濃縮汚泥Aを加温する。   When the dewatering performance in the dehydrator 3 is increased and the moisture and discharge amount of the dewatered sludge E are thus reduced, the discharge amount of the dry exhaust gas H discharged from the dryer 4 is also reduced. Since there is a margin in the amount of heat, in this second example, the temperature of the dry exhaust gas H can be increased to cover the heating required heat amount 790 kJ / sec in the digestion tank 1. In the second example, the concentrated sludge A is heated by blowing dry exhaust gas H having a temperature of 240 ° C. and a heat quantity of 920 kJ / sec directly into the digestion tank 1 at 1220 kg / hour.

従って、この第2例でも、第1例と同様に消化槽1の加温や乾燥機4の乾燥に化石燃料等を要することなく、濃縮汚泥Aの処理を行うことができる。また、乾燥汚泥Fの水分および排出量が低減されるので、その処理を容易とすることができる。なお、脱水機3における脱水性能を高めるのに代えて、例えば後述する第2の実施形態のように、脱水機3と乾燥機4との間に予備加熱機を設け、消化ガス発電機2において発生する温水の廃熱を利用するなどして、乾燥性能を向上させるようにしてもよい。   Therefore, also in this 2nd example, the process of the concentrated sludge A can be performed, without requiring fossil fuel etc. for the heating of the digester 1, and the drying of the dryer 4 similarly to the 1st example. Moreover, since the water | moisture content and discharge | emission amount of the dry sludge F are reduced, the process can be made easy. Instead of improving the dewatering performance in the dehydrator 3, for example, as in a second embodiment described later, a preheater is provided between the dehydrator 3 and the dryer 4, and the digester gas generator 2 You may make it improve drying performance by utilizing the waste heat of the generated warm water.

さらに、図4は、第1の実施形態の処理装置および処理方法を用いて濃縮汚泥Aを処理した場合の熱収支の第3例を示すものであり、第1例と比べて消化槽1に供給される濃縮汚泥Aの有機分が高くなった場合を示している。すなわち、この第3例では濃縮汚泥Aの濃度、供給量は第1例と同じであるものの、有機分が85wt%と高くなっており、これに伴い濃縮汚泥Aがメタン発酵した消化ガスBもメタン濃度は第1例と同じであるものの、熱量2320kJ/sec、発生量9350mN/dayと増大している。 Furthermore, FIG. 4 shows the 3rd example of the heat balance at the time of processing the concentrated sludge A using the processing apparatus and processing method of 1st Embodiment, and compared with a 1st example, it is in the digester 1 The case where the organic content of the supplied concentrated sludge A becomes high is shown. That is, in this third example, the concentration and the supply amount of the concentrated sludge A are the same as in the first example, but the organic content is as high as 85 wt%. Although the methane concentration is the same as that in the first example, the amount of heat is increased to 2320 kJ / sec and the generated amount is 9350 m 3 N / day.

従って、このような消化ガスBを燃焼することにより、消化ガス発電機2から乾燥機に供給される燃焼排ガスCも、熱量1290kJ/sec、供給量6283kg/hourと第1例よりも増大する。また、消化ガス発電機2における発電量も695kWと第1、第2例よりも増大する。一方、消化槽1から排出される消化汚泥Dは、濃縮汚泥Aの有機分が高い分だけ濃度が1.55wt%と若干低減し、脱水機3から乾燥機4に供給される脱水汚泥Eも46t/dayと僅かに少なくなる。   Therefore, by burning such digestion gas B, the combustion exhaust gas C supplied from the digestion gas generator 2 to the dryer also increases the heat amount 1290 kJ / sec and the supply amount 6283 kg / hour from the first example. Moreover, the power generation amount in the digestion gas generator 2 is 695 kW, which is larger than those in the first and second examples. On the other hand, the digested sludge D discharged from the digester 1 has a slightly reduced concentration of 1.55 wt% due to the higher organic content of the concentrated sludge A, and the dehydrated sludge E supplied from the dehydrator 3 to the dryer 4 is also It is slightly reduced to 46 t / day.

このため、乾燥機4から排出される乾燥排ガスHも、排出量は1260kg/hourと僅かに少なくなるものの、乾燥機4への脱水汚泥Eの供給が少なくなることと燃焼排ガスCの熱量、供給量が第1例よりも増大することにより、第2例と同じく乾燥機4において乾燥に要する熱量に余裕が生じて温度が230℃と高くなり、消化槽1における加温必要熱量790kJ/secを賄うことができて、やはり化石燃料等を要することがない。また、この第3例でも、乾燥機4から排出される乾燥汚泥Fは排出量が19.2t/dayと第1例より若干少なくなって処理が容易となる。なお、排ガスGは排出量6283kg/hour、熱量190kJ/secと第1、2例よりも若干増大する。   For this reason, although the exhaust gas H discharged from the dryer 4 is slightly reduced to 1260 kg / hour, the supply of the dewatered sludge E to the dryer 4 is reduced and the amount of heat and supply of the combustion exhaust gas C is reduced. As the amount increases from the first example, a margin is generated in the amount of heat required for drying in the dryer 4 as in the second example, the temperature becomes as high as 230 ° C., and the required heat amount for heating in the digester 1 is 790 kJ / sec. We can cover it, and there is no need for fossil fuel. Also in this third example, the dried sludge F discharged from the dryer 4 has a discharge amount of 19.2 t / day, which is slightly smaller than that of the first example, and is easy to process. The exhaust gas G has a discharge amount of 6283 kg / hour and a heat amount of 190 kJ / sec, which are slightly higher than those in the first and second examples.

すなわち、これら第1例〜第3例で説明したように、消化槽1に供給する有機性廃棄物(濃縮汚泥A)の固形物濃度を2wt%〜4wt%の範囲とするとともに、この有機性廃棄物の固形物中の有機物濃度を80wt%〜99wt%の範囲として消化ガスBを発生させ、この消化ガスBを発電効率20%〜35%の範囲の消化ガス発電機2において燃焼するとともに、消化槽1から排出される消化汚泥Dを脱水機3において含水率が60wt%〜75wt%の範囲に脱水して間接加熱式の乾燥機4により乾燥することによって、化石燃料等の外部エネルギーを必要とせず、消化槽1で発生した消化ガスBのみにより乾燥機4における乾燥および消化槽1の加温を行うことが可能となる。   That is, as explained in these first to third examples, the organic waste (concentrated sludge A) supplied to the digester 1 has a solid concentration in the range of 2 wt% to 4 wt%, and this organic The digestion gas B is generated by setting the organic substance concentration in the solid matter of the waste in the range of 80 wt% to 99 wt%, and the digest gas B is burned in the digest gas generator 2 having a power generation efficiency in the range of 20% to 35%. Digested sludge D discharged from the digestion tank 1 is dehydrated in a dehydrator 3 to a moisture content in the range of 60 wt% to 75 wt% and dried by an indirect heating drier 4, thereby requiring external energy such as fossil fuel. Instead, drying in the dryer 4 and heating of the digestion tank 1 can be performed only by the digestion gas B generated in the digestion tank 1.

そして、さらに上記構成の有機性廃棄物の処理装置、乾燥機4、および有機性廃棄物の処理方法では、脱水汚泥Eを乾燥する乾燥機4が、消化ガス発電機2から供給された燃焼排ガスCによって脱水汚泥Eを間接的に加熱する間接加熱式の乾燥機4であるので、熱風によって脱水汚泥を乾燥する気流乾燥機のような直接加熱式の乾燥機と比べて消化槽1に供給される乾燥排ガスHに乾燥汚泥Fの微粉が混入することが少なく、このような乾燥汚泥粉を除去するためのサイクロンのような設備を必要とすることがない。   Further, in the organic waste processing apparatus, the dryer 4 and the organic waste processing method having the above-described configuration, the dryer 4 for drying the dewatered sludge E is supplied with the combustion exhaust gas supplied from the digestion gas generator 2. Since it is an indirect heating type dryer 4 that indirectly heats the dewatered sludge E by C, it is supplied to the digester 1 as compared with a direct heating type dryer such as an air dryer that dries the dewatered sludge with hot air. The dry exhaust gas H is less likely to be mixed with the fine powder of the dry sludge F, and no equipment such as a cyclone for removing such dry sludge powder is required.

また、このような間接加熱式の乾燥機4では、直接加熱式の気流乾燥機のように加熱媒体としての熱風に含まれる空気が脱水汚泥Eを乾燥した乾燥排ガスHに含まれることもなく、乾燥排ガスHは殆どが脱水汚泥Eから蒸発した水蒸気となる。このため、特許文献1に記載された処理装置のように空気と水蒸気を分離する除湿器が必要となることもなく、サイクロンが不要となることとも相俟って装置構成の簡略化を図ることができる。   Moreover, in such an indirect heating type dryer 4, the air contained in the hot air as a heating medium is not included in the dry exhaust gas H obtained by drying the dewatered sludge E as in the direct heating type air flow dryer, Most of the dry exhaust gas H becomes water vapor evaporated from the dewatered sludge E. For this reason, the dehumidifier which separates air and water vapor | steam like the processing apparatus described in patent document 1 is not needed, and simplification of an apparatus structure is achieved in connection with the fact that a cyclone becomes unnecessary. Can do.

そして、このように乾燥排ガスHの殆どが水蒸気であるため、上記第1の実施形態のように乾燥排ガスHを消化槽1内に直接吹き込んで水蒸気の潜熱により濃縮汚泥Aを加温しても、凝縮した水分によって消化汚泥Eは増加するものの、メタン発酵により発生する消化ガスBのメタン濃度が低下することがない。このため、消化ガス発電機2における発電量や燃焼排ガスCの熱量は維持しつつ、乾燥排ガスHの直接吹き込みにより熱損失を抑えて効率的な濃縮汚泥Aの加温を図ることが可能となる。また、脱水汚泥Eを乾燥した乾燥排ガスHに含まれる臭気も消化槽1に吹き込まれて消化ガスBとともに消化ガス発電機2において燃焼させられるので、乾燥排ガスHの臭気が外部に漏れ出すこともない。   And since most of the dry exhaust gas H is water vapor in this way, even if the dry exhaust gas H is blown directly into the digestion tank 1 and the concentrated sludge A is heated by the latent heat of water vapor as in the first embodiment. Although the digested sludge E increases due to the condensed water, the methane concentration of the digested gas B generated by methane fermentation does not decrease. For this reason, it is possible to efficiently heat the concentrated sludge A while suppressing the heat loss by directly blowing the dry exhaust gas H while maintaining the power generation amount in the digestion gas generator 2 and the heat amount of the combustion exhaust gas C. . Moreover, since the odor contained in the dry exhaust gas H obtained by drying the dewatered sludge E is also blown into the digestion tank 1 and combusted in the digestion gas generator 2 together with the digestion gas B, the odor of the dry exhaust gas H may leak outside. Absent.

次に、図5は、本発明の第2の実施形態を示すものであり、この第2の実施形態および図6に示す第3の実施形態において図1に示した第1の実施形態と共通する部分には同一の符号を配して説明を省略する。この第2の実施形態では、脱水機3と乾燥機4との間に予備加熱機5が備えられており、脱水機3から排出された脱水汚泥Eは、この予備加熱機5によって加温されて予備乾燥されてから、乾燥機4に供給されて所定の水分量まで乾燥させられる。そして、この予備加熱機5において脱水汚泥Eを加温する加熱媒体としては、消化ガス発電機2において発生した温水Iが用いられる。従って、脱水汚泥Eの水分が増えることがないように、予備加熱機5も加熱媒体(温水I)が脱水汚泥Eと接触することのない間接加熱式の乾燥機が用いられる。   Next, FIG. 5 shows a second embodiment of the present invention, and this second embodiment and the third embodiment shown in FIG. 6 are common to the first embodiment shown in FIG. The same reference numerals are assigned to the parts to be described, and the description is omitted. In the second embodiment, a preheater 5 is provided between the dehydrator 3 and the dryer 4, and the dewatered sludge E discharged from the dehydrator 3 is heated by the preheater 5. After being pre-dried, it is supplied to the dryer 4 and dried to a predetermined moisture content. And the warm water I which generate | occur | produced in the digestion gas generator 2 is used as a heating medium which heats the dehydration sludge E in this preheating machine 5. FIG. Therefore, an indirect heating type dryer in which the heating medium (warm water I) does not come into contact with the dewatered sludge E is used as the preheating machine 5 so that the moisture of the dewatered sludge E does not increase.

このような第2の実施形態の処理装置、乾燥機4、および処理方法では、上述した第1の実施形態の熱収支の第2例のように脱水機3の脱水性能を向上させた場合と同様に、乾燥機4に供給される脱水汚泥Eの水分が低減させられるので、乾燥機4において乾燥に要する熱量に余裕が生じ、より高温の乾燥排ガスHを消化槽1に供給することが可能となる。このため、消化ガス発電機2において発生する温水Iの廃熱を利用して、第1の実施形態と同様に化石燃料等を要することなく消化槽1の濃縮汚泥Aを加温することができるとともに、乾燥汚泥Fの排出量や水分を減らして処理を容易とすることができる。   In the processing apparatus, the dryer 4, and the processing method of the second embodiment, the dehydrating performance of the dehydrator 3 is improved as in the second example of the heat balance of the first embodiment described above. Similarly, since the water content of the dewatered sludge E supplied to the dryer 4 is reduced, there is a surplus in the amount of heat required for drying in the dryer 4, and it is possible to supply the higher-temperature dry exhaust gas H to the digester 1. It becomes. For this reason, the waste heat of the hot water I generated in the digestion gas generator 2 can be used to heat the concentrated sludge A in the digestion tank 1 without requiring fossil fuel or the like as in the first embodiment. At the same time, the amount of dry sludge F discharged and moisture can be reduced to facilitate the treatment.

なお、これら第1、第2の実施形態では、乾燥機4において発生した乾燥排ガスHを消化槽1内に直接吹き込んで濃縮汚泥Aを加温しているが、図6に示す第3の実施形態のように消化槽1に熱交換器6を付設して、この熱交換器6を介して間接的に濃縮汚泥Aを加温するようにしてもよい。また、熱交換器6に代えて、消化槽1をジャケット構造としてジャケット部内に乾燥排ガスHを供給することにより、濃縮汚泥Aを間接的に加温してもよい。   In these first and second embodiments, the dried exhaust gas H generated in the dryer 4 is directly blown into the digester 1 to heat the concentrated sludge A, but the third implementation shown in FIG. The heat exchanger 6 may be attached to the digester 1 as in the form, and the concentrated sludge A may be indirectly heated through the heat exchanger 6. Further, instead of the heat exchanger 6, the concentrated sludge A may be indirectly heated by supplying the dry exhaust gas H into the jacket portion using the digester 1 as a jacket structure.

このような第3の実施形態では、水蒸気を主とする乾燥排ガスHが消化槽1内で凝縮することがないので、消化汚泥Dおよび脱水汚泥Eの水分が増えるのを防ぐことができ、脱水機3や乾燥機4の負担を軽減することができる。なお、この第3の実施形態でも、第2の実施形態と同様に脱水機3と乾燥機4との間に予備加熱機5を備えて、消化ガス発電機2において発生した温水Iにより脱水汚泥Eを加温して予備乾燥してもよい。   In such 3rd Embodiment, since the dry waste gas H which mainly consists of water vapor | steam does not condense in the digestion tank 1, it can prevent that the water | moisture content of digested sludge D and dewatered sludge E increases, and it spins. The burden on the machine 3 and the dryer 4 can be reduced. In the third embodiment as well, the preheating machine 5 is provided between the dehydrator 3 and the dryer 4 as in the second embodiment, and the dewatered sludge is generated by the hot water I generated in the digestion gas generator 2. E may be heated and pre-dried.

なお、上記各実施の形態で説明した有機性廃棄物A、消化槽1、脱水機3、間接加熱式の乾燥機4等の構成は一例であり、本発明の趣旨を逸脱しない範囲内において状況に応じて変更可能であることはいうまでもない。また、上記各実施の形態で説明した燃焼排ガスCや消化汚泥Dの流れも一例であり、本発明の趣旨を逸脱しない範囲内において状況に応じて変更可能であることもいうまでもない。   The configurations of the organic waste A, the digester 1, the dehydrator 3, the indirect heating dryer 4 and the like described in the above embodiments are merely examples, and the situation is within the scope of the present invention. It goes without saying that it can be changed according to the situation. Further, the flow of the combustion exhaust gas C and the digested sludge D described in each of the above embodiments is also an example, and it is needless to say that it can be changed depending on the situation without departing from the gist of the present invention.

1 消化槽
2 消化ガス発電機
3 脱水機
4 乾燥機
5 予備加熱機
6 熱交換器
A 濃縮汚泥(有機性廃棄物)
B 消化ガス
C 燃焼排ガス
D 消化汚泥
E 脱水汚泥
F 乾燥汚泥
G 排ガス
H 乾燥排ガス
I 温水
DESCRIPTION OF SYMBOLS 1 Digestion tank 2 Digestion gas generator 3 Dehydrator 4 Dryer 5 Preheating machine 6 Heat exchanger A Concentrated sludge (organic waste)
B Digested gas C Combustion exhaust gas D Digested sludge E Dehydrated sludge F Dry sludge G Exhaust gas H Dry exhaust gas I Hot water

Claims (7)

有機性廃棄物を加温して発酵させることにより消化ガスを発生させる消化槽と、この消化槽において発生した消化ガスを燃焼することにより発電を行う消化ガス発電機と、上記消化槽から排出される消化汚泥を脱水する脱水機と、この脱水機において脱水した脱水汚泥を乾燥する乾燥機とを備え、この乾燥機は、上記消化ガス発電機において上記消化ガスを燃焼した燃焼排ガスにより上記脱水汚泥を間接的に加熱して乾燥する間接加熱式乾燥機であって、この間接加熱式乾燥機において上記脱水汚泥を乾燥して発生した乾燥排ガスにより上記消化槽において上記有機性廃棄物を加温することを特徴とする有機性廃棄物の処理装置。   A digestion tank that generates digestion gas by heating and fermenting organic waste, a digestion gas generator that generates power by burning the digestion gas generated in the digestion tank, and the digestion tank A dehydrator for dewatering the digested sludge and a dryer for drying the dehydrated sludge dehydrated in the dehydrator, the dryer using the combustion exhaust gas obtained by burning the digestion gas in the digestion gas generator. An indirect heating dryer that indirectly heats and dries the organic waste in the digestion tank by drying exhaust gas generated by drying the dewatered sludge in the indirect heating dryer. An organic waste processing apparatus. 上記乾燥排ガスを上記消化槽内に直接吹き込んで該消化槽内の上記有機性廃棄物を加温することを特徴とする請求項1に記載の有機性廃棄物の処理装置。   The organic waste treatment apparatus according to claim 1, wherein the dry waste gas is directly blown into the digestion tank to heat the organic waste in the digestion tank. 上記乾燥排ガスを、上記消化槽に付設された熱交換器に供給して間接的に上記有機性廃棄物を加温することを特徴とする請求項1に記載の有機性廃棄物の処理装置。   The organic waste treatment apparatus according to claim 1, wherein the dry waste gas is supplied to a heat exchanger attached to the digestion tank to indirectly heat the organic waste. 上記消化ガス発電機において発生した温水により上記脱水汚泥を加温して上記間接加熱式乾燥機に供給することを特徴とする請求項1から請求項3のうちいずれか一項に記載の有機性廃棄物の処理装置。   The organic property according to any one of claims 1 to 3, wherein the dewatered sludge is heated by hot water generated in the digestion gas generator and supplied to the indirect heating dryer. Waste treatment equipment. 有機性廃棄物を加温して発酵させることにより消化ガスを発生させる消化槽と、この消化槽において発生した消化ガスを燃焼することにより発電を行う消化ガス発電機と、上記消化槽から排出される消化汚泥を脱水する脱水機と、この脱水機において脱水した脱水汚泥を加熱して乾燥する乾燥機とを備えた有機性廃棄物の処理装置に用いられる乾燥機であって、
内部に上記脱水汚泥が供給される回転可能な筒状体と、この筒状体の内部または外周部に設けられた加熱路と、上記筒状体の内部にキャリアガスを供給するキャリアガス供給口と、上記筒状体の内部において上記脱水汚泥を乾燥して発生した乾燥排ガスを上記キャリアガスとともに排出する乾燥排ガス排出口とを備え、
上記加熱路には、上記消化ガス発電機において上記消化ガスを燃焼した燃焼排ガスが供給されて、上記脱水汚泥を間接的に加熱して乾燥するとともに、上記乾燥排ガス排出口は上記消化槽に接続されて、上記キャリアガスとともに排出される上記乾燥排ガスにより上記消化槽において上記有機性廃棄物を加温することを特徴とする有機性廃棄物の処理装置に用いられる乾燥機。
A digestion tank that generates digestion gas by heating and fermenting organic waste, a digestion gas generator that generates power by burning the digestion gas generated in the digestion tank, and the digestion tank A dehydrator for dewatering digested sludge, and a dryer for use in an organic waste treatment apparatus provided with a dryer for heating and drying the dewatered sludge dehydrated in the dehydrator,
A rotatable cylindrical body to which the dehydrated sludge is supplied, a heating path provided inside or outside the cylindrical body, and a carrier gas supply port for supplying a carrier gas to the inside of the cylindrical body And a dry exhaust gas discharge port for discharging dry exhaust gas generated by drying the dewatered sludge inside the cylindrical body together with the carrier gas,
Combustion exhaust gas obtained by burning the digestion gas in the digestion gas generator is supplied to the heating path, and the dehydrated sludge is indirectly heated and dried, and the dry exhaust gas outlet is connected to the digestion tank. And drying the organic waste in the digester by using the dry exhaust gas discharged together with the carrier gas.
消化槽において有機性廃棄物を加温して発酵させることにより消化ガスを発生させ、この消化ガスを消化ガス発電機において燃焼することにより発電するとともに、上記消化槽から排出される消化汚泥を脱水機において脱水し、この脱水機において上記消化汚泥を脱水した脱水汚泥を、上記消化ガス発電機において上記消化ガスを燃焼した燃焼排ガスにより間接加熱式乾燥機によって間接的に加熱して乾燥して、この間接加熱式乾燥機において上記脱水汚泥を乾燥して発生した乾燥排ガスを上記消化槽に供給して上記有機性廃棄物を加温することを特徴とする有機性廃棄物の処理方法。   Digestion gas is generated by heating and fermenting organic waste in the digestion tank, and power is generated by burning this digestion gas in the digestion gas generator, and the digested sludge discharged from the digestion tank is dehydrated. Dehydrated in the machine, dehydrated sludge dehydrated in the dewatering machine, indirectly heated by the indirect heating dryer with the combustion exhaust gas combusting the digested gas in the digestion gas generator, and dried, A method for treating organic waste, characterized in that a dry exhaust gas generated by drying the dehydrated sludge in the indirect heating dryer is supplied to the digestion tank to heat the organic waste. 上記消化槽に供給する上記有機性廃棄物の固形物濃度を2wt%〜4wt%の範囲とするとともに、この有機性廃棄物の固形物中の有機物濃度を80wt%〜99wt%の範囲として上記消化ガスを発生させ、この消化ガスを発電効率20%〜35%の範囲の上記消化ガス発電機において燃焼するとともに、上記消化槽から排出される上記消化汚泥を上記脱水機において含水率が60wt%〜75wt%の範囲に脱水して上記間接加熱式乾燥機により乾燥することを特徴とする請求項6に記載の有機性廃棄物の処理方法。   The solid waste concentration of the organic waste supplied to the digestion tank is in the range of 2 wt% to 4 wt%, and the organic matter concentration in the solid waste of the organic waste is in the range of 80 wt% to 99 wt%. Gas is generated and the digestion gas is burned in the digestion gas generator having a power generation efficiency in the range of 20% to 35%. The digested sludge discharged from the digestion tank has a water content of 60 wt% to 60% in the dehydrator. The method for treating organic waste according to claim 6, wherein the organic waste is dehydrated to a range of 75 wt% and dried by the indirect heating dryer.
JP2014003428A 2014-01-10 2014-01-10 Organic waste processing apparatus and organic waste processing method Active JP6270206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014003428A JP6270206B2 (en) 2014-01-10 2014-01-10 Organic waste processing apparatus and organic waste processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014003428A JP6270206B2 (en) 2014-01-10 2014-01-10 Organic waste processing apparatus and organic waste processing method

Publications (2)

Publication Number Publication Date
JP2015131263A true JP2015131263A (en) 2015-07-23
JP6270206B2 JP6270206B2 (en) 2018-01-31

Family

ID=53898970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003428A Active JP6270206B2 (en) 2014-01-10 2014-01-10 Organic waste processing apparatus and organic waste processing method

Country Status (1)

Country Link
JP (1) JP6270206B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044482A (en) * 2018-09-18 2020-03-26 水ing株式会社 Sludge treatment system and sludge treatment method
CN113045176A (en) * 2021-04-06 2021-06-29 河南城建学院 Energy-saving sludge drying device for recovering waste heat

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910400A (en) * 1982-07-07 1984-01-19 Nippon Kokan Kk <Nkk> Electric power generation system using digestion gas of sewer sludge
JPS61120699A (en) * 1984-11-16 1986-06-07 Ebara Infilco Co Ltd Treatment of organic sludge
JPS61129099A (en) * 1984-11-28 1986-06-17 Ebara Infilco Co Ltd Treatment of organic sludge
US5723048A (en) * 1993-12-28 1998-03-03 Hitachi Zosen Corporation Method of anaerobic digestion of sewage sludge
JP2000282071A (en) * 1999-03-26 2000-10-10 Chikusan Kankyo Hozen Gijutsu Kenkyu Kumiai Method and apparatus for producing dried material from wet organic waste
JP2002326071A (en) * 2001-05-02 2002-11-12 Chugoku Electric Power Co Inc:The Method of and system for recycling circulating resource such as waste food
JP2002361217A (en) * 2001-06-08 2002-12-17 Kubota Corp Method for recycling organic waste into resource
JP2004066094A (en) * 2002-08-06 2004-03-04 Kawasaki Heavy Ind Ltd Treatment method in sewage disposal plant for garbage disposer waste water
JP2004122073A (en) * 2002-10-07 2004-04-22 Chugoku Electric Power Co Inc:The Method for recycling treatment of waste and recycling treatment facility for the same
JP2004353926A (en) * 2003-05-28 2004-12-16 Tsukishima Kikai Co Ltd Method of manufacturing dried product
JP2005270778A (en) * 2004-03-24 2005-10-06 Ebara Corp Digestion gas utilizing method and digestion gas utilizing apparatus
JP2009034569A (en) * 2007-07-31 2009-02-19 Chugoku Electric Power Co Inc:The Food waste, and system for recovering energy from sludge

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910400A (en) * 1982-07-07 1984-01-19 Nippon Kokan Kk <Nkk> Electric power generation system using digestion gas of sewer sludge
JPS61120699A (en) * 1984-11-16 1986-06-07 Ebara Infilco Co Ltd Treatment of organic sludge
JPS61129099A (en) * 1984-11-28 1986-06-17 Ebara Infilco Co Ltd Treatment of organic sludge
US5723048A (en) * 1993-12-28 1998-03-03 Hitachi Zosen Corporation Method of anaerobic digestion of sewage sludge
JP2000282071A (en) * 1999-03-26 2000-10-10 Chikusan Kankyo Hozen Gijutsu Kenkyu Kumiai Method and apparatus for producing dried material from wet organic waste
JP2002326071A (en) * 2001-05-02 2002-11-12 Chugoku Electric Power Co Inc:The Method of and system for recycling circulating resource such as waste food
JP2002361217A (en) * 2001-06-08 2002-12-17 Kubota Corp Method for recycling organic waste into resource
JP2004066094A (en) * 2002-08-06 2004-03-04 Kawasaki Heavy Ind Ltd Treatment method in sewage disposal plant for garbage disposer waste water
JP2004122073A (en) * 2002-10-07 2004-04-22 Chugoku Electric Power Co Inc:The Method for recycling treatment of waste and recycling treatment facility for the same
JP2004353926A (en) * 2003-05-28 2004-12-16 Tsukishima Kikai Co Ltd Method of manufacturing dried product
JP2005270778A (en) * 2004-03-24 2005-10-06 Ebara Corp Digestion gas utilizing method and digestion gas utilizing apparatus
JP2009034569A (en) * 2007-07-31 2009-02-19 Chugoku Electric Power Co Inc:The Food waste, and system for recovering energy from sludge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044482A (en) * 2018-09-18 2020-03-26 水ing株式会社 Sludge treatment system and sludge treatment method
JP7074630B2 (en) 2018-09-18 2022-05-24 水ing株式会社 Sewage sludge treatment system and sludge treatment method
CN113045176A (en) * 2021-04-06 2021-06-29 河南城建学院 Energy-saving sludge drying device for recovering waste heat
CN113045176B (en) * 2021-04-06 2022-06-21 河南城建学院 Energy-saving sludge drying device for recovering waste heat

Also Published As

Publication number Publication date
JP6270206B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
BRPI0517570B1 (en) Process to convert biosolids to a fuel
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
JP2008201964A (en) Process and system for producing solid fuel
EP2933030B1 (en) Waste and sewage treatment system
JP3861093B2 (en) Method and apparatus for converting sludge into fuel
KR20130117746A (en) Sludge carbonizing system, and byproduct fuel extraction method
JP2006348302A (en) Method and apparatus for converting sludge into fuel
JP2005125265A (en) Treating method and treating system of organic waste
KR102452517B1 (en) Biogas production system using mixture of dry feed and anaerobic digestate
JP6270206B2 (en) Organic waste processing apparatus and organic waste processing method
KR20140028407A (en) Sludge carbonizing system, and byproduct fuel extraction method
JP2008173612A (en) Waste treatment apparatus and method
CN102701564A (en) Sludge drying method
KR20110054096A (en) The method and device of the convention decompression circulation dryer
US8939676B2 (en) Ammonia stripper
KR101051093B1 (en) High Function Organic Sludge Dryer Using Water-In-oil Evaporation Technology at Normal Pressure
KR101252289B1 (en) Livestock wastewater sludge treatment apparatus
JP2008063362A (en) Method and apparatus for treating chlorine-containing organic waste
JP2010149079A (en) Treatment method of waste containing highly hydrous waste and treatment device used for the same
JP2011020060A (en) Garbage disposal system
JP2005200522A (en) Method and system for carbonizing treatment of highly hydrous organic material and method for preventing white smoke
CN209989236U (en) Sludge drying treatment system
KR101582528B1 (en) Carbonization apparatus for treating organic waste with vehicle-mount construction
CN110078350B (en) Sludge comprehensive treatment system and method
JP2018021166A (en) Production method and production apparatus of carbide from biomass resource including large amount of moisture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6270206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350