JP2005125265A - Treating method and treating system of organic waste - Google Patents

Treating method and treating system of organic waste Download PDF

Info

Publication number
JP2005125265A
JP2005125265A JP2003365416A JP2003365416A JP2005125265A JP 2005125265 A JP2005125265 A JP 2005125265A JP 2003365416 A JP2003365416 A JP 2003365416A JP 2003365416 A JP2003365416 A JP 2003365416A JP 2005125265 A JP2005125265 A JP 2005125265A
Authority
JP
Japan
Prior art keywords
exhaust gas
carbonization furnace
organic waste
gas turbine
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003365416A
Other languages
Japanese (ja)
Other versions
JP4390524B2 (en
Inventor
Masakazu Sawai
正和 澤井
Shuichiro Hatakeyama
修一郎 畠山
Hiroshi Kuroda
浩史 黒田
Masaki Kanzawa
正樹 神澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003365416A priority Critical patent/JP4390524B2/en
Publication of JP2005125265A publication Critical patent/JP2005125265A/en
Application granted granted Critical
Publication of JP4390524B2 publication Critical patent/JP4390524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Coke Industry (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method capable of effectively utilizing an organic waste since the efficiency of a gas turbine can be improved and an active carbide is manufactured by carbonizing the organic waste. <P>SOLUTION: The treating method of the organic waste that the gas turbine generator 2 is put side by side with a charring (activation) furnace 3, a dehydrated cake of the organic waste is dried and is supplied to the furnace 3 to perform a carbonizing treatment while supplying electric power to the furnace 3 and others, wherein a turbine exhaust gas G exhausted from the gas turbine is supplied to the turbine 3 and is burned with a firework fuel J, the dried dehydrated cake S is thermally decomposed and carbonized in a reductive atmosphere, an active carbide C is recovered, the potential heat of the carbide exhaust gas H from the furnace 3 is thermally recovered through a heat exchanger 5 and is used to dry the dehydrated cake S, is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、炭素を含有する有機性廃棄物、とくに下水処理場、浄水場などから発生する汚泥をはじめ食品屑などを炭化して処理する方法とその処理システムに関するもので、詳しくはガスタービン発電機の併設して高酸素濃度の排ガスを炭化処理に有効利用することを前提にしたものである。   The present invention relates to a method and a treatment system for carbonizing organic waste containing carbon, particularly sludge generated from sewage treatment plants, water purification plants, and other food waste, and more specifically, a gas turbine power generation system. This is based on the premise that a high oxygen concentration exhaust gas is effectively used for carbonization with the addition of a machine.

上記のガスタービン単体では熱効率が悪いために発電効率が低いので、発電効率の向上が要望視されている。   Since the above gas turbine alone has poor heat efficiency and low power generation efficiency, improvement in power generation efficiency is regarded as a demand.

また近年、有機性廃棄物の有効利用についての研究が盛んに行われており、バイオガス化、コンポスト化、炭化など様々な技術が確立されつつある。   In recent years, research on effective use of organic waste has been actively conducted, and various technologies such as biogasification, composting, and carbonization are being established.

この種の先行技術に、例えば、炭化原料から活性炭化物を製造する装置として、スクリューコンベヤを内部に設けた炭化管を燃焼炉内に設置して炭化炉を構成し、炭化原料を供給装置により炭化管内に供給して間接加熱処理し、炭化管の前段で炭化原料を乾燥して水蒸気を発生させ、中段で炭化させて水蒸気と熱分解ガスを発生させ、後段で炭化物を水蒸気と熱分解ガスで賦活・活性化させて活性炭化物を製造する構造のものが提案されている(例えば、特許文献1参照)。   In this type of prior art, for example, as an apparatus for producing activated carbide from a carbonized raw material, a carbonization tube having a screw conveyor provided therein is installed in the combustion furnace to constitute a carbonization furnace, and the carbonized raw material is carbonized by a supply device. It is supplied into the pipe and subjected to indirect heat treatment, the carbonized raw material is dried at the front stage of the carbonization pipe to generate water vapor, carbonized at the middle stage to generate water vapor and pyrolysis gas, and the carbide at the rear stage by steam and pyrolysis gas. The thing of the structure which activates and activates and manufactures activated carbide is proposed (for example, refer to patent documents 1).

その他に、高水分含有汚泥を乾燥・焼成する汚泥乾燥焼成設備と、この汚泥乾燥焼成設備とその関連設備に電力を供給するガスタービン発電機とで構成され、そのガスタービン発電機から出る高温排ガスの少なくとも一部を汚泥乾燥焼成設備の熱風乾燥機・高温焼成機に供給して汚泥を乾燥・焼成する構造の汚泥資源化方法が提案されている(例えば、特許文献2参照)。   In addition, it consists of a sludge drying and firing facility that dries and calcines sludge containing high moisture, and a gas turbine generator that supplies power to this sludge drying and firing facility and related equipment, and high-temperature exhaust gas from the gas turbine generator. A sludge resource recycling method has been proposed in which at least a part of the sludge is supplied to a hot air dryer / high temperature calciner of a sludge drying and firing facility to dry and burn the sludge (see, for example, Patent Document 2).

また、有機物からメタン醗酵させて得られる消化ガスを燃料電池発電に使用することが提案されている(例えば、特許文献3参照)。
特開2001−322809号公報(段落番号0008、0009、0019) 特開平8−61646号公報(請求項1、段落番号0008、0017) 特開2001−23677号公報(段落番号0020〜0022、図1)
In addition, it has been proposed to use digestion gas obtained by subjecting organic matter to methane fermentation for fuel cell power generation (see, for example, Patent Document 3).
JP 2001-322809 A (paragraph numbers 0008, 0009, 0019) JP-A-8-61646 (Claim 1, paragraph numbers 0008, 0017) Japanese Patent Laid-Open No. 2001-23677 (paragraph numbers 0020 to 0022, FIG. 1)

上記の汚泥資源化方法では、ガスタービンを汚泥乾燥焼成設備に併設し、ガスタービンの排ガスを熱風乾燥機・高温焼成機に供給して汚泥を乾燥・焼成するのに使用している。この方法では、汚泥は乾燥あるいは焼成して処理されるため、有効に利用されているとは云えない。しかも、ガスタービンの運転状況によって排ガス量が変化するが、汚泥乾燥焼成設備では排ガス量の変化に応じて燃焼量を増減する必要があり、制御が複雑である。また、ガスタービン発電機に供給される空気は酸素濃度が21%位であるが、ガスタービンでは酸素がほとんど消費されず、酸素濃度17〜19%の燃焼排ガスが排出され、また同排ガスは顕熱を保有しているので、有効利用を図るべきである。   In the sludge resource recycling method described above, a gas turbine is provided in the sludge drying and firing facility, and the exhaust gas from the gas turbine is supplied to a hot air dryer and a high-temperature calciner to be used for drying and firing the sludge. In this method, the sludge is dried or baked, and thus cannot be effectively used. In addition, although the amount of exhaust gas varies depending on the operating condition of the gas turbine, in the sludge drying and firing facility, it is necessary to increase or decrease the combustion amount in accordance with the change in the amount of exhaust gas, and the control is complicated. The air supplied to the gas turbine generator has an oxygen concentration of about 21%. However, the gas turbine hardly consumes oxygen, and exhaust gas with an oxygen concentration of 17 to 19% is discharged. Since it has heat, it should be used effectively.

本発明はガスタービン発電機を炭化炉と組み合わせることにより、理想的燃焼を両者で達成し、ガスタービンの効率も向上でき、また有機性廃棄物を炭化して活性炭化物を製造して有効利用を図れる有機性廃棄物の処理方法と処理システムを提供することを目的としている。   In the present invention, by combining a gas turbine generator with a carbonization furnace, ideal combustion can be achieved by both, the efficiency of the gas turbine can be improved, and organic waste is carbonized to produce activated carbide for effective use. It aims at providing the processing method and processing system of organic waste which can be planned.

上記の目的を達成するために本発明に係る有機性廃棄物の処理方法は、炭化炉(炭化賦活炉)にガスタービン発電機を併設し、前記炭化炉その他に電力を供給しながら、有機性廃棄物の脱水ケーキを乾燥し前記炭化炉に供給して炭化処理する有機性廃棄物の処理方法であって、
前記ガスタービンから排出される燃焼排ガスを前記炭化炉に供給し助燃料とともに燃焼させ、乾燥させた前記脱水ケーキを還元雰囲気中で熱分解して炭化させ、炭化物を回収するとともに、前記炭化炉からの排ガスの保有熱を熱交換手段を介して熱回収し、前記脱水ケーキの乾燥に用いることを特徴とする。
In order to achieve the above object, the organic waste processing method according to the present invention includes a gas turbine generator in a carbonization furnace (carbonization activation furnace), and supplies organic power while supplying power to the carbonization furnace and others. An organic waste treatment method for drying a dehydrated cake of waste and supplying it to the carbonization furnace for carbonization,
Combustion exhaust gas discharged from the gas turbine is supplied to the carbonization furnace and combusted with auxiliary fuel, and the dried dehydrated cake is pyrolyzed and carbonized in a reducing atmosphere to collect carbides, and from the carbonization furnace. The retained heat of the exhaust gas is recovered through a heat exchange means and used for drying the dehydrated cake.

上記の構成を有する本発明の処理方法によれば、ガスタービンから排出される燃焼排ガスを有機廃棄物の炭化に必要な熱源として有効に利用できるほか、炭化に使用された後の排ガスについても熱交換手段により熱回収し、脱水ケーキの乾燥の熱源として使用することができ無駄がない。こうしてガスタービン発電機に導入する酸素濃度21%前後の空気中の酸素を段階的に消費し、最終的に酸素濃度9%以下(望ましくは6%前後)の排ガスとして排気することができ、全体としての熱効率を向上できる。また、有機性廃棄物から活性炭化物を製造してダイオキシン吸着剤や脱臭剤などとして使用できる。   According to the treatment method of the present invention having the above configuration, the combustion exhaust gas discharged from the gas turbine can be effectively used as a heat source necessary for carbonization of organic waste, and the exhaust gas after being used for carbonization is also heated. Heat can be recovered by the exchange means and used as a heat source for drying the dehydrated cake. In this way, oxygen in the air with an oxygen concentration of about 21% introduced into the gas turbine generator is consumed in stages, and finally exhausted as an exhaust gas with an oxygen concentration of 9% or less (preferably around 6%). The thermal efficiency can be improved. In addition, activated carbon can be produced from organic waste and used as a dioxin adsorbent or deodorant.

請求項2に記載のように、前記炭化炉の排ガスにより水を加熱して水蒸気を発生させ、この水蒸気の一部を前記脱水ケーキの乾燥に、同水蒸気の残りの一部を前記ガスタービンに導入してチェーンサイクルに、同水蒸気の残りを前記ガスタービンへ導入する冷却空気用の空気冷却にそれぞれ用いることができる。   As described in claim 2, water is heated by the exhaust gas from the carbonization furnace to generate water vapor, a part of the water vapor is used for drying the dewatered cake, and a part of the water vapor is supplied to the gas turbine. The water vapor can be introduced into the chain cycle and used for air cooling for cooling air for introducing the remainder of the water vapor into the gas turbine.

請求項2記載の処理方法によれば、ガスタービンから排出される燃焼排ガスを有機性廃棄物の炭化に使用後、水蒸気に変換して熱回収するので、脱水ケーキの乾燥用熱源に使用できるだけでなく、例えば、ガスタービンに蒸気を吹き込むチェーンサイクルシステムを採用したり、また蒸気を熱源とする冷却器で空気を冷却してガスタービンに吹き込んで吸気温度を下げたりすることができ、発電効率を大幅に向上することができる。   According to the processing method of claim 2, since the combustion exhaust gas discharged from the gas turbine is used for carbonization of the organic waste, it is converted into water vapor and heat is recovered, so that it can only be used as a heat source for drying the dehydrated cake. For example, a chain cycle system in which steam is blown into the gas turbine can be adopted, or air can be cooled with a cooler using steam as a heat source and blown into the gas turbine to lower the intake air temperature. It can be greatly improved.

請求項3に記載のように、前記熱交換手段を介して熱回収することにより200℃以上(望ましくは450〜650℃)の加熱空気あるいは過熱蒸気を前記脱水ケーキの乾燥に使用するとともに、前記炭化炉の温度が900℃以上(望ましくは950℃)に維持されるように助燃料の供給量を制御したうえ、前記熱交換手段を通過した排ガスの酸素濃度を9%以下(望ましくは6%)に維持されるよう前記ガスタービンの発電量を制御することができる。   As described in claim 3, by using heat recovery through the heat exchange means, heated air or superheated steam at 200 ° C. or higher (preferably 450 to 650 ° C.) is used for drying the dehydrated cake, and The supply amount of auxiliary fuel is controlled so that the temperature of the carbonization furnace is maintained at 900 ° C. or higher (preferably 950 ° C.), and the oxygen concentration of the exhaust gas that has passed through the heat exchange means is 9% or lower (preferably 6%). The power generation amount of the gas turbine can be controlled so as to be maintained.

請求項3記載の処理方法によれば、高効率で有機廃棄物から活性炭化物を製造することができ、また処理システム全体の熱効率が向上する。   According to the processing method of the third aspect, the activated carbide can be produced from the organic waste with high efficiency, and the thermal efficiency of the entire processing system is improved.

上記の目的を達成するために請求項4記載の処理システムは、炭化炉にガスタービン発電機を併設し、前記炭化炉その他に電力を供給しながら、有機性廃棄物の脱水ケーキを乾燥し前記炭化炉に供給して炭化処理する有機性廃棄物の処理システムであって、
前記炭化炉から排出される排ガスの熱を回収して過熱蒸気又は加熱空気を発生するための熱交換器と、この熱交換器から供給する過熱蒸気又は加熱空気により前記脱水ケーキを乾燥して前記炭化炉に供給するための乾燥機とを備えたことを特徴とする。
In order to achieve the above object, a processing system according to claim 4, wherein a gas turbine generator is provided in the carbonization furnace, and the dehydration cake of organic waste is dried while supplying power to the carbonization furnace and others. An organic waste treatment system for carbonization by supplying to a carbonization furnace,
A heat exchanger for recovering the heat of the exhaust gas discharged from the carbonization furnace to generate superheated steam or heated air, and drying the dehydrated cake with the superheated steam or heated air supplied from the heat exchanger, And a drier for supplying to the carbonization furnace.

この有機性廃棄物の処理システムによれば、上記の請求項1記載の処理方法を確実に実施できる。   According to the organic waste processing system, the processing method according to the first aspect can be reliably implemented.

請求項5に記載のように、前記熱交換器から排出される排ガスの排気管に同排ガスの温度センサーおよび酸素濃度センサーをそれぞれ装着し、前記排気管から分岐した分岐循環管一端を前記炭化炉の燃焼排ガス導入口付近に接続するとともに、前記分岐循環管には循環流量調節弁を介設してこの温度センサーにて測定される排ガスの温度に応じて前記循環流量調節弁の開度を自動調整し、前記排ガスの酸素濃度値に応じて燃料噴射量を制御する燃料噴射量調整機構を設けるようにしてもよい。   6. The exhaust gas exhaust pipe exhausted from the heat exchanger is equipped with an exhaust gas temperature sensor and an oxygen concentration sensor, respectively, and one end of the branch circulation pipe branched from the exhaust pipe is connected to the carbonization furnace. The circulation flow control valve is automatically opened according to the temperature of the exhaust gas measured by the temperature sensor by providing a circulation flow control valve in the branch circulation pipe. A fuel injection amount adjustment mechanism that adjusts and controls the fuel injection amount in accordance with the oxygen concentration value of the exhaust gas may be provided.

このようにすれば、排ガスの酸素(O2)濃度を9%以下(望ましくは6%)に維持されるよう、ガスタービンの負荷(発電量)を制御することができる。つまり、酸素濃度が高くなれば炭化燃焼用空気であるガスタービン燃焼排ガス量が減少するように発電負荷を低減する制御を行い、逆に排ガスの酸素濃度が低下すれば、ガスタービンからの燃焼排ガスの量を増大するように電力負荷が上がるように制御を行い、処理システム全体の熱効率を向上することができる。また、熱交換器から排出され炭化炉へ循環される排ガスの循環風量を、排ガスの温度に応じて循環流量調節弁の開度を自動調整して制御できるので、熱交換器から排出される排ガスの出口温度を例えば200℃に維持することができる。 In this way, the load (power generation amount) of the gas turbine can be controlled so that the oxygen (O 2) concentration of the exhaust gas is maintained at 9% or less (preferably 6%). That is, if the oxygen concentration increases, control is performed to reduce the power generation load so that the amount of gas turbine combustion exhaust gas, which is carbonization combustion air, decreases. Conversely, if the oxygen concentration of the exhaust gas decreases, the combustion exhaust gas from the gas turbine Control is performed so as to increase the power load so as to increase the amount of the heat, and the thermal efficiency of the entire processing system can be improved. In addition, since the circulation air volume of the exhaust gas discharged from the heat exchanger and circulated to the carbonization furnace can be controlled by automatically adjusting the opening of the circulation flow rate control valve according to the temperature of the exhaust gas, the exhaust gas discharged from the heat exchanger The outlet temperature can be maintained at 200 ° C., for example.

上記の目的を達成するために請求項6記載の処理システムは、炭化炉にガスタービン発電機を併設し、前記炭化炉その他に電力を供給しながら、有機性廃棄物の脱水ケーキを乾燥し前記炭化炉に供給して炭化処理する有機性廃棄物の処理システムであって、
前記炭化炉から排出される排ガスの熱を回収して過熱蒸気を発生するための廃熱ボイラと、この廃熱ボイラに給水するためおよび廃熱ボイラで消費した分を補うための給水装置と、前記廃熱ボイラから供給する過熱蒸気により前記脱水ケーキを乾燥して前記炭化炉に供給するための乾燥機と、前記廃熱ボイラから供給する過熱蒸気にて空気を冷却して前記ガスタービンに導入するための冷却器と、前記廃熱ボイラからの過熱蒸気を前記ガスタービンへ供給するための供給路とを備えたことを特徴とする。
In order to achieve the above object, a processing system according to claim 6, wherein a gas turbine generator is provided in the carbonization furnace, and the dehydration cake of organic waste is dried while supplying electric power to the carbonization furnace and others. An organic waste treatment system for carbonization by supplying to a carbonization furnace,
A waste heat boiler for recovering the heat of exhaust gas discharged from the carbonization furnace to generate superheated steam, a water supply device for supplying water to the waste heat boiler and for supplementing the amount consumed by the waste heat boiler, A dryer for drying the dehydrated cake with the superheated steam supplied from the waste heat boiler and supplying it to the carbonization furnace, and cooling the air with the superheated steam supplied from the waste heat boiler and introducing it into the gas turbine And a supply passage for supplying superheated steam from the waste heat boiler to the gas turbine.

この有機性廃棄物の処理システムによれば、請求項4記載の処理システムに比べて機器類の点数は増えるが、タービンチェーンサイクルを行うことを可能にし、またタービン導入用の吸気温度を下げることを可能にし、発電効率が大幅に(約20〜30%)アップする。いいかえれば、請求項2記載の処理方法を確実に実施できる。   According to this organic waste processing system, although the number of equipment is increased as compared with the processing system according to claim 4, it is possible to perform a turbine chain cycle and to lower the intake air temperature for introducing the turbine. Power generation efficiency is greatly improved (about 20 to 30%). In other words, the processing method according to claim 2 can be reliably performed.

請求項7に記載のように、前記熱交換器から排出される排ガスの排気管に同排ガスの温度センサーおよび酸素濃度センサーをそれぞれ装着し、前記排気管から分岐した分岐循環管一端を前記炭化炉の燃焼排ガス導入口付近に接続するとともに、前記分岐循環管には循環流量調整弁を介設してこの温度センサーにて測定される排ガスの温度に応じて前記循環流量調整弁の開度を自動調整し、また前記酸素濃度センサーと前記炭化炉に設けた炉内温度センサーとを炭化炉への助燃料供給量を調整するための流量調整弁にそれぞれ接続して炭化炉内温度および排ガスの酸素濃度の変化に応じて前記助燃料供給量を制御できるようにすることができる。   The temperature sensor and oxygen concentration sensor of the exhaust gas are respectively attached to the exhaust pipe of the exhaust gas discharged from the heat exchanger, and one end of the branch circulation pipe branched from the exhaust pipe is connected to the carbonization furnace. Connected to the vicinity of the combustion exhaust gas inlet, and a circulation flow rate adjustment valve is provided in the branch circulation pipe to automatically open the circulation flow rate adjustment valve according to the temperature of the exhaust gas measured by this temperature sensor. The oxygen concentration sensor and the in-furnace temperature sensor provided in the carbonization furnace are connected to a flow rate adjusting valve for adjusting the amount of auxiliary fuel supplied to the carbonization furnace, respectively, and the carbonization furnace temperature and exhaust gas oxygen are connected. The auxiliary fuel supply amount can be controlled in accordance with a change in concentration.

このようにすれば、助燃料供給量を制御して炭化炉の温度を900℃以上、望ましくは950℃に維持することができる。つまり、炭化炉への助燃料供給量は炭化温度によって制御されるのを基本とし、前記熱交換器から排出される排ガスの酸素濃度による制御は炭化温度によって規定される制御結果に対し、+又は−の変化指令を与える。これにより、炭化排ガスの量および廃熱ボイラからの余剰蒸気量が変化し、例えば排ガスの酸素濃度が高いときに助燃料が多くなり、廃熱ボイラからの蒸気量が増え、ガスタービンチェーンサイクルおよびガスタービン入り口空気温度冷却能力が増大する。また、炭化炉へ循環される排ガスの循環風量を循環弁の開度で制御して廃熱ボイラから排出される排ガスの出口温度を例えば200℃に維持することができる。さらに排ガスの酸素濃度を9%以下(望ましくは6%)に維持されるようにガスタービンの負荷(発電量)を制御することができ、処理システム全体の熱効率を向上させられる。さらにまた、炭化系の上記制御により、廃熱ボイラーからの余剰蒸気が増えると、チェーンサイクルおよび入り口空気が冷却され、タービン発電量が増大する。   In this way, the temperature of the carbonization furnace can be maintained at 900 ° C. or higher, preferably 950 ° C. by controlling the auxiliary fuel supply amount. That is, the amount of auxiliary fuel supplied to the carbonization furnace is basically controlled by the carbonization temperature, and the control based on the oxygen concentration of the exhaust gas discharged from the heat exchanger is + or -Change command is given. This changes the amount of carbonized exhaust gas and the amount of surplus steam from the waste heat boiler.For example, when the oxygen concentration of the exhaust gas is high, the amount of auxiliary fuel increases, the amount of steam from the waste heat boiler increases, and the gas turbine chain cycle and Gas turbine inlet air temperature cooling capacity is increased. Further, the outlet temperature of the exhaust gas discharged from the waste heat boiler can be maintained at 200 ° C., for example, by controlling the circulation air volume of the exhaust gas circulated to the carbonization furnace by the opening degree of the circulation valve. Furthermore, the load (power generation amount) of the gas turbine can be controlled so that the oxygen concentration of the exhaust gas is maintained at 9% or less (preferably 6%), and the thermal efficiency of the entire processing system can be improved. Furthermore, when the surplus steam from the waste heat boiler is increased by the above control of the carbonization system, the chain cycle and the inlet air are cooled, and the amount of turbine power generation is increased.

本発明に係る有機廃棄物の処理方法あるいは処理システムによれば、ガスタービン発電機を炭化炉と組み合わせたことにより理想的燃焼を両者で達成でき、ガスタービンの効率も向上でき、また有機性廃棄物を炭化して活性炭化物を製造するので、有機性廃棄物の有効利用が図れる。   According to the organic waste processing method or processing system of the present invention, ideal combustion can be achieved by combining a gas turbine generator with a carbonization furnace, the efficiency of the gas turbine can be improved, and organic waste can be improved. Since the activated carbon is produced by carbonizing the product, the organic waste can be effectively used.

本発明の請求項1に係る処理方法および請求項4に係る処理システムでは、炭化の規模に応じて、最良に近い熱効率をもたらすガスタービン発電量が得られる。   In the processing method according to the first aspect of the present invention and the processing system according to the fourth aspect of the present invention, the amount of gas turbine power generation that brings about the best thermal efficiency can be obtained according to the scale of carbonization.

請求項2の処理方法および請求項5の処理システムでは、タービン発電や炭化の規模およびそれらのバランスに応じて最良に近い熱効率でもって下水汚泥などの有機性廃棄物処理と発電をなし得る。また、請求項5に記載の処理システムは、機器類の点数が増え、構造がやや複雑になるが、熱回収を蒸気にて行うので、タービンチェーンサイクルを行うことが可能になる。これにより、発電効率が約20%アップする。また、タービン導入の吸気温度を低下させることにより発電効率が約10%アップする。   In the processing method of claim 2 and the processing system of claim 5, organic waste processing such as sewage sludge and power generation can be performed with thermal efficiency close to the best according to the scale of turbine power generation and carbonization and their balance. Further, the processing system according to claim 5 increases the number of equipment and makes the structure somewhat complicated. However, since heat recovery is performed with steam, a turbine chain cycle can be performed. This increases power generation efficiency by about 20%. Further, the power generation efficiency is increased by about 10% by lowering the intake air temperature when the turbine is introduced.

(実施例1)
図1は本発明の処理システムを下水汚泥の処理に適用した実施例を系統的に示すフロー図である。図1に示すように本例の処理システム1は、下水処理場での下水処理に伴って発生する下水汚泥を炭化・賦活処理して活性炭化物Cを製造するための炭化(賦活)炉3をガスタービンに発電機が連結されたガスタービン発電機2と組み合わせて設置している。ガスタービン発電機2および炭化(賦活)炉3は公知のもので、炭化(賦活)炉3は例えば特許2975011号公報に記載された下記の構造のものを使用する。
(Example 1)
FIG. 1 is a flow diagram schematically showing an embodiment in which the treatment system of the present invention is applied to the treatment of sewage sludge. As shown in FIG. 1, the treatment system 1 of this example includes a carbonization (activation) furnace 3 for producing activated carbide C by carbonizing and activating sewage sludge generated in the sewage treatment plant. It is installed in combination with a gas turbine generator 2 in which a generator is connected to a gas turbine. The gas turbine generator 2 and the carbonization (activation) furnace 3 are known, and the carbonization (activation) furnace 3 having the following structure described in, for example, Japanese Patent No. 2975011 is used.

図2に示すように、炭化(賦活)炉3は、炉本体31内にスクリューコンベヤ34が内装された金属製の円筒状炭化管33が配設され、ガスタービン発電機2のガスタービンから排出されるタービン排ガスGが導入口32から炉本体31内に供給される。炉本体31内では導入口32から供給されたタービン排ガスGが後述する助燃料Jとともにバーナー(図示せず)で燃焼され、この燃焼ガスG’が炭化管33の長手方向に沿って下方から上方の排気口35へ流れて排出される。一方、乾燥機4から搬出された乾燥汚泥Tは、炭化管33の一端に設けられた入り口33aから炭化管33内に供給され、炉本体31内を流通入する炭化排ガスHにて間接的に加熱される。そして、炭化管33内の還元雰囲気中をスクリューコンベヤ34にて下流側へ順に搬送される間に炭化される。また、炭化管33内では乾燥汚泥Tに含有されている水分が水蒸気となって発生し、下流側の炭化管33内で乾燥汚泥Tの炭化処理時に発生する熱分解ガスとともに賦活処理に用いられる。炭化管33内部に充満している水蒸気および熱分解ガスは、炭化管33の下流端付近の排気口33bから炉本体31内に排出され、タービン排ガスGと混合されて燃焼する。また、末端部は冷却管36で構成され、その周囲に水冷機構37が装着されており、炭化管33とはロータリーバルブ38を介して接続されている。そして、炭化管33内で生成された活性炭化物Cが冷却管36内をスクリューコンベヤ34で搬送される間に冷却され、末端の下向きに開口した取出口36aから取り出される。   As shown in FIG. 2, the carbonization (activation) furnace 3 is provided with a metal cylindrical carbonization pipe 33 in which a screw conveyor 34 is housed in a furnace body 31, and is discharged from the gas turbine of the gas turbine generator 2. The turbine exhaust gas G is supplied from the inlet 32 into the furnace body 31. In the furnace main body 31, the turbine exhaust gas G supplied from the introduction port 32 is combusted by a burner (not shown) together with the auxiliary fuel J, which will be described later, and this combustion gas G ′ rises from below along the longitudinal direction of the carbonization tube 33. To the exhaust port 35 and discharged. On the other hand, the dried sludge T carried out from the dryer 4 is supplied into the carbonization pipe 33 from an inlet 33a provided at one end of the carbonization pipe 33, and indirectly through the carbonization exhaust gas H flowing in the furnace body 31. Heated. Then, carbonization is performed while the reducing atmosphere in the carbonizing pipe 33 is sequentially conveyed downstream by the screw conveyor 34. Further, the moisture contained in the dried sludge T is generated as water vapor in the carbonized pipe 33 and is used for the activation process together with the pyrolysis gas generated during the carbonization process of the dried sludge T in the downstream carbonized pipe 33. . The water vapor and pyrolysis gas filled in the carbonization pipe 33 are discharged into the furnace body 31 from the exhaust port 33b near the downstream end of the carbonization pipe 33, mixed with the turbine exhaust gas G, and burned. Further, the end portion is constituted by a cooling pipe 36, a water cooling mechanism 37 is mounted around the cooling pipe 36, and is connected to the carbonizing pipe 33 via a rotary valve 38. Then, the activated carbide C generated in the carbonizing pipe 33 is cooled while being conveyed in the cooling pipe 36 by the screw conveyor 34, and is taken out from the outlet 36a opened downward at the end.

このようにして、炭化(賦活)炉3の炭化管33内に供給される乾燥汚泥Tは、炭化管33内で炭化処理されたのち、賦活処理されて活性炭化物Cとして取り出される。   In this way, the dried sludge T supplied into the carbonization pipe 33 of the carbonization (activation) furnace 3 is carbonized in the carbonization pipe 33, and then activated and extracted as activated carbide C.

その他、下水汚泥を遠心分離機等で脱水した脱水ケーキSを乾燥し、乾燥汚泥Tにするための乾燥機4ならびに炭化(賦活)炉3からの炭化排ガスHの熱を回収するための熱交換器5を備えている。炭化(賦活)炉3の本体31内にはタービン排ガスGとともに助燃料J、本例では重油が給油管6により導入口32付近へ供給される。この給油管6には助燃料噴射ポンプ24および助燃料噴射量調整弁7が介設され、炉本体31に装着された炉内温度センサー18により測定される炉内温度に応じて助燃料噴射量調整弁7の開度が自動調整され、重油の供給量が自動的に調節される。   In addition, heat exchange for recovering the heat of the carbonized exhaust gas H from the dryer 4 and the carbonization (activation) furnace 3 for drying the dewatered cake S obtained by dewatering the sewage sludge with a centrifuge etc. A vessel 5 is provided. In the main body 31 of the carbonization (activation) furnace 3, auxiliary fuel J, in this example heavy oil, is supplied to the vicinity of the introduction port 32 through the oil supply pipe 6 together with the turbine exhaust gas G. The fuel supply pipe 6 is provided with an auxiliary fuel injection pump 24 and an auxiliary fuel injection amount adjustment valve 7, and the auxiliary fuel injection amount is determined according to the furnace temperature measured by the furnace temperature sensor 18 mounted on the furnace body 31. The opening degree of the regulating valve 7 is automatically adjusted, and the supply amount of heavy oil is automatically adjusted.

脱水ケーキSは、貯留場(図示せず)から送給ポンプ9を介設した送給管8によって乾燥機4へ送給される。乾燥機4では、脱水ケーキSが加熱空気(あるいは過熱蒸気)で乾燥されるが、この加熱空気は熱交換器5にて炭化排ガスHの熱で加熱され、供給管10で乾燥機4へ送られる。加熱空気は200℃以上、できれば450〜650℃が望ましい。また、乾燥機4に送られた加熱空気は戻し管12により熱交換器5へ戻され、循環される。供給管10の途中には流量調整弁11が介設され、戻し管12に装着された空気温度センサー22により測定される温度に応じて流量調整弁11の開度が自動調整される。   The dewatered cake S is fed to the dryer 4 through a feed pipe 8 provided with a feed pump 9 from a storage site (not shown). In the dryer 4, the dehydrated cake S is dried with heated air (or superheated steam). This heated air is heated by the heat of the carbonized exhaust gas H in the heat exchanger 5 and is sent to the dryer 4 through the supply pipe 10. It is done. The heated air is preferably 200 ° C. or higher, preferably 450 to 650 ° C. The heated air sent to the dryer 4 is returned to the heat exchanger 5 through the return pipe 12 and circulated. A flow rate adjusting valve 11 is provided in the middle of the supply pipe 10, and the opening degree of the flow rate adjusting valve 11 is automatically adjusted according to the temperature measured by the air temperature sensor 22 mounted on the return pipe 12.

熱交換器5から排出される排ガスIは排気管13から煙突(図示せず)等を通して大気中へ放散されるが、排気管13には排ガスIの温度センサー14および酸素濃度センサー15がそれぞれ装着されている。また、排気管13は分岐され、分岐循環管16の一端が炭化(賦活)炉3のタービン排ガスGの導入口32付近に接続されている。分岐循環管16には循環流量調節弁17が介設され、温度センサー14にて測定される排ガスIの温度に応じて循環流量調節弁17の開度が自動調整される。さらに、酸素濃度センサー15はガスタービン発電機2の燃料噴射ポンプ23に接続され、排ガスIの酸素濃度値に応じて燃料噴射量が制御される。さらにまた、酸素濃度センサー15とポンプ9とが接続され、排ガスIの酸素濃度値に応じてポンプ9の回転数が自動制御され、乾燥機4へ送給される脱水ケーキSの供給量が自動的に調節される。   Exhaust gas I exhausted from the heat exchanger 5 is released from the exhaust pipe 13 into the atmosphere through a chimney (not shown) or the like, and the exhaust pipe 13 is provided with a temperature sensor 14 and an oxygen concentration sensor 15 for the exhaust gas I, respectively. Has been. Further, the exhaust pipe 13 is branched, and one end of the branch circulation pipe 16 is connected to the vicinity of the inlet 32 of the turbine exhaust gas G of the carbonization (activation) furnace 3. A circulation flow rate adjustment valve 17 is provided in the branch circulation pipe 16, and the opening degree of the circulation flow rate adjustment valve 17 is automatically adjusted according to the temperature of the exhaust gas I measured by the temperature sensor 14. Further, the oxygen concentration sensor 15 is connected to the fuel injection pump 23 of the gas turbine generator 2, and the fuel injection amount is controlled according to the oxygen concentration value of the exhaust gas I. Furthermore, the oxygen concentration sensor 15 and the pump 9 are connected, the rotational speed of the pump 9 is automatically controlled according to the oxygen concentration value of the exhaust gas I, and the supply amount of the dehydrated cake S fed to the dryer 4 is automatically set. Adjusted.

上記のようにして本実施例に係る処理システム1が構成されるが、以下に本例の処理システム1の制御を処理方法とともに詳しく説明する。   The processing system 1 according to the present embodiment is configured as described above. Hereinafter, the control of the processing system 1 according to the present embodiment will be described in detail together with the processing method.

図1の処理システム1において、
a) 乾燥系:下水汚泥の脱水ケーキSは乾燥機4に投入される。このとき、熱交換器5から200℃以上、望ましくは450〜650℃の加熱空気が同時に導入される。
In the processing system 1 of FIG.
a) Drying system: The dewatered cake S of sewage sludge is put into the dryer 4. At this time, heated air of 200 ° C. or higher, preferably 450 to 650 ° C. is simultaneously introduced from the heat exchanger 5.

一方、乾燥機4では排気温度が90〜120℃を維持するように、脱水ケーキSの投入量と加熱空気の導入量が調整される。   On the other hand, in the dryer 4, the amount of the dehydrated cake S and the amount of heated air introduced are adjusted so that the exhaust temperature is maintained at 90 to 120 ° C.

b) 炭化系:炭化(賦活)炉3の炉本体31内の温度が900℃以上、望ましくは950℃に維持されるように助燃料Jである重油の供給量が調整される。   b) Carbonization system: The supply amount of heavy oil as auxiliary fuel J is adjusted so that the temperature in the furnace body 31 of the carbonization (activation) furnace 3 is maintained at 900 ° C. or higher, preferably 950 ° C.

一方、熱交換器5から排出される排ガスIの出口温度は200℃を維持するように、炭化(賦活)炉3へ循環される排ガスIの循環風量が循環流量調節弁17の開度で制御される。つまり、脱水ケーキSの乾燥用熱源が増加すると排ガスIの出口温度が低下するので、循環流量調節弁17の開度が増大し循環される排ガス量が増える。この結果、熱交換器5を通過する炭化(賦活)炉3からの炭化排ガスHの量が増加する。   On the other hand, the circulation air volume of the exhaust gas I circulated to the carbonization (activation) furnace 3 is controlled by the opening degree of the circulation flow control valve 17 so that the outlet temperature of the exhaust gas I discharged from the heat exchanger 5 is maintained at 200 ° C. Is done. That is, when the heat source for drying the dewatering cake S increases, the outlet temperature of the exhaust gas I decreases, so the opening degree of the circulation flow rate control valve 17 increases and the amount of the exhausted gas to be circulated increases. As a result, the amount of carbonized exhaust gas H from the carbonization (activation) furnace 3 passing through the heat exchanger 5 increases.

また処理システム1全体の熱効率を向上するために、排ガスIの酸素濃度を9%以下(望ましくは6%)に維持されるよう、ガスタービンの負荷(発電量)を制御する。つまり、酸素濃度が高くなれば、炭化燃焼用空気であるタービン排ガス量Gが減少するように発電負荷を低減する制御を行う。   In order to improve the thermal efficiency of the entire processing system 1, the load (power generation amount) of the gas turbine is controlled so that the oxygen concentration of the exhaust gas I is maintained at 9% or less (preferably 6%). In other words, if the oxygen concentration increases, control is performed to reduce the power generation load so that the turbine exhaust gas amount G, which is carbonization combustion air, decreases.

c) ガスタービン発電系:ガスタービン自体は電力負荷の変動に応じて燃料制御が行われる。そして、排ガスIの酸素濃度が低下すれば、ガスタービンからの燃焼排ガスHの量を増大するように電力負荷が上げられる。   c) Gas turbine power generation system: The gas turbine itself performs fuel control according to fluctuations in the power load. And if the oxygen concentration of exhaust gas I falls, an electric power load will be raised so that the quantity of the combustion exhaust gas H from a gas turbine may be increased.

このようにして、下水汚泥の炭化規模に応じて最良に近い熱効率をもたらす発電量が得られる。例えば、以下のようなケース1・2が考えられる。   In this way, the amount of power generation that brings about the best thermal efficiency according to the carbonization scale of the sewage sludge can be obtained. For example, the following cases 1 and 2 can be considered.

◎ケース1:脱水ケーキSの含水率が大の場合
脱水ケーキSの乾燥用熱量を増大させる必要があり、これに伴って炭化(賦活)炉3への排ガスIの循環量が増えて炭化(賦活)炉3の温度が低下する。したがって、助燃料Jの供給量が増え、排ガスIの酸素濃度が低下し、ガスタービン発電量が増える。いいかえれば、電力需要が高いときには、脱水ケーキSの含水率を決定する凝集剤添加量を減らし、脱水に必要な経費を減らして対処する。
◎ Case 1: When the moisture content of the dehydrated cake S is large It is necessary to increase the amount of heat for drying the dehydrated cake S, and the circulation amount of the exhaust gas I to the carbonization (activation) furnace 3 is increased accordingly. Activation) The temperature of the furnace 3 decreases. Therefore, the supply amount of the auxiliary fuel J increases, the oxygen concentration of the exhaust gas I decreases, and the gas turbine power generation amount increases. In other words, when the power demand is high, the coagulant addition amount that determines the moisture content of the dewatered cake S is reduced, and the cost required for dewatering is reduced.

◎ケース2:電力需要が低い場合
脱水ケーキSの含水率を上げる(凝集剤添加量を増加する)とともに、助燃料の供給量を増やす。
◎ Case 2: When power demand is low Increase the moisture content of the dehydrated cake S (increase the amount of flocculant added) and increase the amount of auxiliary fuel supplied.

なお、下記の表1は発電量と脱水ケーキの含水率との関係を示す(ただし、脱水ケーキ100ton/dayの炭化(賦活)炉を備えた処理システムの場合)   Table 1 below shows the relationship between the amount of power generation and the moisture content of the dehydrated cake (however, in the case of a treatment system equipped with a carbonization (activation) furnace for 100 ton / day of dehydrated cake).

Figure 2005125265
Figure 2005125265

(実施例2)
図3は本発明の処理システムを下水汚泥の処理に適用した別の実施例を系統的に示すフロー図である。図3に示すように本例の処理システム1’が上記の実施例1と相違するのは、下記の構成である。すなわち、熱回収用熱交換器5に代えて廃熱ボイラ19を使用し、過熱蒸気発生用の給水装置20を設けている。給水装置20からは純水を廃熱ボイラ19に給水管20aで供給するようにしている。また、排ガスIの酸素濃度センサー15と炭化(賦活)炉3の炉内温度センサー18とを助燃料の供給量を調節するための助燃料噴射量調整弁7にそれぞれ接続し、排ガスIの酸素濃度の変化に対応しても助燃料噴射量調整弁7の開度が制御され、助燃料の供給量が調整できるようにしている。
(Example 2)
FIG. 3 is a flow diagram schematically showing another embodiment in which the treatment system of the present invention is applied to the treatment of sewage sludge. As shown in FIG. 3, the processing system 1 ′ of the present example is different from the first embodiment in the following configuration. That is, instead of the heat recovery heat exchanger 5, a waste heat boiler 19 is used, and a water supply device 20 for generating superheated steam is provided. Pure water is supplied from the water supply apparatus 20 to the waste heat boiler 19 through a water supply pipe 20a. Further, the oxygen concentration sensor 15 of the exhaust gas I and the in-furnace temperature sensor 18 of the carbonization (activation) furnace 3 are respectively connected to the auxiliary fuel injection amount adjusting valve 7 for adjusting the supply amount of auxiliary fuel, and the oxygen of the exhaust gas I Even in response to the change in concentration, the opening degree of the auxiliary fuel injection amount adjusting valve 7 is controlled so that the amount of auxiliary fuel supplied can be adjusted.

さらに、廃熱ボイラ19で発生する過熱蒸気を蒸気噴射量調整弁27を介設した供給管26で乾燥機4へ供給するだけでなく、ガスタービンへ蒸気噴射量調整弁29を介設した供給管28で供給して噴射するようにして出力を増大させる、いわゆるチェーンサイクル用に利用できるようにしている。また同過熱蒸気は、ガスタービン発電機2の効率アップのための冷却空気を作るための冷却器21の冷媒再生用の熱源としても使用している。つまり、空気を冷却して冷却空気を作るための冷却器21に過熱蒸気の一部を供給管28aで供給している。また、給水装置20からの純水も冷却器21に供給している。その他の構成については、実施例1の処理システム1と共通するので、共通する構成部材は同一の符号を付して図示し、説明を省略する。   Further, not only the superheated steam generated in the waste heat boiler 19 is supplied to the dryer 4 through the supply pipe 26 provided with the steam injection amount adjusting valve 27, but also supplied to the gas turbine via the steam injection amount adjusting valve 29. It is made available for a so-called chain cycle in which the output is increased by supplying and injecting with a pipe 28. The superheated steam is also used as a heat source for refrigerant regeneration of the cooler 21 for producing cooling air for increasing the efficiency of the gas turbine generator 2. That is, a part of the superheated steam is supplied to the cooler 21 for cooling the air to produce cooling air through the supply pipe 28a. In addition, pure water from the water supply device 20 is also supplied to the cooler 21. Other configurations are the same as those of the processing system 1 of the first embodiment, and therefore, common components are denoted by the same reference numerals and description thereof is omitted.

上記のようにして実施例2に係る処理システム1’が構成されるが、以下に本例の処理システム1’の制御を処理方法とともに詳しく説明する。   The processing system 1 ′ according to the second embodiment is configured as described above. Hereinafter, the control of the processing system 1 ′ according to the present example will be described in detail together with a processing method.

図3の処理システム1’において、
a) 乾燥系:下水汚泥の脱水ケーキSは乾燥機4に投入される。このとき、廃熱ボイラ19から200℃以上、望ましくは450〜650℃の過熱蒸気が乾燥機4に同時に導入される。一方、乾燥機4では排気温度が90〜120℃を維持するように、過熱蒸気の導入量が調整される。
In the processing system 1 ′ of FIG.
a) Drying system: The dewatered cake S of sewage sludge is put into the dryer 4. At this time, superheated steam at 200 ° C. or higher, desirably 450 to 650 ° C. is simultaneously introduced into the dryer 4 from the waste heat boiler 19. On the other hand, in the dryer 4, the introduction amount of superheated steam is adjusted so that the exhaust temperature is maintained at 90 to 120 ° C.

また、乾燥汚泥は含水率が10〜30%の範囲になるように維持される。   Moreover, dry sludge is maintained so that a moisture content may be in the range of 10 to 30%.

b) 炭化系:炭化(賦活)炉3の炉本体内温度が900℃以上、望ましくは950℃に維持されるように助燃料である重油の供給量が調整される。一方、廃熱ボイラ19から排出される排ガスIの出口温度は200℃を維持するように、炭化(賦活)炉3へ循環される排ガスIの循環風量が循環流量調節弁17の開度で制御される。つまり、脱水ケーキSの乾燥用熱源が増加すると排ガスIの出口温度が低下するので、循環流量調節弁17の開度が増大し、循環される排ガス量が増えるので、廃熱ボイラ19を通過する炭化(賦活)炉3からの炭化排ガスHの量が増加する。また、処理システム1’全体の熱効率を向上するために、排ガスIの酸素濃度を9%以下(望ましくは6%)に維持されるよう、ガスタービンの負荷(発電量)を制御する。   b) Carbonization system: The supply amount of heavy oil as auxiliary fuel is adjusted so that the temperature in the furnace body of the carbonization (activation) furnace 3 is maintained at 900 ° C. or higher, preferably 950 ° C. On the other hand, the circulation air volume of the exhaust gas I circulated to the carbonization (activation) furnace 3 is controlled by the opening degree of the circulation flow control valve 17 so that the outlet temperature of the exhaust gas I discharged from the waste heat boiler 19 is maintained at 200 ° C. Is done. That is, when the heat source for drying the dehydrated cake S increases, the outlet temperature of the exhaust gas I decreases, so the opening degree of the circulation flow rate control valve 17 increases, and the amount of exhaust gas to be circulated increases, so that it passes through the waste heat boiler 19. The amount of carbonized exhaust gas H from the carbonization (activation) furnace 3 increases. Further, in order to improve the thermal efficiency of the entire processing system 1 ′, the load (power generation amount) of the gas turbine is controlled so that the oxygen concentration of the exhaust gas I is maintained at 9% or less (preferably 6%).

炭化(賦活)炉3用の助燃料は上記のように炭化温度によって制御されるのを基本とし、排ガスIの酸素濃度による制御は炭化温度によって規定された制御結果に対し、+又は−の変化指令を与える。これにより、炭化排ガスHの量および廃熱ボイラ19からの余剰蒸気量が変化する。つまり、排ガスIの酸素濃度が高いときに助燃料が多くなり、廃熱ボイラ19からの蒸気量が増え、ガスタービンチェーンサイクルおよびガスタービン入り口空気温度冷却能力が増大する。   The auxiliary fuel for the carbonization (activation) furnace 3 is basically controlled by the carbonization temperature as described above, and the control by the oxygen concentration of the exhaust gas I changes + or-with respect to the control result defined by the carbonization temperature. Give a directive. As a result, the amount of carbonized exhaust gas H and the amount of surplus steam from the waste heat boiler 19 change. That is, when the oxygen concentration of the exhaust gas I is high, the amount of auxiliary fuel increases, the amount of steam from the waste heat boiler 19 increases, and the gas turbine chain cycle and the gas turbine inlet air temperature cooling capacity increase.

c) ガスタービン発電系:ガスタービンは発電量が一定になるよう燃料制御が行われている。ガスタービンに蒸気を吹き込むチェーンサイクルシステムを採用したことにより、発電効率が向上する。また、冷却空気を吹き込んでガスタービンの吸気温度を下げることにより、発電効率を向上することができる。さらに、炭化系の制御により、廃熱ボイラー19からの余剰蒸気が増えると、チェーンサイクルおよび入り口空気が冷却され、タービン発電量が増大することになる。   c) Gas turbine power generation system: Gas turbines are fuel-controlled so that the amount of power generation is constant. The adoption of a chain cycle system that blows steam into the gas turbine improves power generation efficiency. Moreover, power generation efficiency can be improved by blowing cooling air and lowering the intake temperature of the gas turbine. Furthermore, if the surplus steam from the waste heat boiler 19 increases due to the control of the carbonization system, the chain cycle and the inlet air are cooled, and the amount of turbine power generation increases.

このようにして、ガスタービン発電機2や炭化(賦活)炉3の規模およびそれらのバランスに応じて最良に近い熱効率をもって下水汚泥処理と発電がなされるに至る。   In this manner, sewage sludge treatment and power generation are performed with thermal efficiency close to the best according to the scale of the gas turbine generator 2 and the carbonization (activation) furnace 3 and their balance.

ここで、下水汚泥処理における助燃料消費量に大きな影響を与える脱水ケーキSの含水率の変動に対する制御ループについて説明する。例えば、以下のようなケース1・2が考えられる。   Here, the control loop with respect to the fluctuation | variation of the moisture content of the dewatering cake S which has a big influence on the amount of auxiliary fuel consumption in a sewage sludge process is demonstrated. For example, the following cases 1 and 2 can be considered.

◎ケース1:脱水ケーキSの含水率が大きくなった場合
乾燥すべき脱水ケーキSの水分が増え、乾燥機4からの排ガス温度が低下する。排ガス温度を制御することにより、廃熱ボイラ19からの蒸気量が増大する。その結果、廃熱ボイラ19からの排ガスIの出口温度が低下し、炭化(賦活)炉3への排ガスIの循環量が増えるが、循環量が増えると、炭化(賦活)炉3の温度が低下し、助燃料の供給量が増え、排ガスIの酸素濃度が低下する。一方、乾燥機4へ送る蒸気量が増えるため、ガスタービンへのチェーンサイクルおよび冷却器21への蒸気供給量が不足し、ガスタービンの発電効率が低下するので、発電量を一定に維持しようとすると、ガスタービンへの燃料供給量が増大し、タービン排ガス量も増大する。この結果、炭化(賦活)炉3の炭化排ガスHの酸素濃度が上昇し、復旧する。
◎ Case 1: When the moisture content of the dehydrated cake S is increased The moisture of the dehydrated cake S to be dried increases, and the exhaust gas temperature from the dryer 4 decreases. By controlling the exhaust gas temperature, the amount of steam from the waste heat boiler 19 increases. As a result, the outlet temperature of the exhaust gas I from the waste heat boiler 19 decreases, and the circulation amount of the exhaust gas I to the carbonization (activation) furnace 3 increases. When the circulation amount increases, the temperature of the carbonization (activation) furnace 3 increases. The auxiliary fuel supply amount increases and the oxygen concentration of the exhaust gas I decreases. On the other hand, since the amount of steam sent to the dryer 4 increases, the chain cycle to the gas turbine and the amount of steam supplied to the cooler 21 are insufficient, and the power generation efficiency of the gas turbine is reduced. Then, the fuel supply amount to the gas turbine increases and the turbine exhaust gas amount also increases. As a result, the oxygen concentration of the carbonized exhaust gas H in the carbonization (activation) furnace 3 is increased and recovered.

処理システム1’を全体として見れば、発電効率を下げ、排ガスHの熱回収率を上げることによって、下水汚泥の脱水ケーキSの乾燥用熱源を大きくという制御を行うことに他ならない。   When the treatment system 1 ′ is viewed as a whole, the power generation efficiency is reduced and the heat recovery rate of the exhaust gas H is increased, thereby controlling the increase of the heat source for drying the dewatered cake S of the sewage sludge.

◎ケース2:脱水ケーキSの含水率が低くなった場合
乾燥用熱源としての蒸気量が減少し、ガスタービンチェーンサイクルと冷却空気の冷却器21に使用される蒸気量が増大するため、ガスタービン発電効率が上昇し、ガスタービン導入燃料が減少して燃焼排ガス量が低減され、炭化(賦活)炉3の酸素濃度が上昇し、炭化(賦活)炉3の助燃料が減少することになる。
Case 2: When the moisture content of the dewatered cake S is low The amount of steam used as a heat source for drying is reduced, and the amount of steam used in the gas turbine chain cycle and the cooler 21 for cooling air is increased. The power generation efficiency increases, the gas turbine introduction fuel decreases, the amount of combustion exhaust gas decreases, the oxygen concentration in the carbonization (activation) furnace 3 increases, and the auxiliary fuel in the carbonization (activation) furnace 3 decreases.

処理システム1’を全体として見れば、汚泥の乾燥に用いられる熱量が減少した分の蒸気を発電効率の向上に用いて、ガスタービン発電機2側での燃料消費量を減らすことに他ならない。   If processing system 1 'is seen as a whole, it will be nothing but reducing the fuel consumption by the side of gas turbine generator 2 by using the steam for the amount of heat used for drying sludge for the improvement of power generation efficiency.

本実施例2に係る処理システム1’は、ガスタービン発電機2を一定出力に維持して炭化排ガスHの熱で蒸気を発生させて(蒸気にして)回収するシステムで、上記の実施例1の処理システム1の下水汚泥処理量の変動をタービン発電機2の負荷(発電量)で制御するシステムに比べて機器類の点数は増えるが、つぎのようなメリットがある。   The processing system 1 ′ according to the second embodiment is a system that maintains the gas turbine generator 2 at a constant output and generates steam with the heat of the carbonized exhaust gas H (in the form of steam) for recovery. Compared with a system that controls fluctuations in the sewage sludge treatment amount of the treatment system 1 with the load (power generation amount) of the turbine generator 2, the number of devices increases, but there are the following merits.

・タービンチェーンサイクルを行うことによって、発電効率が約20%アップする。   ・ By performing the turbine chain cycle, power generation efficiency is increased by about 20%.

・タービン導入の吸気温度が低下することによって、発電効率が約10%アップする。   -Power generation efficiency increases by about 10% due to a decrease in the intake air temperature when the turbine is introduced.

また、汚泥の炭化設備(主に炭化(賦活)炉3)と発電設備(主にガスタービン発電機2)とを組み合わせる際の規模のバランスについては、汚泥の脱水ケーキ量を100t/dの場合:
本実施例2に係る処理システム1’ではガスタービン発電量400〜1000kWが適正範囲であり、一方、上記の実施例1の処理システム1ではガスタービン発電量200〜500kWが適正範囲である。この理由は、処理システム1は回収した熱の利用が汚泥の乾燥に限定されるのに対し、処理システム1’は発電効率の向上にも利用できるからである。
Regarding the balance of scale when combining sludge carbonization equipment (mainly carbonization (activation) furnace 3) and power generation equipment (mainly gas turbine generator 2), the amount of dewatered cake of sludge is 100 t / d. :
In the processing system 1 ′ according to the second embodiment, the gas turbine power generation amount of 400 to 1000 kW is in the proper range, while in the processing system 1 of the first embodiment, the gas turbine power generation amount of 200 to 500 kW is in the proper range. The reason for this is that the processing system 1 can be used to improve the power generation efficiency, whereas the use of the recovered heat is limited to drying sludge.

(実施例3)
図4は本発明のさらに別の実施例に係る処理システムを示すフロー図である。図4に示すように、本例の処理システム1”は、下水処理場で発生する初沈汚泥および収集される食品廃棄物からメタンガスを発生させてガスタービン発電機2の燃料に使用し、下水処理場の余剰汚泥を炭化して活性炭化物を製造するシステムである。上記の2つの処理システム1・1’と相違するのは、消化槽25を備えており、この消化槽25によって初沈汚泥Vと食品廃棄物Yを微生物で消化し、メタンを含む消化ガスMを発生させ、ガスタービン発電機2の燃料として用いることである。一方、このときに消化汚泥Wが生じるので、これは埋め立て地などに埋設する。メタンガスMはガスタービン発電機2の燃料として使用し、発電する。一方、ガスタービン発電機2から排出されるタービン排ガスGを炭化(賦活)炉3に供給して余剰汚泥Zの炭化に利用するとともに、熱交換器5を介して回収した熱を利用して消化槽25を加温したり、余剰汚泥Zの前処理(乾燥)に利用したりする。
(Example 3)
FIG. 4 is a flowchart showing a processing system according to still another embodiment of the present invention. As shown in FIG. 4, the treatment system 1 ″ of this example generates methane gas from the first settling sludge generated at the sewage treatment plant and the collected food waste and uses it as fuel for the gas turbine generator 2 to produce sewage. This is a system for producing activated carbide by carbonizing surplus sludge from a treatment plant, which differs from the above two treatment systems 1 and 1 'in that it has a digestion tank 25, and this digestion tank 25 is used for initial sedimentation sludge. V and food waste Y are digested with microorganisms to generate digested gas M containing methane, which is used as fuel for gas turbine generator 2. On the other hand, digested sludge W is generated at this time, which is landfilled. Buried in the ground, etc. Methane gas M is used as fuel for the gas turbine generator 2 to generate electricity, while the turbine exhaust gas G discharged from the gas turbine generator 2 is supplied to the carbonization (activation) furnace 3 for surplus. While using for the carbonization of the excess sludge Z, the digester tank 25 is heated using the heat | fever collect | recovered via the heat exchanger 5, or it uses for the pretreatment (drying) of the excess sludge Z.

本例の処理システム1”は、基本的には実施例1の処理システム1を利用している。なお、図4に示していないが、余剰汚泥Zの脱水ケーキを乾燥するための乾燥機(図1参照)を備え、熱交換器5を通して炭化(賦活)炉3からの排ガスHの熱を回収して発生させた加熱空気を乾燥機4で使用する。また、炭化(賦活)炉3で製造される活性炭化物Cは、上記の実施例1・2とも共通するが、システム系外ではダイオキシン吸着剤や脱臭剤として使用し、システム系内では余剰汚泥Zの脱水助剤として使用する。とくに、本例では消化槽25内において微生物を吸着保持する生物担体としても使用することができる。   The processing system 1 ″ of this example basically uses the processing system 1 of Example 1. Although not shown in FIG. 4, a dryer for drying the dewatered cake of excess sludge Z ( 1) and the heated air generated by recovering the heat of the exhaust gas H from the carbonization (activation) furnace 3 through the heat exchanger 5 is used in the dryer 4. Also, in the carbonization (activation) furnace 3 The activated carbide C to be produced is the same as in Examples 1 and 2 above, but is used as a dioxin adsorbent and a deodorizing agent outside the system system, and is used as a dewatering aid for excess sludge Z inside the system system. In this example, it can also be used as a biological carrier for adsorbing and holding microorganisms in the digestion tank 25.

そのほか、上記の各実施例の処理システム1〜1”において、乾燥させた下水汚泥などの有機性廃棄物を炭化に必要な助燃料Jとして用いることができ、これにより従来の重油などの化石燃料を削減したり不要にしたりすることもできる。また、下水汚泥や食品屑のほか、炭素を含有するものであれば、各種の有機性廃棄物を炭化物にして有効に利用できる。   In addition, in the treatment systems 1 to 1 ″ of each of the above embodiments, dried organic waste such as sewage sludge can be used as auxiliary fuel J necessary for carbonization, whereby conventional fossil fuels such as heavy oil can be used. In addition to sewage sludge and food waste, as long as it contains carbon, various organic wastes can be made into carbides and used effectively.

本発明の処理システムを下水汚泥の処理に適用した実施例を系統的に示すフロー図である。It is a flowchart which shows the Example which applied the processing system of this invention to the process of the sewage sludge systematically. 本発明の処理システムに用いる炭化(賦活)炉の一例を示す概要断面図である。It is a schematic sectional drawing which shows an example of the carbonization (activation) furnace used for the processing system of this invention. 本発明の処理システムを下水汚泥の処理に適用した別の実施例を系統的に示すフロー図である。It is a flowchart which shows another Example which applied the processing system of this invention to the process of sewage sludge systematically. 本発明のさらに別の実施例に係る処理システムを示すフロー図である。It is a flowchart which shows the processing system which concerns on another Example of this invention.

符号の説明Explanation of symbols

1・1’・1”処理システム
2 ガスタービン発電機
3 炭化(賦活)炉
4 乾燥機
5 熱交換器
6 給油管
7 助燃料噴射量調整弁
8 送給管
9 送給ポンプ
10 供給管
11 流量調整弁
12 戻し管
13 排気管
14 温度センサー
15 酸素濃度センサー
16 分岐循環管
17 循環流量調節弁
18 炉内温度センサー
19 廃熱ボイラ
20 給水装置
21 冷却器
22 空気温度センサー
23 燃料噴射ポンプ
24 助燃料噴射ポンプ
25 消化槽
27・29 蒸気噴射量調整弁
31 炉本体
32 導入口
33 炭化管
34 スクリューコンベヤ
36 冷却管
37 水冷機構
38 ロータリーバルブ
S 脱水ケーキ
T 乾燥汚泥
G タービン排ガス
H 炭化排ガス
I 排ガス
1, 1 ', 1 "treatment system 2 Gas turbine generator 3 Carbonization (activation) furnace 4 Dryer 5 Heat exchanger 6 Oil supply pipe 7 Auxiliary fuel injection amount adjustment valve 8 Feed pipe 9 Feed pump 10 Supply pipe 11 Flow rate Adjustment valve 12 Return pipe 13 Exhaust pipe 14 Temperature sensor 15 Oxygen concentration sensor 16 Branch circulation pipe 17 Circulation flow rate control valve 18 Furnace temperature sensor 19 Waste heat boiler 20 Water supply device 21 Cooler 22 Air temperature sensor 23 Fuel injection pump 24 Auxiliary fuel Injection pump 25 Digestion tank 27/29 Steam injection amount adjustment valve 31 Furnace body 32 Inlet 33 Carbonization pipe 34 Screw conveyor 36 Cooling pipe 37 Water cooling mechanism 38 Rotary valve S Dehydrated cake T Dry sludge G Turbine exhaust gas H Carbonized exhaust gas I Exhaust gas

Claims (7)

炭化炉にガスタービン発電機を併設し、前記炭化炉その他に電力を供給しながら、有機性廃棄物の脱水ケーキを乾燥し前記炭化炉に供給して炭化処理する有機性廃棄物の処理方法であって、
前記ガスタービンから排出される燃焼排ガスを前記炭化炉に供給し助燃料とともに燃焼させ、乾燥させた前記脱水ケーキを還元雰囲気中で熱分解して炭化させ、炭化物を回収するとともに、
前記炭化炉からの排ガスの保有熱を熱交換手段を介して熱回収し、前記脱水ケーキの乾燥に用いることを特徴とする有機性廃棄物の処理方法。
An organic waste treatment method in which a gas turbine generator is installed in a carbonization furnace, and power is supplied to the carbonization furnace and others, and a dehydrated cake of organic waste is dried and supplied to the carbonization furnace and carbonized. There,
The combustion exhaust gas discharged from the gas turbine is supplied to the carbonization furnace and burned with auxiliary fuel, and the dried dehydrated cake is pyrolyzed and carbonized in a reducing atmosphere to recover the carbide,
A method for treating organic waste, wherein the retained heat of the exhaust gas from the carbonization furnace is recovered through heat exchange means and used for drying the dehydrated cake.
前記炭化炉の排ガスにより水を加熱して水蒸気を発生させ、この水蒸気の一部を前記脱水ケーキの乾燥に、同水蒸気の残りの一部を前記ガスタービンに導入してチェーンサイクルに、同水蒸気の残りを前記ガスタービンへ導入する冷却空気用の空気冷却にそれぞれ用いる請求項1記載の有機性廃棄物の処理方法。 Water is heated by the exhaust gas of the carbonization furnace to generate steam, a part of the steam is introduced into the dehydrated cake, and the remaining part of the steam is introduced into the gas turbine to enter the chain cycle. The organic waste processing method according to claim 1, wherein the remainder is used for cooling air for cooling air introduced into the gas turbine. 前記熱交換手段を介して熱回収することにより200℃以上の加熱空気あるいは過熱蒸気を前記脱水ケーキの乾燥に使用するとともに、前記炭化炉の温度が900℃以上に維持されるように助燃料の供給量を制御したうえ、前記熱交換手段を通過した排ガスの酸素濃度を9%以下に維持されるよう前記ガスタービンの発電量を制御する請求項1又は2記載の有機性廃棄物の処理方法。 By recovering heat through the heat exchange means, heated air of 200 ° C. or higher or superheated steam is used for drying the dehydrated cake, and the temperature of the carbonization furnace is maintained at 900 ° C. or higher. The organic waste processing method according to claim 1 or 2, wherein the amount of power generated by the gas turbine is controlled so that the oxygen concentration of the exhaust gas that has passed through the heat exchange means is maintained at 9% or less after controlling the supply amount. . 炭化炉にガスタービン発電機を併設し、前記炭化炉その他に電力を供給しながら、有機性廃棄物の脱水ケーキを乾燥し前記炭化炉に供給して炭化処理する有機性廃棄物の処理システムであって、
前記炭化炉から排出される排ガスの熱を回収して過熱蒸気又は加熱空気を発生するための熱交換器と、この熱交換器から供給する過熱蒸気又は加熱空気により前記脱水ケーキを乾燥して前記炭化炉に供給するための乾燥機とを備えたことを特徴とする有機性廃棄物の処理システム。
A system for treating organic waste in which a gas turbine generator is installed in a carbonization furnace, and the dehydration cake of organic waste is dried and supplied to the carbonization furnace and carbonized while supplying power to the carbonization furnace and others. There,
A heat exchanger for recovering the heat of the exhaust gas discharged from the carbonization furnace to generate superheated steam or heated air, and drying the dehydrated cake with the superheated steam or heated air supplied from the heat exchanger, An organic waste treatment system comprising a dryer for supplying to a carbonization furnace.
前記熱交換器から排出される排ガスの排気管に同排ガスの温度センサーおよび酸素濃度センサーをそれぞれ装着し、前記排気管から分岐した分岐循環管一端を前記炭化炉の燃焼排ガス導入口付近に接続するとともに、前記分岐循環管には循環流量調節弁を介設してこの温度センサーにて測定される排ガスの温度に応じて前記循環流量調節弁の開度を自動調整し、前記排ガスの酸素濃度値に応じて燃料噴射量を制御する燃料噴射量調整機構を設けた請求項3記載の有機性廃棄物の処理システム。 A temperature sensor and an oxygen concentration sensor of the exhaust gas are respectively attached to the exhaust pipe of the exhaust gas discharged from the heat exchanger, and one end of the branch circulation pipe branched from the exhaust pipe is connected to the vicinity of the combustion exhaust gas inlet of the carbonization furnace In addition, a circulation flow rate control valve is provided in the branch circulation pipe, and the opening degree of the circulation flow rate control valve is automatically adjusted according to the temperature of the exhaust gas measured by the temperature sensor. The organic waste processing system according to claim 3, further comprising a fuel injection amount adjusting mechanism that controls the fuel injection amount in accordance with the fuel injection amount. 炭化炉にガスタービン発電機を併設し、前記炭化炉その他に電力を供給しながら、有機性廃棄物の脱水ケーキを乾燥し前記炭化炉に供給して炭化処理する有機性廃棄物の処理システムであって、
前記炭化炉から排出される排ガスの熱を回収して過熱蒸気を発生するための廃熱ボイラと、この廃熱ボイラおよび下記の冷却器に給水するための給水装置と、前記廃熱ボイラから供給する過熱蒸気により前記脱水ケーキを乾燥して前記炭化炉に供給するための乾燥機と、前記廃熱ボイラから供給する過熱蒸気にて空気を冷却して前記ガスタービンに導入するための冷却器と、前記廃熱ボイラからの過熱蒸気を前記ガスタービンへ供給するための供給路とを備えたことを特徴とする有機性廃棄物の処理システム。
A system for treating organic waste in which a gas turbine generator is installed in a carbonization furnace, and the dehydration cake of organic waste is dried and supplied to the carbonization furnace and carbonized while supplying power to the carbonization furnace and others. There,
A waste heat boiler for recovering heat of exhaust gas discharged from the carbonization furnace to generate superheated steam, a water supply device for supplying water to the waste heat boiler and the following cooler, and supply from the waste heat boiler A dryer for drying the dehydrated cake with superheated steam and supplying it to the carbonization furnace; and a cooler for cooling the air with superheated steam supplied from the waste heat boiler and introducing it into the gas turbine; And a supply path for supplying superheated steam from the waste heat boiler to the gas turbine.
前記熱交換器から排出される排ガスの排気管に同排ガスの温度センサーおよび酸素濃度センサーをそれぞれ装着し、前記排気管から分岐した分岐循環管一端を前記炭化炉の燃焼排ガス導入口付近に接続するとともに、前記分岐循環管には循環流量調整弁を介設してこの温度センサーにて測定される排ガスの温度に応じて前記循環流量調整弁の開度を自動調整し、また前記酸素濃度センサーと前記炭化炉に設けた炉内温度センサーとを炭化炉への助燃料供給量を調整するための流量調整弁にそれぞれ接続して炭化炉内温度および排ガスの酸素濃度の変化に応じて前記助燃料供給量を制御できるようにした請求項6記載の有機性廃棄物の処理システム。 A temperature sensor and an oxygen concentration sensor of the exhaust gas are respectively attached to the exhaust pipe of the exhaust gas discharged from the heat exchanger, and one end of the branch circulation pipe branched from the exhaust pipe is connected to the vicinity of the combustion exhaust gas inlet of the carbonization furnace In addition, a circulation flow rate adjustment valve is provided in the branch circulation pipe, and the opening degree of the circulation flow rate adjustment valve is automatically adjusted according to the temperature of the exhaust gas measured by the temperature sensor, and the oxygen concentration sensor The auxiliary temperature sensor provided in the carbonization furnace is connected to a flow rate adjustment valve for adjusting the amount of auxiliary fuel supplied to the carbonization furnace, and the auxiliary fuel is changed according to changes in the temperature in the carbonization furnace and the oxygen concentration of the exhaust gas. The organic waste treatment system according to claim 6, wherein the supply amount can be controlled.
JP2003365416A 2003-10-27 2003-10-27 Organic waste treatment method and treatment system Expired - Fee Related JP4390524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365416A JP4390524B2 (en) 2003-10-27 2003-10-27 Organic waste treatment method and treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365416A JP4390524B2 (en) 2003-10-27 2003-10-27 Organic waste treatment method and treatment system

Publications (2)

Publication Number Publication Date
JP2005125265A true JP2005125265A (en) 2005-05-19
JP4390524B2 JP4390524B2 (en) 2009-12-24

Family

ID=34644087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365416A Expired - Fee Related JP4390524B2 (en) 2003-10-27 2003-10-27 Organic waste treatment method and treatment system

Country Status (1)

Country Link
JP (1) JP4390524B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270018A (en) * 2006-03-31 2007-10-18 Toshiba Corp Dry carbonization system
JP2007330918A (en) * 2006-06-16 2007-12-27 Kawasaki Heavy Ind Ltd Method and apparatus for recycling sludge
WO2008056459A1 (en) * 2006-11-06 2008-05-15 Warmthware Co., Ltd. Pyrolytic water heater using organic sludge as fuel
JP2008174660A (en) * 2007-01-19 2008-07-31 Yamato Sanko Seisakusho:Kk Rotary carbonizing method and system therefor
JP2009091496A (en) * 2007-10-10 2009-04-30 Toshiba Corp Apparatus for converting sludge into fuel
WO2010050270A1 (en) * 2008-10-29 2010-05-06 三菱重工業株式会社 Integrated coal gasification combined cycle power generation facility
WO2010059807A2 (en) * 2008-11-21 2010-05-27 Earthrenew, Inc. Method of using a gas turbine generator system in dehydration applications
JP2011072852A (en) * 2009-09-29 2011-04-14 Dai Ichi High Frequency Co Ltd Method for treating organic sludge
JP2013142389A (en) * 2012-01-06 2013-07-22 General Electric Co <Ge> System and method for operating gas turbine
JP2013185797A (en) * 2012-03-09 2013-09-19 Metawater Co Ltd Drying treatment apparatus for sludge incinerator
JP2014504548A (en) * 2011-01-21 2014-02-24 上海伏波▲環▼保▲設備▼有限公司 Non-contact exhaust residual heat sludge drying system
JP2014070850A (en) * 2012-10-01 2014-04-21 Tabata Sangyo:Kk Carbonization device for solid fuel
JP2014074538A (en) * 2012-10-04 2014-04-24 Metawater Co Ltd Sludge incineration system and dry exhaust gas heating method
JP2016121820A (en) * 2014-12-24 2016-07-07 川崎重工業株式会社 Incineration plant
CN113883527A (en) * 2021-10-18 2022-01-04 西安西热锅炉环保工程有限公司 Construction waste disposal and resource utilization system and method based on pulverized coal fired boiler
CN114061322A (en) * 2021-09-02 2022-02-18 丰城市天壕新能源有限公司 Intelligent circulating boiler for dry quenching waste heat power generation
CN115823597A (en) * 2022-12-12 2023-03-21 安化县泰森循环科技有限公司 Carbide furnace waste gas recycling mechanism and method
JP7330351B1 (en) 2022-12-01 2023-08-21 株式会社神鋼環境ソリューション Operation method of biogas utilization equipment and biogas utilization equipment

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270018A (en) * 2006-03-31 2007-10-18 Toshiba Corp Dry carbonization system
JP2007330918A (en) * 2006-06-16 2007-12-27 Kawasaki Heavy Ind Ltd Method and apparatus for recycling sludge
JP4510782B2 (en) * 2006-06-16 2010-07-28 カワサキプラントシステムズ株式会社 Sludge recycling method and apparatus.
WO2008056459A1 (en) * 2006-11-06 2008-05-15 Warmthware Co., Ltd. Pyrolytic water heater using organic sludge as fuel
JP2008174660A (en) * 2007-01-19 2008-07-31 Yamato Sanko Seisakusho:Kk Rotary carbonizing method and system therefor
JP2009091496A (en) * 2007-10-10 2009-04-30 Toshiba Corp Apparatus for converting sludge into fuel
CN102112717A (en) * 2008-10-29 2011-06-29 三菱重工业株式会社 Integrated coal gasification combined cycle power generation facility
WO2010050270A1 (en) * 2008-10-29 2010-05-06 三菱重工業株式会社 Integrated coal gasification combined cycle power generation facility
JP2010106722A (en) * 2008-10-29 2010-05-13 Mitsubishi Heavy Ind Ltd Coal gasification compound power generating facility
WO2010059807A2 (en) * 2008-11-21 2010-05-27 Earthrenew, Inc. Method of using a gas turbine generator system in dehydration applications
WO2010059807A3 (en) * 2008-11-21 2010-08-26 Earthrenew, Inc. Method of using a gas turbine generator system in dehydration applications
JP2011072852A (en) * 2009-09-29 2011-04-14 Dai Ichi High Frequency Co Ltd Method for treating organic sludge
JP2014504548A (en) * 2011-01-21 2014-02-24 上海伏波▲環▼保▲設備▼有限公司 Non-contact exhaust residual heat sludge drying system
JP2013142389A (en) * 2012-01-06 2013-07-22 General Electric Co <Ge> System and method for operating gas turbine
JP2013185797A (en) * 2012-03-09 2013-09-19 Metawater Co Ltd Drying treatment apparatus for sludge incinerator
JP2014070850A (en) * 2012-10-01 2014-04-21 Tabata Sangyo:Kk Carbonization device for solid fuel
JP2014074538A (en) * 2012-10-04 2014-04-24 Metawater Co Ltd Sludge incineration system and dry exhaust gas heating method
JP2016121820A (en) * 2014-12-24 2016-07-07 川崎重工業株式会社 Incineration plant
CN114061322A (en) * 2021-09-02 2022-02-18 丰城市天壕新能源有限公司 Intelligent circulating boiler for dry quenching waste heat power generation
CN114061322B (en) * 2021-09-02 2024-02-27 丰城市天壕新能源有限公司 Intelligent circulating boiler for generating electricity by using waste heat of coke dry quenching
CN113883527A (en) * 2021-10-18 2022-01-04 西安西热锅炉环保工程有限公司 Construction waste disposal and resource utilization system and method based on pulverized coal fired boiler
JP7330351B1 (en) 2022-12-01 2023-08-21 株式会社神鋼環境ソリューション Operation method of biogas utilization equipment and biogas utilization equipment
CN115823597A (en) * 2022-12-12 2023-03-21 安化县泰森循环科技有限公司 Carbide furnace waste gas recycling mechanism and method

Also Published As

Publication number Publication date
JP4390524B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4390524B2 (en) Organic waste treatment method and treatment system
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
JP4510782B2 (en) Sludge recycling method and apparatus.
KR20110137345A (en) Method and system for reclamation of biomass and block heating plant
CN105645714B (en) Device and method for treating sludge through desiccation and carbonization combined method by utilizing steam of thermal power plant
JP3861093B2 (en) Method and apparatus for converting sludge into fuel
JP6000739B2 (en) Dry carbonization system
JP4318697B2 (en) Method and apparatus for carbonizing high water content organic matter
JP2004035837A (en) Thermal cracking gasification apparatus and the system
JP2006348302A (en) Method and apparatus for converting sludge into fuel
JP2004277464A (en) Apparatus for carbonization treatment of organic material-containing sludge
KR101005850B1 (en) Apparatus for Drying and Carbonating Combustibile or organic Waste
JP2004358371A (en) Processing method and processing system of watery organic waste
JP2011020060A (en) Garbage disposal system
CN108675613A (en) A kind of process system and method for industrial sludge cracking
JP6270206B2 (en) Organic waste processing apparatus and organic waste processing method
KR101582528B1 (en) Carbonization apparatus for treating organic waste with vehicle-mount construction
FI108960B (en) Method and apparatus for burning of highly combustible substances
KR100800025B1 (en) Humid carbonization device of food waste and humid carbonize method by using a carbonization device
KR101172831B1 (en) Apparatus and Method for treating feces and urine of domestic animal using gasifier and once-through boiler
JP2010179217A (en) Anaerobic treatment method combined with thermal solubilization drying
JP5007311B2 (en) Anaerobic digestion treatment method of organic sludge
JP5040174B2 (en) Method and apparatus for producing mixed fuel of dry sludge and waste carbide
JP7330351B1 (en) Operation method of biogas utilization equipment and biogas utilization equipment
JP2005270778A (en) Digestion gas utilizing method and digestion gas utilizing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4390524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141016

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees