JP2004066094A - Treatment method in sewage disposal plant for garbage disposer waste water - Google Patents

Treatment method in sewage disposal plant for garbage disposer waste water Download PDF

Info

Publication number
JP2004066094A
JP2004066094A JP2002228239A JP2002228239A JP2004066094A JP 2004066094 A JP2004066094 A JP 2004066094A JP 2002228239 A JP2002228239 A JP 2002228239A JP 2002228239 A JP2002228239 A JP 2002228239A JP 2004066094 A JP2004066094 A JP 2004066094A
Authority
JP
Japan
Prior art keywords
sludge
garbage disposer
digestion tank
sewage treatment
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002228239A
Other languages
Japanese (ja)
Other versions
JP3581143B2 (en
Inventor
Masakazu Sawai
澤井 正和
Shuichiro Hatakeyama
畠山 修一郎
Takayoshi Morooka
諸岡 隆良
Original Assignee
Kawasaki Heavy Ind Ltd
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Ind Ltd, 川崎重工業株式会社 filed Critical Kawasaki Heavy Ind Ltd
Priority to JP2002228239A priority Critical patent/JP3581143B2/en
Publication of JP2004066094A publication Critical patent/JP2004066094A/en
Application granted granted Critical
Publication of JP3581143B2 publication Critical patent/JP3581143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To treat a garbage disposer waste water without changing the organic matter load on a digestion tank and to reduce the elution of phosphorus from excess sludge. <P>SOLUTION: When a sewage disposal plant receives the garbage disposer waste water and treats the waste water, the sewage flowing into the sewage disposal plant is subjected to separation of initially settled sludge in a precipitation tank 14 and is then subjected to biological treatment in an aeration tank 16. The excess sludge is then thickened and separated in a dehydrator 22 and the disposer waste water is made into cleaned water. The disposer waste water and the initially settled sludge are fed into the digestion tank 20 and are subjected to methane fermentation treatment. The digested sludge and excess sludge from the digestion tanker 20 are dewatered in a dehydrator 18 and is separated to the sludge cake and effluent. As a result, the sludge cake is made into dry sludge by passing a flash dryer 24 and a cyclone 26. The dry exhaust air from the cyclone 26 is utilized for heating the digestion tank 20 and gas power generation is performed in a generator 38 by using the digester gas produced in the digestion tank 20 and city gas. The waste heat generated by the gas power generation is utilized as a heat source for the dryer 24. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生ごみディスポーザ排水を既存の下水処理設備に受け入れて処理する方法に関するものである。
【0002】
【従来の技術】
ディスポーザは、家庭から出る生ごみのトラック収集を無くす、あるいは社会環境の衛生面での向上に寄与する技術として期待されているが、生ごみディスポーザ排水を下水処理場で受け入れて処理するためには、例えば、メタン発酵槽(消化槽)の増設が必要となる。このように、生ごみディスポーザ排水を下水道へ直接放流すると、既存下水処理場の処理負荷が過大となり、ディスポーザ普及の妨げとなっている。また、多くの下水処理場では、発生する初沈汚泥と濃縮汚泥(余剰汚泥)を消化槽に投入してメタン発酵処理が行われているが、消化槽内での濃縮汚泥からのリンの溶出が放流水水質悪化あるいは高度処理負荷の増大の原因となっている。この場合、発生した消化ガスは主として消化槽の加温に利用されている。
【0003】
上記のように、生ごみディスポーザ排水を下水道へ直接放流すると、既存下水処理場の処理負荷が過大になることから、例えば、特開2002−86124号公報に記載されているように、生ごみディスポーザ排水を、微生物製剤とオゾンと高性能水中エアレータ等を用いた処理システムにより、下水処理場又は自家用の浄化処理施設等で処理する技術が知られている。
また、例えば、特開平8−39092号公報、特開平10−323685号公報には、曝気槽の後段に設けた最終沈殿池で分離した余剰汚泥を消化槽に投入して余剰汚泥の減量化を図るという技術が開示されている。
【0004】
【発明が解決しようとする課題】
本発明は上記の諸点に鑑みなされたもので、本発明の目的は、下水処理場での余剰汚泥は消化槽へ投入せず、余剰汚泥分の有機物量は生ごみディスポーザ排水を受け入れてメタン発酵処理を行うことにより、既存の下水処理場の処理負荷を変えずに生ごみディスポーザ排水を処理することが可能となり、しかも、消化槽内で余剰汚泥からリンが溶出するのを回避することができる生ごみディスポーザ排水の下水処理場における処理方法を提供することにある。
なお、家庭ごみディスポーザはまだ下水管にそのまま流すことが認められていない。現在許可されているディスポーザ設置はマンション等に排水処理設備を具備し下水への許容値以下に処理することが必要とされている。本発明は現状では許可されていない下水放流を前提にしているものである。ただし、ディスポーザ排水を沈殿池で固液分離した後、下水処理場に持ち込むことは現状でも可能であると考えられる。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明の方法は、生ごみディスポーザ排水を下水処理場に受け入れて処理するに際し、下水処理場内に流入した下水は沈殿槽にて初沈汚泥を分離した後、曝気槽にて生物分解処理し、ついで、固液分離処理により余剰汚泥を除去して浄化水とし、前記初沈汚泥とともに余剰汚泥に代えて生ごみディスポーザ排水を消化槽へ投入してメタン発酵処理を行い、消化槽からの消化汚泥を前記余剰汚泥とともに脱水処理して脱水汚泥と脱離液とに分離し、脱水汚泥を乾燥機で乾燥させて乾燥汚泥とし、乾燥機からの乾燥排ガスは前記消化槽の加温に利用し、消化槽で発生した消化ガスを用いてガス発電を行い、ガス発電で発生した廃熱を前記乾燥機の熱源として利用するように構成されている。
【0006】
また、本発明の方法は、生ごみディスポーザ排水を下水処理場に受け入れて処理するに際し、下水処理場内に流入した下水は沈殿槽にて初沈汚泥を分離した後、曝気槽にて生物分解処理し、ついで、固液分離処理により余剰汚泥を除去して浄化水とし、前記初沈汚泥とともに余剰汚泥に代えて生ごみディスポーザ排水を消化槽へ投入してメタン発酵処理を行い、消化槽からの消化汚泥を前記余剰汚泥とともに脱水処理して脱水汚泥と脱離液とに分離し、脱水汚泥を乾燥機で乾燥させて乾燥汚泥とし、乾燥機からの乾燥排ガスは前記消化槽の加温に利用し、消化槽で発生した消化ガスと都市ガス等のガス燃料を用いてガス発電を行い、その電力を下水処理場内で利用し、ガス発電で発生した廃熱を前記乾燥機の熱源として利用することを特徴としている(図1参照)。
上記の方法においては、ガスエンジン、ガスタービン等を用いてガス発電を行うことが好ましい。
【0007】
また、本発明の方法は、生ごみディスポーザ排水を下水処理場に受け入れて処理するに際し、下水処理場内に流入した下水は沈殿槽にて初沈汚泥を分離した後、曝気槽にて生物分解処理し、ついで、固液分離処理により余剰汚泥を除去して浄化水とし、前記初沈汚泥とともに余剰汚泥に代えて生ごみディスポーザ排水を消化槽へ投入してメタン発酵処理を行い、消化槽からの消化汚泥を前記余剰汚泥とともに脱水処理して脱水汚泥と脱離液とに分離し、脱水汚泥を乾燥機で乾燥させて乾燥汚泥とし、乾燥機からの乾燥排ガスは前記消化槽の加温に利用し、消化槽で発生した消化ガスを燃料として熱風を発生させ、前記乾燥機の熱源として利用することを特徴としている(図3参照)。
【0008】
これらの方法においては、既存の下水処理場の処理負荷を変えずに、余剰汚泥の負荷に相当する生ごみディスポーザ排水を消化槽に投入することが好ましい。また、これらの方法においては、乾燥機からの乾燥排ガスの顕熱及び乾燥排ガスに含まれる水蒸気の凝縮熱により消化槽を加温する。この場合、消化槽を加温した後の除湿乾燥排ガスは、ガス発電の燃焼用空気に利用するとともに、ガス発電による燃焼排ガスと熱交換して加熱し乾燥機に供給する熱風として利用することができる。
また、これらの方法においては、乾燥機からの乾燥排ガスを用いて、消化槽を加温する代わりに、又は消化槽を加温するとともに、初沈汚泥を加温する構成としてもよい。
【0009】
また、これらの方法においては、乾燥機として、脱水汚泥と循環する乾燥汚泥との混合物を解砕(粉砕)しつつ熱風と接触させて乾燥する解砕機と、解砕された乾燥汚泥を気流搬送しながら熱風と接触させてさらに乾燥する気流搬送ラインと、気流搬送された乾燥汚泥粉を回収して乾燥汚泥粉と乾燥排ガスとに分離するサイクロンと、サイクロン下部から抜き出した乾燥汚泥粉を貯留、排出、循環させる乾粉供給装置とを備えた気流乾燥機を用いることが好ましい(図2参照)。また、これらの方法においては、生ごみディスポーザ排水を沈殿池で固液分離して濃縮した後、下水処理場に搬入することが好ましい。また、生ごみディスポーザ排水を沈殿池で固液分離して濃縮した後、貯留手段を備えた車両(バキューム車など)によって下水処理場へ搬入することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。図1は、本発明の実施の第1形態による生ごみディスポーザ排水の下水処理場における処理方法を実施する装置のシステムフローを示している。住宅、マンションなどディスポーザを有する区域から排出される生ごみ処理排水(ディスポーザ排水)は、一旦、小型沈殿池10へ貯留されて濃縮され、例えば、バキューム車12によって下水処理場へ搬入される。なお、ディスポーザ排水は小型沈殿池10から配管等を通じて下水処理場へ搬入される場合もある。
【0011】
一方、下水処理場内において、流入した下水は沈殿槽14にて初沈汚泥が沈降分離された後、曝気槽16で好気的に生物処理される。曝気槽16では活性汚泥により下水中のCOD等が生物処理され分解される。また、下水中に含まれるリン等が活性汚泥に取り込まれて除去される。曝気槽16で好気性処理された下水は、例えば、脱水機18で余剰汚泥が分離された後、浄化水として放流される。なお、最終沈殿池で重力濃縮により余剰汚泥を分離する構成としてもよい。後述するが、余剰汚泥(濃縮汚泥)は消化槽に投入せずに、消化槽からの消化汚泥とともに脱水処理する。
【0012】
下水処理場に搬入された生ごみディスポーザ排水は、沈殿槽14で分離された初沈汚泥とともに消化槽(メタン発酵槽)20に投入され、メタン発酵処理が行われる。この場合、前述した余剰汚泥は消化槽20内でリンが溶出するので、余剰汚泥は消化槽20へ投入しない。そして、下水処理場の処理負荷、すなわち、消化槽20の有機物負荷は変えずに、余剰汚泥の有機物量に相当する量の生ごみディスポーザ排水を消化槽20に投入する。消化槽20から引き抜かれる消化汚泥は余剰汚泥とともに脱水機22で脱水処理が行われ、脱水汚泥と脱離液とに分離される。なお、図示していないが、脱離液は、通常、下水汚泥流入水とともに曝気槽16に投入されて処理される。
【0013】
脱水汚泥は気流乾燥機24、サイクロン26を経て、乾燥汚泥と乾燥排空気が製造される。具体的に気流乾燥機での乾燥処理等について説明すると、例えば図2に示すように、脱水汚泥は必要に応じて圧送されて乾粉供給装置28に送られる。乾粉供給装置28では、後述するサイクロン26で分離され汚泥ホッパ30に貯留された乾燥汚泥が循環しており、脱水汚泥と乾燥汚泥は搬送されながら混合される。脱水汚泥と乾燥汚泥の混合物は乾燥用熱風と接触しながら解砕機32へ落としこまれ、小さい粒径にまで解砕され乾燥される。解砕された乾燥汚泥は気流乾燥管34を気流搬送されながらさらに乾燥され、サイクロン26にて回収される。サイクロン26では乾燥汚泥粉が乾燥排空気と分離される。乾燥汚泥はサイクロン26下部に設置した汚泥ホッパ30に貯留され、一部は乾燥汚泥として搬出される。なお、乾燥機の構成は上記のものに限定されるものではない。
【0014】
乾燥排空気は除湿器36に導入され、乾燥排空気に含まれる水蒸気が消化槽20に投入された汚泥と間接的に接触し凝縮されて、乾燥排空気が除湿され除湿空気が得られるとともに、水蒸気の凝縮熱を利用して消化槽20内の汚泥が加温される。なお、乾燥排空気で初沈汚泥を加温するようにしてもよい。除湿空気はガス発電を行う発電機38の燃焼用空気及び後述の気流乾燥機24に利用される。ガス発電を行う発電機38は、例えば、消化槽20からの消化ガスと都市ガスで運転し、電力は下水処理場内で利用される。発電機38としては、ガスエンジン発電機、ガスタービン発電機などが用いられる。なお、消化槽20からの消化ガスで発電機38を運転して、得られた電力を場内の一部に利用するといったシステムとすることも可能である。発電機38で発生した燃焼排ガスは、気流乾燥機24に導入する加熱空気(乾燥用熱風)を得るために前述した除湿空気と熱交換器40で熱交換し、昇温された除湿空気が乾燥用熱風として気流乾燥機24に導入される。熱交換器40で減温された燃焼排ガスは煙突42より排気する。
【0015】
上述したような処理システムを導入した場合の試算結果の一例を以下に示す。1.想定した下水処理場(混合汚泥消化方式)
▲1▼入口                40万人
▲2▼下水流入水      60,000,000m/年
▲3▼初沈汚泥          160,000m/年
固形物濃度(DS)         2.3%(重力濃縮)
有機物濃度(VS)          80%
▲4▼余剰汚泥          200,000m/年
DS                3.5%
VS                 75%
▲5▼消化槽
容量              6,000m
基数                  4基
消化温度               37℃
滞留日数               22日
【0016】
2.投入生ごみ量
現在、消化槽へ投入されている余剰汚泥に捕捉されたリンの溶出を軽減するため、余剰汚泥量を消化槽へは投入せずに乾燥工程へ導く。よって、余剰汚泥が消化槽へ投入されない分、生ごみを投入することが可能となると考える。
▲1▼余剰汚泥固形物量=余剰汚泥×固形物濃度
200,000t/年×3.5/100=7,000t/年
▲2▼余剰汚泥有機物量=余剰汚泥固形物量×有機物濃度
7,000t/年×75/100=5,250t/年
▲3▼ディスポーザ排水性状
DS        3%
VS       92%
【0017】
余剰汚泥の有機物量に相当するディスポーザ排水量を求める。
▲4▼ディスポーザ排水量×固形物濃度×有機物濃度=余剰汚泥有機物量
ディスポーザ排水量=余剰汚泥有機物量/(固形物濃度×有機物濃度)
5,250t/年/(3/100×92/100)=190,217t/年
▲5▼生ごみ性状
DS       15%
VS       92%
ディスポーザ排水に相当する生ごみ量を、ディスポーザ排水量から求める。
【0018】
余剰汚泥の代わりに受入れが可能となる生ごみ量から受入れ可能な人口を求める。
▲7▼生ごみ発生量     280g/日・人
▲8▼生ごみ受入可能人口=生ごみ量/365日/生ごみ発生量
38,043t/年/365日/280g/日・人=372,245人
【0019】
3.電力使用量
下水処理場の電力使用箇所別の電力使用量は次の通りである。
場内ポンプ   3,686,700kWh/年
水処理    14,351,300kWh/年
汚泥処理    3,175,700kWh/年
その他     8,996,900kWh/年
合計     30,210,600kWh/年=3,449kWh/h
【0020】
▲1▼都市ガス(13A)低位発熱量   9,330kcal/Nm
▲2▼ガス発電効率              30%
▲3▼熱回収効率(スチーム)         50%
▲4▼総合効率                80%
ガス発電必要熱量を求める。
▲5▼必要熱量=電力使用量×860/ガス発電効率
3,449kWh/h×860kcal/kWh/(30/100)=9,886,269kcal/h
熱回収量を求める。
▲6▼熱回収量=必要熱量×熱回収効率
9,886,269kcal/h×50/100=4,943,135kcal/h
【0021】
4.消化槽
消化槽への投入物は初沈汚泥とディスポーザ排水とする。
【0022】
【0023】
ガス発電により施設電力使用量を消化ガス(全量)と都市ガスで賄う。消化ガスは全量を発電に利用すると仮定して、都市ガス使用量を求める。
▲1▼′電力使用量     3,449kWh/h
▲2▼′ガス発電必要熱量(上記の「3.電力使用量の▲5▼」参照)
9,886,269kcal/h
▲3▼′都市ガス熱量=ガス発電必要熱量−消化ガス熱量
9,886,269kcal/h−3,621,417kcal/h=6,264,852kcal/h
▲4▼′都市ガス使用量=都市ガス熱量/都市ガス発熱量(都市ガス発熱量は「3.電力使用量の▲1▼」参照)
6,264,852kcal/h/9,330kcal/Nm=671Nm/h
▲5▼′消化汚泥
汚泥量=初沈汚泥+ディスポーザ排水
汚泥量     350,217t/年
固形物量=消化前DS量−分解VS量
固形物量      2,601t/年
DS          0.7%
未分解VS量=VS量合計−分解VS量合計
8,194t/年−6,786t/年=1,408t/年
VS         54.1%
【0024】
【0025】
【0026】
余剰熱量は温水等の場内利用が可能である。
【0027】
よって十分な消化槽加温が可能となる。
【0028】
上記の試算結果を参照して、ディスポーザ導入前後での処理システムを比較した結果を表1に示す。なお、ディスポーザ導入前の処理システムは、生ごみの焼却処理と下水処理とからなる構成であり、ディスポーザ導入後の処理システムは、下水処理へ生ごみディスポーザ排水を受け入れる本実施形態の構成である。
【0029】
【表1】
【0030】
図3は、本発明の実施の第2形態による生ごみディスポーザ排水の下水処理場における処理方法を実施する装置のシステムフローを示している。本実施の形態は、消化槽20で発生した消化ガスを燃料として熱風炉44に導入するとともに、除湿器36からの除湿空気を燃焼用空気として熱風炉44に導入し、熱風炉44で発生させた熱風を気流乾燥機24に供給するようにしたものである。
他の主要な構成及び作用等は、実施の第1形態の場合と同様である。
【0031】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 初沈汚泥と余剰汚泥の代わりに生ごみディスポーザ排水を消化槽に投入しメタン発酵処理を行うことにより、下水処理場の消化槽(メタン発酵槽)の増設等を行わず、つまり、消化槽の有機物負荷を変えずに生ごみディスポーザ排水を処理することが可能となる。また、余剰汚泥を消化槽へ投入しないので、余剰汚泥からのリンの溶出が軽減される。
(2) 余剰汚泥の消化率は低いが、生ごみディスポーザ排水の消化率は非常に高いので、消化槽からの消化ガス(メタンガス、バイオガス)の発生量が増大することになり、ガス発電に利用する場合に電力経費の軽減が可能となる。
(3) 消化槽からの消化汚泥と余剰汚泥を脱水後、乾燥させることで、乾燥汚泥を製造することができ、汚泥減量化と汚泥中の可燃性有機分の効果により、処分費、焼却経費を軽減することができる。また、乾燥汚泥は、例えば、ごみと混焼する場合の補助燃料や肥料などとして有効利用が可能である。
(4) 消化ガスは発電機で電気と熱に変換され、電気は下水処理場内等で利用でき、熱は乾燥用に利用された後、さらに水蒸気の凝縮熱で消化槽を加温するという多段の利用が可能となり、エネルギー効率が向上する。
(5) 消化汚泥と余剰汚泥を脱水処理する際、余剰汚泥のフロックが大きいことから、脱水にかける汚泥を構成する粒子群の粗大化が予想され、脱水効率の改善が期待できる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態による生ごみディスポーザ排水の下水処理場における処理方法を実施する装置を示す系統的概略構成説明図である。
【図2】本発明の実施の第1形態における気流乾燥機の一例を示す概略構成説明図である。
【図3】本発明の実施の第2形態による生ごみディスポーザ排水の下水処理場における処理方法を実施する装置を示す系統的概略構成説明図である。
【符号の説明】
10 小型沈殿池
12 バキューム車
14 沈殿槽
16 曝気槽
18、22 脱水機
20 消化槽
24 気流乾燥機
26 サイクロン
28 乾粉供給装置
30 汚泥ホッパ
32 解砕機
34 気流乾燥管
36 除湿器
38 発電機
40 熱交換器
42 煙突
44 熱風炉
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for receiving and treating garbage disposer wastewater in an existing sewage treatment facility.
[0002]
[Prior art]
Disposers are expected to be a technology that eliminates the collection of garbage from homes by truck or contributes to improving the hygiene of the social environment.However, in order to receive and treat garbage disposer wastewater at sewage treatment plants, For example, it is necessary to add a methane fermentation tank (digestion tank). As described above, when the garbage disposer wastewater is directly discharged to the sewer, the treatment load of the existing sewage treatment plant becomes excessive, which hinders the spread of the disposer. In many sewage treatment plants, primary sludge and concentrated sludge (excess sludge) are fed into digestion tanks for methane fermentation, but phosphorus is eluted from concentrated sludge in digestion tanks. Is causing deterioration of discharge water quality or increase of advanced treatment load. In this case, the generated digestion gas is mainly used for heating the digestion tank.
[0003]
As described above, if the garbage disposer wastewater is directly discharged to the sewer, the processing load of the existing sewage treatment plant becomes excessive. For example, as described in JP-A-2002-86124, the garbage disposer 2. Description of the Related Art There is known a technology for treating wastewater in a sewage treatment plant or a private purification treatment facility using a treatment system using a microorganism preparation, ozone, a high-performance underwater aerator, or the like.
Further, for example, JP-A-8-39092 and JP-A-10-323885 disclose that excess sludge separated in a final sedimentation basin provided at the latter stage of an aeration tank is fed into a digestion tank to reduce excess sludge. There is disclosed a technique to achieve this.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to prevent excess sludge in a sewage treatment plant from being injected into a digestion tank, and to measure the amount of organic matter in the excess sludge by receiving garbage disposer wastewater and conducting methane fermentation. By performing the treatment, it is possible to treat the garbage disposer wastewater without changing the treatment load of the existing sewage treatment plant, and further, it is possible to prevent phosphorus from being eluted from excess sludge in the digestion tank. It is an object of the present invention to provide a method for treating garbage disposer wastewater at a sewage treatment plant.
It should be noted that the household waste disposer has not yet been allowed to flow directly into the sewer. Currently, disposer installations that are permitted require that condominiums and the like be provided with wastewater treatment equipment and be disposed of below the allowable value for sewage. The present invention is based on the sewage discharge that is not currently permitted. However, it is considered possible at present to dispose of the disposer effluent into a sewage treatment plant after solid-liquid separation in a sedimentation basin.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the method of the present invention, when receiving and treating garbage disposer wastewater in a sewage treatment plant, the sewage flowing into the sewage treatment plant, after separating the initial settled sludge in the sedimentation tank, Biodegradation treatment in an aeration tank, and then excess sludge is removed by solid-liquid separation treatment to make purified water, and garbage disposer wastewater is put into the digestion tank in place of the excess sludge together with the initial sludge to perform methane fermentation treatment. The sludge digested from the digestion tank is dewatered together with the excess sludge and separated into dehydrated sludge and desorbed liquid, and the dehydrated sludge is dried with a dryer to obtain dried sludge. It is configured to utilize for heating the digestion tank, perform gas power generation using digestion gas generated in the digestion tank, and use waste heat generated by gas power generation as a heat source of the dryer.
[0006]
Further, in the method of the present invention, when the garbage disposer wastewater is received and treated in a sewage treatment plant, the sewage flowing into the sewage treatment plant is subjected to biodegradation treatment in an aeration tank after separating initial sludge in a sedimentation tank. Then, the excess sludge is removed by solid-liquid separation treatment to obtain purified water, and the garbage disposer wastewater is put into the digestion tank in place of the excess sludge together with the initial settled sludge to perform a methane fermentation treatment. The digested sludge is dehydrated together with the surplus sludge to separate it into dehydrated sludge and a desorbed liquid, and the dehydrated sludge is dried by a dryer to be dried sludge, and dried exhaust gas from the dryer is used for heating the digestion tank. Then, gas power generation is performed using gas fuel such as digestion gas and city gas generated in the digestion tank, the power is used in a sewage treatment plant, and waste heat generated by gas power generation is used as a heat source of the dryer. It is characterized by And are (see Figure 1).
In the above method, it is preferable to perform gas power generation using a gas engine, a gas turbine, or the like.
[0007]
Further, in the method of the present invention, when the garbage disposer wastewater is received and treated in a sewage treatment plant, the sewage flowing into the sewage treatment plant is subjected to biodegradation treatment in an aeration tank after separating initial sludge in a sedimentation tank. Then, the excess sludge is removed by solid-liquid separation treatment to obtain purified water, and the garbage disposer wastewater is put into the digestion tank in place of the excess sludge together with the initial settled sludge to perform a methane fermentation treatment. The digested sludge is dehydrated together with the surplus sludge to separate it into dehydrated sludge and a desorbed liquid, and the dehydrated sludge is dried by a dryer to be dried sludge, and dried exhaust gas from the dryer is used for heating the digestion tank. Then, hot air is generated using the digestion gas generated in the digestion tank as fuel, and is used as a heat source of the dryer (see FIG. 3).
[0008]
In these methods, it is preferable that the garbage disposer wastewater corresponding to the load of the excess sludge is charged into the digestion tank without changing the treatment load of the existing sewage treatment plant. In these methods, the digestion tank is heated by the sensible heat of the dried exhaust gas from the dryer and the heat of condensation of water vapor contained in the dried exhaust gas. In this case, the dehumidified and dried exhaust gas after heating the digestion tank can be used as combustion air for gas power generation, and can also be used as hot air to be heated and exchanged with the combustion exhaust gas for gas power generation and supplied to the dryer. it can.
Moreover, in these methods, it is good also as a structure which heats primary sludge instead of heating a digestion tank using a waste gas from a dryer, or heating a digestion tank.
[0009]
Further, in these methods, as a dryer, a crusher that crushes (pulverizes) a mixture of dehydrated sludge and circulating dry sludge and makes it contact with hot air to dry, and a flow transport of the crushed dried sludge An airflow transport line for further drying while contacting with hot air, a cyclone for collecting the dried airflow-conveyed dry sludge powder and separating it into dry sludge powder and dry exhaust gas, and storing the dry sludge powder extracted from the lower part of the cyclone, It is preferable to use a flash dryer provided with a dry powder supply device for discharging and circulating (see FIG. 2). Further, in these methods, it is preferable to carry out solid-liquid separation and concentration of the garbage disposer wastewater in a sedimentation basin, and then to carry the wastewater to a sewage treatment plant. Further, the garbage disposer wastewater can be solid-liquid separated and concentrated in a sedimentation basin, and then carried into a sewage treatment plant by a vehicle (such as a vacuum vehicle) provided with a storage means.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 shows a system flow of an apparatus for implementing a treatment method in a sewage treatment plant for garbage disposer wastewater according to a first embodiment of the present invention. The garbage disposal wastewater (disposer wastewater) discharged from an area having a disposer such as a house or an apartment is temporarily stored in a small sedimentation pond 10 and concentrated, and is carried into a sewage treatment plant by a vacuum truck 12, for example. In addition, the disposer drainage may be carried into the sewage treatment plant from the small sedimentation basin 10 through piping or the like.
[0011]
On the other hand, in the sewage treatment plant, the inflowed sewage is subjected to aerobic biological treatment in the aeration tank 16 after the primary sludge is settled and separated in the settling tank 14. In the aeration tank 16, COD in sewage is biologically treated and decomposed by activated sludge. Further, phosphorus and the like contained in the sewage are taken in and removed by the activated sludge. The sewage subjected to aerobic treatment in the aeration tank 16 is discharged as purified water, for example, after excess sludge is separated by a dehydrator 18. In addition, it is good also as a structure which separates excess sludge by gravity concentration in a final sedimentation basin. As will be described later, surplus sludge (concentrated sludge) is dewatered together with digested sludge from the digestion tank without being charged into the digestion tank.
[0012]
The garbage disposer wastewater carried into the sewage treatment plant is put into a digestion tank (methane fermentation tank) 20 together with the initial settled sludge separated in the sedimentation tank 14, where methane fermentation treatment is performed. In this case, the surplus sludge described above does not enter the digestion tank 20 because phosphorus elutes in the digestion tank 20. Then, without changing the treatment load of the sewage treatment plant, that is, the organic matter load of the digestion tank 20, the garbage disposer wastewater in an amount corresponding to the organic matter amount of the excess sludge is charged into the digestion tank 20. The digested sludge withdrawn from the digestion tank 20 is subjected to a dehydration treatment by a dehydrator 22 together with excess sludge, and separated into dehydrated sludge and a desorbed liquid. In addition, although not shown, the desorbed liquid is usually thrown into the aeration tank 16 together with the sewage sludge inflow water to be treated.
[0013]
The dehydrated sludge passes through a flash dryer 24 and a cyclone 26 to produce dried sludge and dry exhaust air. The drying process in the flash dryer will be specifically described. For example, as shown in FIG. 2, the dewatered sludge is pressure-fed if necessary and sent to the dry powder supply device 28. In the dry powder supply device 28, the dry sludge separated by the cyclone 26 described later and stored in the sludge hopper 30 circulates, and the dewatered sludge and the dry sludge are mixed while being conveyed. The mixture of the dehydrated sludge and the dried sludge is dropped into the crusher 32 while being in contact with the hot air for drying, crushed to a small particle size and dried. The disintegrated dried sludge is further dried while being transported through the flash drying tube 34, and collected by the cyclone 26. In the cyclone 26, the dried sludge powder is separated from the dried exhaust air. The dried sludge is stored in a sludge hopper 30 installed below the cyclone 26, and a part thereof is carried out as dried sludge. The configuration of the dryer is not limited to the above.
[0014]
The dried exhaust air is introduced into the dehumidifier 36, and the steam contained in the dried exhaust air is indirectly contacted with the sludge introduced into the digestion tank 20 and condensed, and the dried exhaust air is dehumidified to obtain dehumidified air. The sludge in the digestion tank 20 is heated using the heat of condensation of steam. In addition, you may make it heat initial sludge with dry exhaust air. The dehumidified air is used for combustion air of a generator 38 for performing gas power generation and a flash dryer 24 described later. The generator 38 that performs gas power generation is operated with, for example, digestion gas from the digestion tank 20 and city gas, and electric power is used in a sewage treatment plant. As the generator 38, a gas engine generator, a gas turbine generator, or the like is used. In addition, it is also possible to use a system in which the generator 38 is operated with digestion gas from the digestion tank 20 and the obtained electric power is used for a part of the site. The combustion exhaust gas generated by the generator 38 exchanges heat with the above-described dehumidified air and a heat exchanger 40 to obtain heated air (hot air for drying) to be introduced into the flash dryer 24, and the dehumidified air heated is dried. The hot air is introduced into the flash dryer 24. The combustion exhaust gas whose temperature has been reduced by the heat exchanger 40 is exhausted from a chimney 42.
[0015]
An example of a trial calculation result when the above-described processing system is introduced is shown below. 1. Assumed sewage treatment plant (mixed sludge digestion method)
▲ 1 ▼ entrance 400,000 people ▲ 2 ▼ Shimozuru water inlet 60,000,000m 3 / year ▲ 3 ▼ primary sludge 160,000m 3 / year solids concentration (DS) 2.3% (gravity concentration)
Organic matter concentration (VS) 80%
(4) Surplus sludge 200,000m 3 / year DS 3.5%
VS 75%
(5) Digestion tank capacity 6,000m 3
Number of bases 4 digestion temperature 37 ℃
Number of staying days 22 days
2. Input garbage amount In order to reduce the elution of phosphorus trapped in the excess sludge currently being supplied to the digestion tank, the amount of excess sludge is led to the drying process without being supplied to the digestion tank. Therefore, it is thought that it is possible to put garbage as much as the excess sludge is not put into the digestion tank.
(1) Excess sludge solids amount = Excess sludge x solids concentration 200,000 t / year x 3.5 / 100 = 7,000 t / years (2) Excess sludge organic matter = Excess sludge solids x organic matter concentration 7,000 t / Year x 75/100 = 5,250t / year (3) Disposer drainage property DS 3%
VS 92%
[0017]
Calculate the amount of disposer wastewater equivalent to the amount of excess sludge organic matter
(4) Disposer wastewater amount × solid matter concentration × organic matter concentration = excess sludge organic matter amount Disposer wastewater amount = excess sludge organic matter amount / (solid matter concentration × organic matter concentration)
5,250t / year / (3/100 × 92/100) = 190,217t / year 5) Garbage property DS 15%
VS 92%
The amount of garbage equivalent to the disposer wastewater is calculated from the disposer wastewater amount.
[0018]
The acceptable population is calculated from the amount of garbage that can be accepted instead of excess sludge.
(7) Amount of garbage generated 280 g / day / person (8) Population that can accept garbage = amount of garbage / 365 days / amount of garbage generated 38,043 t / year / 365 days / 280 g / day / person = 372,245 Man
[0019]
3. Electricity consumption The following table shows the amount of electricity used at each sewage treatment plant.
Pump inside the plant 3,686,700 kWh / year Water treatment 14,351,300 kWh / year Sludge treatment 3,175,700 kWh / year Others 8,996,900 kWh / year Total 30,210,600 kWh / year = 3,449 kWh / h
[0020]
(1) City gas (13A) low calorific value 9,330 kcal / Nm 3
(2) Gas power generation efficiency 30%
(3) Heat recovery efficiency (steam) 50%
4) Total efficiency 80%
Obtain the calorie required for gas power generation.
{Circle around (5)} Required heat = Electric power consumption × 860 / Gas power generation efficiency 3,449 kWh / h × 860 kcal / kWh / (30/100) = 9,886,269 kcal / h
Determine the heat recovery.
{Circle around (6)} Heat recovery amount = necessary heat amount × heat recovery efficiency 9,886,269 kcal / h × 50/100 = 4,943,135 kcal / h
[0021]
4. Digestion tank The inputs to the digestion tank are primary sludge and disposer wastewater.
[0022]
[0023]
Gas power generation will cover facility power consumption with digestive gas (all) and city gas. Assuming that all the digested gas is used for power generation, the amount of city gas used is calculated.
(1) 'Electricity consumption 3,449 kWh / h
(2) 'The amount of heat required for gas power generation (see “3. Electricity consumption (5)” above)
9,886,269 kcal / h
(3) 'Calorie of city gas = calorie required for gas power generation-calorie of digestion gas 9,886,269 kcal / h-3,621,417 kcal / h = 6,264,852 kcal / h
(4) 'City gas consumption = city gas calorific value / city gas calorific value (for city gas calorific value, see "3. Electricity consumption (1)")
6,264,852 kcal / h / 9,330 kcal / Nm 3 = 671 Nm 3 / h
(5) 'Amount of digested sludge = Initial settled sludge + Disposer drainage sludge 350,217 t / year solids = DS before digestion-Decomposed VS solids 2,601 t / year DS 0.7%
Undecomposed VS amount = Total VS amount−Total decomposed VS amount 8,194 t / year−6,786 t / year = 1,408 t / year VS 54.1%
[0024]
[0025]
[0026]
The surplus heat can be used on site such as hot water.
[0027]
Therefore, it is possible to sufficiently heat the digestion tank.
[0028]
Table 1 shows the results of comparing the processing systems before and after the introduction of the disposer with reference to the above calculation results. The treatment system before the introduction of the disposer has a configuration including incineration of garbage and sewage treatment, and the treatment system after the introduction of the disposer has a configuration of the present embodiment that receives garbage disposer wastewater for sewage treatment.
[0029]
[Table 1]
[0030]
FIG. 3 shows a system flow of an apparatus for implementing a treatment method in a sewage treatment plant for garbage disposer wastewater according to a second embodiment of the present invention. In the present embodiment, the digestion gas generated in the digestion tank 20 is introduced into the hot blast stove 44 as fuel, and the dehumidified air from the dehumidifier 36 is introduced into the hot blast stove 44 as combustion air. The hot air is supplied to the flash dryer 24.
Other main configurations and operations are the same as those of the first embodiment.
[0031]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
(1) Instead of primary sludge and excess sludge, garbage disposer wastewater is put into digestion tanks and methane fermentation is performed, thereby eliminating the need for additional digestion tanks (methane fermentation tanks) at sewage treatment plants. The garbage disposer wastewater can be treated without changing the organic matter load of the digester. In addition, since the excess sludge is not charged into the digestion tank, the elution of phosphorus from the excess sludge is reduced.
(2) Although the digestibility of surplus sludge is low, the digestibility of garbage disposer wastewater is very high, so the amount of digestive gas (methane gas, biogas) generated from the digestion tank will increase, and When it is used, power costs can be reduced.
(3) Dry sludge can be produced by dehydrating and drying digested sludge and excess sludge from the digestion tank. Disposal costs and incineration costs can be produced due to sludge reduction and the effect of combustible organic components in sludge. Can be reduced. Further, the dried sludge can be effectively used as, for example, an auxiliary fuel or a fertilizer when co-firing with refuse.
(4) Digestion gas is converted into electricity and heat by a generator, electricity can be used in a sewage treatment plant, etc., and heat is used for drying, and then the digestion tank is heated by the heat of condensation of steam. Can be used, and energy efficiency is improved.
(5) When dewatering digested sludge and surplus sludge, since flocs of the surplus sludge are large, it is expected that particles constituting the sludge to be dewatered are coarsened, and improvement in dewatering efficiency can be expected.
[Brief description of the drawings]
FIG. 1 is a systematic schematic configuration explanatory diagram showing an apparatus for implementing a treatment method in a sewage treatment plant for garbage disposer wastewater according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration explanatory view showing an example of a flash dryer according to the first embodiment of the present invention.
FIG. 3 is a systematic schematic configuration explanatory view showing an apparatus for performing a treatment method in a sewage treatment plant for garbage disposer wastewater according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Small sedimentation basin 12 Vacuum truck 14 Sedimentation tank 16 Aeration tank 18, 22 Dehydrator 20 Digestion tank 24 Flash dryer 26 Cyclone 28 Dry powder supply device 30 Sludge hopper 32 Crusher 34 Airflow drying pipe 36 Dehumidifier 38 Generator 40 Heat exchange Vessel 42 chimney 44 hot stove

Claims (11)

  1. 生ごみディスポーザ排水を下水処理場に受け入れて処理するに際し、下水処理場内に流入した下水は沈殿槽にて初沈汚泥を分離した後、曝気槽にて生物分解処理し、ついで、固液分離処理により余剰汚泥を除去して浄化水とし、前記初沈汚泥とともに余剰汚泥に代えて生ごみディスポーザ排水を消化槽へ投入してメタン発酵処理を行い、消化槽からの消化汚泥を前記余剰汚泥とともに脱水処理して脱水汚泥と脱離液とに分離し、脱水汚泥を乾燥機で乾燥させて乾燥汚泥とし、乾燥機からの乾燥排ガスは前記消化槽の加温に利用し、消化槽で発生した消化ガスを用いてガス発電を行い、ガス発電で発生した廃熱を前記乾燥機の熱源として利用することを特徴とする生ごみディスポーザ排水の下水処理場における処理方法。In receiving and treating the garbage disposer wastewater in the sewage treatment plant, the sewage flowing into the sewage treatment plant is separated into primary sludge in a sedimentation tank, then biodegraded in an aeration tank, and then solid-liquid separation treatment The waste sludge is removed to make purified water, the garbage disposer wastewater is put into the digestion tank instead of the excess sludge together with the initial settled sludge, and methane fermentation is performed, and the digested sludge from the digestion tank is dewatered together with the excess sludge. Treated to separate the dewatered sludge and the desorbed liquid, the dewatered sludge is dried in a dryer to dry sludge, the dried exhaust gas from the dryer is used to heat the digestion tank, digestion generated in the digestion tank A method for treating garbage disposer wastewater at a sewage treatment plant, wherein gas is used to generate gas, and waste heat generated by the gas is used as a heat source of the dryer.
  2. 生ごみディスポーザ排水を下水処理場に受け入れて処理するに際し、下水処理場内に流入した下水は沈殿槽にて初沈汚泥を分離した後、曝気槽にて生物分解処理し、ついで、固液分離処理により余剰汚泥を除去して浄化水とし、前記初沈汚泥とともに余剰汚泥に代えて生ごみディスポーザ排水を消化槽へ投入してメタン発酵処理を行い、消化槽からの消化汚泥を前記余剰汚泥とともに脱水処理して脱水汚泥と脱離液とに分離し、脱水汚泥を乾燥機で乾燥させて乾燥汚泥とし、乾燥機からの乾燥排ガスは前記消化槽の加温に利用し、消化槽で発生した消化ガスとガス燃料を用いてガス発電を行い、その電力を下水処理場内で利用し、ガス発電で発生した廃熱を前記乾燥機の熱源として利用することを特徴とする生ごみディスポーザ排水の下水処理場における処理方法。In receiving and treating the garbage disposer wastewater in the sewage treatment plant, the sewage flowing into the sewage treatment plant is separated into primary sludge in a sedimentation tank, then biodegraded in an aeration tank, and then solid-liquid separation treatment The waste sludge is removed to make purified water, the garbage disposer wastewater is put into the digestion tank instead of the excess sludge together with the initial settled sludge, and methane fermentation is performed, and the digested sludge from the digestion tank is dewatered together with the excess sludge. Treated to separate the dewatered sludge and the desorbed liquid, the dewatered sludge is dried in a dryer to dry sludge, the dried exhaust gas from the dryer is used to heat the digestion tank, digestion generated in the digestion tank Gas power generation using gas and gas fuel, the power is used in a sewage treatment plant, and waste heat generated by gas power generation is used as a heat source of the dryer. Processing method in the field.
  3. ガスエンジン及びガスタービンのいずれかを用いてガス発電を行う請求項1又は2記載の生ごみディスポーザ排水の下水処理場における処理方法。The method for treating garbage disposer wastewater in a sewage treatment plant according to claim 1 or 2, wherein gas power generation is performed using any of a gas engine and a gas turbine.
  4. 生ごみディスポーザ排水を下水処理場に受け入れて処理するに際し、下水処理場内に流入した下水は沈殿槽にて初沈汚泥を分離した後、曝気槽にて生物分解処理し、ついで、固液分離処理により余剰汚泥を除去して浄化水とし、前記初沈汚泥とともに余剰汚泥に代えて生ごみディスポーザ排水を消化槽へ投入してメタン発酵処理を行い、消化槽からの消化汚泥を前記余剰汚泥とともに脱水処理して脱水汚泥と脱離液とに分離し、脱水汚泥を乾燥機で乾燥させて乾燥汚泥とし、乾燥機からの乾燥排ガスは前記消化槽の加温に利用し、消化槽で発生した消化ガスを燃料として熱風を発生させ、前記乾燥機の熱源として利用することを特徴とする生ごみディスポーザ排水の下水処理場における処理方法。In receiving and treating the garbage disposer wastewater in the sewage treatment plant, the sewage flowing into the sewage treatment plant is separated into primary sludge in a sedimentation tank, then biodegraded in an aeration tank, and then solid-liquid separation treatment The waste sludge is removed to make purified water, the garbage disposer wastewater is put into the digestion tank instead of the excess sludge together with the initial settled sludge, and methane fermentation is performed, and the digested sludge from the digestion tank is dewatered together with the excess sludge. Treated to separate the dewatered sludge and the desorbed liquid, the dewatered sludge is dried in a dryer to dry sludge, the dried exhaust gas from the dryer is used to heat the digestion tank, digestion generated in the digestion tank A method for treating garbage disposer wastewater at a sewage treatment plant, wherein hot air is generated using gas as fuel and used as a heat source of the dryer.
  5. 既存の下水処理場の処理負荷を変えずに、余剰汚泥の負荷に相当する生ごみディスポーザ排水を消化槽に投入する請求項1〜4のいずれかに記載の生ごみディスポーザ排水の下水処理場における処理方法。The garbage disposer effluent according to any one of claims 1 to 4, wherein the garbage disposer effluent corresponding to the load of the excess sludge is introduced into the digestion tank without changing the treatment load of the existing sewage treatment plant. Processing method.
  6. 乾燥機からの乾燥排ガスの顕熱及び乾燥排ガスに含まれる水蒸気の凝縮熱により消化槽を加温する請求項1〜5のいずれかに記載の生ごみディスポーザ排水の下水処理場における処理方法。The treatment method in a sewage treatment plant according to any one of claims 1 to 5, wherein the digestion tank is heated by sensible heat of the dried exhaust gas from the dryer and heat of condensation of water vapor contained in the dried exhaust gas.
  7. 消化槽を加温した後の除湿乾燥排ガスを、ガス発電の燃焼用空気に利用するとともに、ガス発電による燃焼排ガスと熱交換して加熱し乾燥機に供給する熱風として利用する請求項6記載の生ごみディスポーザ排水の下水処理場における処理方法。7. The dehumidified and dried exhaust gas after heating the digestion tank is used as combustion air for gas power generation, and is used as hot air to be heated and exchanged with the combustion exhaust gas for gas power generation and supplied to a dryer. Treatment method of garbage disposer wastewater at sewage treatment plant.
  8. 乾燥機からの乾燥排ガスを用いて、消化槽を加温する代わりに、又は消化槽を加温するとともに、初沈汚泥を加温する請求項1〜7のいずれかに記載の生ごみディスポーザ排水の下水処理場における処理方法。The garbage disposer wastewater according to any one of claims 1 to 7, wherein the waste sludge is heated using the dried exhaust gas from the dryer instead of heating the digestion tank, or while heating the digestion tank. Treatment method in a sewage treatment plant
  9. 乾燥機として、脱水汚泥と循環する乾燥汚泥との混合物を解砕しつつ熱風と接触させて乾燥する解砕機と、解砕された乾燥汚泥を気流搬送しながら熱風と接触させてさらに乾燥する気流搬送ラインと、気流搬送された乾燥汚泥粉を回収して乾燥汚泥粉と乾燥排ガスとに分離するサイクロンと、サイクロン下部から抜き出した乾燥汚泥粉を貯留、排出、循環させる乾粉供給装置とを備えた気流乾燥機を用いる請求項1〜8のいずれかに記載の生ごみディスポーザ排水の下水処理場における処理方法。As a dryer, a crusher that crushes a mixture of dewatered sludge and circulating dry sludge and makes it contact with hot air to dry it, and an air flow that makes the crushed dry sludge contact with hot air while carrying it in a stream and further dry it A transport line, a cyclone that collects the dried sludge powder transported by airflow and separates the dried sludge powder and the dried exhaust gas, and a dry powder supply device that stores, discharges, and circulates the dried sludge powder extracted from the lower part of the cyclone The treatment method for a garbage disposer wastewater in a sewage treatment plant according to any one of claims 1 to 8, wherein a flash dryer is used.
  10. 生ごみディスポーザ排水を沈殿池で固液分離して濃縮した後、下水処理場に搬入する請求項1〜9のいずれかに記載の生ごみディスポーザ排水の下水処理場における処理方法。The method for treating garbage disposer wastewater in a sewage treatment plant according to any one of claims 1 to 9, after solidifying and separating the garbage disposer wastewater in a sedimentation basin and concentrating the wastewater.
  11. 生ごみディスポーザ排水を沈殿池で固液分離して濃縮した後、貯留手段を備えた車両によって下水処理場へ搬入する請求項1〜9のいずれかに記載の生ごみディスポーザ排水の下水処理場における処理方法。The garbage disposer wastewater in the sewage treatment plant according to any one of claims 1 to 9, wherein the garbage disposer wastewater is solid-liquid separated and concentrated in the sedimentation basin, and then conveyed to the sewage treatment plant by a vehicle equipped with storage means. Processing method.
JP2002228239A 2002-08-06 2002-08-06 Treatment method of garbage disposer wastewater at sewage treatment plant Expired - Fee Related JP3581143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228239A JP3581143B2 (en) 2002-08-06 2002-08-06 Treatment method of garbage disposer wastewater at sewage treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228239A JP3581143B2 (en) 2002-08-06 2002-08-06 Treatment method of garbage disposer wastewater at sewage treatment plant

Publications (2)

Publication Number Publication Date
JP2004066094A true JP2004066094A (en) 2004-03-04
JP3581143B2 JP3581143B2 (en) 2004-10-27

Family

ID=32014978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228239A Expired - Fee Related JP3581143B2 (en) 2002-08-06 2002-08-06 Treatment method of garbage disposer wastewater at sewage treatment plant

Country Status (1)

Country Link
JP (1) JP3581143B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167705A (en) * 2004-11-22 2006-06-29 Tsukishima Kikai Co Ltd Biomass treatment method in sewage treatment plant
JP2007196931A (en) * 2006-01-30 2007-08-09 Kazuo Miyata Sludge treatment vessel
JP2007330918A (en) * 2006-06-16 2007-12-27 Kawasaki Heavy Ind Ltd Method and apparatus for recycling sludge
JP2009045612A (en) * 2007-07-20 2009-03-05 Chugoku Electric Power Co Inc:The Waste recycling method and recycling facility
CN102344233A (en) * 2011-08-15 2012-02-08 重庆巨康建材有限公司 Biological anaerobic degradation pool insulation system of sludge used for brickmaking
JP2015131263A (en) * 2014-01-10 2015-07-23 月島機械株式会社 Organic waste processor, dryer for use in organic waste processor, and processing method of organic waste
JP2015208716A (en) * 2014-04-25 2015-11-24 宇部興産株式会社 Sludge drying installation
JP2020073278A (en) * 2020-02-12 2020-05-14 株式会社サムズ Processing system of combustible refuse

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288327A (en) * 1992-04-07 1993-11-02 Kumagai Gumi Co Ltd Energy recycling device
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JPH10216785A (en) * 1997-02-07 1998-08-18 Ebara Corp Treatment of night soil, garbage and sludge
JP2001271078A (en) * 2000-03-24 2001-10-02 Osaka Gas Co Ltd Method for producing fuel gas
JP2002326071A (en) * 2001-05-02 2002-11-12 Chugoku Electric Power Co Inc:The Method of and system for recycling circulating resource such as waste food

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288327A (en) * 1992-04-07 1993-11-02 Kumagai Gumi Co Ltd Energy recycling device
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JPH10216785A (en) * 1997-02-07 1998-08-18 Ebara Corp Treatment of night soil, garbage and sludge
JP2001271078A (en) * 2000-03-24 2001-10-02 Osaka Gas Co Ltd Method for producing fuel gas
JP2002326071A (en) * 2001-05-02 2002-11-12 Chugoku Electric Power Co Inc:The Method of and system for recycling circulating resource such as waste food

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167705A (en) * 2004-11-22 2006-06-29 Tsukishima Kikai Co Ltd Biomass treatment method in sewage treatment plant
JP2007196931A (en) * 2006-01-30 2007-08-09 Kazuo Miyata Sludge treatment vessel
JP2007330918A (en) * 2006-06-16 2007-12-27 Kawasaki Heavy Ind Ltd Method and apparatus for recycling sludge
JP4510782B2 (en) * 2006-06-16 2010-07-28 カワサキプラントシステムズ株式会社 Sludge recycling method and apparatus.
JP2009045612A (en) * 2007-07-20 2009-03-05 Chugoku Electric Power Co Inc:The Waste recycling method and recycling facility
CN102344233A (en) * 2011-08-15 2012-02-08 重庆巨康建材有限公司 Biological anaerobic degradation pool insulation system of sludge used for brickmaking
JP2015131263A (en) * 2014-01-10 2015-07-23 月島機械株式会社 Organic waste processor, dryer for use in organic waste processor, and processing method of organic waste
JP2015208716A (en) * 2014-04-25 2015-11-24 宇部興産株式会社 Sludge drying installation
JP2020073278A (en) * 2020-02-12 2020-05-14 株式会社サムズ Processing system of combustible refuse

Also Published As

Publication number Publication date
JP3581143B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
JP3581143B2 (en) Treatment method of garbage disposer wastewater at sewage treatment plant
US20090249685A1 (en) Closed loop biomass energy system
AU2007307388B2 (en) Integrated utility system
KR20090133114A (en) Treatment of particulate biodegradable organic waste by thermal hydrolysis using condensate recycle
JP4510782B2 (en) Sludge recycling method and apparatus.
JP4365425B2 (en) Waste and sewage treatment method and equipment
KR100645091B1 (en) On-Site Treatment Method of Ground Food Wastes
KR100728816B1 (en) System and method for treating sludge in waste water
US3467587A (en) Waste incinerator steam generator-flash evaporator desalination unit
KR101853734B1 (en) Apparatus for recycling waste wastewater of organic wastes without discharge, and Method of recycling thereof
JP3484539B2 (en) Recycling method and recycling system for circulating resources such as food waste
CN108620421A (en) A kind of restaurant garbage treating system
KR102045191B1 (en) Energy Independent Treating System for Organic Wastewater
KR20160098989A (en) Treatment System of Food Waste Leachate Capable of Deodoring and Highly Concentration with High Solubility
JP2004322070A (en) Method for anaerobically treating garbage
JP4417060B2 (en) Garbage and human waste collection processing method and apparatus
KR101847082B1 (en) Recycling apparatus of organic waste and, its recycling method
KR101113253B1 (en) Bio-gas system for organic material waste
KR20150114158A (en) Treatment System of Food Waste Leachate Capable of Denitration with High Solubility
KR20150114157A (en) Treatment System of Food Waste Leachate
Abusoglu et al. Producing Bio-electricity and Bio-heat from Urban Sewage Sludge in Turkey Using a Two-Stage Process
JPH0691245A (en) Treatment of waste
KR102271699B1 (en) Apparatus for treating integrated anaerobic digestion of livestock excretions
KR20150114153A (en) Treatment System of Food Waste Leachate Capable of Deodoring
KR20150114156A (en) Treatment System of Food Waste Leachate Capable of Deodoring, Denitration with High Solubility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent or registration of utility model

Ref document number: 3581143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees