JP2015125869A - Alkaline secondary battery - Google Patents

Alkaline secondary battery Download PDF

Info

Publication number
JP2015125869A
JP2015125869A JP2013269010A JP2013269010A JP2015125869A JP 2015125869 A JP2015125869 A JP 2015125869A JP 2013269010 A JP2013269010 A JP 2013269010A JP 2013269010 A JP2013269010 A JP 2013269010A JP 2015125869 A JP2015125869 A JP 2015125869A
Authority
JP
Japan
Prior art keywords
positive electrode
sealing plate
secondary battery
plate
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013269010A
Other languages
Japanese (ja)
Inventor
中村 友美
Tomomi Nakamura
友美 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2013269010A priority Critical patent/JP2015125869A/en
Publication of JP2015125869A publication Critical patent/JP2015125869A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline secondary battery having a low risk of malfunction of a valve mechanism which is caused by a molten material clogged in a vent hole upon abnormal situations such as overdischarging or erroneous charging.SOLUTION: A nickel hydrogen secondary battery 1 comprises: an outer can 10 which has an opening at its upper end; an electrode body 20 which is housed in the outer can 10, and around which a positive electrode plate 21 and a negative electrode plate 22 are wound via a separator 23; a sealing plate 31 which seals the opening of the outer can 10; a positive electrode terminal 34 which is electrically connected to the sealing plate 31; and a valve body 33 which opens and closes, in accordance with the pressure inside the outer can 10, a degassing hole 311 formed on the sealing plate 31. The electrode body 20 includes a positive electrode projection 213 with a cylindrical shape which is formed by a portion of the positive electrode plate 21 protruding to the sealing plate 31 side. The positive electrode projection 213 comes into contact with the sealing plate 31 so as to surround the degassing hole 311.

Description

本発明は、ニッケル水素二次電池等のアルカリ二次電池に関する。   The present invention relates to an alkaline secondary battery such as a nickel hydride secondary battery.

一般的なニッケル水素二次電池等のアルカリ二次電池は、正極板及び負極板がセパレータを介して巻回された電極体が外装缶に収容され、正極端子に電気的に接続された封口板と電極体の正極板とが正極リード(帯状の金属部材)で接続されている。つまり従来のアルカリ二次電池は、電極体の正極板と正極端子とが正極リードを介して電気的に接続されており、正極リードを通じて充放電が行われる。このような構成の従来のアルカリ二次電池は、その正極リードと封口板との接続部分に生ずる接触抵抗に起因する集電ロスが問題となる。また従来のアルカリ二次電池は、電極体と封口体との間の限られた狭い空間に正極リードを配置しなければならないため、正極リードと封口板との接触面積が構造的に制限されることになる。このようなことから従来のアルカリ二次電池は、充放電電流の大きさに一定の制限が生じてしまい、それによって高容量化が妨げられるという課題が生ずる。   A general alkaline secondary battery such as a nickel metal hydride secondary battery has a sealing plate in which an electrode body in which a positive electrode plate and a negative electrode plate are wound via a separator is housed in an outer can and is electrically connected to a positive electrode terminal. And the positive electrode plate of the electrode body are connected by a positive electrode lead (strip-shaped metal member). That is, in the conventional alkaline secondary battery, the positive electrode plate of the electrode body and the positive electrode terminal are electrically connected via the positive electrode lead, and charging / discharging is performed through the positive electrode lead. The conventional alkaline secondary battery having such a configuration has a problem of current collection loss due to contact resistance generated at the connecting portion between the positive electrode lead and the sealing plate. In addition, since the conventional alkaline secondary battery has to place the positive electrode lead in a limited narrow space between the electrode body and the sealing body, the contact area between the positive electrode lead and the sealing plate is structurally limited. It will be. For this reason, the conventional alkaline secondary battery has a certain limitation on the magnitude of the charging / discharging current, which raises the problem that high capacity is hindered.

このような課題を解決することを目的とした従来技術の一例として、正極板及び負極板の端面に活物質が充填されていない複数の凸状集電無地部が形成されており、その凸状集電無地部が集電板に抵抗溶接されたアルカリ二次電池が公知である(例えば特許文献1を参照)。このような構成のアルカリ二次電池によれば、より大きな充放電電流を流すことが可能になるので、従来よりも高容量のアルカリ二次電池が可能になる。   As an example of the prior art for solving such a problem, a plurality of convex current collecting plain portions not filled with an active material are formed on the end faces of the positive electrode plate and the negative electrode plate, and the convex shape An alkaline secondary battery in which a current collecting plain part is resistance-welded to a current collecting plate is known (see, for example, Patent Document 1). According to the alkaline secondary battery having such a configuration, a larger charge / discharge current can be flowed, and thus an alkaline secondary battery having a higher capacity than the conventional one can be obtained.

特開平8−22818号公報JP-A-8-22818

ところでアルカリ二次電池は、例えば過放電や誤充電等によって内部にガスが異常発生して内圧が上昇する虞があり、また通常の充放電サイクルによって内圧が上昇する場合もある。そのため一般的にアルカリ二次電池には、封口板に形成された通気孔を外装缶の内圧に応じて開閉する弁機構が設けられている。より具体的にはアルカリ二次電池は、外装缶の内圧が一定の弁作動圧に達すると弁機構が開弁し、内部のガスが通気孔を通じて外部に放出され、そのガスの放出により外装缶の内圧が低下すると弁機構が閉弁状態に復帰する。このような弁機構によって、アルカリ二次電池の内圧は一定の圧力以下に維持される。   By the way, in an alkaline secondary battery, there is a possibility that gas may be abnormally generated inside due to, for example, overdischarge or erroneous charging, and the internal pressure may increase, and the internal pressure may increase due to a normal charge / discharge cycle. Therefore, generally, the alkaline secondary battery is provided with a valve mechanism that opens and closes a vent hole formed in the sealing plate according to the internal pressure of the outer can. More specifically, in the alkaline secondary battery, when the internal pressure of the outer can reaches a certain valve operating pressure, the valve mechanism is opened, and the internal gas is released to the outside through the vent hole. When the internal pressure of the valve decreases, the valve mechanism returns to the closed state. By such a valve mechanism, the internal pressure of the alkaline secondary battery is maintained below a certain pressure.

しかしながらアルカリ二次電池は、例えば過放電や誤充電等が生じると、内圧の上昇とともに電極体が発熱する場合がある。この場合、その熱によって電極体の一部(セパレータ等)が溶融し、その溶融物が封口板に形成された通気孔に詰まって弁機構が正常に動作しなくなる虞が生ずる。そして電極体の一部が溶融して生ずる溶融物は、アルカリ二次電池の容量が高容量であるほど、その量は多くなる。つまりアルカリ二次電池は、高容量化によって、過放電や誤充電等の異常時に溶融物が通気孔に詰まって弁機構が正常に動作しなくなる虞が高まることになる。   However, in the case of an alkaline secondary battery, for example, when overdischarge or erroneous charging occurs, the electrode body may generate heat as the internal pressure increases. In this case, a part of the electrode body (separator or the like) is melted by the heat, and the melted material may be clogged in a vent hole formed in the sealing plate, and the valve mechanism may not operate normally. The amount of the melt produced by melting a part of the electrode body increases as the capacity of the alkaline secondary battery increases. In other words, due to the increase in capacity of alkaline secondary batteries, there is an increased possibility that the valve mechanism will not operate normally due to clogging of the melt into the vent holes when abnormalities such as overdischarge or erroneous charging occur.

このような状況に鑑み本発明はなされたものであり、その目的は、過放電や誤充電等の異常時に溶融物が通気孔に詰まって弁機構が正常に動作しなくなる虞が少ないアルカリ二次電池を提供することにある。   In view of such circumstances, the present invention has been made, and the purpose thereof is an alkaline secondary that is less likely to cause the valve mechanism to not operate normally due to melt being clogged in the vent hole in the event of abnormalities such as overdischarge or erroneous charging. To provide a battery.

<本発明の第1の態様>
本発明の第1の態様は、上端が開口した外装缶と、前記外装缶に収容され、正極板及び負極板がセパレータを介して巻回された電極体と、前記外装缶の開口を封口する封口板と、前記封口板に電気的に接続された正極端子と、前記封口板に形成された通気孔を前記外装缶の内圧に応じて開閉する弁機構と、を備え、前記電極体は、前記正極板の一部が前記封口板側へ突出してなる円筒形状の正極凸部を含み、前記正極凸部が前記通気孔を囲繞するように前記封口板に当接している、アルカリ二次電池である。
<First Aspect of the Present Invention>
According to a first aspect of the present invention, an outer can whose upper end is open, an electrode body accommodated in the outer can and having a positive electrode plate and a negative electrode plate wound through a separator, and an opening of the outer can are sealed. A sealing plate, a positive electrode terminal electrically connected to the sealing plate, and a valve mechanism that opens and closes a vent formed in the sealing plate according to an internal pressure of the outer can. An alkaline secondary battery in which a part of the positive electrode plate includes a cylindrical positive electrode convex portion protruding to the sealing plate side, and the positive electrode convex portion is in contact with the sealing plate so as to surround the vent hole It is.

電極体は、正極板の一部が封口板側へ突出してなる正極凸部が封口板に当接している。それによって電極体の正極板が封口板に直接接続されることになるので、より大きな充放電電流を流すことが可能になり、高容量のアルカリ二次電池を実現することができる。そして正極凸部は、円筒形状をなしており、通気孔を囲繞するように封口板に当接している。そのため過放電や誤充電等の異常時には、少なくとも正極凸部の外側に発生した溶融物は、その円筒形状の正極凸部によって通気口への進入が妨げられることになる。それによって溶融物が通気孔に詰まって弁機構が正常に動作しなくなる虞を低減することができる。   In the electrode body, a positive electrode convex portion formed by projecting a part of the positive electrode plate toward the sealing plate is in contact with the sealing plate. As a result, the positive electrode plate of the electrode body is directly connected to the sealing plate, so that a larger charge / discharge current can be passed, and a high-capacity alkaline secondary battery can be realized. The positive electrode convex portion has a cylindrical shape and is in contact with the sealing plate so as to surround the vent hole. Therefore, at the time of abnormality such as overdischarge or erroneous charging, at least the melt generated outside the positive electrode protrusion is prevented from entering the vent by the cylindrical positive electrode protrusion. As a result, it is possible to reduce the possibility that the melt will clog the vent hole and the valve mechanism will not operate normally.

これにより本発明の第1の態様によれば、過放電や誤充電等の異常時に溶融物が通気孔に詰まって弁機構が正常に動作しなくなる虞が少ないアルカリ二次電池を提供することができるという作用効果が得られる。   As a result, according to the first aspect of the present invention, it is possible to provide an alkaline secondary battery in which there is little possibility that the valve mechanism will not operate normally due to the melt being clogged in the vent hole when there is an abnormality such as overdischarge or erroneous charging. The effect that it can be obtained.

<本発明の第2の態様>
本発明の第2の態様は、前述した本発明の第1の態様において、前記正極凸部は、前記正極板の最内周部分に形成されている、アルカリ二次電池である。
本発明の第2の態様によれば、円筒形状の正極凸部の内側に発生する溶融物を最小限にすることができるので、溶融物が通気孔に詰まって弁機構が正常に動作しなくなる虞をさらに低減することができる。
<Second Aspect of the Present Invention>
A second aspect of the present invention is an alkaline secondary battery according to the first aspect of the present invention described above, wherein the positive electrode convex portion is formed on the innermost peripheral portion of the positive electrode plate.
According to the second aspect of the present invention, since the melt generated inside the cylindrical positive electrode convex portion can be minimized, the melt is clogged in the vent hole and the valve mechanism does not operate normally. The fear can be further reduced.

<本発明の第3の態様>
本発明の第3の態様は、前述した本発明の第1の態様又は第2の態様において、前記正極板は、前記正極凸部以外の部分に活物質が充填されている、アルカリ二次電池である。
正極凸部は、活物質が充填されていないので、外装缶の内部に発生したガスがより通過し易くなる。これにより本発明の第3の態様によれば、外装缶の内部に発生したガスが通気口を通じて外部へ排出される際に、そのガスの排出が正極凸部によって妨げられる虞を低減することができる。
<Third Aspect of the Present Invention>
A third aspect of the present invention is the alkaline secondary battery according to the first aspect or the second aspect of the present invention, wherein the positive electrode plate is filled with an active material in a portion other than the positive electrode convex portion. It is.
Since the positive electrode convex portion is not filled with the active material, the gas generated inside the outer can can more easily pass through. As a result, according to the third aspect of the present invention, when the gas generated inside the outer can is discharged to the outside through the vent, it is possible to reduce the possibility that the discharge of the gas is hindered by the positive electrode protrusion. it can.

本発明によれば、過放電や誤充電等の異常時に溶融物が通気孔に詰まって弁機構が正常に動作しなくなる虞が少ないアルカリ二次電池を提供することができる。   According to the present invention, it is possible to provide an alkaline secondary battery that is less likely to cause the valve mechanism to not operate normally due to the melt being clogged in the vent hole when there is an abnormality such as overdischarge or erroneous charging.

ニッケル水素二次電池の縦断面を図示した平面図。The top view which illustrated the longitudinal cross-section of the nickel-hydrogen secondary battery. 電極体の斜視図。The perspective view of an electrode body. 正極芯体の平面図。The top view of a positive electrode core. 正極板の平面図。The top view of a positive electrode plate.

以下、本発明の実施の形態について図面を参照しながら説明する。
尚、本発明は、以下説明する実施例に特に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変形が可能であることは言うまでもない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In addition, this invention is not specifically limited to the Example demonstrated below, It cannot be overemphasized that a various deformation | transformation is possible within the range of the invention described in the claim.

<ニッケル水素二次電池の構成>
本発明に係るニッケル水素二次電池1の構成について、図1〜図4を参照しながら説明する。
図1は、ニッケル水素二次電池1の縦断面を図示した平面図である。図2は、電極体20の斜視図である。図3は、正極芯体211の平面図である。図4は、正極板21の平面図である。
<Configuration of nickel metal hydride secondary battery>
The configuration of the nickel metal hydride secondary battery 1 according to the present invention will be described with reference to FIGS.
FIG. 1 is a plan view illustrating a longitudinal section of a nickel metal hydride secondary battery 1. FIG. 2 is a perspective view of the electrode body 20. FIG. 3 is a plan view of the positive electrode core 211. FIG. 4 is a plan view of the positive electrode plate 21.

「アルカリ二次電池」の一例である円筒型のニッケル水素二次電池1は、外装缶10、電極体20及び蓋構造体30を備える。外装缶10は、上端が開口した有底円筒形状の部材であり導電性を有している。電極体20は、セパレータ23を介して正極板21と負極板22とを重ねて渦巻き状に巻くことによって略円筒状に構成されている。蓋構造体30は、外装缶10の開口を封止する構造体である。ニッケル水素二次電池1は、外装缶10に電極体20が収容され、さらにアルカリ電解液(図示せず)が充填され、外装缶10の開口が蓋構造体30に閉塞されて構成されている。   A cylindrical nickel-hydrogen secondary battery 1, which is an example of an “alkali secondary battery”, includes an outer can 10, an electrode body 20, and a lid structure 30. The outer can 10 is a bottomed cylindrical member having an open upper end and has conductivity. The electrode body 20 is formed in a substantially cylindrical shape by winding the positive electrode plate 21 and the negative electrode plate 22 in a spiral shape with a separator 23 interposed therebetween. The lid structure 30 is a structure that seals the opening of the outer can 10. The nickel metal hydride secondary battery 1 is configured in such a manner that an electrode body 20 is accommodated in an outer can 10 and further filled with an alkaline electrolyte (not shown), and an opening of the outer can 10 is closed by a lid structure 30. .

正極板21は、例えば非焼結式ニッケル極であり、正極芯体211と正極芯体211に保持された「活物質」としての正極合剤212とからなる。正極芯体211は、例えば耐アルカリ性を有する金属材料からなり、金属繊維によって構成されたフェルト状の3次元の網目構造を有する。耐アルカリ性を有する金属材料としては、例えばニッケルを用いることができる。正極合剤212は、正極活物質粒子、正極板21の特性を改善するための種々の添加剤粒子、これら正極活物質粒子及び添加剤粒子の混合粒子を正極芯体211に結着するための結着剤からなる。   The positive electrode plate 21 is, for example, a non-sintered nickel electrode, and includes a positive electrode core 211 and a positive electrode mixture 212 as an “active material” held by the positive electrode core 211. The positive electrode core 211 is made of a metal material having alkali resistance, for example, and has a felt-like three-dimensional network structure made of metal fibers. As the metal material having alkali resistance, for example, nickel can be used. The positive electrode mixture 212 is used for binding the positive electrode active material particles, various additive particles for improving the characteristics of the positive electrode plate 21, and the mixed particles of these positive electrode active material particles and additive particles to the positive electrode core 211. Consists of a binder.

正極活物質粒子は水酸化ニッケル粒子である。水酸化ニッケル粒子は、ニッケルの平均価数が2よりも大の高次水酸化ニッケル粒子であってもよい。また水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいはコバルト化合物で表面が被覆されていてもよい。添加剤は、酸化イットリウムの他に、酸化コバルト、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、酸化エルビウム等の希土類化合物等を用いることができる。結着剤は、親水性又は疎水性のポリマー等を用いることができる。より具体的には結着剤は、ヒドロキシプロピルセルロース(HPC)、カルボキシメチルセルロース(CMC)、ポリアクリル酸ナトリウム(SPA)のうちから選択される1種以上を使用することができる。結着剤は、例えば正極活物質粒子100質量部に対して0.1質量部以上0.5質量部以下となるようにすればよい。   The positive electrode active material particles are nickel hydroxide particles. The nickel hydroxide particles may be higher-order nickel hydroxide particles having an average nickel valence of greater than 2. Further, the nickel hydroxide particles may be solid-solved with cobalt, zinc, cadmium or the like, or the surface may be coated with a cobalt compound. As the additive, in addition to yttrium oxide, cobalt compounds such as cobalt oxide, metal cobalt, and cobalt hydroxide, zinc compounds such as metal zinc, zinc oxide, and zinc hydroxide, rare earth compounds such as erbium oxide, and the like can be used. . As the binder, a hydrophilic or hydrophobic polymer or the like can be used. More specifically, the binder may be at least one selected from hydroxypropyl cellulose (HPC), carboxymethyl cellulose (CMC), and sodium polyacrylate (SPA). For example, the binder may be 0.1 parts by mass or more and 0.5 parts by mass or less with respect to 100 parts by mass of the positive electrode active material particles.

負極板22は、ニッケル水素二次電池1の負極端子をなす外装缶10の内周面に接した状態で、その外装缶10と電気的に接続されている。負極板22は、帯状をなす導電性の負極芯体(図示せず)に負極合剤が保持されて形成されている。負極芯体は、複数の貫通孔を有するシート状の金属材からなり、例えばパンチングメタル、金属粉末焼結体基板、エキスパンデッドメタル、ニッケルネット等を用いることができる。特にパンチングメタルや金属粉末を成型してから焼結した金属粉末焼結体基板は負極芯体に好適である。   The negative electrode plate 22 is electrically connected to the outer can 10 while being in contact with the inner peripheral surface of the outer can 10 forming the negative electrode terminal of the nickel-hydrogen secondary battery 1. The negative electrode plate 22 is formed by holding a negative electrode mixture on a conductive negative electrode core (not shown) having a strip shape. The negative electrode core is made of a sheet-like metal material having a plurality of through holes. For example, a punching metal, a metal powder sintered body substrate, an expanded metal, a nickel net, or the like can be used. In particular, a metal powder sintered body substrate obtained by molding punched metal or metal powder and then sintering it is suitable for the negative electrode core.

負極合剤は、水素を吸蔵及び放出可能な水素吸蔵合金粒子と結着剤とからなる。水素吸蔵合金粒子は、電池の充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出できるものであればよい。このような水素吸蔵合金としては、特に限定されないが、例えばLaNi5やMmNi5(Mmはミッシュメタル)等のAB5型系のものを用いることができる。また負極合剤は、水素吸蔵合金に代えて、例えばカドミウム化合物を用いることもできる。結着剤は、例えば親水性又は疎水性のポリマー等を用いることができる。 The negative electrode mixture is composed of hydrogen storage alloy particles capable of occluding and releasing hydrogen and a binder. The hydrogen storage alloy particles may be any particles as long as they can store hydrogen generated electrochemically in an alkaline electrolyte during battery charging and can easily release the stored hydrogen during discharge. Such a hydrogen storage alloy is not particularly limited. For example, an AB 5 type alloy such as LaNi 5 or MmNi 5 (Mm is a misch metal) can be used. Further, the negative electrode mixture may be a cadmium compound, for example, instead of the hydrogen storage alloy. As the binder, for example, a hydrophilic or hydrophobic polymer can be used.

セパレータ23は、例えばポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを材料として用いることができる。   As the separator 23, for example, a polyamide fiber nonwoven fabric or a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene provided with a hydrophilic functional group can be used as a material.

蓋構造体30は、封口板31、絶縁ガスケット32、弁体33及び正極端子34を含む。   The lid structure 30 includes a sealing plate 31, an insulating gasket 32, a valve body 33, and a positive terminal 34.

封口板31は、外装缶10の開口を封口する部材であり、略円形をなし、中央に「通気孔」としての円形のガス抜き孔311が設けられている。封口板31は、絶縁ガスケット32が介装された状態で、外装缶10の開口縁をかしめ加工することによって外装缶10に固定されている。   The sealing plate 31 is a member that seals the opening of the outer can 10, has a substantially circular shape, and is provided with a circular vent hole 311 as a “vent hole” at the center. The sealing plate 31 is fixed to the outer can 10 by caulking the opening edge of the outer can 10 with the insulating gasket 32 interposed.

弁体33は、ゴム等の弾性を有する材料で形成された部材であり、ガス抜き孔311を塞ぐように封口板31に当接した状態で、封口板31と正極端子34との間に縮設されている。弁体33は、封口板31に形成されたガス抜き孔311を外装缶10の内圧に応じて開閉する「弁機構」として機能する。より具体的には弁体33は、外装缶10の内圧が一定の弁作動圧に達すると弾性変形し、それによってガス抜き孔311が開き、外装缶10の内部のガスがガス抜き孔311を通じて放出される。そして弁体33は、そのガスの放出により外装缶10の内圧が低下すると元の形状に復帰し、それによってガス抜き孔311が閉じた状態になる。このような弁機構によって、外装缶10の内圧は一定の圧力以下に維持される。   The valve body 33 is a member formed of a material having elasticity such as rubber, and is compressed between the sealing plate 31 and the positive electrode terminal 34 in a state of being in contact with the sealing plate 31 so as to close the gas vent hole 311. It is installed. The valve body 33 functions as a “valve mechanism” that opens and closes the vent hole 311 formed in the sealing plate 31 according to the internal pressure of the outer can 10. More specifically, the valve body 33 is elastically deformed when the internal pressure of the outer can 10 reaches a certain valve operating pressure, whereby the gas vent hole 311 is opened, and the gas inside the outer can 10 passes through the gas vent hole 311. Released. And when the internal pressure of the armored can 10 falls by discharge | release of the gas, the valve body 33 will return to an original shape, and will be in the state which the gas vent hole 311 closed. By such a valve mechanism, the internal pressure of the outer can 10 is maintained below a certain pressure.

正極端子34は、封口板31に電気的に接続されている。より具体的には正極端子34は、フランジ付きの円筒形状をなし、弁体33を覆うように封口板31に固定されている。また正極端子34は、封口板31のガス抜き孔311を通じて放出されたガスを外部へ排出する排気孔341が形成されている。   The positive terminal 34 is electrically connected to the sealing plate 31. More specifically, the positive electrode terminal 34 has a cylindrical shape with a flange, and is fixed to the sealing plate 31 so as to cover the valve body 33. In addition, the positive electrode terminal 34 is formed with an exhaust hole 341 for discharging the gas released through the gas vent hole 311 of the sealing plate 31 to the outside.

<電極体20の構成>
電極体20の構成について、引き続き図1〜図4を参照しながら、より具体的に説明する。
<Configuration of electrode body 20>
The configuration of the electrode body 20 will be described more specifically with reference to FIGS.

電極体20は、正極板21の一部が封口板31側へ突出してなる正極凸部213を含む(図2)。正極凸部213は、封口板31のガス抜き孔311より大きい直径の円筒形状であり、封口板31のガス抜き孔311を囲繞するように封口板31に当接している(図1)。   The electrode body 20 includes a positive electrode convex portion 213 in which a part of the positive electrode plate 21 protrudes toward the sealing plate 31 (FIG. 2). The positive electrode convex portion 213 has a cylindrical shape having a diameter larger than that of the vent hole 311 of the sealing plate 31 and is in contact with the sealing plate 31 so as to surround the vent hole 311 of the sealing plate 31 (FIG. 1).

このような正極凸部213を設けたニッケル水素二次電池1は、正極凸部213が封口板31に当接している。つまりニッケル水素二次電池1は、電極体20の正極板21が封口板31に直接接続されているので、より大きな充放電電流を流すことが可能になる。それによって高容量のニッケル水素二次電池1を実現することができる。また従来のように抵抗溶接等をする必要がないので、ニッケル水素二次電池1の製造工程を簡素化することができる。   In the nickel metal hydride secondary battery 1 provided with such a positive electrode convex portion 213, the positive electrode convex portion 213 is in contact with the sealing plate 31. That is, in the nickel metal hydride secondary battery 1, since the positive electrode plate 21 of the electrode body 20 is directly connected to the sealing plate 31, a larger charge / discharge current can flow. Thereby, a high-capacity nickel metal hydride secondary battery 1 can be realized. In addition, since it is not necessary to perform resistance welding or the like as in the prior art, the manufacturing process of the nickel metal hydride secondary battery 1 can be simplified.

そして正極凸部213は、封口板31のガス抜き孔311を囲繞するように封口板31に当接している。そのためニッケル水素二次電池1の過放電や誤充電等の異常時には、少なくとも正極凸部213の外側に発生した溶融物は、その円筒形状の正極凸部213によってガス抜き孔311への進入が妨げられることになる。他方、正極凸部213を構成する正極芯体211は、金属繊維によって構成されたフェルト状の3次元の網目構造であることから、外装缶10の内部に発生したガスは、正極凸部213を通過し、ガス抜き孔311を通じて外部へ排出されることになる。このようにしてニッケル水素二次電池1の過放電や誤充電等の異常時に、溶融物がガス抜き孔311に詰まって弁体33が正常に動作しなくなる虞を低減することができる。   The positive electrode convex portion 213 is in contact with the sealing plate 31 so as to surround the gas vent hole 311 of the sealing plate 31. Therefore, when the nickel hydride secondary battery 1 is abnormal such as overdischarge or erroneous charging, at least the melt generated outside the positive electrode protrusion 213 is prevented from entering the gas vent 311 by the cylindrical positive electrode protrusion 213. Will be. On the other hand, since the positive electrode core 211 constituting the positive electrode convex portion 213 has a felt-like three-dimensional network structure made of metal fibers, the gas generated inside the outer can 10 causes the positive electrode convex portion 213 to flow. It passes through and is discharged to the outside through the vent hole 311. In this way, when the nickel hydride secondary battery 1 is abnormal, such as overdischarge or erroneous charging, it is possible to reduce the possibility that the melted material clogs the gas vent hole 311 and the valve element 33 does not operate normally.

本発明において正極凸部213は、正極板21の最内周部分に形成されているのが好ましい。それによって円筒形状の正極凸部213の内側に発生する溶融物を最小限にすることができるので、溶融物がガス抜き孔311に詰まって弁体33が正常に動作しなくなる虞をさらに低減することができる。また本発明において正極凸部213は、正極凸部213以外の部分に活物質が充填されているのが好ましい。つまり正極板21の正極凸部213が形成された部分は、活物質が充填されていないのが好ましい。それによって正極凸部213は、外装缶10の内部に発生したガスがより通過し易くなるので、外装缶10の内部に発生したガスがガス抜き孔311を通じて外部へ排出される際に、そのガスの排出が正極凸部213によって妨げられる虞を低減することができる。   In the present invention, the positive electrode convex portion 213 is preferably formed on the innermost peripheral portion of the positive electrode plate 21. As a result, the melt generated on the inside of the cylindrical positive electrode convex portion 213 can be minimized, thereby further reducing the possibility that the melt will clog the degassing hole 311 and the valve element 33 will not operate normally. be able to. In the present invention, it is preferable that the positive electrode convex portion 213 is filled with an active material in a portion other than the positive electrode convex portion 213. That is, it is preferable that the portion of the positive electrode plate 21 where the positive electrode convex portion 213 is formed is not filled with the active material. Accordingly, the gas generated inside the outer can 10 can more easily pass through the positive electrode convex portion 213, so that when the gas generated inside the outer can 10 is discharged to the outside through the gas vent 311, the gas Can be prevented from being hindered by the positive electrode convex portion 213.

電極体20の正極凸部213は、ニッケル水素二次電池1の製造工程において、蓋構造体30を支持することに利用することもできる。より具体的にはニッケル水素二次電池1の製造工程において、電極体20の正極凸部213を封口板31に当接させてその正極凸部213で蓋構造体30を支持し、その状態で外装缶10の開口縁をかしめ加工することができる。それによって電極体20の正極凸部213が封口板31に当接した状態で蓋構造体30を外装缶10に固定することができる。   The positive electrode convex portion 213 of the electrode body 20 can also be used to support the lid structure 30 in the manufacturing process of the nickel metal hydride secondary battery 1. More specifically, in the manufacturing process of the nickel metal hydride secondary battery 1, the positive electrode convex portion 213 of the electrode body 20 is brought into contact with the sealing plate 31 and the positive electrode convex portion 213 supports the lid structure 30. The opening edge of the outer can 10 can be caulked. Accordingly, the lid structure 30 can be fixed to the outer can 10 in a state where the positive electrode convex portion 213 of the electrode body 20 is in contact with the sealing plate 31.

上記説明したような正極凸部213を含む電極体20は、例えば以下のようにして製造することができる。   The electrode body 20 including the positive electrode convex portion 213 as described above can be manufactured as follows, for example.

まず正極凸部213となる凸部が巻き始め側214に形成された正極芯体211を製造する(図3)。この正極凸部213となる凸部の幅は、巻回して電極体20を構成したときに、その凸部の両側端が僅かに重なりあって、封口板31のガス抜き孔311を囲繞する円筒形状の正極凸部213が構成されるような幅とするのが好ましい。また正極凸部213となる凸部の高さは、ニッケル水素二次電池1を構成したときに、正極凸部213の上端が封口板31に当接する高さとすればよい。また正極板21の正極芯体211は、前述したように金属繊維によって構成されたフェルト状の3次元の網目構造であることから、伸縮性を有している。したがって正極凸部213となる凸部の高さを若干長めに設定すれば、正極凸部213が封口板31に押圧された状態となり、封口板31に対する正極凸部213の接触面積がより大きくなるので好ましい。   First, the positive electrode core body 211 in which the convex portion to be the positive electrode convex portion 213 is formed on the winding start side 214 is manufactured (FIG. 3). The width of the convex portion that becomes the positive electrode convex portion 213 is a cylinder that surrounds the gas vent hole 311 of the sealing plate 31 by slightly overlapping both ends of the convex portion when the electrode body 20 is wound up. The width is preferably such that the positive electrode convex portion 213 is formed. Further, the height of the convex portion that becomes the positive electrode convex portion 213 may be a height at which the upper end of the positive electrode convex portion 213 contacts the sealing plate 31 when the nickel-hydrogen secondary battery 1 is configured. Moreover, since the positive electrode core body 211 of the positive electrode plate 21 has a felt-like three-dimensional network structure made of metal fibers as described above, it has elasticity. Therefore, if the height of the convex portion that becomes the positive electrode convex portion 213 is set slightly longer, the positive electrode convex portion 213 is pressed against the sealing plate 31, and the contact area of the positive electrode convex portion 213 with respect to the sealing plate 31 becomes larger. Therefore, it is preferable.

つづいて正極芯体211の正極凸部213となる凸部以外の部分の両面に正極合剤212を塗工する(図4)。そして前述したように、セパレータ23を介して正極板21と負極板22とを重ねて渦巻き状に巻く。このようにして正極板21の一部が封口板31側へ突出してなる円筒形状の正極凸部213を含む電極体20を構成することができる。   Subsequently, the positive electrode mixture 212 is applied to both surfaces of the positive electrode core 211 other than the convex portion that becomes the positive electrode convex portion 213 (FIG. 4). Then, as described above, the positive electrode plate 21 and the negative electrode plate 22 are overlapped via the separator 23 and wound in a spiral shape. Thus, the electrode body 20 including the cylindrical positive electrode convex portion 213 formed by projecting a part of the positive electrode plate 21 toward the sealing plate 31 can be configured.

1 ニッケル水素二次電池
10 外装缶
20 電極体
21 正極板
22 負極板
23 セパレータ
30 蓋構造体
31 封口板
32 絶縁ガスケット
33 弁体
34 正極端子
DESCRIPTION OF SYMBOLS 1 Nickel metal hydride secondary battery 10 Outer can 20 Electrode body 21 Positive electrode plate 22 Negative electrode plate 23 Separator 30 Lid structure 31 Sealing plate 32 Insulating gasket 33 Valve body 34 Positive electrode terminal

Claims (3)

上端が開口した外装缶と、
前記外装缶に収容され、正極板及び負極板がセパレータを介して巻回された電極体と、
前記外装缶の開口を封口する封口板と、
前記封口板に電気的に接続された正極端子と、
前記封口板に形成された通気孔を前記外装缶の内圧に応じて開閉する弁機構と、を備え、
前記電極体は、前記正極板の一部が前記封口板側へ突出してなる円筒形状の正極凸部を含み、前記正極凸部が前記通気孔を囲繞するように前記封口板に当接している、アルカリ二次電池。
An outer can with an open top;
An electrode body housed in the outer can, and a positive electrode plate and a negative electrode plate wound around a separator;
A sealing plate for sealing the opening of the outer can;
A positive terminal electrically connected to the sealing plate;
A valve mechanism for opening and closing the vent hole formed in the sealing plate according to the internal pressure of the outer can,
The electrode body includes a cylindrical positive electrode convex portion in which a part of the positive electrode plate protrudes toward the sealing plate, and the positive electrode convex portion is in contact with the sealing plate so as to surround the vent hole. Alkaline secondary battery.
請求項1に記載のアルカリ二次電池において、前記正極凸部は、前記正極板の最内周部分に形成されている、アルカリ二次電池。   The alkaline secondary battery according to claim 1, wherein the positive electrode convex portion is formed on an innermost peripheral portion of the positive electrode plate. 請求項1又は2に記載のアルカリ二次電池において、前記正極板は、前記正極凸部以外の部分に活物質が充填されている、アルカリ二次電池。   3. The alkaline secondary battery according to claim 1, wherein the positive electrode plate is filled with an active material in a portion other than the positive electrode convex portion. 4.
JP2013269010A 2013-12-26 2013-12-26 Alkaline secondary battery Pending JP2015125869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013269010A JP2015125869A (en) 2013-12-26 2013-12-26 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013269010A JP2015125869A (en) 2013-12-26 2013-12-26 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JP2015125869A true JP2015125869A (en) 2015-07-06

Family

ID=53536451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013269010A Pending JP2015125869A (en) 2013-12-26 2013-12-26 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2015125869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192978A1 (en) 2020-03-23 2021-09-30 Fdk株式会社 Alkaline storage battery
CN115039275A (en) * 2020-02-19 2022-09-09 三洋电机株式会社 Cylindrical battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115039275A (en) * 2020-02-19 2022-09-09 三洋电机株式会社 Cylindrical battery
WO2021192978A1 (en) 2020-03-23 2021-09-30 Fdk株式会社 Alkaline storage battery

Similar Documents

Publication Publication Date Title
CN110581235B (en) Secondary battery
JP5660625B2 (en) Manufacturing method of negative electrode plate
US9112220B2 (en) Nickel hydrogen rechargeable battery
JP6573466B2 (en) Hydrogen storage alloy, negative electrode using the hydrogen storage alloy, and nickel-hydrogen secondary battery using the negative electrode
JP4701636B2 (en) Sealed storage battery exhaust valve, sealed storage battery using the same, sealed nickel metal hydride storage battery
US20050019657A1 (en) Nickel-hydrogen cell
JP2015125869A (en) Alkaline secondary battery
JP2002298906A (en) Nickel-hydrogen secondary battery
JP5812421B2 (en) Cylindrical battery, lid structure
JP5110889B2 (en) Nickel metal hydride secondary battery
JP6090918B2 (en) Cylindrical battery
JP2000251871A (en) Alkaline secondary battery
JP2014179267A (en) Lid structure of cylindrical-shaped battery, and cylindrical-shaped battery
JP6876426B2 (en) Alkaline secondary battery
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JP5456339B2 (en) Cylindrical storage battery
JP2001273920A (en) Storage battery and its manufacturing method
JP2013012349A (en) Alkaline storage battery
JP3706166B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP2013134940A (en) Cylindrical battery
JP3670357B2 (en) Cylindrical battery
JP5348968B2 (en) Cylindrical battery
JP3699172B2 (en) Cylindrical battery
JP2015185517A (en) Battery separator, method for manufacturing battery separator, cylindrical battery, and method for manufacturing cylindrical battery
JP2021150242A (en) Alkali storage battery