JP2015128370A - Wireless power transmission system - Google Patents

Wireless power transmission system Download PDF

Info

Publication number
JP2015128370A
JP2015128370A JP2014237280A JP2014237280A JP2015128370A JP 2015128370 A JP2015128370 A JP 2015128370A JP 2014237280 A JP2014237280 A JP 2014237280A JP 2014237280 A JP2014237280 A JP 2014237280A JP 2015128370 A JP2015128370 A JP 2015128370A
Authority
JP
Japan
Prior art keywords
coil
power
living body
receiving coil
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014237280A
Other languages
Japanese (ja)
Other versions
JP6369304B2 (en
Inventor
明 後谷
Akira Ushirotani
明 後谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014237280A priority Critical patent/JP6369304B2/en
Publication of JP2015128370A publication Critical patent/JP2015128370A/en
Application granted granted Critical
Publication of JP6369304B2 publication Critical patent/JP6369304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power transmission system capable of optimizing power transmission efficiency between a power supply coil and a power receiving coil.SOLUTION: A wireless power transmission system 10 includes: a power supply coil 21 generating an AC magnetic field with the supply of an AC current; a power receiving coil 31 receiving power via an AC magnetic field; and a position detecting means 23 detecting the relative positional relationship between the power supply coil 21 and the power receiving coil 31. The position detecting means 23 measures a deviation amount (Xm, Ym) in a plane direction that is a direction orthogonal to a facing direction of the power supply coil 21 and the power receiving coil 31 and a deviation amount (θm) in a rotation direction of a rotation angle with a coil center viewed from the facing direction as a rotation axis, and detects the relative positional relationship between the power supply coil 21 and the power receiving coil 31 on the basis of the measurement result.

Description

本発明は、ワイヤレス電力伝送システムに関する。   The present invention relates to a wireless power transmission system.

電源コードを用いることなく電力を伝送する技術、いわゆる、ワイヤレス電力伝送技術が注目されている。ワイヤレス電力伝送技術は、給電機器から受電機器へワイヤレスで電力を供給できることから、電気自動車やハイブリッド自動車等の移動体への応用が期待されている。   A technology for transmitting power without using a power cord, so-called wireless power transmission technology, has attracted attention. The wireless power transmission technology can supply power wirelessly from a power feeding device to a power receiving device, and thus is expected to be applied to mobile objects such as electric vehicles and hybrid vehicles.

電気自動車やハイブリッド車等の移動体へのワイヤレス電力伝送においては、地上側に配置される給電コイルと、移動体側に搭載される受電コイルとの間で電磁場を介して電力が伝送される。このような場合、給電コイルと受電コイルとの位置ずれを考慮する必要があり、例えば、特許文献1では、床部に配置された一次コイルを横長形状、車両に搭載あれた二次コイルを縦長形状とすることで、一次コイルと二次コイルの軸心位置が多少異なっても、大量の電力を安定して提供する検討がなされている。   In wireless power transmission to a moving body such as an electric vehicle or a hybrid vehicle, power is transmitted via an electromagnetic field between a feeding coil arranged on the ground side and a receiving coil mounted on the moving body side. In such a case, it is necessary to consider the positional deviation between the power feeding coil and the power receiving coil. For example, in Patent Document 1, the primary coil disposed on the floor is horizontally long, and the secondary coil mounted on the vehicle is vertically long. By adopting the shape, studies have been made to stably provide a large amount of power even if the axial positions of the primary coil and the secondary coil are slightly different.

特開2011−97671号公報JP 2011-97671 A

ところで、移動体を所定の場所に正確に停車させることは難しく、停車スペースに対して移動体が斜めにずれて停車されることが想定される。しかしながら、特許文献1に開示される技術では、平面視して移動体の進行方向と移動体の進行方向に直交する方向の位置ずれしか考慮されておらず、特許文献1に記載の横長形状あるいは縦長形状のようなコイルを用いた場合、給電コイルと受電コイルの軸心位置が一致したとしても必ずしも所望の電力伝送効率を得られるとは限らないおそれがあった。つまり、停車スペースに対する移動体の停車角度のずれが大きくなると、電力伝送効率が低下してしまうという問題があった。   By the way, it is difficult to accurately stop the moving body at a predetermined place, and it is assumed that the moving body is stopped obliquely with respect to the stop space. However, in the technique disclosed in Patent Document 1, only the positional deviation in the direction orthogonal to the traveling direction of the moving body and the traveling direction of the moving body in a plan view is considered. When a vertically long coil is used, there is a possibility that a desired power transmission efficiency may not always be obtained even if the axial center positions of the power feeding coil and the power receiving coil coincide with each other. That is, there is a problem that the power transmission efficiency is reduced when the shift of the stop angle of the moving body with respect to the stop space is increased.

そこで、本発明は係る事情に鑑みてなされたものであり、給電コイルと受電コイル間の電力伝送効率を最適化できるワイヤレス電力伝送システムを提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a wireless power transmission system capable of optimizing the power transmission efficiency between the feeding coil and the receiving coil.

本発明に係るワイヤレス電力伝送システムは、給電コイルと受電コイルが対向することによりワイヤレスにて電力が伝送されるワイヤレス電力伝送システムであって、交流電流が供給されて交流磁界を発生する給電コイルと、交流磁界を介して電力を受電する受電コイルと、給電コイルと受電コイルの相対位置関係を検知する位置検知手段と、を備え、位置検知手段は、給電コイルと受電コイルの対向方向と直交する方向の平面方向ずれ量と対向方向から見たコイル中心を回転軸とした回転角の回転方向ずれ量を計測し、当該計測結果に基づいて給電コイルと受電コイルの相対位置関係を検知することを特徴とする。   A wireless power transmission system according to the present invention is a wireless power transmission system in which power is transmitted wirelessly by opposing a power feeding coil and a power receiving coil, and a power feeding coil that generates an AC magnetic field by being supplied with an AC current; A power receiving coil that receives power via an alternating magnetic field, and a position detecting means that detects a relative positional relationship between the power feeding coil and the power receiving coil, and the position detecting means is orthogonal to the opposing direction of the power feeding coil and the power receiving coil. Measuring the amount of deviation in the plane direction of the direction and the amount of deviation in the rotational direction of the rotation angle with the coil center as seen from the opposite direction as the rotation axis, and detecting the relative positional relationship between the feeding coil and the receiving coil based on the measurement result Features.

本発明によれば、位置検知手段が給電コイルと受電コイルの対向方向と直交する方向の平面方向ずれ量と対向方向から見たコイル中心を回転軸とした回転角の回転方向ずれ量を計測し、当該計測結果に基づいて給電コイルと受電コイルの相対位置関係を検知している。そのため、位置検知手段により検知した給電コイルと受電コイルの相対位置関係に基づいて、平面方向ずれ量と回転方向ずれ量が許容範囲に収まるように移動体を誘導することが可能となり、給電コイルと受電コイル間の電力伝送効率を最適化することができる。   According to the present invention, the position detection unit measures the amount of deviation in the planar direction in the direction orthogonal to the opposing direction of the feeding coil and the receiving coil and the amount of deviation in the rotational direction of the rotation angle with the coil center as viewed from the opposing direction as the rotation axis. Based on the measurement result, the relative positional relationship between the feeding coil and the receiving coil is detected. Therefore, based on the relative positional relationship between the power feeding coil and the power receiving coil detected by the position detecting means, it is possible to guide the moving body so that the amount of deviation in the plane direction and the amount of deviation in the rotational direction are within the allowable range. The power transmission efficiency between the receiving coils can be optimized.

好ましくは、生体の有無を検知する生体検知手段をさらに備え、生体検知手段は、平面方向ずれ量の最大許容値と回転方向ずれ量の最大許容値に基づいて、生体検知エリアを画定するとよい。ところで、ワイヤレス電力伝送技術を移動体に適用した場合、給電開始前や給電中に移動体近傍における生体の存在を検知する必要がある。ところが、停車スペースに対して移動体が斜めにずれて停車されると、給電コイルから発生する磁束の放射パターンと受電コイルを搭載した移動体の位置関係が変化する。これによって、移動体近傍における生体の存在の検知が必要なエリアも変化してしまうために、本来であれば生体の検知を行う必要のあるエリアであっても検知がなされないということが懸念される。また、たとえ移動体を平面方向ずれ量と回転方向ずれ量が許容範囲に収まるように誘導したとしても、給電コイルと受電コイルの相対位置関係を完全に一致させることは難しく、給電コイルと受電コイルに僅かな位置ずれが生じていることも考えられるため、給電コイルと受電コイルの位置ずれに応じた生体検知エリアを画定する必要がある。これに対して、本発明では、給電コイルと受電コイルが平面方向ずれ量と回転方向ずれ量ともに最大許容値に基づいて、生体検知エリアを画定していることから、生体検知が必要なエリアの検知を確実に行うことができる。   Preferably, it further includes a living body detecting means for detecting the presence or absence of a living body, and the living body detecting means may define the living body detection area based on the maximum allowable value of the deviation amount in the plane direction and the maximum allowable value of the deviation amount in the rotation direction. By the way, when the wireless power transmission technology is applied to a mobile object, it is necessary to detect the presence of a living body in the vicinity of the mobile object before or during the start of power supply. However, when the moving body is obliquely shifted with respect to the stop space, the positional relationship between the radiation pattern of the magnetic flux generated from the power feeding coil and the moving body on which the power receiving coil is mounted changes. As a result, the area that needs to detect the presence of the living body in the vicinity of the moving body also changes, and there is a concern that detection is not performed even in an area that originally needs to detect the living body. The Even if the moving body is guided so that the amount of deviation in the plane direction and the amount of deviation in the rotational direction are within the allowable range, it is difficult to completely match the relative positional relationship between the feeding coil and the receiving coil. It is also possible that a slight misalignment occurs, and therefore it is necessary to define a living body detection area corresponding to the misalignment of the power feeding coil and the power receiving coil. On the other hand, in the present invention, the feeding coil and the receiving coil define the living body detection area based on the maximum allowable value for both the plane direction deviation amount and the rotation direction deviation amount. Detection can be performed reliably.

好ましくは、生体の有無を検知する生体検知手段をさらに備え、生体検知手段は、位置検知手段が計測した平面方向ずれ量と回転方向ずれ量とに基づいて、生体検知エリアを画定するとよい。上述したように、ワイヤレス電力伝送技術を移動体に適用した場合、給電開始前や給電中に移動体近傍における生体の存在を検知する必要がある。ところが、停車スペースに対して移動体が斜めにずれて停車されると、給電コイルから発生する磁束の放射パターンと受電コイルを搭載した移動体の位置関係が変化する。これによって、移動体近傍における生体の存在の検知が必要なエリアも変化してしまうために、本来であれば生体の検知を行う必要のあるエリアであっても検知がなされないということが懸念される。また、たとえ移動体を平面方向ずれ量と回転方向ずれ量が許容範囲に収まるように誘導したとしても、給電コイルと受電コイルの相対位置関係を完全に一致させることは難しく、給電コイルと受電コイルに僅かな位置ずれが生じていることも考えられるため、給電コイルと受電コイルの位置ずれに応じた生体検知エリアを画定する必要がある。これに対して、本発明では、生体検知手段が位置検知手段により計測した平面方向ずれ量と回転方向ずれ量に基づいて、生体検知エリアを画定していることから、生体検知が必要なエリアの最適化を図ることができ、生体検知を効率よく確実に行うことができる。   Preferably, it further includes a living body detecting means for detecting the presence or absence of a living body, and the living body detecting means may define a living body detection area based on the amount of deviation in the plane direction and the amount of deviation in the rotation direction measured by the position detecting means. As described above, when the wireless power transmission technology is applied to a moving body, it is necessary to detect the presence of a living body in the vicinity of the moving body before starting feeding or during feeding. However, when the moving body is obliquely shifted with respect to the stop space, the positional relationship between the radiation pattern of the magnetic flux generated from the power feeding coil and the moving body on which the power receiving coil is mounted changes. As a result, the area that needs to detect the presence of the living body in the vicinity of the moving body also changes, and there is a concern that detection is not performed even in an area that originally needs to detect the living body. The Even if the moving body is guided so that the amount of deviation in the plane direction and the amount of deviation in the rotational direction are within the allowable range, it is difficult to completely match the relative positional relationship between the feeding coil and the receiving coil. It is also possible that a slight misalignment occurs, and therefore it is necessary to define a living body detection area corresponding to the misalignment of the power feeding coil and the power receiving coil. In contrast, in the present invention, the living body detection area is defined based on the plane direction deviation amount and the rotation direction deviation amount measured by the position detection means by the living body detection means. Optimization can be achieved and living body detection can be performed efficiently and reliably.

本発明によれば、給電コイルと受電コイル間の電力伝送効率を最適化できるワイヤレス電力伝送システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the wireless power transmission system which can optimize the power transmission efficiency between a feeding coil and a receiving coil can be provided.

本発明の第1実施形態に係るワイヤレス電力伝送システムを示す概略図である。1 is a schematic diagram showing a wireless power transmission system according to a first embodiment of the present invention. 立入り制限エリアと生体検知エリアの関係を示す模式図である。It is a schematic diagram which shows the relationship between an access restriction area and a biometric detection area. 本発明の第1実施形態に係るワイヤレス電力伝送システムの給電動作を示すフローチャートである。It is a flowchart which shows the electric power feeding operation | movement of the wireless power transmission system which concerns on 1st Embodiment of this invention. 給電コイルと受電コイルの位置関係・回転角度関係を示す模式図である。It is a schematic diagram which shows the positional relationship and rotation angle relationship of a feeding coil and a receiving coil. 給電コイルと受電コイルの回転方向ずれ量が0〔°〕の状態を示す模式図である。It is a schematic diagram which shows the state whose rotation direction deviation | shift amount of a feed coil and a receiving coil is 0 degree. 給電コイルと受電コイルの回転方向ずれ量が90〔°〕あるいは270〔°〕の状態を示す模式図である。It is a schematic diagram which shows the state whose rotation direction deviation | shift amount of a feeding coil and a receiving coil is 90 degrees (degrees) or 270 degrees (degrees). 給電コイルと受電コイルの相対位置が一致している状態の生体検知エリアを示す模式図である。It is a schematic diagram which shows the biological body detection area of the state with which the relative position of a feeding coil and a receiving coil corresponds. 給電コイルと受電コイルの相対位置がずれている状態の生体検知エリアを示す模式図である。It is a schematic diagram which shows the biological body detection area of the state from which the relative position of a feeding coil and a receiving coil has shifted | deviated.

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

(第1実施形態)
図1は、本発明の第1実施形態に係るワイヤレス電力伝送システムを示す概略図である。ワイヤレス電力伝送システム10は、給電設備20と、移動体30と、を備える。移動体30としては、電気自動車(Electric Vehicle)やハイブリッド自動車(Hybrid Electric Vehicle)、工場などで荷物などを移動する際に使用する電動搬送機などが挙げられる。
(First embodiment)
FIG. 1 is a schematic diagram illustrating a wireless power transmission system according to a first embodiment of the present invention. The wireless power transmission system 10 includes a power supply facility 20 and a moving body 30. Examples of the mobile body 30 include an electric vehicle (Electric Vehicle), a hybrid vehicle (Hybrid Electric Vehicle), and an electric transporter used when moving luggage in a factory.

給電設備20は、図1に示されるように、給電コイル21と、給電装置22と、位置検知手段23と、生体検知手段24と、給電側通信機器25と、を備える。なお、本例においては、給電設備20の停車スペース26に移動体30が停車した状態となっている。   As shown in FIG. 1, the power supply facility 20 includes a power supply coil 21, a power supply device 22, a position detection unit 23, a living body detection unit 24, and a power supply side communication device 25. In this example, the moving body 30 is stopped in the stop space 26 of the power supply facility 20.

給電コイル21は、銅やアルミニウム等の金属線が巻回されて構成される。その巻き数は、給電コイル21と後述する受電コイル31との間の離間距離や所望の電力伝送効率に基づいて適宜設定される。このように構成された給電コイル21は、絶縁性を有する筐体に収容されてパッケージングされる。また、給電コイル21は、後述する給電装置22に接続されており、交流電流が供給されて交流磁界を発生する。この給電コイル21に後述する受電コイル31が対向すると、給電コイル21が発生させた交流磁界に基づいた交流電流が後述する受電コイル31に流れる。つまり、給電コイル21は、ワイヤレスにて交流電力を送電する給電部としての機能を果たすこととなる。本実施形態では、給電コイル21は、給電設備20の停車スペース26の地面近傍に設置されている。なお、停車スペース26は、移動体30が停車可能に区画されたエリアであって、長方形状を呈している。   The feeding coil 21 is configured by winding a metal wire such as copper or aluminum. The number of windings is appropriately set based on a separation distance between the power feeding coil 21 and a power receiving coil 31 described later and a desired power transmission efficiency. The power supply coil 21 configured as described above is housed and packaged in an insulating casing. The power supply coil 21 is connected to a power supply device 22 described later, and an alternating current is supplied to generate an alternating magnetic field. When a power receiving coil 31, which will be described later, faces the power feeding coil 21, an alternating current based on an AC magnetic field generated by the power feeding coil 21 flows through the power receiving coil 31, which will be described later. That is, the power feeding coil 21 functions as a power feeding unit that wirelessly transmits AC power. In the present embodiment, the power supply coil 21 is installed in the vicinity of the ground of the stop space 26 of the power supply facility 20. The stop space 26 is an area in which the moving body 30 is partitioned so that it can stop, and has a rectangular shape.

給電装置22は、上述したように、給電コイル21に交流電流を供給する電源部としての役割を担っている。例えば、商用電源から入力される商用周波数の交流電力を直流電力に変換するコンバーター(図示しない)とこのコンバーターから入力される直流電圧を交流電圧に変換するブリッジ接続されたスイッチング素子からなるインバーター(図示しない)から構成され、インバーターから出力される交流電圧に基づいた交流電流が給電コイル21に流れるように構成されている。   As described above, the power supply device 22 plays a role as a power supply unit that supplies an alternating current to the power supply coil 21. For example, an inverter (not shown) composed of a converter (not shown) that converts commercial frequency AC power input from a commercial power source into DC power and a bridge-connected switching element that converts DC voltage input from the converter into AC voltage. The alternating current based on the alternating voltage output from the inverter flows through the feeding coil 21.

位置検知手段23は、給電装置22に接続されており、給電コイル21と後述する受電コイル31の相対位置関係を検知する機能を有する。具体的には、位置検知手段23は、給電設備20に設置された給電コイル21を認識し、給電コイル21の給電コイル21と後述する受電コイル31の対向方向(以下、単に「対向方向」と記す。)と直交する方向の
位置と対向方向から見たコイル中心を回転軸とした回転角度とを計測する。同様に、位置検知手段23は、移動体30に搭載された後述する受電コイル31を認識し、後述する受電コイル31の対向方向と直交する方向の位置と対向方向から見たコイル中心を回転軸とした回転角度とを計測する。ここで、後述する受電コイル31の搭載箇所によっては位置検知手段23によって直接認識できない場合も考えられる。このような場合は、位置検知手段23は、移動体30の外観を認識し、その外観情報と予め記憶された移動体30に対する受電コイル31の取り付け位置情報を基にして、対向方向と直交する方向の位置と対向方向から見たコイル中心を回転軸とした回転角度とを算出するようにすればよい。そして、位置検知手段23は、これら計測結果から対向方向と直交する方向の平面方向ずれ量と対向方向から見たコイル中心を回転軸とした回転角の回転方向ずれ量を算出することにより、給電コイル21と後述する受電コイル31の相対位置関係を検知することが可能となっている。位置検知手段23は、この相対位置関係を後述する給電側通信機器25に出力している。この位置検知手段23としては、光学カメラ、赤外線カメラ、超音波センサ、ミリ波レーダーなどが挙げられる。なお、位置検知手段23に光学カメラを用いた場合、光学カメラの視認性を高めるために、給電コイル21を収容した筐体および後述する受電コイルを収容した筐体に特徴的な模様を設けると好ましい。本実施形態においては、位置検知手段23は、給電装置22に接続されているが、移動体30に搭載されていてもよい。この場合、検知した給電コイル21と後述する受電コイル31の相対位置関係を直接ユーザー(運転者)に表示するようにすればよい。
The position detection unit 23 is connected to the power feeding device 22 and has a function of detecting the relative positional relationship between the power feeding coil 21 and a power receiving coil 31 described later. Specifically, the position detection unit 23 recognizes the power supply coil 21 installed in the power supply facility 20, and opposes a power supply coil 21 of the power supply coil 21 and a power receiving coil 31 described later (hereinafter simply referred to as “opposing direction”). And the rotation angle about the coil center as viewed from the opposite direction. Similarly, the position detection unit 23 recognizes a power receiving coil 31 (described later) mounted on the moving body 30 and rotates the position of the coil perpendicular to the facing direction of the power receiving coil 31 (described later) and the coil center viewed from the facing direction as a rotation axis. Measure the rotation angle. Here, there may be a case where the position detection unit 23 cannot directly recognize the power receiving coil 31 to be described later depending on the mounting location. In such a case, the position detection unit 23 recognizes the appearance of the moving body 30 and is orthogonal to the facing direction based on the appearance information and the position information of the power receiving coil 31 attached to the moving body 30 stored in advance. What is necessary is just to calculate the rotation angle about the position of the direction and the coil center seen from the facing direction as the rotation axis. Then, the position detection means 23 calculates the amount of deviation in the plane direction in the direction orthogonal to the opposing direction and the amount of deviation in the rotational direction of the rotation angle about the coil center viewed from the opposite direction from the measurement results. It is possible to detect the relative positional relationship between the coil 21 and a power receiving coil 31 described later. The position detector 23 outputs this relative positional relationship to a power supply side communication device 25 described later. Examples of the position detection means 23 include an optical camera, an infrared camera, an ultrasonic sensor, and a millimeter wave radar. In the case where an optical camera is used as the position detection means 23, in order to improve the visibility of the optical camera, a characteristic pattern is provided on the housing that houses the feeding coil 21 and the housing that houses the receiving coil described later. preferable. In the present embodiment, the position detection unit 23 is connected to the power supply device 22, but may be mounted on the moving body 30. In this case, the relative positional relationship between the detected power feeding coil 21 and a power receiving coil 31 described later may be displayed directly to the user (driver).

生体検知手段24は、給電装置22に接続されており、移動体30近傍における生体の存在の有無を検知する機能を有する。生体検知手段24は、給電開始前および給電中に移動体30近傍における生体検知を実施し、生体の存在を検知した場合は給電動作を停止するように指示し、生体の存在を検知しない場合は給電動作を開始あるいは給電動作を継続するように指示する。具体的には、移動体30が停車スペース26に停車した際の移動体30近傍の画像を取得し、その画像と生体検知を実施した場合の移動体30近傍の画像とを比較して、差異があれば生体が存在すると判定している。この判定結果は、給電装置22に設置されるモニター(図示しない)に表示させるように構成されている。生体検知手段24としては、光学カメラ、赤外線カメラ、超音波センサ、ミリ波レーダーなどが挙げられ、好ましくは位置検知手段23に用いられる光学カメラを兼用すればよい。本実施形態においては、生体検知手段24は、給電設備20に設置されているが、移動体30に搭載されていてもよい。なお、生体検知手段24は、予め生体の存在する有無を検知する生体検知エリアを画定し、この生体検知エリアに基づいて生体検知が実施される。   The living body detection unit 24 is connected to the power supply device 22 and has a function of detecting the presence or absence of a living body in the vicinity of the moving body 30. The living body detection unit 24 performs living body detection in the vicinity of the moving body 30 before and during the start of power feeding. When the living body is detected, the living body detecting unit 24 instructs to stop the power feeding operation and does not detect the living body. An instruction is given to start the power feeding operation or to continue the power feeding operation. Specifically, an image of the vicinity of the moving body 30 when the moving body 30 stops in the stop space 26 is acquired, and the image is compared with an image of the vicinity of the moving body 30 when the living body detection is performed. If there is, it is determined that a living body exists. This determination result is configured to be displayed on a monitor (not shown) installed in the power feeding device 22. Examples of the living body detection unit 24 include an optical camera, an infrared camera, an ultrasonic sensor, a millimeter wave radar, and the like. Preferably, the optical camera used for the position detection unit 23 may also be used. In the present embodiment, the living body detection unit 24 is installed in the power supply facility 20, but may be mounted on the moving body 30. The living body detection unit 24 defines a living body detection area for detecting the presence or absence of a living body in advance, and the living body detection is performed based on the living body detection area.

ここで、図2を参照して、生体検知手段24が生体の存在の有無を検知する生体検知エリア42について詳細に説明する。図2は、立入り制限エリアと生体検知エリアの関係を示す模式図である。   Here, with reference to FIG. 2, the living body detection area 42 in which the living body detection unit 24 detects the presence or absence of a living body will be described in detail. FIG. 2 is a schematic diagram showing the relationship between the access restriction area and the living body detection area.

立入り制限エリア41は、給電動作中に生体が存在してはならないエリアのことである。立入り制限エリア41は、給電コイル21と後述する受電コイル31から発生する電界ならびに磁界の強度に基づいて適宜画定される。つまり、生体検知手段24は、生体が立入り制限エリア41に向かって来る移動速度と生体検知手段24が生体を検知してから給電が停止するまでに必要な時間の積から計算される距離を立入り制限エリア41の外周から拡大させたエリアを検知すればよい。但し、給電コイル21と後述する受電コイル31は必ずしも正対するとは限らないため、生体検知手段24は、給電コイル21と後述する受電コイル31の位置ずれ量を考慮して適切な生体検知エリアを画定する必要がある。本実施形態では、生体検知手段24は、平面方向ずれ量の最大許容値と回転方向ずれ量の最大許容値に基づいて、生体検知エリア42を画定している。したがって、給電コイル21と後述する受電コイル31に位置ずれが生じたとしても、生体の存在の有無を検知する必要のあるエリアを漏れなく検知することができる。   The restricted access area 41 is an area where a living body should not exist during the power feeding operation. The restricted entry area 41 is appropriately defined based on the strength of the electric field and magnetic field generated from the power feeding coil 21 and the power receiving coil 31 described later. In other words, the living body detection means 24 enters the distance calculated from the product of the moving speed at which the living body comes toward the entry restricted area 41 and the time required until the power supply stops after the living body detection means 24 detects the living body. An area enlarged from the outer periphery of the restricted area 41 may be detected. However, since the feeding coil 21 and the receiving coil 31 described later are not necessarily directly facing each other, the living body detection unit 24 sets an appropriate living body detection area in consideration of the amount of positional deviation between the feeding coil 21 and the receiving coil 31 described later. Need to be defined. In the present embodiment, the living body detection unit 24 defines the living body detection area 42 based on the maximum allowable value of the planar direction deviation amount and the maximum allowable value of the rotational direction deviation amount. Therefore, even if a positional deviation occurs between the power feeding coil 21 and a power receiving coil 31 described later, it is possible to detect an area where it is necessary to detect the presence or absence of a living body without omission.

給電側通信機器25は、後述する受電側通信機器34と無線信号による情報の伝達を行う機能を有する。つまり、給電設備20と移動体30との間の情報の伝達を行っている。本実施形態では、給電装置22に接続され、位置検知手段23が検知した相対位置関係の情報を含む信号を後述する受電側通信機器34に送信する機能と、移動体30と給電装置22との位置関係を特定するための信号を送受信する機能を有している。   The power supply side communication device 25 has a function of transmitting information by a wireless signal with a power reception side communication device 34 described later. That is, information is transmitted between the power supply facility 20 and the moving body 30. In the present embodiment, the function of transmitting a signal connected to the power supply device 22 and including information on the relative positional relationship detected by the position detection unit 23 to the power receiving side communication device 34 to be described later, and the moving body 30 and the power supply device 22. It has a function of transmitting and receiving signals for specifying the positional relationship.

移動体30は、図1に示されるように、受電コイル31と、整流器32と、バッテリ33と、受電側通信機器34と、を備える。   As shown in FIG. 1, the moving body 30 includes a power receiving coil 31, a rectifier 32, a battery 33, and a power receiving side communication device 34.

受電コイル31は、銅やアルミニウム等の金属線が巻回されて構成される。その巻き数は、給電コイル21と受電コイル31との間の離間距離や所望の電力伝送効率に基づいて適宜設定される。このように構成された受電コイル31は、絶縁性を有する筐体に収容されてパッケージングされる。受電コイル31は、給電コイル21と所定の距離を空けて対向することにより、磁気的に結合し、給電コイル21が発生させた交流磁界に基づく交流電流が流れる。すなわち、受電コイル31は、給電コイル21からワイヤレスにて電力を受電する受電部としての機能を果たすこととなる。本実施形態では、受電コイル31は、移動体30の底部に搭載されている。この受電コイル31が受電した交流電力は、後述する整流器32に出力される。   The power receiving coil 31 is configured by winding a metal wire such as copper or aluminum. The number of turns is appropriately set based on the separation distance between the power feeding coil 21 and the power receiving coil 31 and the desired power transmission efficiency. The power receiving coil 31 configured as described above is housed and packaged in an insulating housing. The power reception coil 31 is magnetically coupled by facing the power supply coil 21 with a predetermined distance, and an alternating current based on the AC magnetic field generated by the power supply coil 21 flows. That is, the power reception coil 31 functions as a power reception unit that wirelessly receives power from the power supply coil 21. In the present embodiment, the power receiving coil 31 is mounted on the bottom of the moving body 30. The AC power received by the power receiving coil 31 is output to a rectifier 32 described later.

整流器32は、受電コイル31が受電した交流電力を直流電力へ変換し、この直流電力をバッテリ33へ出力する。整流器32としては、半波整流回路や全波整流回路などの複数のダイオードがブリッジ接続されたブリッジ型回路と、このブリッジ型回路に並列に接続され、整流された電圧を平滑して直流電圧を生成する平滑コンデンサから構成される整流回路などが挙げられる。   The rectifier 32 converts the AC power received by the power receiving coil 31 into DC power, and outputs this DC power to the battery 33. As the rectifier 32, a bridge-type circuit in which a plurality of diodes such as a half-wave rectifier circuit and a full-wave rectifier circuit are bridge-connected, and a parallel connection to the bridge-type circuit, smoothing the rectified voltage and generating a DC voltage. Examples thereof include a rectifier circuit composed of a smoothing capacitor to be generated.

バッテリ33は、繰り返し充電可能な二次電池であって、例えばリチウムイオン電池やニッケル水素電池などが挙げられる。バッテリ33は、整流器32によって変換された直流電力が供給される。   The battery 33 is a rechargeable secondary battery, for example, a lithium ion battery or a nickel metal hydride battery. The battery 33 is supplied with DC power converted by the rectifier 32.

受電側通信機器34は、給電側通信機器25と無線信号による情報の伝達を行う機能を有する。つまり、給電設備20と移動体30との間の情報の伝達を行っている。本実施形態では、給電側通信機器25から給電コイル21と受電コイル31の相対位置関係の情報を含む信号を受信する機能と、移動体30と給電装置22との位置関係を特定するための信号を送受信する機能を有している。   The power receiving side communication device 34 has a function of transmitting information with the power feeding side communication device 25 by radio signals. That is, information is transmitted between the power supply facility 20 and the moving body 30. In the present embodiment, a function for receiving a signal including information on the relative positional relationship between the power feeding coil 21 and the power receiving coil 31 from the power supply side communication device 25 and a signal for specifying the positional relationship between the moving body 30 and the power feeding device 22. It has a function to send and receive.

このような構成により、給電設備20に設置された給電コイル21と移動体30に搭載された受電コイル31が対向することにより、ワイヤレスにて電力が伝送される。   With such a configuration, the power feeding coil 21 installed in the power feeding facility 20 and the power receiving coil 31 mounted on the moving body 30 face each other, so that power is transmitted wirelessly.

次に、図3を参照して、本発明の第1実施形態に係るワイヤレス電力伝送システム10の給電動作について詳細に説明する。図3は、本発明の第1実施形態に係るワイヤレス電力伝送システムの給電動作を示すフローチャートである。   Next, the power feeding operation of the wireless power transmission system 10 according to the first embodiment of the present invention will be described in detail with reference to FIG. FIG. 3 is a flowchart showing a power feeding operation of the wireless power transmission system according to the first embodiment of the present invention.

まず、給電側通信機器25は、定期的に信号を送信する(ステップS01)。移動体30に搭載された受電側通信機器34は、給電側通信機器25が送信した信号を受信すると、給電側通信機器25に信号を受信したことを通知する信号を送信する(ステップS02)。ステップS02において、給電側通信機器25が受電側通信機器34からの信号を受信すると、給電側通信機器25は、位置検知手段23に位置検知を開始するように指示する(ステップ02Y)。逆に、給電側通信機器25は、受電側通信機器34からの信号を受信しない場合、移動体30が給電設備20から遠く離れた位置に存在していると認識し、ステップS01に戻り信号を定期的に送信し続ける(ステップS02N)。このように、移動体30が給電設備20にある程度近接してから位置検知を開始することにより、電力の消費を抑えることができる。   First, the power supply side communication device 25 periodically transmits a signal (step S01). When receiving the signal transmitted by the power supply side communication device 25, the power receiving side communication device 34 mounted on the mobile body 30 transmits a signal notifying the power supply side communication device 25 that the signal has been received (step S02). In step S02, when the power supply side communication device 25 receives a signal from the power reception side communication device 34, the power supply side communication device 25 instructs the position detection means 23 to start position detection (step 02Y). Conversely, when the power supply side communication device 25 does not receive the signal from the power reception side communication device 34, the power supply side communication device 25 recognizes that the moving body 30 exists at a position far away from the power supply facility 20, and returns the signal to step S01. Transmission continues periodically (step S02N). Thus, by starting the position detection after the moving body 30 is close to the power supply facility 20 to some extent, it is possible to suppress power consumption.

続いて、位置検知手段23は、給電側通信機器25から位置検知を開始する旨の指示を受けると、給電コイル21の位置を画像認識する(ステップS03)。このとき、位置検知手段23は、給電コイル21の予め設定された基準位置からの対向方向と直交する方向の位置X1,Y1〔cm〕を計測する。同時に、位置検知手段23は、給電コイル21の対向方向から見たコイル中心を回転軸とした回転角度θ1〔°〕を計測する。ここで、   Subsequently, when receiving an instruction to start position detection from the power supply side communication device 25, the position detection unit 23 recognizes an image of the position of the power supply coil 21 (step S03). At this time, the position detection unit 23 measures the positions X1 and Y1 [cm] in the direction orthogonal to the facing direction from the preset reference position of the feeding coil 21. At the same time, the position detection means 23 measures a rotation angle θ1 [°] with the coil center as viewed from the facing direction of the feeding coil 21 as the rotation axis. here,

続いて、位置検知手段23は、移動体30の外観を画像認識する(ステップS04)。このとき、位置検知手段23は、取得した移動体30の外観情報と予め記憶された移動体30に対する受電コイル31の取り付け位置情報に基づいて、受電コイル31の予め設定された基準位置からの対向方向と直交する方向の位置X2,Y2〔cm〕を計測する。同時に、位置検知手段23は、受電コイル31の対向方向から見たコイル中心を回転軸とした回転角度θ2〔°〕を計測する。   Subsequently, the position detection unit 23 recognizes the appearance of the moving body 30 (step S04). At this time, the position detection unit 23 opposes the power receiving coil 31 from the preset reference position based on the acquired appearance information of the moving body 30 and the preinstalled position information of the power receiving coil 31 with respect to the moving body 30. A position X2, Y2 [cm] in a direction orthogonal to the direction is measured. At the same time, the position detection unit 23 measures a rotation angle θ2 [°] with the coil center as viewed from the facing direction of the power receiving coil 31 as the rotation axis.

続いて、位置検知手段23は、計測した給電コイル21の位置X1,Y1〔cm〕と回転角度θ1〔°〕および計測した受電コイル31の位置X2,Y2〔cm〕と回転角度θ2〔°〕に基づいて、給電コイル21と受電コイル31の平面方向ずれ量Xm,Ym〔cm〕と回転方向ずれ量θm〔°〕を算出して給電コイル21と受電コイル31の相対位置関係を検知し、給電側通信機器25に出力する(ステップS05)。   Subsequently, the position detector 23 measures the measured position X1, Y1 [cm] of the feeding coil 21 and the rotation angle θ1 [°], and the measured position X2, Y2 [cm] of the power receiving coil 31 and the rotation angle θ2 [°]. Based on the above, the amount of displacement Xm, Ym [cm] in the planar direction and the amount of rotational displacement θm [°] between the feeding coil 21 and the receiving coil 31 are calculated, and the relative positional relationship between the feeding coil 21 and the receiving coil 31 is detected. It outputs to the power supply side communication apparatus 25 (step S05).

ここで、図4を参照して、給電コイル21の位置X1,Y1〔cm〕、回転角度θ1〔°〕、受電コイル31の位置X2,Y2〔cm〕、回転角度θ2、および、給電コイル21と受電コイル31の平面方向ずれ量Xm,Ym〔cm〕、回転方向ずれ量θm〔°〕について詳細に説明する。なお、本例においては、説明の便宜上、給電コイル21および受電コイル31は長方形状のコイルを用いた。   Here, referring to FIG. 4, the position X1, Y1 [cm] of the feeding coil 21, the rotation angle θ1 [°], the position X2, Y2 [cm] of the receiving coil 31, the rotation angle θ2, and the feeding coil 21 The amount of deviation Xm, Ym [cm] in the plane direction and the amount of deviation θm [°] in the rotational direction of the power receiving coil 31 will be described in detail. In this example, for convenience of explanation, rectangular coils are used for the feeding coil 21 and the receiving coil 31.

まず、停車スペース26の長辺方向をX方向、短辺方向をY方向とする。位置検知手段23の中心を基準位置とし、その基準位置から給電コイル21の中心までの距離のうちX方向成分をX1〔cm〕、Y方向成分をY1〔cm〕とする。また、停車スペース26の短辺と、給電コイル21の長辺と平行に延びる、給電コイル21の中心を通る仮想線とのなす角度を回転角度θ1〔°〕とする。   First, let the long side direction of the stop space 26 be the X direction, and let the short side direction be the Y direction. The center of the position detector 23 is set as a reference position, and the X direction component of the distance from the reference position to the center of the feeding coil 21 is X1 [cm], and the Y direction component is Y1 [cm]. In addition, an angle formed by a short side of the stop space 26 and a virtual line extending in parallel with the long side of the power supply coil 21 and passing through the center of the power supply coil 21 is defined as a rotation angle θ1 [°].

同様に、基準位置から受電コイル31の中心までの距離のうちX方向成分をX2〔cm〕、Y方向成分をY2〔cm〕とする。また、停車スペース26の短辺と、受電コイル31の長辺と平行に延びる、受電コイル31の中心を通る仮想線とのなす角度を回転角度θ2〔°〕とする。   Similarly, of the distance from the reference position to the center of the power receiving coil 31, the X direction component is X2 [cm] and the Y direction component is Y2 [cm]. Further, an angle formed by a short side of the stop space 26 and a virtual line extending in parallel with the long side of the power receiving coil 31 and passing through the center of the power receiving coil 31 is defined as a rotation angle θ2 [°].

これらを用いて、給電コイル21の位置X1〔cm〕と受電コイル31の位置X2〔cm〕から、それらの差分である給電コイル21と受電コイル31の平面方向ずれ量Xm〔cm〕を算出する。同様に、給電コイル21の位置Y1〔cm〕と受電コイル31の位置Y2〔cm〕から、それらの差分である給電コイル21と受電コイル31の平面方向ずれ量Ym〔cm〕を算出する。さらに同様に、給電コイル21の回転角度θ1〔°〕と受電コイル31の回転角度θ2〔°〕から、それらの差分である給電コイル21と受電コイル31の回転方向ずれ量θm〔°〕を算出する。   Using these, the plane direction displacement Xm [cm] between the feeding coil 21 and the receiving coil 31, which is the difference between the position X1 [cm] of the feeding coil 21 and the position X2 [cm] of the receiving coil 31, is calculated. . Similarly, from the position Y1 [cm] of the power feeding coil 21 and the position Y2 [cm] of the power receiving coil 31, a plane direction deviation Ym [cm] between the power feeding coil 21 and the power receiving coil 31 is calculated. Similarly, from the rotation angle θ1 [°] of the power feeding coil 21 and the rotation angle θ2 [°] of the power receiving coil 31, a rotational direction deviation θm [°] between the power feeding coil 21 and the power receiving coil 31 is calculated. To do.

ところで、給電コイル21と受電コイル31の回転方向ずれ量θm〔°〕は、給電コイル21および受電コイル31の形状、種類、組み合わせによって、ワイヤレス電力伝送システム10の電力伝送効率を決定する大きな要因となり得る。ここで、図5を参照して、回転方向ずれ量θm〔°〕によって電力伝送効率が変動する原理について詳細に説明する。図5aは、給電コイルと受電コイルの回転方向ずれ量が0〔°〕の状態を示す模式図である。図5bは、給電コイルと受電コイルの回転方向ずれ量が90〔°〕あるいは270〔°〕の状態を示す模式図である。なお、図5において、給電コイル21および受電コイル31は、棒状または板状の磁性コアに金属線が巻回された、いわゆるソレノイドコイルを用い、平面方向ずれ量Xm,Ym〔cm〕はともに0〔cm〕の状態とする。   By the way, the rotational direction deviation θm [°] between the power feeding coil 21 and the power receiving coil 31 is a major factor that determines the power transmission efficiency of the wireless power transmission system 10 depending on the shape, type, and combination of the power feeding coil 21 and the power receiving coil 31. obtain. Here, with reference to FIG. 5, the principle that the power transmission efficiency varies depending on the rotational direction deviation amount θm [°] will be described in detail. FIG. 5A is a schematic diagram showing a state in which the rotational displacement between the feeding coil and the receiving coil is 0 [°]. FIG. 5B is a schematic diagram showing a state in which the amount of shift in the rotation direction of the power feeding coil and the power receiving coil is 90 [°] or 270 [°]. In FIG. 5, the feeding coil 21 and the receiving coil 31 are so-called solenoid coils in which a metal wire is wound around a rod-shaped or plate-shaped magnetic core, and the plane direction deviation amounts Xm and Ym [cm] are both 0. The state is [cm].

図5aに示されるように、給電コイル21と受電コイル31の回転方向ずれ量が0〔°〕の状態の場合は、給電コイル21が発生する磁束と受電コイル31が発生する磁束の主磁束方向が一致し、給電コイル21が発生する磁束の大部分は、受電コイル31に鎖交することから、高い電力伝送効率を実現することができる。一方、図5bに示されるように、給電コイル21と受電コイル31の回転方向ずれ量が90〔°〕あるいは270〔°〕の状態の場合は、給電コイル21が発生する磁束と受電コイル31が発生する磁束の主磁束方向が互いに直交するため、給電コイル21が発生する磁束を受電コイル31に十分に鎖交し難くなり、電力伝送効率は低くなってしまう。   As shown in FIG. 5 a, when the amount of deviation in the rotation direction of the power feeding coil 21 and the power receiving coil 31 is 0 °, the main magnetic flux direction of the magnetic flux generated by the power feeding coil 21 and the magnetic flux generated by the power receiving coil 31. Since most of the magnetic fluxes generated by the feeding coil 21 are linked to the power receiving coil 31, high power transmission efficiency can be realized. On the other hand, as shown in FIG. 5b, when the rotational displacement between the feeding coil 21 and the receiving coil 31 is 90 [°] or 270 [°], the magnetic flux generated by the feeding coil 21 and the receiving coil 31 are Since the main magnetic flux directions of the generated magnetic flux are orthogonal to each other, the magnetic flux generated by the feeding coil 21 is not easily linked to the receiving coil 31 and the power transmission efficiency is lowered.

このように、給電コイル21と受電コイル31にソレノイドコイルを用いた場合、回転方向ずれ量θmが給電コイル21と受電コイル31間の電力伝送効率に大きな影響を与える。そのため、位置検知手段23が回転方向ずれ量θmを検知することは非常に重要である。なお、回転方向ずれ量θmが給電コイル21と受電コイル31間の電力伝送効率に大きな影響を与えるコイルの形状、種類、組み合わせの例を表1に示す。なお、表1中、「スパイラルコイル」とは、巻線を平面状に巻回したコイルであり、「真円以外」とは、コイル軸方向から見た外形形状が楕円形、多角形などのことである。また、「スパイラルコイル×2」とは、2つのスパイラルコイルを並置し、双方のコイルを鎖交する磁束を発生するように接続したコイルのことである。   As described above, when a solenoid coil is used as the power feeding coil 21 and the power receiving coil 31, the rotational direction shift amount θm greatly affects the power transmission efficiency between the power feeding coil 21 and the power receiving coil 31. Therefore, it is very important for the position detection means 23 to detect the rotational direction deviation amount θm. Table 1 shows examples of coil shapes, types, and combinations in which the rotational direction deviation amount θm greatly affects the power transmission efficiency between the power feeding coil 21 and the power receiving coil 31. In Table 1, “spiral coil” is a coil in which a winding is wound in a flat shape, and “other than a perfect circle” means that the outer shape viewed from the coil axis direction is elliptical, polygonal, etc. That is. The “spiral coil × 2” is a coil in which two spiral coils are juxtaposed and connected so as to generate a magnetic flux interlinking both coils.

Figure 2015128370
Figure 2015128370

続いて、給電側通信機器25は、受電側通信機器34に向けて相対位置関係の情報を含む信号を送信する(ステップS06)。   Subsequently, the power supply side communication device 25 transmits a signal including information on the relative positional relationship to the power reception side communication device 34 (step S06).

続いて、ユーザー(運転者)は、位置検知手段23が検知した給電コイル21と受電コイル31の相対位置関係に基づいて、給電コイル21と受電コイル31の相対位置が許容範囲内に収まるように移動体30を給電設備20の停車スペース26に停車動作を開始する。このとき、給電装置22は、給電コイル21と受電コイル31の相対位置が許容範囲内に収まるように移動体30が停車しているか否かを判定する(ステップS07)。ステップS07において、給電コイル21と受電コイル31の相対位置の許容範囲内に移動体30が停車されると、給電可能位置に移動体30が停車したことをユーザーに通知する(ステップS07Y)。ステップS07において、給電コイル21と受電コイル31の相対位置の許容範囲内に移動体30が停車していないと判定された場合、ユーザー(運転者)は、位置検知手段23が検知した給電コイル21と受電コイル31の相対位置関係に基づいて、給電コイル21と受電コイル31の相対位置が許容範囲内に収まるように移動体30を給電設備20の停車スペース26に停車動作を継続する(ステップS07N)。   Subsequently, based on the relative positional relationship between the power feeding coil 21 and the power receiving coil 31 detected by the position detection unit 23, the user (driver) makes the relative position between the power feeding coil 21 and the power receiving coil 31 fall within an allowable range. The moving body 30 is stopped in the stopping space 26 of the power supply facility 20. At this time, the power feeding device 22 determines whether or not the moving body 30 is stopped so that the relative position between the power feeding coil 21 and the power receiving coil 31 is within the allowable range (step S07). In step S07, when the moving body 30 stops within the allowable range of the relative position between the power feeding coil 21 and the power receiving coil 31, the user is notified that the moving body 30 has stopped at the power feedable position (step S07Y). In step S07, when it is determined that the moving body 30 is not stopped within the allowable range of the relative position between the power feeding coil 21 and the power receiving coil 31, the user (driver) feeds the power feeding coil 21 detected by the position detection unit 23. On the basis of the relative positional relationship between the power receiving coil 31 and the power receiving coil 31, the moving body 30 is stopped in the stopping space 26 of the power feeding facility 20 so that the relative position between the power feeding coil 21 and the power receiving coil 31 is within an allowable range (step S07N). ).

ステップS07Yにおいて、給電可能位置に移動体30が停車したことを受けて、ユーザーは、生体検知手段24に移動体30近傍における生体の存在の有無を検知するよう指示する(ステップS08)。   In step S07Y, the user instructs the living body detection means 24 to detect the presence or absence of the living body in the vicinity of the moving body 30 in response to the fact that the moving body 30 has stopped at the power supply enabled position (step S08).

続いて、生体検知手段24は、生体検知を開始する指示を受けると、移動体30近傍の画像を取得し、この画像を基準画像とする(ステップS09)。生体検知手段24は、生体検知を開始する指示を受けるより以前から電源がオンの状態でもよいが、生体検知を開始する指示を受けた後に生体検知手段24の電源がオフからオンに切り替わる、もしくは、スタンバイモード(必要最低限の電力を使った状態)からオンに切り替わることにより、電力の消費を抑えることができる。   Subsequently, upon receiving an instruction to start living body detection, the living body detection unit 24 acquires an image near the moving body 30 and uses this image as a reference image (step S09). The living body detection unit 24 may be in a power-on state before receiving an instruction to start living body detection, but after receiving an instruction to start living body detection, the power source of the living body detection unit 24 is switched from off to on, or The power consumption can be suppressed by switching from the standby mode (the state using the minimum necessary power) to ON.

続いて、生体検知手段24は、給電動作が完了するまで移動体30近傍の画像を取得し続け、取得した画像と基準画像とを比較する(ステップS10)。このとき、生体検知手段24は、取得した画像と基準画像を比較した結果に差異があれば生体が存在すると判定し、この判定結果を給電装置22に設置されるモニター(図示しない)に表示させてユーザーに通知するとともに、給電動作を制限(給電動作の開始を行わない)する(ステップS10Y)。一方、生体検知手段24は、取得した画像と基準画像を比較した結果に一定の期間差異がなければ生体が存在しないと判定し、給電装置22に給電動作を開始するよう指示する(ステップS10N)。なお、ステップS10Yにおいて、生体が存在すると判定された場合、生体検知手段24は、取得した画像と基準画像を比較し続け、差異がなくなれば生体が存在しないと判定し、給電装置22に給電動作を開始するよう指示する(ステップS10N)。   Subsequently, the living body detection unit 24 continues to acquire an image near the moving body 30 until the power feeding operation is completed, and compares the acquired image with the reference image (step S10). At this time, the living body detection unit 24 determines that there is a living body if there is a difference between the result of comparing the acquired image and the reference image, and displays the determination result on a monitor (not shown) installed in the power supply apparatus 22. The power supply operation is restricted (the power supply operation is not started) (step S10Y). On the other hand, the living body detection unit 24 determines that there is no living body if there is no difference between the acquired image and the reference image for a certain period of time, and instructs the power supply apparatus 22 to start the power supply operation (step S10N). . If it is determined in step S10Y that a living body is present, the living body detection unit 24 continues to compare the acquired image with the reference image. If there is no difference, the living body detection unit 24 determines that the living body does not exist and supplies power to the power supply device 22. Is instructed to start (step S10N).

続いて、給電装置22は、給電動作開始の指示を受けると、給電コイル21に交流電流を供給する。給電コイル21は、交流電流が流れると交流磁界を発生し、この交流磁界に基づく交流電流が対向する受電コイル31に流れる。つまり、給電コイル21から受電コイル31にワイヤレスにて交流電力の伝送が開始される(ステップS11)。   Subsequently, when the power feeding device 22 receives an instruction to start a power feeding operation, the power feeding device 22 supplies an alternating current to the power feeding coil 21. When an alternating current flows, the feeding coil 21 generates an alternating magnetic field, and the alternating current based on the alternating magnetic field flows to the power receiving coil 31 facing the feeding coil 21. That is, transmission of AC power from the feeding coil 21 to the receiving coil 31 is started wirelessly (step S11).

ここで、上述したように、給電装置22による給電動作中においても、生体検知手段24は、移動体30近傍の画像を取得し続け、取得した画像と基準画像とを比較する(ステップS12)。給電動作中に取得した画像と基準画像とを比較した結果に差異があれば生体が生体検知エリア42に進入したと判定し、給電装置22の給電動作を速やかに停止させる(ステップS12Y)。一方、給電動作中に取得した画像と基準画像とを比較した結果に差異がなければ生体検知エリア42に生体の進入はないと判定し、給電装置22は、充電完了まで給電動作を継続させる(ステップS12N)。なお、ステップS12Yにおいて、給電装置22の給電動作を停止させた後、生体検知手段24は、取得した画像と基準画像を比較し続ける(ステップS13)。ステップS13において、生体検知手段24は、一定の期間中に、取得した画像と基準画像を比較した結果に差異がなくなれば生体検知エリア42に生体が存在しないと判定し、給電装置22に給電動作を再開するよう指示する(ステップS13N)。ステップS13において、生体検知手段24は、一定の期間経過後に取得した画像と基準画像とを比較した結果に差異があれば生体が生体検知エリア42に存在すると判定し、この判定結果を給電装置22に設置されるモニター(図示しない)に表示させてユーザーに通知する(ステップS13Y)。また、ステップS13Yにおいて、生体が存在すると判定された場合、生体検知手段24は、取得した画像と基準画像を比較し続ける(ステップS14)。ステップS14において、生体検知手段24は、取得した画像と基準画像とを比較した結果に差異があれば生体が生体検知エリア42に存在すると判定し、取得した画像と基準画像を比較し続ける(ステップS14Y)。ステップS14において、生体検知手段24は、取得した画像と基準画像を比較した結果に差異がなくなれば生体検知エリア42に生体が存在しないと判定し、給電装置22に給電動作を再開するよう指示する(ステップS14N)。   Here, as described above, even during the power feeding operation by the power feeding device 22, the living body detection unit 24 continues to acquire the image near the moving body 30, and compares the acquired image with the reference image (step S12). If there is a difference in the comparison result between the image acquired during the power feeding operation and the reference image, it is determined that the living body has entered the living body detection area 42, and the power feeding operation of the power feeding device 22 is promptly stopped (step S12Y). On the other hand, if there is no difference between the result obtained by comparing the image acquired during the power feeding operation and the reference image, it is determined that the living body has not entered the living body detection area 42, and the power feeding device 22 continues the power feeding operation until the charging is completed ( Step S12N). In step S12Y, after the power feeding operation of the power feeding device 22 is stopped, the living body detection unit 24 continues to compare the acquired image with the reference image (step S13). In step S <b> 13, the living body detection unit 24 determines that there is no living body in the living body detection area 42 when there is no difference in the result of comparing the acquired image and the reference image during a certain period of time, and performs a power feeding operation to the power feeding device 22. Is instructed to resume (step S13N). In step S <b> 13, the living body detection unit 24 determines that the living body is present in the living body detection area 42 if there is a difference between the result obtained by comparing the image acquired after a certain period of time and the reference image, and uses the determination result as the power supply device 22. The information is displayed on a monitor (not shown) installed in the computer and notified to the user (step S13Y). If it is determined in step S13Y that a living body is present, the living body detection unit 24 continues to compare the acquired image with the reference image (step S14). In step S14, the living body detection unit 24 determines that the living body exists in the living body detection area 42 if there is a difference in the result of comparing the acquired image and the reference image, and continues to compare the acquired image and the reference image (step S14). S14Y). In step S <b> 14, the living body detection unit 24 determines that there is no living body in the living body detection area 42 when there is no difference in the result of comparing the acquired image and the reference image, and instructs the power supply device 22 to restart the power supply operation. (Step S14N).

続いて、ステップS12Nにおいて、充電が完了すると、給電装置22は、給電動作を停止させる(ステップS15)。   Subsequently, in step S12N, when charging is completed, the power feeding device 22 stops the power feeding operation (step S15).

続いて、ステップS15において、給電装置22の給電動作が停止した後、生体検知手段24による生体検知も停止させる(ステップS16)。生体検知手段24は、生体検知を停止した後も電源がオンの状態でもよいが、生体検知を停止した後に生体検知手段24の電源がオンからオフに切り替わる、もしくは、オフからスタンバイモード(必要最低限の電力を使った状態)に切り替わることにより、電力の消費を抑えることができる。   Subsequently, in step S15, after the power feeding operation of the power feeding device 22 is stopped, the living body detection by the living body detecting unit 24 is also stopped (step S16). The living body detection unit 24 may be in a power-on state even after the living body detection is stopped. However, after the living body detection is stopped, the living body detection unit 24 is switched from on to off, or from off to the standby mode (minimum required). By switching to a state using a limited amount of power, power consumption can be suppressed.

続いて、給電側通信機器25が受電側通信機器34との間で通信が確立されているか否かを判定する(ステップS17)。ステップS17において、給電側通信機器25と受電側通信機器との間の通信が確立されていると判定された場合、給電装置22は、給電コイル21と受電コイル31の相対位置が許容範囲内に収まるように移動体30が停車しているか否かを判定する(ステップS18)。ここで、ステップS18において、給電コイル21と受電コイル31の相対位置の許容範囲内に移動体30が停車されると、給電可能位置に移動体30が停車したことをユーザーに通知する(ステップS18Y)。ステップS18において、給電コイル21と受電コイル31の相対位置の許容範囲内に移動体30が停車していないと判定された場合、ステップS17に戻る(ステップS18N)。また、ステップS18Yにおいて、給電可能位置に移動体30が停車すると、給電装置22は、ユーザーにより生体検知の開始を指示されたか否かを判定する(ステップS19)。ステップS19において、ユーザーにより生体検知の開始を指示されると、ステップS09に戻る(ステップS19Y)。ステップS19において、ユーザーにより生体検知の開始を指示されない場合は、ステップS17に戻る(ステップS19N)。一方、ステップS17において、給電側通信機器25が受電側通信機器34との間で通信が確立されていないと判定された場合、位置検知手段23による位置検知を停止させる(ステップS20)。以上により、ワイヤレス電力伝送システム10の給電動作が終了する。   Subsequently, it is determined whether communication is established between the power supply side communication device 25 and the power reception side communication device 34 (step S17). In step S17, when it is determined that communication between the power supply side communication device 25 and the power reception side communication device is established, the power supply device 22 determines that the relative position of the power supply coil 21 and the power reception coil 31 is within an allowable range. It is determined whether or not the moving body 30 is stopped so as to fit (step S18). Here, when the moving body 30 stops within the allowable range of the relative position between the power feeding coil 21 and the power receiving coil 31 in step S18, the user is notified that the moving body 30 has stopped at the power feedable position (step S18Y). ). If it is determined in step S18 that the moving body 30 has not stopped within the allowable range of the relative position between the power feeding coil 21 and the power receiving coil 31, the process returns to step S17 (step S18N). In step S18Y, when the moving body 30 stops at a position where power can be supplied, the power supply apparatus 22 determines whether or not the user has instructed to start living body detection (step S19). In step S19, when the user instructs to start living body detection, the process returns to step S09 (step S19Y). In step S19, if the user does not instruct the start of biometric detection, the process returns to step S17 (step S19N). On the other hand, when it is determined in step S17 that the power supply side communication device 25 has not established communication with the power reception side communication device 34, the position detection by the position detection unit 23 is stopped (step S20). Thus, the power feeding operation of the wireless power transmission system 10 is completed.

以上のように、本実施形態に係るワイヤレス電力伝送システム10は、位置検知手段23が給電コイル21と受電コイル31の対向方向と直交する方向の平面方向ずれ量Xm,Ymと対向方向から見たコイル中心を回転軸とした回転角の回転方向ずれ量θmを計測し、当該計測結果に基づいて給電コイル21と受電コイル31の相対位置関係を検知している。そのため、位置検知手段23により検知した給電コイル21と受電コイル31の相対位置関係に基づいて、平面方向ずれ量と回転方向ずれ量が許容範囲に収まるように移動体30を誘導することが可能となり、給電コイル21と受電コイル31間の電力伝送効率を最適化することができる。   As described above, in the wireless power transmission system 10 according to the present embodiment, the position detection unit 23 is viewed from the opposing direction and the plane direction deviation amounts Xm and Ym in the direction orthogonal to the opposing direction of the feeding coil 21 and the receiving coil 31. The rotational direction deviation amount θm of the rotation angle with the coil center as the rotation axis is measured, and the relative positional relationship between the feeding coil 21 and the receiving coil 31 is detected based on the measurement result. Therefore, based on the relative positional relationship between the power feeding coil 21 and the power receiving coil 31 detected by the position detecting unit 23, the moving body 30 can be guided so that the amount of deviation in the plane direction and the amount of deviation in the rotational direction are within the allowable range. The power transmission efficiency between the feeding coil 21 and the receiving coil 31 can be optimized.

また、本実施形態に係るワイヤレス電力伝送システム10においては、生体の有無を検知する生体検知手段24を備え、生体検知手段24は、平面方向ずれ量Xm,Ymの最大許容値と回転方向ずれ量θmの最大許容値に基づいて、生体検知エリアを画定している。ところで、ワイヤレス電力伝送技術を移動体に適用した場合、給電開始前や給電中に移動体30近傍における生体の存在を検知する必要がある。ところが、停車スペース26に対して移動体30が斜めにずれて停車されると、給電コイル21から発生する磁束の放射パターンと受電コイル31を搭載した移動体30の位置関係が変化する。これによって、移動体30近傍における生体の存在の検知が必要なエリアも変化してしまうために、本来であれば生体の検知を行う必要のあるエリアであっても検知がなされないということが懸念される。また、たとえ移動体30を平面方向ずれ量Xm,Ym〔cm〕と回転方向ずれ量θm〔°〕が許容範囲に収まるように誘導したとしても、給電コイル21と受電コイル31の相対位置関係を完全に一致させることは難しく、給電コイル21と受電コイル31に僅かな位置ずれが生じていることも考えられるため、給電コイル21と受電コイル31の位置ずれに応じた生体検知エリアを画定する必要がある。これに対して、本実施形態では、給電コイル21と受電コイル31が平面方向ずれ量Xm,Ymと回転方向ずれ量θmともに最大許容値に基づいて、生体検知エリア42を画定していることから、生体検知が必要なエリアの検知を確実に行うことができる。   In addition, the wireless power transmission system 10 according to the present embodiment includes a living body detection unit 24 that detects the presence or absence of a living body, and the living body detection unit 24 includes the maximum allowable values of the plane direction deviation amounts Xm and Ym and the rotation direction deviation amount. The living body detection area is defined based on the maximum allowable value of θm. By the way, when the wireless power transmission technique is applied to a moving body, it is necessary to detect the presence of a living body in the vicinity of the moving body 30 before or during power feeding. However, when the moving body 30 is stopped obliquely with respect to the stop space 26, the positional relationship between the radiation pattern of the magnetic flux generated from the power feeding coil 21 and the moving body 30 on which the power receiving coil 31 is mounted changes. As a result, the area that needs to detect the presence of the living body in the vicinity of the moving body 30 also changes, so there is a concern that detection is not performed even in an area that normally needs to detect the living body. Is done. Even if the moving body 30 is guided so that the plane direction deviation amounts Xm, Ym [cm] and the rotation direction deviation amount θm [°] are within the allowable range, the relative positional relationship between the feeding coil 21 and the receiving coil 31 is changed. Since it is difficult to make them completely coincide with each other, and it is considered that a slight positional deviation occurs between the feeding coil 21 and the receiving coil 31, it is necessary to define a living body detection area corresponding to the positional deviation between the feeding coil 21 and the receiving coil 31. There is. On the other hand, in the present embodiment, the feeding coil 21 and the receiving coil 31 define the living body detection area 42 based on the maximum allowable values for both the plane direction deviation amounts Xm and Ym and the rotational direction deviation amount θm. Thus, it is possible to reliably detect an area that requires living body detection.

(第2実施形態)
次に、図6を参照して、本発明の第2実施形態に係るワイヤレス電力伝送システム10について説明する。図6aは、給電コイルと受電コイルの相対位置が一致している状態の生体検知エリアを示す模式図である。図6bは、給電コイルと受電コイルの相対位置がずれている状態の生体検知エリアを示す模式図である。第2実施形態に係るワイヤレス電力伝送システム10は、生体検知手段24によって画定される生体検知エリア52の点において、第1実施形態に係るワイヤレス電力伝送システム10と相違する。以下、第1実施形態と異なる点を中心に説明する。
(Second Embodiment)
Next, a wireless power transmission system 10 according to a second embodiment of the present invention will be described with reference to FIG. FIG. 6A is a schematic diagram illustrating a living body detection area in a state in which the relative positions of the power feeding coil and the power receiving coil coincide with each other. FIG. 6B is a schematic diagram illustrating a living body detection area in a state where the relative positions of the power feeding coil and the power receiving coil are shifted. The wireless power transmission system 10 according to the second embodiment is different from the wireless power transmission system 10 according to the first embodiment in terms of a biological detection area 52 defined by the biological detection means 24. Hereinafter, a description will be given focusing on differences from the first embodiment.

本実施形態においては、生体検知手段24は、位置検知手段23が計測した平面方向ずれ量Xm,Ymと回転方向ずれ量θmとに基づいて、生体検知エリア52を画定している。ここで、生体の存在を検知する必要のあるエリアは、平面方向ずれ量Xm,Ymと回転方向ずれ量θmに応じて変化する。つまり、生体検知手段24は、平面方向ずれ量Xm,Ymと回転方向ずれ量θmを考慮して、生体の存在を検知する必要のあるエリアが漏れないように生体検知エリア52を画定する必要がある。   In the present embodiment, the living body detection unit 24 defines the living body detection area 52 based on the plane direction deviation amounts Xm and Ym and the rotation direction deviation amount θm measured by the position detection unit 23. Here, the area in which the presence of the living body needs to be detected changes according to the plane direction deviation amounts Xm and Ym and the rotation direction deviation amount θm. That is, the living body detection unit 24 needs to demarcate the living body detection area 52 in consideration of the plane direction deviation amounts Xm and Ym and the rotation direction deviation amount θm so that the area where the presence of the living body needs to be detected does not leak. is there.

まず、図6aを参照して、給電コイル21と受電コイル31の相対位置が一致している場合の生体検知エリア52aについて説明する。図6aは、平面方向ずれ量Xm,Ymはともに0〔cm〕、回転方向ずれ量θmは0〔°〕の状態を示している。図6aに示す例においては、生体の存在を検知する必要のあるエリアは、給電コイル21を中心として、移動体30の底部と、移動体30の進行方向と直交する方向の移動体30側面近傍に拡がるエリアとなる。したがって、生体検知手段24は、移動体30の底部から移動体30の進行方向と直交する方向の移動体30側面近傍に拡がるエリアを生体検知エリア52aとして画定すればよい。   First, the living body detection area 52a in the case where the relative positions of the power feeding coil 21 and the power receiving coil 31 coincide with each other will be described with reference to FIG. 6a. FIG. 6a shows a state where both the plane direction deviation amounts Xm and Ym are 0 [cm] and the rotational direction deviation amount θm is 0 [°]. In the example shown in FIG. 6A, the area where the presence of a living body needs to be detected is centered on the feeding coil 21 and the vicinity of the side surface of the moving body 30 in the direction orthogonal to the traveling direction of the moving body 30. It becomes an area that spreads out. Accordingly, the living body detection unit 24 may define an area extending from the bottom of the moving body 30 to the vicinity of the side surface of the moving body 30 in a direction orthogonal to the traveling direction of the moving body 30 as the living body detection area 52a.

続いて、図6bを参照して、給電コイル21と受電コイル31の相対位置がずれている場合の生体検知エリア52bについて説明する。図6bは、平面方向ずれ量Xmが−5〔cm〕、平面方向ずれ量Ymが+5〔cm〕、回転方向ずれ量θmが10〔°〕の状態を示している。図6bに示す例においては、生体の存在を検知する必要のあるエリアは、受電コイル31がずれた方向に対して、平面方向ずれ量Xm,Ym分減少し、受電コイル31がずれた方向と反対方向に対して、平面方向ずれ量Xm,Ym分増加する。また、生体の存在を検知する必要のあるエリアは、移動体30が給電コイル21に対して回転方向ずれ量θm分傾いていることから、移動体30の進行方向に減少する傾向となり、移動体の進行方向と直交する方向に増加する傾向となる。そして、これら増加分と減少分を合算したものが生体の存在を検知する必要のあるエリアとなる。ここで、図6aにおける生体検知エリア52aを採用した場合、本来であれば生体の存在を検知する必要のあるエリアであるにも関わらず、漏れてしまうことが懸念される。これに対して、本実施形態では、生体検知手段24は、位置検知手段23が計測した平面方向ずれ量Xm,Ym〔cm〕と回転方向ずれ量θm〔°〕とに基づいて、生体検知エリア52bを画定していることから、生体検知が必要なエリアの最適化を図ることができ、生体検知を効率よく確実に行うことができる。   Next, the living body detection area 52b in the case where the relative positions of the power feeding coil 21 and the power receiving coil 31 are shifted will be described with reference to FIG. 6b. FIG. 6B shows a state where the plane direction deviation amount Xm is −5 [cm], the plane direction deviation amount Ym is +5 [cm], and the rotational direction deviation amount θm is 10 [°]. In the example shown in FIG. 6b, the area where the presence of the living body needs to be detected is reduced by the amount Xm, Ym of the plane direction displacement with respect to the direction in which the power receiving coil 31 is displaced, and the direction in which the power receiving coil 31 is displaced. With respect to the opposite direction, the plane direction displacement amounts Xm and Ym increase. In addition, the area in which the presence of the living body needs to be detected tends to decrease in the traveling direction of the moving body 30 because the moving body 30 is inclined by the rotational direction deviation amount θm with respect to the feeding coil 21. It tends to increase in the direction orthogonal to the traveling direction of the. The sum of these increases and decreases is an area where the presence of the living body needs to be detected. Here, when the living body detection area 52a in FIG. 6a is employed, there is a concern that the leakage may occur even though it is an area where it is necessary to detect the presence of a living body. On the other hand, in this embodiment, the living body detection unit 24 is based on the plane direction deviation amounts Xm, Ym [cm] and the rotation direction deviation amount θm [°] measured by the position detection unit 23. Since the area 52b is defined, it is possible to optimize an area that requires living body detection, and to perform living body detection efficiently and reliably.

以上のように、本実施形態に係るワイヤレス電力伝送システム10は、生体の有無を検知する生体検知手段24を備え、生体検知手段24は、位置検知手段23が計測した平面方向ずれ量Xm,Ym〔cm〕と回転方向ずれ量θm〔°〕とに基づいて、生体検知エリア52を画定している。上述したように、ワイヤレス電力伝送技術を移動体に適用した場合、給電開始前や給電中に移動体30近傍における生体の存在を検知する必要がある。ところが、停車スペース26に対して移動体30が斜めにずれて停車されると、給電コイル21から発生する磁束の放射パターンと受電コイル31を搭載した移動体30の位置関係が変化する。これによって、移動体30近傍における生体の存在の検知が必要なエリアも変化してしまうために、本来であれば生体の検知を行う必要のあるエリアであっても検知がなされないということが懸念される。また、たとえ移動体30を平面方向ずれ量Xm,Ym〔cm〕と回転方向ずれ量θm〔°〕が許容範囲に収まるように誘導したとしても、給電コイル21と受電コイル31の相対位置関係を完全に一致させることは難しく、給電コイル21と受電コイル31に僅かな位置ずれが生じていることも考えられるため、給電コイル21と受電コイル31の位置ずれに応じた生体検知エリアを画定する必要がある。これに対して、本実施形態では、生体検知手段24が位置検知手段23により計測した平面方向ずれ量Xm,Ym〔cm〕と回転方向ずれ量θm〔°〕に基づいて、生体検知エリア52を画定していることから、生体検知が必要なエリアの最適化を図ることができ、生体検知を効率よく確実に行うことができる。   As described above, the wireless power transmission system 10 according to the present embodiment includes the living body detecting unit 24 that detects the presence or absence of a living body, and the living body detecting unit 24 measures the plane direction deviation amounts Xm and Ym measured by the position detecting unit 23. The living body detection area 52 is defined based on [cm] and the rotational direction deviation amount θm [°]. As described above, when the wireless power transmission technology is applied to a moving body, it is necessary to detect the presence of a living body in the vicinity of the moving body 30 before starting feeding or during feeding. However, when the moving body 30 is stopped obliquely with respect to the stop space 26, the positional relationship between the radiation pattern of the magnetic flux generated from the power feeding coil 21 and the moving body 30 on which the power receiving coil 31 is mounted changes. As a result, the area that needs to detect the presence of the living body in the vicinity of the moving body 30 also changes, so there is a concern that detection is not performed even in an area that normally needs to detect the living body. Is done. Even if the moving body 30 is guided so that the plane direction deviation amounts Xm, Ym [cm] and the rotation direction deviation amount θm [°] are within the allowable range, the relative positional relationship between the feeding coil 21 and the receiving coil 31 is changed. Since it is difficult to make them completely coincide with each other, and it is considered that a slight positional deviation occurs between the feeding coil 21 and the receiving coil 31, it is necessary to define a living body detection area corresponding to the positional deviation between the feeding coil 21 and the receiving coil 31. There is. On the other hand, in this embodiment, the living body detection area 52 is defined based on the plane direction deviation amounts Xm, Ym [cm] and the rotation direction deviation amount θm [°] measured by the position detection means 23. Since the area is defined, it is possible to optimize an area that requires living body detection, and to perform living body detection efficiently and reliably.

以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、いろいろな変形および変更が本発明の特許請求範囲内で可能なこと、またそうした変形例および変更も本発明の特許請求の範囲にあることは当業者に理解されるところである。従って、本明細書での記述および図面は限定的ではなく例証的に扱われるべきものである。例えば、上述した実施形態では、ワイヤレス電力伝送システムを移動体に適用した例を用いて説明したがこれに限られず、携帯電話やスマートフォンといった通信機器にも適用することができる。   The present invention has been described based on the embodiments. It will be understood by those skilled in the art that the embodiments are illustrative, and that various modifications and changes are possible within the scope of the claims of the present invention, and that such modifications and changes are also within the scope of the claims of the present invention. By the way. Accordingly, the description and drawings herein are to be regarded as illustrative rather than restrictive. For example, in the above-described embodiment, the wireless power transmission system is described using an example in which the wireless power transmission system is applied to a mobile body, but the present invention is not limited to this, and the present invention can also be applied to a communication device such as a mobile phone or a smartphone.

10…ワイヤレス電力伝送システム、20…給電設備、21…給電コイル、22…給電設備、23…位置検知手段、24…生体検知手段、25…給電側通信機器、26…停車スペース、30…移動体、31…受電コイル、32…整流器、33…バッテリ、34…受電側通信機器、41…立入り制限エリア、42,52,52a,52b…生体検知エリア。

DESCRIPTION OF SYMBOLS 10 ... Wireless power transmission system, 20 ... Feeding equipment, 21 ... Feeding coil, 22 ... Feeding equipment, 23 ... Position detection means, 24 ... Living body detection means, 25 ... Feeding side communication equipment, 26 ... Stop space, 30 ... Mobile , 31 ... power receiving coil, 32 ... rectifier, 33 ... battery, 34 ... power receiving side communication device, 41 ... access restriction area, 42, 52, 52a, 52b ... biological detection area.

Claims (3)

給電コイルと受電コイルが対向することによりワイヤレスにて電力が伝送されるワイヤレス電力伝送システムであって、
交流電流が供給されて交流磁界を発生する前記給電コイルと、
交流磁界を介して電力を受電する前記受電コイルと、
前記給電コイルと前記受電コイルの相対位置関係を検知する位置検知手段と、を備え、
前記位置検知手段は、前記給電コイルと前記受電コイルの対向方向と直交する方向の平面方向ずれ量と前記対向方向から見たコイル中心を回転軸とした回転角の回転方向ずれ量を計測し、当該計測結果に基づいて前記給電コイルと前記受電コイルの相対位置関係を検知することを特徴とするワイヤレス電力伝送システム。
A wireless power transmission system in which power is transmitted wirelessly when a feeding coil and a receiving coil face each other,
The feeding coil that is supplied with an alternating current to generate an alternating magnetic field;
The receiving coil for receiving power via an alternating magnetic field;
A position detecting means for detecting a relative positional relationship between the power feeding coil and the power receiving coil,
The position detecting means measures a planar direction deviation amount in a direction orthogonal to the opposing direction of the feeding coil and the receiving coil and a rotational direction deviation amount of a rotation angle with the coil center as viewed from the opposing direction as a rotation axis, A wireless power transmission system that detects a relative positional relationship between the power feeding coil and the power receiving coil based on the measurement result.
生体の有無を検知する生体検知手段をさらに備え、
前記生体検知手段は、前記平面方向ずれ量の最大許容値と前記回転方向ずれ量の最大許容値に基づいて、生体検知エリアを画定することを特徴とする請求項1に記載のワイヤレス電力伝送システム。
It further comprises a living body detecting means for detecting the presence or absence of a living body,
2. The wireless power transmission system according to claim 1, wherein the living body detection unit demarcates a living body detection area based on a maximum allowable value of the displacement amount in the plane direction and a maximum allowable value of the displacement amount in the rotation direction. .
生体の有無を検知する生体検知手段をさらに備え、
前記生体検知手段は、前記位置検知手段が計測した前記平面方向ずれ量と前記回転方向ずれ量とに基づいて、生体検知エリアを画定することを特徴とする請求項1に記載のワイヤレス電力伝送システム。

It further comprises a living body detecting means for detecting the presence or absence of a living body,
2. The wireless power transmission system according to claim 1, wherein the living body detection unit defines a living body detection area based on the amount of displacement in the planar direction and the amount of shift in the rotation direction measured by the position detection unit. .

JP2014237280A 2013-11-28 2014-11-25 Wireless power transmission system Expired - Fee Related JP6369304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237280A JP6369304B2 (en) 2013-11-28 2014-11-25 Wireless power transmission system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013246453 2013-11-28
JP2013246453 2013-11-28
JP2014237280A JP6369304B2 (en) 2013-11-28 2014-11-25 Wireless power transmission system

Publications (2)

Publication Number Publication Date
JP2015128370A true JP2015128370A (en) 2015-07-09
JP6369304B2 JP6369304B2 (en) 2018-08-08

Family

ID=53838096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237280A Expired - Fee Related JP6369304B2 (en) 2013-11-28 2014-11-25 Wireless power transmission system

Country Status (1)

Country Link
JP (1) JP6369304B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506826A (en) * 2015-12-24 2019-03-07 エナージャス コーポレイション System and method for object detection in a wireless charging system
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233430A (en) * 2009-03-30 2010-10-14 Yamatake Corp Wireless power distribution system
JP2011217460A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Charge supporter for vehicles, method of supporting charge to vehicles, and computer program
JP2012115036A (en) * 2010-11-24 2012-06-14 Panasonic Corp Power transmission device of non-contact power supply system, and non-contact power supply system having the same
JP2013150430A (en) * 2012-01-18 2013-08-01 Denso Corp Contactless feed apparatus
JP2013192411A (en) * 2012-03-15 2013-09-26 Denso Corp Foreign substance detection apparatus and non-contact power exchange system
JP2013201848A (en) * 2012-03-26 2013-10-03 Ihi Corp Non contact power transmission apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233430A (en) * 2009-03-30 2010-10-14 Yamatake Corp Wireless power distribution system
JP2011217460A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Charge supporter for vehicles, method of supporting charge to vehicles, and computer program
JP2012115036A (en) * 2010-11-24 2012-06-14 Panasonic Corp Power transmission device of non-contact power supply system, and non-contact power supply system having the same
JP2013150430A (en) * 2012-01-18 2013-08-01 Denso Corp Contactless feed apparatus
JP2013192411A (en) * 2012-03-15 2013-09-26 Denso Corp Foreign substance detection apparatus and non-contact power exchange system
JP2013201848A (en) * 2012-03-26 2013-10-03 Ihi Corp Non contact power transmission apparatus and method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
JP2019506826A (en) * 2015-12-24 2019-03-07 エナージャス コーポレイション System and method for object detection in a wireless charging system
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11817721B2 (en) 2017-10-30 2023-11-14 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11784726B2 (en) 2019-02-06 2023-10-10 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11715980B2 (en) 2019-09-20 2023-08-01 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11799328B2 (en) 2019-09-20 2023-10-24 Energous Corporation Systems and methods of protecting wireless power receivers using surge protection provided by a rectifier, a depletion mode switch, and a coupling mechanism having multiple coupling locations
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11411437B2 (en) 2019-12-31 2022-08-09 Energous Corporation System for wirelessly transmitting energy without using beam-forming control
US11817719B2 (en) 2019-12-31 2023-11-14 Energous Corporation Systems and methods for controlling and managing operation of one or more power amplifiers to optimize the performance of one or more antennas
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Also Published As

Publication number Publication date
JP6369304B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6369304B2 (en) Wireless power transmission system
JP6338743B2 (en) Method and apparatus for transmitting wireless power
US9666359B2 (en) Vehicle, power receiving device, power transmitting device, and contactless power supply system
EP2973939B1 (en) Systems and methods for extending the power capability of a wireless charger
JP5838262B2 (en) Power transmission equipment
JP4772744B2 (en) Signal transmission coil communication device for non-contact power feeding device
JP5239706B2 (en) Charging apparatus and charging method
US9073447B2 (en) Power transmitting device, vehicle, and contactless power transfer system
JP6079026B2 (en) Coil unit and wireless power feeder using the same
US10505399B2 (en) Contactless inductive energy transmission apparatus and method
JP2014112063A (en) Non-contact power supply device
JP2012023913A (en) Non-contact power feeding device
JP2014014258A (en) Wireless power transmission device and wireless power transmission system
JP2014093818A (en) Contactless charger
KR20160101936A (en) Resonant power-transfer system and resonant power-transmission device
JP6006857B2 (en) Power transmission equipment
US20210175756A1 (en) Power receiving apparatus, power transmitting apparatus, method for controlling same, and computer-readable medium
JP2012034546A (en) Wireless power transmission system
JP2012005308A (en) Wireless power transmission system
EP3297124A1 (en) Wireless power transmission apparatus and control method therefor, method for controlling wireless power reception apparatus, and wireless power transmission system and wireless power transmission method therefor
JP2013162707A (en) Charging stand and relative position control method
JP2016220316A (en) Non-contact power transmission device and power receiving equipment
JP6428420B2 (en) Contactless power supply system
JP7449083B2 (en) Power transmission device, transmission method, and program
WO2023149238A1 (en) Electric power transmission device and electric power reception device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6369304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees