JP2015125915A - Positive electrode for lithium ion secondary battery - Google Patents

Positive electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP2015125915A
JP2015125915A JP2013269797A JP2013269797A JP2015125915A JP 2015125915 A JP2015125915 A JP 2015125915A JP 2013269797 A JP2013269797 A JP 2013269797A JP 2013269797 A JP2013269797 A JP 2013269797A JP 2015125915 A JP2015125915 A JP 2015125915A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
material layer
electrode active
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013269797A
Other languages
Japanese (ja)
Inventor
武志 阿部
Takeshi Abe
武志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013269797A priority Critical patent/JP2015125915A/en
Publication of JP2015125915A publication Critical patent/JP2015125915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for a 5 V-class lithium ion secondary battery, suppressed in elution of a constitutional metal element from a positive electrode collector.SOLUTION: A positive electrode for a lithium ion secondary battery includes a positive electrode collector and a positive electrode active material layer adhered to a surface of the positive electrode collector. The positive electrode active material layer includes, as a positive electrode active material, lithium manganese composite oxide of a spinel structure having an operating potential of 4.3 V (vs. Li/Li) or more. The positive electrode collector has: an active material layer forming part where the positive electrode active material layer is disposed on a surface of the positive electrode active material layer; and a collector exposed part where the positive electrode active material layer is not disposed. A ratio (Ra/Ra) of the arithmetic average roughness Raof the active material layer forming part to the arithmetic average roughness Raof the collector exposed part is less than 1.29.

Description

本発明は、リチウムイオン二次電池に関する。詳しくは、作動電位が4.3V(vs. Li/Li+)以上のリチウムマンガン複合酸化物を備えるリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery. Specifically, the present invention relates to a lithium ion secondary battery including a lithium manganese composite oxide having an operating potential of 4.3 V (vs. Li / Li + ) or higher.

リチウムイオン二次電池等の非水電解質二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから車両搭載用の高出力電源等に好ましく利用されている。
この種の電池に用いられる正極は、典型的には正極集電体上に正極活物質を含む正極活物質層が固着された構成を有する。かかる構成の正極は、典型的には正極集電体の表面に正極活物質を含むペースト状又はスラリー状の組成物を塗工(塗布)・乾燥して、必要に応じて圧延(プレス)することにより作製される。例えば、特許文献1の段落[0014]には、正極活物質としてのリチウムスピネルマンガン酸化物とバインダと導電剤とを含む正極合材ペーストを正極集電体上に塗布し乾燥させた後、ホットロールプレスすることによって正極を作製することが記載されている。
Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are preferably used for high output power sources mounted on vehicles because they are lighter and have higher energy density than existing batteries.
A positive electrode used in this type of battery typically has a configuration in which a positive electrode active material layer containing a positive electrode active material is fixed on a positive electrode current collector. The positive electrode having such a configuration is typically coated (applied) and dried with a paste-like or slurry-like composition containing the positive electrode active material on the surface of the positive electrode current collector, and rolled (pressed) as necessary. It is produced by this. For example, in paragraph [0014] of Patent Document 1, a positive electrode mixture paste containing lithium spinel manganese oxide as a positive electrode active material, a binder, and a conductive agent is applied on a positive electrode current collector and dried, and then hot It describes that a positive electrode is produced by roll pressing.

特開2004−006143号公報JP 2004-006143 A

ところで、リチウムイオン二次電池では、性能向上の一環として更なる高エネルギー密度化が検討されている。かかる高エネルギー密度化は、例えば従来に比べて高い作動電位を有する正極活物質(例えばLiNi0.5Mn1.5)を用いることで実現され得る。しかしながら、4.3V(vs. Li/Li+)以上の作動電位を有する正極を上述のような方法で作製した場合に、正極集電体(典型的にはアルミニウム(Al)箔)から構成金属元素(例えばAl)が溶出し電池の耐久性(例えば高温サイクル特性)が低下する問題があった。
本発明はかかる事情に鑑みてなされたものであり、その目的は、上記作動電位の高い(5V級の)リチウムイオン二次電池用の正極であって、正極集電体からの構成金属元素の溶出が抑制されたリチウムイオン二次電池用の正極を提供することである。関連する他の目的は、該正極を備えた高耐久な5V級リチウムイオン二次電池を提供することである。
By the way, in the lithium ion secondary battery, further higher energy density is examined as part of performance improvement. Such high energy density can be realized by using, for example, a positive electrode active material (for example, LiNi 0.5 Mn 1.5 O 4 ) having a higher operating potential than conventional ones. However, when a positive electrode having an operating potential of 4.3 V (vs. Li / Li + ) or higher is produced by the method described above, a constituent metal is formed from a positive electrode current collector (typically an aluminum (Al) foil). There was a problem that the element (for example, Al) was eluted and the durability (for example, high temperature cycle characteristics) of the battery was lowered.
This invention is made | formed in view of this situation, The objective is the positive electrode for lithium ion secondary batteries with the said high operating potential (5V class), Comprising: Of the constituent metal element from a positive electrode collector, To provide a positive electrode for a lithium ion secondary battery in which elution is suppressed. Another related object is to provide a highly durable 5 V class lithium ion secondary battery including the positive electrode.

上記問題について本発明者が様々な角度から鋭意検討を重ねたところ、正極集電体からの構成金属元素の溶出には5V級電池ならではの構成が関係することがわかった。即ち、正極集電体は典型的には金属製(例えばアルミニウム(Al)製)であり、その表面に不動態膜(例えばAlやAlF)が形成されることで例えば4〜5V(vs. Li/Li+)という酸化雰囲気に曝された場合であっても安定に存在している。しかしながら、正極活物質としてスピネル型の結晶構造を有する(典型的には略八面体の形状を有する)化合物を用いた場合、製造工程(例えばプレス工程)において上記正極集電体表面の不動態膜が激しく傷つけられ、破壊されることがあり得る。その状態で4.3V(vs. Li/Li+)以上の強い酸化雰囲気に曝されると、正極集電体から構成金属元素の溶出が加速することがあり得る。本発明者の検討によれば、これによって溶出した金属元素が非水電解質中を泳動し、対向する負極の表面に析出して、電池の耐久性や信頼性が低下することがある。 As a result of extensive studies by the present inventors from various angles, it has been found that the elution of the constituent metal elements from the positive electrode current collector is related to the configuration unique to the 5V class battery. That is, the positive electrode current collector is typically made of metal (for example, made of aluminum (Al)), and a passive film (for example, Al 2 O 3 or AlF 3 ) is formed on the surface thereof. Even when exposed to an oxidizing atmosphere of (vs. Li / Li + ), it exists stably. However, when a compound having a spinel crystal structure (typically having an approximately octahedral shape) is used as the positive electrode active material, the passive film on the surface of the positive electrode current collector in the manufacturing process (for example, a pressing process) Can be severely hurt and destroyed. When exposed to a strong oxidizing atmosphere of 4.3 V (vs. Li / Li + ) or higher in this state, elution of constituent metal elements from the positive electrode current collector may be accelerated. According to the study of the present inventor, the metal element eluted thereby migrates in the non-aqueous electrolyte and precipitates on the surface of the opposing negative electrode, which may reduce the durability and reliability of the battery.

そこで、本発明者は更なる検討を重ね、本発明を創出するに至った。即ち、本発明により、正極集電体と該正極集電体の表面に固着された正極活物質層とを備えるリチウムイオン二次電池用の正極が提供される。上記正極活物質層は、正極活物質として4.3V(vs. Li/Li+)以上の作動電位を有するスピネル構造のリチウムマンガン複合酸化物を含んでいる。また、上記正極集電体は、該正極集電体の表面に上記正極活物質層が配置されている活物質層形成部と、上記正極活物質層が配置されていない集電体露出部とを有する。そして、上記集電体露出部の算術平均粗さRaに対する上記活物質層形成部の算術平均粗さRaの比(Ra/Ra)が1.29未満である。 Therefore, the present inventor has further studied and has come to create the present invention. That is, according to the present invention, there is provided a positive electrode for a lithium ion secondary battery comprising a positive electrode current collector and a positive electrode active material layer fixed to the surface of the positive electrode current collector. The positive electrode active material layer includes a spinel-structure lithium manganese composite oxide having an operating potential of 4.3 V (vs. Li / Li + ) or higher as the positive electrode active material. The positive electrode current collector includes an active material layer forming portion in which the positive electrode active material layer is disposed on a surface of the positive electrode current collector, and a current collector exposed portion in which the positive electrode active material layer is not disposed. Have Then, the ratio of the arithmetic mean roughness Ra 1 of the active material layer forming portion with respect to the arithmetic average roughness Ra 2 of the current collector exposed portion (Ra 1 / Ra 2) is less than 1.29.

作動電位が4.3V(vs. Li/Li+)以上のスピネル型の化合物を正極活物質として用いることで、電池の高エネルギー密度化を実現することができる。また、上記算術平均粗さの比((Ra/Ra)<1.29)を満たすことで、上記スピネル型の化合物(略八面体の形状を有する化合物)を使用した場合であっても正極集電体の表面に形成されている不動態膜の損傷を防止することができる。このため、正極集電体からの構成金属元素の溶出を抑制することができ、高耐久性を実現することができる。 By using a spinel type compound having an operating potential of 4.3 V (vs. Li / Li + ) or more as a positive electrode active material, a high energy density of the battery can be realized. The ratio of the arithmetic mean roughness ((Ra 1 / Ra 2) <1.29) By satisfying, even when used above spinel compound (compound having a substantially octahedral shape) It is possible to prevent damage to the passive film formed on the surface of the positive electrode current collector. For this reason, elution of the constituent metal elements from the positive electrode current collector can be suppressed, and high durability can be realized.

なお、上記算術平均粗さRaは、JIS B0601−1994に従って求めることができる。具体的には、電池から正極を取り出し、所定の大きさに切り出して試料を得る。このとき、正極活物質層が配置されている活物質層形成部と、上記正極活物質層が配置されていない集電体露出部とを両方含むように試料の切り出しを行う。次に、正極集電体上に形成されている正極活物質層を所定の有機溶媒(例えばN−メチルピロリドン)で除去する(例えばふき取る)。そして、上記活物質層形成部および集電体露出部について、それぞれJIS B0601−1994に従って算術平均粗さRaを算出する。   The arithmetic average roughness Ra can be obtained according to JIS B0601-1994. Specifically, the positive electrode is taken out from the battery and cut into a predetermined size to obtain a sample. At this time, the sample is cut out so as to include both the active material layer forming portion where the positive electrode active material layer is disposed and the current collector exposed portion where the positive electrode active material layer is not disposed. Next, the positive electrode active material layer formed on the positive electrode current collector is removed (for example, wiped off) with a predetermined organic solvent (for example, N-methylpyrrolidone). And arithmetic average roughness Ra is calculated according to JIS B0601-1994 about the said active material layer formation part and collector exposed part, respectively.

なお、本発明者の検討によれば、いわゆる4V級の電池では、正極活物質として一般に丸みを帯びた形状の(略球状の)LiCoOやLiNiO等が用いられるため、正極集電体(例えばAl箔)表面の損傷が起こり難い。また、例えば同じスピネル型の結晶構造を有するLiMnを正極活物質として用いた場合であっても、正極の最高到達電位を凡そ4V(vs. Li/Li+)程度までに抑える場合は、正極集電体からの構成金属元素の溶出が起こり難い。ここに開示される発明は、正極活物質として4.3V(vs. Li/Li+)以上の作動電位を有するスピネル構造のリチウムマンガン複合酸化物を用いた場合に、上述のような顕著な効果を得られるものである。 According to the study of the present inventor, since a so-called 4V-class battery generally uses a rounded (substantially spherical) LiCoO 2 or LiNiO 2 as a positive electrode active material, a positive electrode current collector ( For example, Al foil) surface is hardly damaged. For example, even when LiMn 2 O 4 having the same spinel type crystal structure is used as the positive electrode active material, the maximum potential of the positive electrode is suppressed to about 4 V (vs. Li / Li + ). In addition, the elution of the constituent metal elements from the positive electrode current collector hardly occurs. The invention disclosed here has a remarkable effect as described above when a lithium manganese composite oxide having a spinel structure having an operating potential of 4.3 V (vs. Li / Li + ) or higher is used as the positive electrode active material. Can be obtained.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここで開示されるリチウムイオン二次電池用の正極は、正極集電体と該正極集電体上に固着(形成)された正極活物質層とを備える。そして、上記正極集電体が、上記正極活物質層の配置されている活物質層形成部と、上記正極活物質層の配置されていない集電体露出部とを有しており、上記集電体露出部の算術平均粗さRaに対する上記活物質層形成部の算術平均粗さRaの比(Ra/Ra:以下、単に「粗面化度」ということがある。)が所定の値であることによって特徴づけられる。したがって、その他の構成は特に限定されない。 A positive electrode for a lithium ion secondary battery disclosed herein includes a positive electrode current collector and a positive electrode active material layer fixed (formed) on the positive electrode current collector. The positive electrode current collector includes an active material layer forming portion where the positive electrode active material layer is disposed, and a current collector exposed portion where the positive electrode active material layer is not disposed. The ratio of the arithmetic average roughness Ra 1 of the active material layer forming portion to the arithmetic average roughness Ra 2 of the exposed electric portion (Ra 1 / Ra 2 : hereinafter, sometimes simply referred to as “roughening degree”). Characterized by being a predetermined value. Therefore, other configurations are not particularly limited.

正極活物質層は少なくとも正極活物質を含み、必要に応じて他の任意成分を含み得る。ここに開示される発明において、正極活物質としては、作動電位が4.3V(vs. Li/Li+)以上で、スピネル型の結晶構造を有するリチウムマンガン複合酸化物を用いることができる。例えば、作動電位(vs. Li/Li+)が4.3V以上(典型的には4.5V以上、例えば4.6V以上、好ましくは4.7V以上)であって、典型的には5.5V以下、例えば5.3V以下の高電圧正極材料を用いることができる。これによって、高いエネルギー密度を実現することができる。該高電圧正極材料としては、例えば、LiNi0.5Mn1.5、LiNi0.5Mn1.45Ti0.05、LiNi0.45Fe0.05Mn1.5、LiNi0.475Fe0.025Mn1.475Ti0.025等が挙げられる。 The positive electrode active material layer includes at least a positive electrode active material, and may include other optional components as necessary. In the invention disclosed herein, a lithium manganese composite oxide having an operating potential of 4.3 V (vs. Li / Li + ) or more and having a spinel crystal structure can be used as the positive electrode active material. For example, the operating potential (vs. Li / Li + ) is 4.3 V or higher (typically 4.5 V or higher, such as 4.6 V or higher, preferably 4.7 V or higher). A high voltage positive electrode material of 5 V or less, for example, 5.3 V or less can be used. Thereby, a high energy density can be realized. Examples of the high voltage positive electrode material include LiNi 0.5 Mn 1.5 O 4 , LiNi 0.5 Mn 1.45 Ti 0.05 O 4 , and LiNi 0.45 Fe 0.05 Mn 1.5 O 4. , LiNi 0.475 Fe 0.025 Mn 1.475 Ti 0.025 O 4 and the like.

正極活物質の性状は典型的には粒子状や粉末状である。かかる粒子状の正極活物質の平均粒子径は、20μm以下(典型的には1〜20μm、例えば5〜15μm)であり得る。形状としては、典型的には八面体(双四角錐)構造、即ち2つの三角錐を底面で張り合わせたような分子構造を有する。このため、従来の正極の作製方法では、上記三角錐の頂点の部分によって正極集電体の表面が傷つけられ、該正極集電体上に形成された不動態膜を損傷(破壊)することがあった。しかしながら、ここに開示される製造方法によれば、かかる不動態膜の損傷を好適に防止することができ、正極集電体からの構成金属元素の溶出を高度に抑制することが可能となる。   The properties of the positive electrode active material are typically in the form of particles or powder. The average particle diameter of the particulate positive electrode active material may be 20 μm or less (typically 1 to 20 μm, for example, 5 to 15 μm). The shape typically has an octahedral (double quadrangular pyramid) structure, that is, a molecular structure in which two triangular pyramids are bonded together on the bottom surface. For this reason, in the conventional method for producing a positive electrode, the surface of the positive electrode current collector is damaged by the apex portion of the triangular pyramid, and the passive film formed on the positive electrode current collector may be damaged (broken). there were. However, according to the manufacturing method disclosed herein, damage to the passive film can be suitably prevented, and elution of constituent metal elements from the positive electrode current collector can be highly suppressed.

正極活物質層は必要に応じて他の任意成分を含み得る。かかる任意成分としては、バインダや導電材等が挙げられる。バインダとしては、ポリフッ化ビニリデン(PVdF)やポリエチレンオキサイド(PEO)等を好適に用いることができる。導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の炭素材料を好適に用いることができる。   The positive electrode active material layer may contain other optional components as necessary. Examples of such optional components include a binder and a conductive material. As the binder, polyvinylidene fluoride (PVdF), polyethylene oxide (PEO), or the like can be suitably used. As the conductive material, a carbon material such as carbon black (for example, acetylene black or ketjen black) can be suitably used.

正極集電体としては、導電性の良好な金属(例えばアルミニウム、ニッケル、チタン、ステンレス鋼等、好ましくはアルミニウム)からなる導電性部材を好適に用いることができる。集電体の形状は、板状体、箔状体等を用いることができ、エネルギー密度等の観点から箔状体を好適に用いることができる。箔状集電体の厚みは特に限定されないが、エネルギー密度と機械的強度との兼ね合いから、5〜50μm(より好ましくは10〜30μm)程度のものを好適に用いることができる。   As the positive electrode current collector, a conductive member made of a metal having good conductivity (for example, aluminum, nickel, titanium, stainless steel, etc., preferably aluminum) can be suitably used. As the shape of the current collector, a plate-like body, a foil-like body or the like can be used, and the foil-like body can be suitably used from the viewpoint of energy density and the like. The thickness of the foil-like current collector is not particularly limited, but a thickness of about 5 to 50 μm (more preferably 10 to 30 μm) can be suitably used in consideration of the energy density and mechanical strength.

上記正極集電体は、上記正極活物質層が配置されている活物質層形成部と、上記正極活物質層が配置されていない集電体露出部とを有している。そして、上記集電体露出部の算術平均粗さRaに対する上記活物質層形成部の算術平均粗さRaの比(Ra/Ra:粗面化度)が1.29未満(典型的には1.28以下、例えば1.25以下、敢えて言えば1.23以下)である。換言すれば、正極活物質層の形成に伴う正極集電体表面の粗面化が高度に抑制されている。これにより、高耐久性を実現することができる。
好適な一態様では、上記粗面化度が1.23未満(例えば1.21以下)である。これにより、正極集電体からの構成金属元素の溶出を劇的に(例えば1/3以下に)抑制することができる。
The positive electrode current collector has an active material layer forming portion in which the positive electrode active material layer is disposed, and a current collector exposed portion in which the positive electrode active material layer is not disposed. The ratio of the arithmetic average roughness Ra 1 of the active material layer forming portion to the arithmetic average roughness Ra 2 of the current collector exposed portion (Ra 1 / Ra 2 : roughness) is less than 1.29 (typical Specifically, it is 1.28 or less, for example, 1.25 or less, or 1.23 or less. In other words, the roughening of the surface of the positive electrode current collector accompanying the formation of the positive electrode active material layer is highly suppressed. Thereby, high durability is realizable.
In a preferred embodiment, the roughening degree is less than 1.23 (for example, 1.21 or less). Thereby, elution of the constituent metal elements from the positive electrode current collector can be dramatically suppressed (for example, to 1/3 or less).

このような正極は、例えば概ね以下の手順で好適に製造することができる。
先ず、上述の正極活物質と他の任意の成分(バインダ、導電材等)とを適当な溶媒中に分散させ、スラリー状の組成物を調製する。次に、かかる組成物を正極集電体に塗工して乾燥させる。これにより、正極集電体と該正極集電体上に固着された正極活物質層とを備える正極を作製することができる。
なお、上記作製した正極活物質層には、上記粗面化度が1.29未満となる範囲で必要に応じて圧縮(プレス)処理を施すこともできる。換言すれば、上記組成物の塗工、乾燥後に、上記粗面化度が1.29未満となる範囲でプレスを行ってもよく、又は、プレス処理を行わなくてもよい。
Such a positive electrode can be suitably manufactured, for example, generally by the following procedure.
First, the above-mentioned positive electrode active material and other optional components (binder, conductive material, etc.) are dispersed in a suitable solvent to prepare a slurry composition. Next, this composition is applied to the positive electrode current collector and dried. Thereby, a positive electrode provided with a positive electrode current collector and a positive electrode active material layer fixed on the positive electrode current collector can be produced.
In addition, the produced positive electrode active material layer can be subjected to a compression (press) treatment as necessary within a range where the degree of roughening is less than 1.29. In other words, after coating and drying the composition, pressing may be performed in a range where the degree of roughening is less than 1.29, or pressing may not be performed.

ここに開示される正極は、リチウムイオン二次電池の構築に用いることができる。換言すれば、上記正極を備えたリチウムイオン二次電池が開示される。ここに開示されるリチウムイオン二次電池はエネルギー密度と耐久性とを高いレベルで両立可能なものであり得る。かかるリチウムイオン二次電池は、典型的には、上記正極を含む電極体と非水電解質とを電池ケース内に収容した構成である。電池ケースとしては、例えばアルミニウム等の軽量な金属製のものを好適に用いることができる。   The positive electrode disclosed here can be used to construct a lithium ion secondary battery. In other words, a lithium ion secondary battery including the positive electrode is disclosed. The lithium ion secondary battery disclosed herein can be compatible with energy density and durability at a high level. Such a lithium ion secondary battery typically has a configuration in which an electrode body including the positive electrode and a nonaqueous electrolyte are accommodated in a battery case. As the battery case, for example, a lightweight metal such as aluminum can be suitably used.

上記電極体は、上記正極と負極とを典型的にはセパレータを介して、積層することで構築し得る。
負極としては、負極活物質をバインダや増粘剤等とともに負極集電体上に固着させ、負極活物質層を形成した形態のものを好適に用いることができる。負極活物質としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料を用いることができ、なかでも黒鉛を好適に用いることができる。バインダとしては、スチレンブタジエンゴム(SBR)、ポリテトラフルオロエチレン(PTFE)等を好適に用いることができる。増粘剤としては、カルボキシメチルセルロース(CMC)のセルロース系材料を好適に用いることができる。負極集電体としては、導電性の良好な金属(例えば銅)からなる導電性材料を好適に用いることができる。
セパレータとしては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シートを好適に用いることができる。なかでも、上記多孔性樹脂シートの片面又は両面に多孔質の耐熱層を備えるものが好ましい。
The electrode body can be constructed by laminating the positive electrode and the negative electrode, typically via a separator.
As the negative electrode, it is possible to suitably use a negative electrode active material that is fixed on a negative electrode current collector together with a binder, a thickener and the like to form a negative electrode active material layer. As the negative electrode active material, carbon materials such as graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon) and the like can be used, and among them, graphite can be preferably used. As the binder, styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE) or the like can be suitably used. As the thickener, a cellulose-based material of carboxymethyl cellulose (CMC) can be suitably used. As the negative electrode current collector, a conductive material made of a highly conductive metal (for example, copper) can be suitably used.
As the separator, a porous resin sheet made of a resin such as polyethylene (PE) or polypropylene (PP) can be suitably used. Especially, what has a porous heat resistant layer in the one or both surfaces of the said porous resin sheet is preferable.

非水電解質としては、非水溶媒中に支持塩を含有させたもの(非水電解液)を好適に用いることができる。非水溶媒としては、二次電池に利用し得ることが知られている各種有機溶剤を用いることができる。なかでも耐酸化性の高い(即ち酸化分解電位の高い)ものが好ましく、カーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等のフッ素化物(フッ素含有非水溶媒)を好適に用いることができる。特には、フッ素化カーボネートの使用が好ましい。具体的には、フルオロエチレンカーボネート(FEC)等のフッ素化環状カーボネート;メチル(2,2,2−トリフルオロエチル)カーボネート(MTFEC)等のフッ素化鎖状カーボネート;を好適に用いることができる。これにより、上記高電圧正極材料(作動電位の高い正極活物質)を正極に用いた場合であっても、寿命特性に優れた電池を実現することができる。支持塩としては、リチウム塩、ナトリウム塩、マグネシウム塩等を用いることができ、なかでもLiPF、LiBF等のリチウム塩を好適に用いることができる。 As the non-aqueous electrolyte, a non-aqueous solvent containing a supporting salt (non-aqueous electrolyte) can be preferably used. As the nonaqueous solvent, various organic solvents known to be usable for secondary batteries can be used. Among them, those having high oxidation resistance (that is, high oxidation decomposition potential) are preferable, and fluorinated products (fluorine-containing nonaqueous solvent) such as carbonates, ethers, esters, nitriles, sulfones, and lactones are suitably used. Can be used. In particular, the use of fluorinated carbonate is preferred. Specifically, a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC); a fluorinated chain carbonate such as methyl (2,2,2-trifluoroethyl) carbonate (MTFEC); can be preferably used. Thereby, even if it is a case where the said high voltage positive electrode material (positive electrode active material with a high operating potential) is used for a positive electrode, the battery excellent in the lifetime characteristic is realizable. As the supporting salt, lithium salts, sodium salts, magnesium salts, and the like can be used, and among them, lithium salts such as LiPF 6 and LiBF 4 can be preferably used.

ここで開示される正極を備えたリチウムイオン二次電池(いわゆる5V級電池)は各種用途に利用可能であるが、正極活物質の作動電位の引き上げと、正極集電体からの構成金属元素の溶出が抑制されている効果により、従来に比べて高い電池特性を実現し得る。例えば、高エネルギー密度と高耐久性との両立を果たし得る。したがって、このような性質を活かして、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)等の車両に搭載される駆動用電源として好適に用いることができる。   The lithium ion secondary battery (so-called 5V class battery) provided with the positive electrode disclosed herein can be used for various applications. However, the operating potential of the positive electrode active material is increased and the constituent metal elements from the positive electrode current collector are increased. Due to the effect of suppressing the elution, it is possible to realize a battery characteristic higher than the conventional one. For example, both high energy density and high durability can be achieved. Therefore, taking advantage of such properties, it can be suitably used as a drive power source mounted on vehicles such as plug-in hybrid vehicles (PHV), hybrid vehicles (HV), and electric vehicles (EV).

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to the specific examples.

[正極の作製]
ここでは、使用する正極活物質の種類及び作製条件(プレス条件)を異ならせ、計7種類の正極を作製した。
例1では、先ず、正極活物質としてのLiNi1/3Co1/3Mn1/3(LNCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、これら材料の質量比率がLNCM:AB:PVdF=87:10:3となるよう秤量して混練機に投入し、N−メチルピロリドン(NMP)を分散溶媒として粘度を調整しながら混練して、正極活物質層形成用スラリーを調製した。このスラリーを、厚み15μmのアルミニウム箔(正極集電体)の表面に塗工して、乾燥後にロールプレスすることによって、正極集電体上に正極活物質層(電極密度:2.3g/cm)を備える正極(例1)を作製した。
例2では、ロールプレスを行わなかったこと以外は例1と同様に、正極集電体上に正極活物質層(電極密度:1.1g/cm)を備える正極(例2)を作製した。
例3では、正極活物質としてLiNi0.5Mn1.5(LNM)を用いたこと以外は例1と同様に、正極集電体上に正極活物質層(電極密度:1.3〜2.3g/cm)を備える正極(例3)を作製した。
例4〜例6では、ロールプレスの負荷圧力を調整して、電極密度を2.0〜1.3g/cmの範囲で異ならせたこと以外は例3と同様に、正極集電体上に正極活物質層(電極密度:2.0〜1.3g/cm)を備える正極(例4〜例6)を作製した。
例7では、正極活物質としてLiNi0.5Mn1.5(LNM)を用いたこと以外は例2と同様に、正極集電体上に正極活物質層(電極密度:1.1g/cm)を備える正極(例7)を作製した。
[Production of positive electrode]
Here, the type of positive electrode active material to be used and the production conditions (press conditions) were varied to produce a total of seven types of positive electrodes.
In Example 1, first, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) as a positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder Were weighed so that the mass ratio of these materials would be LNCM: AB: PVdF = 87: 10: 3 and charged into a kneader, and kneaded while adjusting the viscosity using N-methylpyrrolidone (NMP) as a dispersion solvent. Thus, a slurry for forming a positive electrode active material layer was prepared. This slurry is applied to the surface of an aluminum foil (positive electrode current collector) having a thickness of 15 μm, and is roll-pressed after drying, whereby a positive electrode active material layer (electrode density: 2.3 g / cm) is formed on the positive electrode current collector. 3 ) A positive electrode (Example 1) was prepared.
In Example 2, a positive electrode (Example 2) having a positive electrode active material layer (electrode density: 1.1 g / cm 3 ) on a positive electrode current collector was prepared in the same manner as in Example 1 except that roll pressing was not performed. .
In Example 3, a positive electrode active material layer (electrode density: 1.3) was formed on the positive electrode current collector in the same manner as in Example 1 except that LiNi 0.5 Mn 1.5 O 4 (LNM) was used as the positive electrode active material. A positive electrode (Example 3) comprising ˜2.3 g / cm 3 ) was produced.
Example 4 Example 6, to adjust the load pressure of the roll press, as in Example 3 except that having different electrode density in the range of 2.0~1.3g / cm 3, on the positive electrode current collector A positive electrode (Example 4 to Example 6) having a positive electrode active material layer (electrode density: 2.0 to 1.3 g / cm 3 ) was prepared.
In Example 7, a positive electrode active material layer (electrode density: 1.1 g) was formed on the positive electrode current collector in the same manner as in Example 2 except that LiNi 0.5 Mn 1.5 O 4 (LNM) was used as the positive electrode active material. / Cm 3 ) to produce a positive electrode (Example 7).

[正極集電体の算術平均粗さRaの測定]
正極集電体(アルミニウム箔)の活物質層形成部(塗工部)及び集電体露出部(未塗工部)において、レーザー顕微鏡を用いて表面粗さRaを測定した。具体的には、作製した正極の一部を塗工部と未塗工部が含まれる様に切り出して、表面を傷つけないようにNMPで正極活物質層を除去した(ふき取った)。そして、塗工部及び未塗工部のそれぞれにおいて、測定長さ300μmで測定を行い、JIS B0601−1994に従って表面粗さを算出した。これを任意の3箇所で行い、それぞれ算術平均粗さRaを求めた。また、塗工部(活物質層形成部)の算術平均粗さRaを未塗工部(集電体露出部)の算術平均粗さRaで除すことにより、粗面化度を算出した。結果を表1の該当欄に示す。なお、参考値として未使用のアルミニウム箔の表面粗さを別途測定したところ、算術平均粗さRaは0.11であった。
[Measurement of Arithmetic Average Roughness Ra of Positive Current Collector]
Surface roughness Ra was measured using the laser microscope in the active material layer formation part (coating part) of the positive electrode collector (aluminum foil) and the collector exposed part (uncoated part). Specifically, a part of the produced positive electrode was cut out so that a coated part and an uncoated part were included, and the positive electrode active material layer was removed (wiped off) with NMP so as not to damage the surface. And in each of a coating part and an uncoated part, it measured by measurement length of 300 micrometers, and calculated the surface roughness according to JISB0601-1994. This was performed at three arbitrary locations, and the arithmetic average roughness Ra was determined for each. Further, by dividing the coating section the arithmetic mean roughness Ra 2 of the uncoated portion the arithmetic mean roughness Ra 1 of (active material layer forming portion) (collector-exposed portion), calculates the roughening degree did. The results are shown in the corresponding column of Table 1. In addition, when the surface roughness of the unused aluminum foil was separately measured as a reference value, the arithmetic average roughness Ra was 0.11.

Figure 2015125915
Figure 2015125915

例1〜例7の未塗工部のRaの値は、未使用のアルミニウム箔のRa値(=0.11)と概ね同等だった。このことから、正極作製の過程において未塗工部(集電体露出部)はほぼ損傷を受けないことがわかった。
また、例1及び例2において、塗工部のRaの値と未塗工部のRaの値とは概ね同等の値を示した。この理由としては、正極活物質の形状が考えられる。即ち、LNCMは比較的丸みを帯びた(略球状の)形状を有しているために、正極作製の過程において正極集電体の表面を傷つけ難かった(正極集電体の表面が粗面化し難かった)ことが考えられる。
一方、正極活物質にLNMを用いた例3〜例7では、正極活物質層の密度を高めたものほど粗面化度(Ra/Ra)が大きくなることがわかった。この理由としては、LNMがスピネル構造に由来する8面体形状を有しているために、粒子の角が尖っており、これにより正極作製の過程(典型的にはプレス処理)で正極集電体の表面が傷つけられた(粗面化した)ことが考えられる。このことから、プレス条件を調整する(プレス条件を緩める)或いはプレスを行わないことによって、粗面化度を小さく抑える(正極集電体の表面が荒れないよう制御する)ことが可能と分かった。
The Ra 2 value of the uncoated part in Examples 1 to 7 was almost equal to the Ra value (= 0.11) of the unused aluminum foil. From this, it was found that the uncoated part (current collector exposed part) was hardly damaged in the process of producing the positive electrode.
Moreover, in Example 1 and Example 2, the value of Ra 1 of the coated part and the value of Ra 2 of the uncoated part showed substantially the same value. A possible reason for this is the shape of the positive electrode active material. That is, since LNCM has a relatively rounded (substantially spherical) shape, it was difficult to damage the surface of the positive electrode current collector in the process of producing the positive electrode (the surface of the positive electrode current collector was roughened). It was difficult).
On the other hand, in Examples 3 to 7 in which LNM was used as the positive electrode active material, it was found that the surface roughness (Ra 1 / Ra 2 ) increased as the density of the positive electrode active material layer increased. The reason for this is that since the LNM has an octahedral shape derived from the spinel structure, the corners of the particles are sharp, and thus the positive electrode current collector during the positive electrode manufacturing process (typically press treatment). It is conceivable that the surface of the surface was damaged (roughened). From this, it was found that by adjusting the pressing conditions (releasing the pressing conditions) or not performing the pressing, it is possible to suppress the degree of roughening to a small level (control the surface of the positive electrode current collector not to be rough). .

[リチウムイオン二次電池の構築]
次に、上記作製した正極を用いてリチウムイオン二次電池を構築し、耐久性を評価した。具体的には、先ず、天然黒鉛系材料(C、平均粒子径:20μm、格子定数(C):0.67nm、結晶子サイズ(Lc):27nm)と、バインダとしてのスチレン−ブタジエン共重合体(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、これら材料の質量比がC:SBR:CMC=98:1:1となるよう秤量して混練機に投入し、イオン交換水を分散溶媒として粘度を調整しながら混練して、負極活物質層形成用スラリーを調製した。このスラリーを、正極活物質と負極活物質の質量比が2:1となるように、厚み10μmの銅箔(負極集電体)の表面に塗工して、乾燥後にロールプレスすることによって、負極集電体上に負極活物質層を有する負極を作製した。
[Construction of lithium ion secondary battery]
Next, a lithium ion secondary battery was constructed using the produced positive electrode, and durability was evaluated. Specifically, first, a natural graphite material (C, average particle diameter: 20 μm, lattice constant (C 0 ): 0.67 nm, crystallite size (Lc): 27 nm), and styrene-butadiene copolymer as a binder. The coalescence (SBR) and carboxymethyl cellulose (CMC) as a thickener are weighed so that the mass ratio of these materials is C: SBR: CMC = 98: 1: 1 and charged into a kneader to perform ion exchange. A slurry for forming a negative electrode active material layer was prepared by kneading while adjusting the viscosity using water as a dispersion solvent. By applying this slurry to the surface of a copper foil (negative electrode current collector) having a thickness of 10 μm so that the mass ratio of the positive electrode active material and the negative electrode active material is 2: 1, roll pressing after drying, A negative electrode having a negative electrode active material layer on a negative electrode current collector was produced.

次に、上記作製した正極と負極を、電池の設計容量が60mAhとなるように電極サイズを調整した後、セパレータを介して対向させて電極体を準備した。また、非水電解液として、フッ素化環状カーボネートとしてのフルオロエチレンカーボネート(FEC)と、フッ素化鎖状カーボネートとしてのメチル(2,2,2−トリフルオロエチル)カーボネート(MTFEC)とを、FEC:MTFEC=50:50の体積比で含む混合溶媒に、支持塩としてのLiPFを1mol/Lの濃度で溶解させたものを調製した。
そして、上記電極体と非水電解液とをラミネート製のセルに封入し、7種類の評価用電池(例1〜例7)構築した。
Next, after adjusting the electrode size so that the produced positive electrode and the negative electrode had a design capacity of 60 mAh, an electrode body was prepared by facing them through a separator. Further, as a non-aqueous electrolyte, fluoroethylene carbonate (FEC) as a fluorinated cyclic carbonate and methyl (2,2,2-trifluoroethyl) carbonate (MTFEC) as a fluorinated chain carbonate, FEC: A solution prepared by dissolving LiPF 6 as a supporting salt at a concentration of 1 mol / L in a mixed solvent containing MTFEC at a volume ratio of 50:50 was prepared.
And the said electrode body and the non-aqueous electrolyte were enclosed with the cell made from a laminate, and seven types of evaluation batteries (Example 1-Example 7) were constructed | assembled.

[初期容量の確認]
上記構築した電池(例1〜例7)を25℃の恒温槽内に設置し、正負極間の電圧が4.9Vになるまで1/5Cの定電流で充電(CC充電)した後、正負極間の電圧が3.5Vになるまで1/5Cの定電流で放電(CC放電)する操作を1サイクルとして、これを3サイクル繰り返した。
次に、正負極間の電圧が4.9Vになるまで1/5CでCC充電し、続いて電流値が1/50Cになるまで定電圧で充電(CV充電)した後、正負極間の電圧が3.5Vになるまで1/5CでCC放電し、このときのCC放電容量を初期容量とした。
[Check initial capacity]
The batteries (Example 1 to Example 7) constructed above were placed in a thermostatic bath at 25 ° C., charged with a constant current of 1/5 C (CC charge) until the voltage between the positive and negative electrodes became 4.9 V, and then positive The operation of discharging (CC discharge) with a constant current of 1/5 C until the voltage between the negative electrodes became 3.5 V was set as one cycle, and this was repeated three cycles.
Next, CC charging is performed at 1/5 C until the voltage between the positive and negative electrodes becomes 4.9 V, and then charging at a constant voltage (CV charging) until the current value becomes 1/50 C, then the voltage between the positive and negative electrodes CC was discharged at 1/5 C until the voltage reached 3.5 V, and the CC discharge capacity at this time was defined as the initial capacity.

[高温サイクル試験(60℃)]
次に、初期容量確認後の電池を環境温度60℃の恒温槽に設置し、温度が一定となった後に高温サイクル試験を行った。具体的には、正負極間の電圧が4.9Vになるまで2Cの定電流でCC充電した後、正負極間の電圧が3.5Vになるまで2Cの定電流でCC放電する操作を1サイクルとして、これを500サイクル繰り返した。その後、上記初期容量の測定と同様の手順でCC放電容量を測定し、サイクル試験後の電池容量とした。そして、サイクル試験後の電池容量を初期容量で除して100を掛けることにより、容量維持率(%)を算出した。結果を表2の該当欄に示す。
[High-temperature cycle test (60 ° C)]
Next, after confirming the initial capacity, the battery was placed in a thermostat having an environmental temperature of 60 ° C., and after the temperature became constant, a high temperature cycle test was performed. Specifically, CC charging with a constant current of 2 C until the voltage between the positive and negative electrodes becomes 4.9 V, and then CC discharge with a constant current of 2 C until the voltage between the positive and negative electrodes becomes 3.5 V is 1 This was repeated 500 cycles as a cycle. Thereafter, the CC discharge capacity was measured in the same procedure as the measurement of the initial capacity to obtain the battery capacity after the cycle test. Then, the capacity retention rate (%) was calculated by dividing the battery capacity after the cycle test by the initial capacity and multiplying by 100. The results are shown in the corresponding column of Table 2.

Figure 2015125915
Figure 2015125915

表2に示すように、正極活物質としてLNCMを用いた例1と例2は、高温サイクル試験後の容量維持率がほぼ同等だった。このことから、ここに開示される発明は、正極活物質としてかかる材料を使用した場合には効果的でないことがわかった。
一方で、正極活物質としてLNMを用いた例3〜例7では、初期の粗面化度が小さいもののほうが高い容量維持率を示した。具体的には、初期の粗面化度が1.29未満(典型的には1.28以下、例えば1.25以下、敢えて言えば1.23以下)の例6及び例7は、初期の粗面化度が1.29以上の例3〜例5に比べて顕著に高い容量維持率(優れた耐久性)を示した。
以上の結果から、正極活物質としてスピネル型の結晶構造を有するLiNi0.5Mn1.5を用いた場合には、初期の粗面化度と耐久性(容量維持率)との間に相関があり、初期の粗面化度が1.29未満(望ましくは1.23未満)になるようにプレス処理を行うか、又はプレス処理を行わないことで、高いエネルギー密度と耐久性とを兼ね備えたリチウムイオン二次電池を実現できるとわかった。
As shown in Table 2, Example 1 and Example 2 using LNCM as the positive electrode active material had substantially the same capacity retention rate after the high temperature cycle test. From this, it was found that the invention disclosed herein is not effective when such a material is used as the positive electrode active material.
On the other hand, in Examples 3 to 7 in which LNM was used as the positive electrode active material, the capacity retention rate was higher when the initial roughness was smaller. Specifically, Examples 6 and 7 having an initial roughening degree of less than 1.29 (typically 1.28 or less, for example, 1.25 or less, dare to say 1.23 or less) The capacity retention rate (excellent durability) was significantly higher than those of Examples 3 to 5 in which the degree of roughening was 1.29 or more.
From the above results, when LiNi 0.5 Mn 1.5 O 4 having a spinel type crystal structure is used as the positive electrode active material, it is between the initial roughness and durability (capacity maintenance ratio). In order to achieve high energy density and durability, the pressing process is performed so that the initial surface roughness is less than 1.29 (preferably less than 1.23), or the pressing process is not performed. It was found that a lithium ion secondary battery having both of the above can be realized.

[サイクル後の正極集電体の算術平均粗さRaの測定]
サイクル試験終了後の電池を解体して正極を取り出し、上記と同様に各部分における算術平均粗さRa及び粗面化度を算出した。結果を表2の該当欄に示す。
[Measurement of arithmetic average roughness Ra of positive electrode current collector after cycle]
The battery after the end of the cycle test was disassembled, the positive electrode was taken out, and the arithmetic average roughness Ra and the roughening degree in each part were calculated in the same manner as described above. The results are shown in the corresponding column of Table 2.

表2に示すように、サイクル試験後の算術平均粗さは概ね初期(サイクル試験前)の値と同等であったが、例えば例3の塗工部における表面粗さRaのように若干の増大がみられる場合もあった。この理由としては、(1)作動電位を4.3V(vs.Li/Li)に設定したことでアルミニウム箔の表面からAlイオンが溶出したこと、(2)リチウムイオンの吸蔵及び放出に伴って正極活物質が膨張・収縮し、アルミニウム箔の表面が更に粗面化されたことが考えられる。 As shown in Table 2, the arithmetic average roughness after the cycle test was almost the same as the initial value (before the cycle test), but for example, a slight surface roughness Ra 1 in the coated portion of Example 3 was observed. There was also an increase. This is because (1) Al ions were eluted from the surface of the aluminum foil by setting the operating potential to 4.3 V (vs. Li / Li + ), and ( 2 ) with the insertion and release of lithium ions. It is considered that the positive electrode active material expanded and contracted, and the surface of the aluminum foil was further roughened.

[溶出Al元素の分析]
サイクル試験終了後の電池を解体して負極を取り出し、非水溶媒で軽く洗浄した後、ICP(Inductively Coupled Plasma)分析用の試料を得た。該分析用試料を、酸溶媒中(ここでは硫酸。)に加熱溶解させ、かかる溶液をICP分析することによって、アルミニウム元素の含有量(μg)を定量した。結果を表2に示す。なお、今回行ったICP分析の検出下限値は0.005mgである。
[Analysis of eluted Al element]
The battery after the end of the cycle test was disassembled, the negative electrode was taken out, washed lightly with a non-aqueous solvent, and then a sample for ICP (Inductively Coupled Plasma) analysis was obtained. The analytical sample was heated and dissolved in an acid solvent (here, sulfuric acid), and ICP analysis was performed on the solution to quantify the aluminum element content (μg). The results are shown in Table 2. In addition, the detection lower limit value of the ICP analysis performed this time is 0.005 mg.

表2に示すように、正極活物質としてスピネル型の結晶構造を有するLiNi0.5Mn1.5を用いた場合には、初期の粗面化度を1.29未満(望ましくは1.23未満)とすることで正極集電体からのアルミニウム元素の溶出を劇的に(例えば1/3以下に)抑制することができるとわかった。これによって、内部抵抗を大幅に低減することができ、高い耐久性(例えば高温サイクル特性)を実現することができた。かかる結果は、本発明の技術的意義を示すものである。 As shown in Table 2, when LiNi 0.5 Mn 1.5 O 4 having a spinel crystal structure is used as the positive electrode active material, the initial roughening degree is less than 1.29 (preferably 1 It was found that elution of aluminum element from the positive electrode current collector can be dramatically suppressed (for example, to 1/3 or less). As a result, the internal resistance can be greatly reduced, and high durability (for example, high-temperature cycle characteristics) can be realized. This result shows the technical significance of the present invention.

以上、本発明を詳細に説明したが、上記実施形態及び実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations, What included various deformation | transformation and change of the above-mentioned specific example is included in the invention disclosed here.

Claims (1)

正極集電体と該正極集電体の表面に固着された正極活物質層とを備えるリチウムイオン二次電池用の正極であって、
前記正極活物質層は、正極活物質として4.3V(vs. Li/Li+)以上の作動電位を有するスピネル構造のリチウムマンガン複合酸化物を含み、
前記正極集電体は、該正極集電体の表面に前記正極活物質層が配置されている活物質層形成部と、前記正極活物質層が配置されていない集電体露出部とを有し、
前記集電体露出部の算術平均粗さRaに対する前記活物質層形成部の算術平均粗さRaの比(Ra/Ra)が1.29未満である、リチウムイオン二次電池用の正極。
A positive electrode for a lithium ion secondary battery comprising a positive electrode current collector and a positive electrode active material layer fixed to the surface of the positive electrode current collector,
The positive electrode active material layer includes a lithium manganese composite oxide having a spinel structure having an operating potential of 4.3 V (vs. Li / Li + ) or more as a positive electrode active material,
The positive electrode current collector has an active material layer forming portion in which the positive electrode active material layer is disposed on a surface of the positive electrode current collector, and a current collector exposed portion in which the positive electrode active material layer is not disposed. And
For the lithium ion secondary battery, the ratio (Ra 1 / Ra 2 ) of the arithmetic average roughness Ra 1 of the active material layer forming portion to the arithmetic average roughness Ra 2 of the current collector exposed portion is less than 1.29. Positive electrode.
JP2013269797A 2013-12-26 2013-12-26 Positive electrode for lithium ion secondary battery Pending JP2015125915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013269797A JP2015125915A (en) 2013-12-26 2013-12-26 Positive electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013269797A JP2015125915A (en) 2013-12-26 2013-12-26 Positive electrode for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2015125915A true JP2015125915A (en) 2015-07-06

Family

ID=53536485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013269797A Pending JP2015125915A (en) 2013-12-26 2013-12-26 Positive electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2015125915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017138382A1 (en) * 2016-02-12 2018-12-06 Necエナジーデバイス株式会社 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing and evaluating positive electrode for lithium ion secondary battery
JP2022087890A (en) * 2020-12-02 2022-06-14 本田技研工業株式会社 Electrode for lithium ion secondary battery and manufacturing method of them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017138382A1 (en) * 2016-02-12 2018-12-06 Necエナジーデバイス株式会社 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing and evaluating positive electrode for lithium ion secondary battery
JP2022087890A (en) * 2020-12-02 2022-06-14 本田技研工業株式会社 Electrode for lithium ion secondary battery and manufacturing method of them

Similar Documents

Publication Publication Date Title
JP5316905B2 (en) Lithium secondary battery
JP5684226B2 (en) Fluorinated binder composites and carbon nanotubes for lithium battery positive electrodes
WO2011024250A1 (en) Method for producing nonaqueous electrolyte lithium ion secondary battery
JP5713198B2 (en) Method for manufacturing lithium secondary battery
WO2013018180A1 (en) Lithium ion secondary battery
JP6185984B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
WO2015173623A1 (en) Method of manufacturing secondary battery
JP6354991B2 (en) Non-aqueous electrolyte secondary battery
JP7205717B2 (en) positive electrode
JP2011014262A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
WO2013099138A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery having negative electrode for lithium ion secondary battery
JP2017084533A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5800196B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6819911B2 (en) Negative electrode for lithium ion secondary battery
JP6478112B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6844602B2 (en) electrode
JP2015125915A (en) Positive electrode for lithium ion secondary battery
JP2020140896A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP5796743B2 (en) Lithium secondary battery
WO2016047326A1 (en) Cathode for lithium ion secondary battery and lithium ion secondary battery using same
JP2010102873A (en) Method for manufacturing battery
JP7240615B2 (en) Negative electrode for lithium ion secondary battery and manufacturing method thereof
JP6895083B2 (en) Non-aqueous secondary battery
JP6245470B2 (en) Manufacturing method of secondary battery
JP2002110145A (en) Nonaqueous secondary battery