JP2015123581A - Stretched film having high heat resistance - Google Patents

Stretched film having high heat resistance Download PDF

Info

Publication number
JP2015123581A
JP2015123581A JP2013267099A JP2013267099A JP2015123581A JP 2015123581 A JP2015123581 A JP 2015123581A JP 2013267099 A JP2013267099 A JP 2013267099A JP 2013267099 A JP2013267099 A JP 2013267099A JP 2015123581 A JP2015123581 A JP 2015123581A
Authority
JP
Japan
Prior art keywords
film
heat
stretched film
weight
short glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013267099A
Other languages
Japanese (ja)
Other versions
JP6215690B2 (en
Inventor
中西 貴之
Takayuki Nakanishi
貴之 中西
大宅 太郎
Taro Oya
太郎 大宅
淳 仁木
Atsushi Niki
淳 仁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2013267099A priority Critical patent/JP6215690B2/en
Publication of JP2015123581A publication Critical patent/JP2015123581A/en
Application granted granted Critical
Publication of JP6215690B2 publication Critical patent/JP6215690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stretched film having high heat resistance that is made of a thermoelastic polyester resin composition and is excellent in heat-resistant dimensional stability and mechanical strength at a high temperature.SOLUTION: A stretched film having high heat resistance is made of a thermoelastic polyester resin composition containing glass staple fiber, the glass stable fiber having a diameter of 0.1-7.0 μm and a mean fiber length of 1-300 μm. The stretched film having high heat resistance has a storage elastic modulus of 200 MPa or higher at 260°C in the longitudinal direction of the film in viscoelasticity measurement, and a thermal shrinkage of 1.0% or less in both the longitudinal and width directions of the film when subjected to heat treatment at 260°C for 10 minutes.

Description

本発明は高耐熱延伸フィルムに関する。更に詳しくは、高温下での耐熱寸法安定性および機械強度に優れる熱可塑性ポリエステル樹脂組成物からなる高耐熱延伸フィルムに関する。   The present invention relates to a highly heat-resistant stretched film. More specifically, the present invention relates to a highly heat-resistant stretched film made of a thermoplastic polyester resin composition having excellent heat-resistant dimensional stability and mechanical strength at high temperatures.

熱可塑性ポリエステルフィルム、特にポリエチレンテレフタレート(以下「PET」と称することがある)やポリエチレンナフタレート(以下「PEN」と称することがある)の二軸延伸フィルムは、優れた機械的性質、耐熱性、耐薬品性を有するため、磁気テープ、強磁性薄膜テープ、写真フィルム、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、金属ラミネート用フィルム、ガラスディスプレイ等の表面に貼るフィルム、各種部材の保護用フィルム等の素材として広く用いられている。   Biaxially stretched films of thermoplastic polyester films, particularly polyethylene terephthalate (hereinafter sometimes referred to as “PET”) and polyethylene naphthalate (hereinafter sometimes referred to as “PEN”), have excellent mechanical properties, heat resistance, Because it has chemical resistance, magnetic tape, ferromagnetic thin film tape, photographic film, packaging film, film for electronic parts, electrical insulation film, film for metal laminate, film to be pasted on the surface of glass display, etc. Widely used as a material for films and the like.

近年、電気あるいは電子回路の小型化の要求に伴い、これら各種用途の構成部材についても小型化や実装化が進んでおり、更なる耐熱性が要求されるようになってきた。また、自動車用途においては、運転室内での使用のみならず、エンジンルーム内にまで使用範囲が拡大しており、より高温下での寸法安定性に適した構成部材が要求されている。   In recent years, along with demands for miniaturization of electric or electronic circuits, components for various applications have been miniaturized and mounted, and further heat resistance has been demanded. In automobile applications, the range of use extends not only in the cab, but also in the engine room, and a component suitable for dimensional stability at higher temperatures is required.

各種用途の中で、例えばフレキシブル回路基板に着目してみると、フレキシブル回路は可撓性を有する基板上に電気回路を配置してなるものであり、基板となるフィルムに金属箔を貼りあわせたり、メッキ等を施した後にエッチングを行って回路を形成し、加熱処理、回路部品の実装等が行われ作成されるものである。従来、フレキシブル回路基板用フィルムとしては、回路との密着性、回路部品実装時のハンダ付けでの耐熱性等が良好であるとの理由からポリイミド(以下「PI」と称する場合がある)フィルムが一般的に使用されてきた。   In various applications, for example, when focusing on a flexible circuit board, the flexible circuit is formed by arranging an electric circuit on a flexible substrate, and a metal foil is bonded to a film to be a substrate. Etching is performed after plating or the like to form a circuit, and heat treatment, mounting of circuit components, and the like are performed. Conventionally, as a film for a flexible circuit board, a polyimide (hereinafter sometimes referred to as “PI”) film is used because of its good adhesion to a circuit and heat resistance when soldering when mounting circuit components. It has been commonly used.

フレキシブル回路に対して小型化、高密度化が要求される一方で、基板材料に対してより廉価な材料が求められている。PETフィルムは廉価であり、また耐薬品性、絶縁性等が良好であるとの理由から一部で使用されている。しかしながら、最近の高密度化した回路基板フィルムとしては耐熱性が十分でないことがあった。また、環境対応の点から、最近鉛フリーハンダが使用されつつあり、鉛フリーハンダリフロー工程では従来のフローハンダに比べてハンダ付け温度を高くすることがあるため、PETフィルムでは依然として耐熱性が不足する。   While miniaturization and high density are required for flexible circuits, more inexpensive materials are required for substrate materials. PET films are used for some reasons because they are inexpensive and have good chemical resistance, insulation and the like. However, heat resistance may not be sufficient for recent high-density circuit board films. In addition, lead-free solder is being used recently from the viewpoint of environmental friendliness, and the lead-free solder reflow process sometimes requires a higher soldering temperature than conventional flow solder, so the PET film still lacks heat resistance. To do.

このような背景から、従来のPIフィルムやPETフィルムに代わるプラスチックフィルムの探索が行われており、耐熱性を有するプラスチックフィルムの中では比較的安価なポリエチレンナフタレート(PEN)フィルムが検討され、例えば特許文献1にはフレキシブル回路基板用フィルムをPENフィルムにすることが提案されている。しかしながら、最近の回路の高密度化に対して要求されている高温下での寸法安定性が不足するため、このままでは回路部品実装工程でのハンダ付け後にフィルムにシワが入ったり、回路の平面性が崩れ凹凸が発生することがある。   From such a background, a search for a plastic film that replaces the conventional PI film and PET film has been conducted, and among the heat-resistant plastic films, a relatively inexpensive polyethylene naphthalate (PEN) film has been studied. Patent Document 1 proposes to use a PEN film as the flexible circuit board film. However, because of the lack of dimensional stability at high temperatures, which is required for recent circuit densification, the film may wrinkle after soldering in the circuit component mounting process, or the flatness of the circuit. May collapse and unevenness may occur.

ポリエチレンナフタレートフィルムの耐熱寸法安定性を高める方法として、例えば特許文献2には、フィルムに熱弛緩処理を施すことによって200℃で10分間加熱処理したときの熱収縮率がフィルムの長手方向および幅方向共それぞれ1.5%以下であり、230℃で10分間加熱処理したときの熱収縮率がフィルムの長手方向および幅方向共それぞれ2.0%以下であるPENフィルムが得られることが記載されている。また特許文献3には、熱弛緩処理方法を特定の条件で行うことにより、200℃で10分間加熱処理した際にフィルム長手方向に0%以上1%以下収縮し、かつ幅方向に0%以上0.5%以下伸張するPENフィルムが得られることが記載されている。
また特許文献4にはPENフィルムの主たる結晶構造をβ晶構造にすることで高温下での260℃近辺でのハンダ加工耐性が得られることが記載されている。
As a method for improving the heat-resistant dimensional stability of a polyethylene naphthalate film, for example, Patent Document 2 discloses that the thermal shrinkage rate when the film is subjected to heat relaxation treatment at 200 ° C. for 10 minutes is the longitudinal direction and width of the film. It is described that a PEN film having a direction of 1.5% or less in each direction and a heat shrinkage rate of 2.0% or less in both the longitudinal direction and the width direction when heat-treated at 230 ° C. for 10 minutes is obtained. ing. Further, in Patent Document 3, by performing the thermal relaxation treatment method under specific conditions, the film contracts 0% or more and 1% or less in the longitudinal direction of the film when heated at 200 ° C. for 10 minutes, and 0% or more in the width direction. It is described that a PEN film stretched by 0.5% or less can be obtained.
Patent Document 4 describes that solder processing resistance at around 260 ° C. under high temperature can be obtained by changing the main crystal structure of the PEN film to a β crystal structure.

しかしながら、例えばフレキシブル回路基板に適用する場合、高温下での寸法安定性と同時に高温下でのフィルムの機械強度を確保することが肝要であるが、ポリエチレンナフタレートの融点近傍の260℃程度での収縮を十分に抑え、かつ機械的強度についても満足するPENフィルムを簡便に得る方法はまだ提供されていないのが現状である。   However, when applied to, for example, a flexible circuit board, it is important to ensure the mechanical strength of the film at high temperature as well as dimensional stability at high temperature, but at about 260 ° C. near the melting point of polyethylene naphthalate. At present, a method for easily obtaining a PEN film that sufficiently suppresses shrinkage and satisfies the mechanical strength has not yet been provided.

特開昭62−93991号公報JP-A-62-93991 特開平11−168267号公報JP-A-11-168267 特開2001−191405号公報JP 2001-191405 A 特開2011−157442号公報JP 2011-157442 A

本発明の目的は、高温下での耐熱寸法安定性および機械強度に優れる熱可塑性ポリエステル樹脂組成物からなる高耐熱延伸フィルムを簡便な方法で提供することにある。   An object of the present invention is to provide a highly heat-resistant stretched film comprising a thermoplastic polyester resin composition excellent in heat-resistant dimensional stability and mechanical strength at high temperatures by a simple method.

本発明者らは前記課題を解決するために鋭意検討した結果、従来、熱可塑性ポリエステルフィルムでは検討されていなかったガラス短繊維を用いることで、ガラス短繊維の補強効果により、融点近くの温度で従来よりも短い熱固定時間で熱収縮率とともに機械特性が向上することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have used glass short fibers that have not been studied in thermoplastic polyester films in the past, and at a temperature close to the melting point due to the reinforcing effect of the short glass fibers. The present inventors have found that the mechanical properties are improved together with the heat shrinkage rate in a shorter heat setting time than before, and the present invention has been completed.

すなわち本発明によれば、本発明の目的は、ガラス短繊維を含む熱可塑性ポリエステル樹脂組成物からなる延伸フィルムであって、かかるガラス短繊維の直径が0.1〜7.0μm、平均繊維長が1〜300μmであり、該延伸フィルムの粘弾性測定における260℃の貯蔵弾性率がフィルム長手方向において200MPa以上であり、かつ260℃、10分間熱処理したときのフィルム長手方向および幅方向の熱収縮率がともに1.0%以下である高耐熱延伸フィルムによって達成される。   That is, according to the present invention, an object of the present invention is a stretched film comprising a thermoplastic polyester resin composition containing short glass fibers, the short glass fibers having a diameter of 0.1 to 7.0 μm and an average fiber length. Is 1 to 300 μm, the storage elastic modulus at 260 ° C. in the measurement of viscoelasticity of the stretched film is 200 MPa or more in the film longitudinal direction, and heat shrinkage in the film longitudinal direction and width direction when heat-treated for 10 minutes at 260 ° C. This is achieved by a highly heat-resistant stretched film having a rate of 1.0% or less.

また本発明の高耐熱延伸フィルムは、好ましい態様として、前記熱可塑性ポリエステル樹脂がポリエチレンナフタレンジカルボキシレートであること、前記樹脂組成物の重量を基準として該ガラス短繊維の含有量が5重量%を超え50重量%以下の範囲であること、フィルム全層厚さが10〜300μmであること、の少なくともいずれか1つを具備するものも包含する。   Further, in the high heat resistant stretched film of the present invention, as a preferred embodiment, the thermoplastic polyester resin is polyethylene naphthalene dicarboxylate, and the content of the short glass fiber is 5% by weight based on the weight of the resin composition. Also included are those having at least any one of exceeding 50% by weight and having a total film thickness of 10 to 300 μm.

本発明によれば、本発明の高耐熱延伸フィルムは熱可塑性ポリエステルを主成分とするフィルムでありながら、融点近傍の高温領域での耐熱寸法安定性および機械強度に優れているため、これまでに適用の難しかったフレキシブル回路基板用に好適に用いることができる。   According to the present invention, since the highly heat-resistant stretched film of the present invention is a film mainly composed of thermoplastic polyester, it has excellent heat-resistant dimensional stability and mechanical strength in a high temperature region near the melting point. It can be suitably used for flexible circuit boards that have been difficult to apply.

以下、本発明を詳しく説明する。
<熱可塑性ポリエステル>
本発明における熱可塑性ポリエステルは、ジオールとジカルボン酸との重縮合によって得られるポリマーであり、ポリエチレンテレフタレート、ポリエチレンナフタレンジカルボキシレートが好ましく例示され、特に高温領域での強度、寸法安定性の観点からポリエチレンナフタレンジカルボキシレートが好ましく、ポリエチレン−2,6−ナフタレンジカルボキシレートが最も好ましい。
The present invention will be described in detail below.
<Thermoplastic polyester>
The thermoplastic polyester in the present invention is a polymer obtained by polycondensation of a diol and a dicarboxylic acid, and polyethylene terephthalate and polyethylene naphthalene dicarboxylate are preferably exemplified, and polyethylene is particularly preferred from the viewpoint of strength and dimensional stability in a high temperature region. Naphthalene dicarboxylate is preferred, and polyethylene-2,6-naphthalene dicarboxylate is most preferred.

本発明における熱可塑性ポリエステルは、ポリエステルの重量を基準としてポリエチレンナフタレンジカルボキシレートあるいはポリエチレンテレフタレートを50重量%以上含むことが好ましく、より好ましくは70重量%以上、さらに好ましくは80重量%以上、特に好ましくは90重量%以上、特に好ましくは95重量%以上である。また、かかる主成分以外のポリエステルとして例示されている他の種類のポリエステルを含有することができるほか、その他の公知のポリエステル樹脂を用いてもよい。   The thermoplastic polyester in the present invention preferably contains 50% by weight or more of polyethylene naphthalene dicarboxylate or polyethylene terephthalate based on the weight of the polyester, more preferably 70% by weight or more, still more preferably 80% by weight or more, particularly preferably. Is 90% by weight or more, particularly preferably 95% by weight or more. In addition to other types of polyesters exemplified as polyesters other than the main component, other known polyester resins may be used.

また、本発明における熱可塑性ポリエステルはホモポリマーであっても共重合ポリエステルであってもよく、共重合ポリエステルである場合はポリエステルの全繰り返し単位を基準としてエチレンナフタレンジカルボキシレートあるいはエチレンテレフタレートが80モル%以上であることが好ましく、さらに好ましくは90モル%以上、特に好ましくは95モル%以上である。共重合ポリエステルの場合、従たる共重合成分として、ジエチレングリコール、ネオペンチルグリコール等のジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、5−ナトリウムスルホイソフタル酸等のジカルボン酸成分などの中から主たる成分以外の成分を用いることが好ましい。   Further, the thermoplastic polyester in the present invention may be a homopolymer or a copolyester, and in the case of a copolyester, 80 mol of ethylene naphthalene dicarboxylate or ethylene terephthalate is based on all repeating units of the polyester. % Or more, more preferably 90 mol% or more, and particularly preferably 95 mol% or more. In the case of a copolymerized polyester, the following copolymer components include diol components such as diethylene glycol and neopentyl glycol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, and the like. It is preferable to use components other than the main component from among dicarboxylic acid components.

本発明における熱可塑性ポリエステルは、従来公知の方法、例えばジカルボン酸とジオール、および必要に応じて共重合成分をエステル化反応させ、次いで得られる反応生成物を重縮合反応させてポリエステルとする方法で製造することができる。また、これらの原料モノマーの誘導体をエステル交換反応させ、次いで得られる反応生成物を重縮合反応させてポリエステルとする方法で製造してもよい。   The thermoplastic polyester in the present invention is a conventionally known method, for example, a method in which a dicarboxylic acid and a diol and, if necessary, a copolymerization component are esterified, and then the resulting reaction product is polycondensed to form a polyester. Can be manufactured. Alternatively, these raw material monomer derivatives may be transesterified, and then the resulting reaction product may be subjected to a polycondensation reaction to obtain a polyester.

<ガラス短繊維>
本発明の高耐熱延伸フィルムはフィルム中にガラス短繊維を含み、その直径は0.1μm以上、7.0μm以下、好ましくは0.1μm以上5.0μm以下、さらに好ましくは0.1μm以上3.0μm以下である。また、該ガラス短繊維の繊維長は1μm以上300μm以下、好ましくは3μm以上100μm以下、さらに好ましくは5μm以上50μm以下である。
<Short glass fiber>
The highly heat-resistant stretched film of the present invention contains short glass fibers in the film, and the diameter thereof is 0.1 μm or more and 7.0 μm or less, preferably 0.1 μm or more and 5.0 μm or less, more preferably 0.1 μm or more and 3. 0 μm or less. The short glass fiber has a fiber length of 1 μm to 300 μm, preferably 3 μm to 100 μm, and more preferably 5 μm to 50 μm.

本発明において、ガラス短繊維はシランカップリング剤で表面処理されたものを用いることが好ましい。シランカップリング剤としては、従来から用いられているものであれば特に限定されず、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系などが挙げられる。
また、本発明においては、ガラス短繊維を潤滑剤で処理してもよい。潤滑剤としてはシリコンオイルなどを使用できるが、カリックスアレーンが特に好ましい。
In the present invention, it is preferable to use short glass fibers that have been surface-treated with a silane coupling agent. As a silane coupling agent, if it is conventionally used, it will not specifically limit, Aminosilane type | system | group, an epoxy silane type | system | group, an allyl silane type | system | group, a vinyl silane type etc. are mentioned.
In the present invention, short glass fibers may be treated with a lubricant. Silicon oil or the like can be used as the lubricant, but calixarene is particularly preferable.

ガラス短繊維の含有量は、ガラス短繊維を含む熱可塑性ポリエステル樹脂組成物の重量を基準として5.0重量を超え50重量%以下であることが好ましく、より好ましい下限は7重量%、さらに好ましくは10重量%である。また、該ガラス短繊維の含有量の上限は、より好ましくは30重量%、さらに好ましくは25重量%である。
ガラス短繊維の含有量が下限に満たない場合、実用レベルの熱固定温度及び処理時間で十分な耐熱寸法安定性と優れた機械強度とを両立できないことがある。一方、上限を超えるガラス短繊維を用いても、それ以上の寸法安定性が得られにくくなる一方で、延伸が困難になり、またフィルム表面が荒れやすくなり、フレキシブル回路基板への適用が難しくなることがある。
The content of the short glass fiber is preferably more than 5.0% by weight and 50% by weight or less based on the weight of the thermoplastic polyester resin composition containing the short glass fiber, and the more preferable lower limit is 7% by weight, and further more preferable. Is 10% by weight. Further, the upper limit of the content of the short glass fibers is more preferably 30% by weight, and further preferably 25% by weight.
When the content of short glass fibers is less than the lower limit, sufficient heat-resistant dimensional stability and excellent mechanical strength may not be compatible at a practical level of heat setting temperature and processing time. On the other hand, even if short glass fibers exceeding the upper limit are used, it becomes difficult to obtain further dimensional stability, but it becomes difficult to stretch, and the film surface tends to be rough, making it difficult to apply to flexible circuit boards. Sometimes.

<貯蔵弾性率>
本発明の高耐熱延伸フィルムは、粘弾性測定における260℃での貯蔵弾性率がフィルム長手方向において200MPa以上であり、さらに好ましくは400MPa以上、特に好ましくは500MPa以上である。
本発明の高耐熱延伸フィルムは融点近傍の260℃程度の高温領域での機械強度および耐熱寸法安定性が高いことが特徴であり、その達成手段として、特定サイズのガラス短繊維を含有することに加え、フィルム製膜工程において260℃近傍で、通常適用される熱固定時間の範囲内で熱処理することで、260℃での機械強度が向上する。
<Storage modulus>
The highly heat-resistant stretched film of the present invention has a storage elastic modulus at 260 ° C. in the viscoelasticity measurement of 200 MPa or more, more preferably 400 MPa or more, particularly preferably 500 MPa or more in the film longitudinal direction.
The highly heat-resistant stretched film of the present invention is characterized by high mechanical strength and heat-resistant dimensional stability in a high-temperature region of about 260 ° C. near the melting point, and as a means for achieving this, it contains short glass fibers of a specific size. In addition, the mechanical strength at 260 ° C. is improved by performing a heat treatment in the film-forming step in the vicinity of 260 ° C. within the range of the heat setting time usually applied.

<熱収縮率>
本発明の高耐熱延伸フィルムは、260℃で10分間熱処理したときのフィルム長手方向および幅方向の熱収縮率がともに1.0%以下であり、好ましくは0.5%以下である。本発明の高耐熱延伸フィルムは融点近傍の260℃程度の高温領域での機械強度および耐熱寸法安定性が高いことが特徴であり、その達成手段として、特定サイズのガラス短繊維を含有することに加え、フィルム製膜工程において260℃近傍で、通常適用される熱固定時間の範囲内で熱処理することで、260℃での機械強度を向上させつつ、260℃での熱収縮率も低減させることができる。
<Heat shrinkage>
The high heat-resistant stretched film of the present invention has a heat shrinkage rate of 1.0% or less, preferably 0.5% or less when heat-treated at 260 ° C. for 10 minutes. The highly heat-resistant stretched film of the present invention is characterized by high mechanical strength and heat-resistant dimensional stability in a high-temperature region of about 260 ° C. near the melting point, and as a means for achieving this, it contains short glass fibers of a specific size. In addition, the heat shrinkage rate at 260 ° C. is reduced while the mechanical strength at 260 ° C. is improved by performing heat treatment in the film forming process at around 260 ° C. within the range of heat setting time normally applied. Can do.

<層構成>
本発明の高耐熱延伸フィルムは、ガラス短繊維を含む熱可塑性ポリエステル樹脂組成物からなる、少なくとも1層からなる延伸フィルムであり、前記のガラス短繊維を含む熱可塑性ポリエステル樹脂層の少なくとも片面にさらにガラス短繊維を含まないか少量のガラス短繊維を含む熱可塑性ポリエステル樹脂層を有してもよい。また、前記のガラス短繊維を含む熱可塑性ポリエステル樹脂層を芯層とし、さらにガラス短繊維を含まないか少量のガラス短繊維を含む熱可塑性ポリエステル樹脂層を表層とする3層フィルムとしてもよい。
<Layer structure>
The highly heat-resistant stretched film of the present invention is a stretched film composed of at least one layer made of a thermoplastic polyester resin composition containing short glass fibers, and further on at least one surface of the thermoplastic polyester resin layer containing short glass fibers. You may have a thermoplastic polyester resin layer which does not contain a short glass fiber, or contains a small amount of short glass fiber. Moreover, it is good also as a three-layer film which uses the thermoplastic polyester resin layer containing the said glass short fiber as a core layer, and also contains the thermoplastic polyester resin layer which does not contain a glass short fiber or contains a little glass short fiber as a surface layer.

積層構成とする場合、さらに積層させる熱可塑性ポリエステル樹脂層を構成する熱可塑性ポリエステルとして、ガラス短繊維を含む熱可塑性ポリエステル樹脂組成物として例示されている熱可塑性ポリエステルの中から選択できる。なかでも、ガラス短繊維を含む層と同じ種類の熱可塑性ポリエステルを用いることがより好ましく、また熱可塑性ポリエステルの含有量は該層を構成する樹脂組成物の重量を基準として好ましくは95重量%、さらに好ましくは99重量%、特に好ましくは99.5重量%である。   When setting it as a laminated structure, it can select from the thermoplastic polyester illustrated as a thermoplastic polyester resin composition containing a short glass fiber as a thermoplastic polyester which comprises the thermoplastic polyester resin layer to laminate | stack further. Among them, it is more preferable to use the same kind of thermoplastic polyester as the layer containing short glass fibers, and the content of the thermoplastic polyester is preferably 95% by weight based on the weight of the resin composition constituting the layer, More preferably, it is 99 weight%, Most preferably, it is 99.5 weight%.

ガラス短繊維を含む層に積層させる熱可塑性ポリエステル樹脂層は、ガラス短繊維を含まないか、またガラス短繊維を含む場合はガラス短繊維を含む層のガラス短繊維含有量よりも少ないことが好ましく、多くても層重量に対して5重量%以下、さらには1重量%以下、特に0.5重量%以下であることが好ましい。これらの中でも、ガラス短繊維を含む層に積層させる熱可塑性ポリエステル樹脂層は、ガラス短繊維を含まない態様であることが好ましい。
ガラス短繊維を含む層に積層させる熱可塑性ポリエステル樹脂層のガラス短繊維含有量が上記範囲内であることにより、回路を形成するフィルム面を平滑化でき、より線幅の細い回路を形成することができる。
It is preferable that the thermoplastic polyester resin layer to be laminated on the layer containing short glass fibers does not contain short glass fibers, or if the short glass fibers are contained, it is less than the short glass fiber content of the layer containing short glass fibers. At most, it is preferably 5% by weight or less, more preferably 1% by weight or less, and particularly preferably 0.5% by weight or less based on the layer weight. Among these, it is preferable that the thermoplastic polyester resin layer laminated | stacked on the layer containing a glass short fiber is an aspect which does not contain a glass short fiber.
When the glass fiber short content of the thermoplastic polyester resin layer laminated on the layer containing the glass short fiber is within the above range, the film surface forming the circuit can be smoothed to form a circuit having a narrower line width. Can do.

積層構成の場合、積層フィルムの全厚さに対してガラス短繊維をより多く含む熱可塑性ポリエステル樹脂層の厚み比が20%〜90%であることが好ましく、30%〜80%であることがより好ましい。ガラス短繊維を含む熱可塑性ポリエステル樹脂層の厚み比がかかる範囲にあることにより、積層させる熱可塑性ポリエステル樹脂層の最表面がガラス短繊維の影響を受けにくくなり、回路を形成するフィルム面をより平坦化できる。   In the case of a laminated structure, the thickness ratio of the thermoplastic polyester resin layer containing more glass short fibers with respect to the total thickness of the laminated film is preferably 20% to 90%, and preferably 30% to 80%. More preferred. When the thickness ratio of the thermoplastic polyester resin layer containing short glass fibers is within such a range, the outermost surface of the thermoplastic polyester resin layer to be laminated is less affected by the short glass fibers, and the film surface forming the circuit is more Can be flattened.

<フィルム厚み>
本発明の高耐熱延伸フィルムのフィルム厚みは10μm以上300μm以下であることが好ましく、より好ましくは50〜250μmであり、適宜フィルム厚みを選択することができる。
<Film thickness>
The film thickness of the highly heat-resistant stretched film of the present invention is preferably 10 μm or more and 300 μm or less, more preferably 50 to 250 μm, and the film thickness can be appropriately selected.

<フィルム製造方法>
本発明の高耐熱延伸フィルムは、少なくとも1方向に延伸された延伸フィルムであることが好ましく、さらに二軸延伸フィルムであることが好ましい。
二軸延伸フィルムを例としてフィルム製造方法について説明すると、公知の逐次二軸延伸方法や、同時二軸延伸方法を用いて製膜することができ、その方法は特に制限されない。
<Film manufacturing method>
The highly heat-resistant stretched film of the present invention is preferably a stretched film stretched in at least one direction, and more preferably a biaxially stretched film.
The film manufacturing method will be described by taking a biaxially stretched film as an example. A film can be formed using a known sequential biaxial stretching method or simultaneous biaxial stretching method, and the method is not particularly limited.

まず、ガラス短繊維の添加時期は、マスターチップの製造段階、樹脂組成物のブレンド段階、樹脂組成物を押出機に投入する段階のいずれの段階で添加してもよく、これらの方法を組み合わせてもよい。
逐次延伸法を用いる製膜方法として、樹脂組成物を押出機に供給してTダイよりシート状に成形し、表面温度10〜60℃の冷却ドラムで冷却固化後、例えばロール加熱または赤外線加熱によって加熱し、長手方向(縦方向、MD方向と称することがある)に延伸し、縦延伸フィルムを得る。縦延伸温度は組成物のガラス転移点(Tg)より高い温度、更にはTgより20〜40℃高い温度とするのが好ましい。縦延伸倍率は、使用する用途の要求に応じて適宜調整すればよいが、好ましくは2.5倍以上5.0倍以下、更に好ましくは3.0倍以上4.5倍以下である。
First, the short glass fibers may be added at any stage of the master chip manufacturing stage, the resin composition blending stage, and the resin composition charging stage, and these methods may be combined. Also good.
As a film forming method using a sequential stretching method, a resin composition is supplied to an extruder, formed into a sheet form from a T die, and cooled and solidified with a cooling drum having a surface temperature of 10 to 60 ° C., for example, by roll heating or infrared heating. It heats and it extends | stretches to a longitudinal direction (it may call a longitudinal direction and MD direction), and a longitudinally stretched film is obtained. The longitudinal stretching temperature is preferably higher than the glass transition point (Tg) of the composition, more preferably 20 to 40 ° C. higher than Tg. The longitudinal draw ratio may be appropriately adjusted according to the requirements of the intended use, but is preferably 2.5 times or more and 5.0 times or less, more preferably 3.0 times or more and 4.5 times or less.

続いて幅方向(横方向、TD方向と称することがある)に延伸を行い、横延伸処理は組成物のガラス転移点(Tg)より20℃以上高い温度から始め、樹脂組成物の融点(Tm)より(20〜30)℃低い温度まで昇温しながら行う。また横延伸最高温度は、好ましくはTmより(100〜40)℃低い温度である。
横延伸倍率は、使用する用途の要求に応じて適宜調整すればよいが、好ましくは2.5倍以上5.0倍以下、更に好ましくは3.0倍以上4.5倍以下である。
その後、必要に応じて熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、かかる処理はフィルムを走行させながら行う。熱固定を行うに際し、250〜270℃の温度範囲で熱固定処理を行い、また本発明における熱固定時間は30〜300秒で行うのが好ましい。本発明のフィルムは、260℃というポリエステルの融点近傍の耐熱寸法安定性と機械特性とを高めるにあたり、特定サイズのガラス短繊維を存在させることにより、短い熱固定時間で260℃もの高温で耐熱寸法安定性を高めることができる。熱固定時間は上限を超えて施してもよいが、実用的にはかかる範囲内で熱固定を行うことが好ましい。
Subsequently, the film is stretched in the width direction (sometimes referred to as a transverse direction or a TD direction), and the transverse stretching treatment starts at a temperature 20 ° C. or more higher than the glass transition point (Tg) of the composition, and the melting point (Tm) of the resin composition. ) While raising the temperature to (20-30) ° C. lower than that. The maximum transverse stretching temperature is preferably a temperature lower by (100 to 40) ° C. than Tm.
The transverse draw ratio may be appropriately adjusted according to the requirements of the application to be used, but is preferably 2.5 times or more and 5.0 times or less, more preferably 3.0 times or more and 4.5 times or less.
Thereafter, heat-fixing and heat-relaxation treatments are sequentially performed as necessary to obtain a biaxially oriented film. Such treatment is performed while the film is running. When performing heat setting, it is preferable to perform heat setting in a temperature range of 250 to 270 ° C., and the heat setting time in the present invention is preferably 30 to 300 seconds. The film of the present invention has a heat resistant dimensional stability at a high temperature as high as 260 ° C. in a short heat setting time by adding short glass fibers of a specific size in order to enhance the heat resistant dimensional stability near 260 ° C. of the polyester and mechanical properties. Stability can be increased. The heat setting time may exceed the upper limit, but in practice it is preferable to perform heat setting within such a range.

また積層構成とする場合は、別々の押出機に各層用の樹脂組成物を供給し、フィードブロックを用いて溶融状態で積層させた後、Tダイよりシート状に成形する方法が好ましく、その後の延伸工程は上述の方法に従って製造すればよい。
塗布層をさらに設ける場合、フィルム延伸工程において塗布する方法が挙げられる。この場合、塗布液は水性塗布液の形態で使用されることが好ましい。水性塗布液の固形分濃度は、通常20重量%以下、好ましくは1〜10重量%である。
Moreover, when setting it as a laminated structure, after supplying the resin composition for each layer to a separate extruder and laminating | stacking in a molten state using a feed block, the method of shape | molding into a sheet form from T die is preferable, and after that What is necessary is just to manufacture an extending process according to the above-mentioned method.
When providing a coating layer further, the method of apply | coating in a film extending process is mentioned. In this case, the coating solution is preferably used in the form of an aqueous coating solution. The solid content concentration of the aqueous coating solution is usually 20% by weight or less, preferably 1 to 10% by weight.

<用途>
本発明の高耐熱延伸フィルムは、260℃という高温領域で優れた強度および耐熱寸法安定性を有することから、フレキシブル回路基板用フィルムとして好適に使用することができる。フレキシブルプリント回路基板は、本発明の高耐熱延伸フィルムの少なくとも片面に銅箔または導電ペーストからなる金属層を積層させ、金属層に微細な回路パターンを形成することによって得られる。
<Application>
Since the highly heat-resistant stretched film of the present invention has excellent strength and heat-resistant dimensional stability in a high temperature region of 260 ° C., it can be suitably used as a film for a flexible circuit board. A flexible printed circuit board is obtained by laminating a metal layer made of copper foil or a conductive paste on at least one side of the highly heat-resistant stretched film of the present invention and forming a fine circuit pattern on the metal layer.

以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の部および%は、特に断らない限り、それぞれ重量%および重量%を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples. Each characteristic value was measured by the following method. Moreover, unless otherwise indicated, the part and% in an Example mean weight% and weight%, respectively.

(1)フィルム厚み
電子マイクロメータ(アンリツ(株)製の商品名「K−312A型」)を用いて針圧30gにてフィルム厚みを測定した。
(1) Film thickness Film thickness was measured at 30 g of needle pressure using an electronic micrometer (trade name “K-312A type” manufactured by Anritsu Corporation).

(2)貯蔵弾性率
フィルムサンプルを幅5mm、長さ35mmに切り、(株)パーキンエルマー製の動的粘弾性測定装置(DMA8000)を用い、周波数1Hzで室温から260℃まで2℃/分で昇温して測定した。得られたチャートより各温度での貯蔵弾性率を求めた。
(2) Storage elastic modulus A film sample was cut into a width of 5 mm and a length of 35 mm, and a dynamic viscoelasticity measuring device (DMA8000) manufactured by PerkinElmer Co., Ltd. was used. The temperature was raised and measured. The storage elastic modulus at each temperature was determined from the obtained chart.

(3)熱収縮率
フィルムサンプルに30cm間隔で標点をつけ、荷重をかけずに260℃の温度のオーブンで10分間熱処理を実施し、熱処理後の標点間隔を測定して、フィルム長手方向(MD方向)と幅方向(TD方向)において、それぞれ下記式(1)にて熱収縮率を算出した。各方向ともサンプル5点について測定し、その平均値を各方向の熱収縮率とした。
熱収縮率(%)=((L−L)/L)×100・・・(1)
(式中、Lは熱処理前の標点間距離、Lは熱処理後の標点間距離をそれぞれ示す。)
(3) Heat shrinkage rate Marks are applied to film samples at intervals of 30 cm, heat treatment is carried out for 10 minutes in an oven at a temperature of 260 ° C. without applying a load, the distance between the marks after heat treatment is measured, and the film longitudinal direction In the MD direction and the width direction (TD direction), the thermal contraction rate was calculated by the following formula (1). Each sample was measured for 5 samples, and the average value was defined as the thermal shrinkage in each direction.
Thermal contraction rate (%) = ((L 0 −L) / L 0 ) × 100 (1)
(In the formula, L 0 represents the distance between the gauge points before the heat treatment, and L represents the distance between the gauge points after the heat treatment.)

(4)ガラス繊維径およびガラス繊維長
ミクロトーム(RM2255、ライカ社製)にてフィルム断面を削り、走査型電子顕微鏡(S−4700、日立製)で400倍の倍率で観察し、ガラス短繊維の繊維径と繊維長を測定した。
(4) Glass fiber diameter and glass fiber length The cross section of the film was shaved with a microtome (RM2255, manufactured by Leica) and observed with a scanning electron microscope (S-4700, manufactured by Hitachi) at a magnification of 400 times. The fiber diameter and fiber length were measured.

(5)ガラス短繊維の含有量
試料を450℃で3時間加熱し、加熱前後の重量からガラス短繊維含有量を算出した。
(5) Content of short glass fiber The sample was heated at 450 ° C. for 3 hours, and the short glass fiber content was calculated from the weight before and after heating.

(6)ハンダ耐熱性評価
フィルムを溶融はんだ浴上に浮かせ、260℃×30秒間処理を行い、その外観を下記の基準で評価した。
◎:変化なし
○:フィルムエッジに若干のシワが発生するもののほとんど変化なし
△:多少のシワは見られるが、試験前の形態を維持している。
×:試験前の形態を維持していない。
(6) Solder heat resistance evaluation The film was floated on a molten solder bath, treated at 260 ° C for 30 seconds, and the appearance was evaluated according to the following criteria.
◎: No change ○: Slight wrinkles occur at the film edge, but almost no change Δ: Some wrinkles are observed, but the form before the test is maintained.
X: The form before a test is not maintained.

[ペレットの作製]
P1:固有粘度0.60dl/gのポリエチレン−2,6−ナフタレンジカルボキシレートを得た。
P2:固有粘度0.60dl/gのポリエチレンテレフタレートを得た。
P3:二軸押出成形機を用い、溶融したP1に対して30重量%(樹脂組成物100重量%を基準として)となるように直径3μm、繊維長150μmのガラス短繊維を添加し、溶融混練を行ってペレットを作製した。
P4:二軸押出成形機を用い、溶融したP1に対して30重量%(樹脂組成物100重量%を基準として)となるように直径5μm、繊維長200μmのガラス短繊維を添加し、溶融混練を行ってペレットを作製した。
P5:二軸押出成形機を用い、溶融したP2に対して30重量%(樹脂組成物100重量%を基準として)となるように直径3μm、繊維長150μmのガラス短繊維を添加し、溶融混練を行ってペレットを作製した。
[Preparation of pellets]
P1: Polyethylene-2,6-naphthalenedicarboxylate having an intrinsic viscosity of 0.60 dl / g was obtained.
P2: Polyethylene terephthalate having an intrinsic viscosity of 0.60 dl / g was obtained.
P3: Using a twin screw extruder, glass short fibers having a diameter of 3 μm and a fiber length of 150 μm were added so as to be 30% by weight (based on 100% by weight of the resin composition) with respect to the melted P1, and melt kneaded To make a pellet.
P4: Using a twin-screw extruder, glass short fibers having a diameter of 5 μm and a fiber length of 200 μm are added to melted and kneaded so as to be 30% by weight (based on 100% by weight of the resin composition) with respect to molten P1. To make a pellet.
P5: Using a twin-screw extruder, glass short fibers having a diameter of 3 μm and a fiber length of 150 μm were added so as to be 30% by weight (based on 100% by weight of the resin composition) with respect to molten P2, and melt-kneaded To make a pellet.

[実施例1]
ガラス短繊維の含有量が10重量%となるようにP1とP3を表1の組成割合で準備し、170℃で6時間乾燥後、300℃に加熱された押出機に供給し、ダイスリットより溶融押出してキャスティングドラム上で冷却固化させ、未延伸フィルムを作成した。この未延伸フィルムを表1に示す条件で縦方向(MD方向)、横方向(TD方向)に二軸延伸し、さらに表1に示す条件で金枠に固定して熱処理を施した。本実施例のフィルムは260℃の熱固定温度で1分間の熱固定時間でありながら、260℃での熱収縮が小さく、ハンダ耐熱評価ではフィルムに多少のシワは見られるものの形状は維持していた。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性にも優れていた。
[Example 1]
P1 and P3 were prepared at the composition ratio shown in Table 1 so that the content of the short glass fibers was 10% by weight, dried at 170 ° C. for 6 hours, and then supplied to an extruder heated to 300 ° C. It was melt extruded and cooled and solidified on a casting drum to prepare an unstretched film. This unstretched film was biaxially stretched in the machine direction (MD direction) and the transverse direction (TD direction) under the conditions shown in Table 1, and further fixed to a metal frame under the conditions shown in Table 1 for heat treatment. The film of this example has a heat setting temperature of 260 ° C. and a heat setting time of 1 minute. However, the heat shrinkage at 260 ° C. is small, and although the solder heat resistance evaluation shows some wrinkles on the film, the shape is maintained. It was. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[実施例2]
熱処理条件を260℃×2minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。
本実施例のフィルムは260℃での熱収縮が小さく、ハンダ耐熱評価ではフィルムに多少のシワは見られるものの形状は維持していた。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性にも優れていた。
[Example 2]
The same operation as in Example 1 was performed except that the heat treatment condition was changed to 260 ° C. × 2 min. The properties of the obtained film are shown in Table 1.
The film of this example had a small heat shrinkage at 260 ° C., and in the solder heat resistance evaluation, although the film was somewhat wrinkled, the shape was maintained. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[実施例3]
熱処理温度を260℃×5minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。
本実施例のフィルムは260℃での熱収縮が小さく、ハンダ耐熱評価ではフィルムに多少のシワは見られるものの形状は維持していた。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性にも優れていた。
[Example 3]
The same operation as in Example 1 was performed except that the heat treatment temperature was changed to 260 ° C. × 5 min. The properties of the obtained film are shown in Table 1.
The film of this example had a small heat shrinkage at 260 ° C., and in the solder heat resistance evaluation, although the film was somewhat wrinkled, the shape was maintained. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[実施例4]
ガラス短繊維の含有量が20重量%となるようにP1、P3を表1の組成割合に変更し、また延伸倍率を表1の条件に変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。本実施例のフィルムは260℃での熱収縮が小さく、ハンダ耐熱評価ではフィルム外観に変化はなかった。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性に優れていた。
[Example 4]
The same operation as in Example 1 was performed except that P1 and P3 were changed to the composition ratios in Table 1 so that the content of short glass fibers was 20% by weight, and the draw ratio was changed to the conditions in Table 1. . The properties of the obtained film are shown in Table 1. The film of this example had a small heat shrinkage at 260 ° C., and the film appearance was not changed in the solder heat resistance evaluation. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[実施例5]
ガラス短繊維の含有量が20重量%となるようにP1、P3を表1の組成割合に変更し、また延伸倍率を表1の条件に変更、熱処理温度を260℃×2minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。本実施例のフィルムは260℃での熱収縮が小さく、ハンダ耐熱評価ではフィルム外観に変化はなかった。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性に優れていた。
[Example 5]
Except that P1 and P3 were changed to the composition ratios shown in Table 1 so that the content of short glass fibers was 20% by weight, the draw ratio was changed to the conditions shown in Table 1, and the heat treatment temperature was changed to 260 ° C. × 2 min. The same operation as in Example 1 was performed. The properties of the obtained film are shown in Table 1. The film of this example had a small heat shrinkage at 260 ° C., and the film appearance was not changed in the solder heat resistance evaluation. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[実施例6]
ガラス短繊維の含有量が20重量%となるようにP1、P3を表1の組成割合に変更し、また延伸倍率を表1の条件に変更、熱処理温度を260℃×5minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。本実施例のフィルムは260℃での熱収縮が小さく、ハンダ耐熱評価ではフィルム外観に変化はなかった。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性に優れていた。
[Example 6]
Except that P1 and P3 were changed to the composition ratios in Table 1 so that the content of short glass fibers was 20% by weight, the draw ratio was changed to the conditions in Table 1, and the heat treatment temperature was changed to 260 ° C. × 5 min. The same operation as in Example 1 was performed. The properties of the obtained film are shown in Table 1. The film of this example had a small heat shrinkage at 260 ° C., and the film appearance was not changed in the solder heat resistance evaluation. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[実施例7]
ガラス短繊維の含有量が20重量%となるようにP1、P4を表1の組成割合に変更、また延伸倍率を表1の条件に変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。本実施例のフィルムは実施例1で得られたフィルムよりも260℃の熱収縮が小さく、ハンダ耐熱評価ではフィルムエッジに若干シワが入ったものの、フィルム外観にほとんど変化はなかった。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性にも優れていた。
[Example 7]
The same operation as in Example 1 was performed except that P1 and P4 were changed to the composition ratios in Table 1 and the draw ratio was changed to the conditions in Table 1 so that the content of the short glass fibers was 20% by weight. The properties of the obtained film are shown in Table 1. The film of this example had a heat shrinkage of 260 ° C. smaller than that of the film obtained in Example 1, and although the film edge slightly wrinkled in the solder heat resistance evaluation, there was almost no change in the film appearance. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[実施例8]
熱処理温度を260℃×2minに変更した以外は実施例7と同様の操作を行った。得られたフィルムの特性を表1に示す。本実施例のフィルムは260℃での熱収縮が小さく、ハンダ耐熱評価ではフィルムエッジに若干シワが入ったものの、フィルム外観にほとんど変化はなかった。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性にも優れていた。
[Example 8]
The same operation as in Example 7 was performed except that the heat treatment temperature was changed to 260 ° C. × 2 min. The properties of the obtained film are shown in Table 1. The film of this example had a small heat shrinkage at 260 ° C., and in the solder heat resistance evaluation, although the film edge was slightly wrinkled, there was almost no change in the film appearance. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[実施例9]
熱処理温度を260℃×5minに変更した以外は実施例7と同様の操作を行った。得られたフィルムの特性を表1に示す。得られたフィルムの特性を表1に示す。本実施例のフィルムは260℃での熱収縮が小さく、ハンダ耐熱評価ではフィルムエッジに若干シワが入ったものの、フィルム外観にほとんど変化はなかった。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性にも優れていた。
[Example 9]
The same operation as in Example 7 was performed except that the heat treatment temperature was changed to 260 ° C. × 5 min. The properties of the obtained film are shown in Table 1. The properties of the obtained film are shown in Table 1. The film of this example had a small heat shrinkage at 260 ° C., and in the solder heat resistance evaluation, although the film edge was slightly wrinkled, there was almost no change in the film appearance. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[実施例10]
ガラス短繊維を含むポリエステルの種類をP4からP5に変更し、熱処理温度を260℃×5minに変更した以外は実施例7と同様の操作を行った。得られたフィルムの特性を表1に示す。本実施例のフィルムは260℃での熱収縮が小さく、ハンダ耐熱評価ではフィルムに多少のシワは見られるものの形状は維持していた。さらに本実施例は260℃での貯蔵弾性率も高く、機械特性にも優れていた。
[Example 10]
The same operation as in Example 7 was performed except that the kind of polyester containing short glass fibers was changed from P4 to P5 and the heat treatment temperature was changed to 260 ° C. × 5 min. The properties of the obtained film are shown in Table 1. The film of this example had a small heat shrinkage at 260 ° C., and in the solder heat resistance evaluation, although the film was somewhat wrinkled, the shape was maintained. Furthermore, this example also had a high storage elastic modulus at 260 ° C. and was excellent in mechanical properties.

[比較例1]
ガラス短繊維を含まないP1のみからなる組成割合に変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。ガラス短繊維を含まないポリエチレンナフタレートフィルムの場合、実施例と同じ熱固定条件(260℃で1分間)では260℃での熱収縮率が大きく、また機械特性も特に260℃での低下が大きく、ハンダ耐熱評価ではフィルムが変形してしまった。
[Comparative Example 1]
The same operation as Example 1 was performed except having changed to the composition ratio which consists only of P1 which does not contain a short glass fiber. The properties of the obtained film are shown in Table 1. In the case of a polyethylene naphthalate film that does not contain short glass fibers, the heat shrinkage at 260 ° C. is large under the same heat setting conditions as in the examples (at 260 ° C. for 1 minute), and the mechanical properties are particularly greatly reduced at 260 ° C. In the solder heat resistance evaluation, the film was deformed.

[比較例2]
ガラス短繊維を含まないP1のみからなり、熱処理温度を260℃×2minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。ハンダ耐熱評価ではフィルムが変形してしまった。
[Comparative Example 2]
The same operation as in Example 1 was carried out except that it consisted only of P1 not containing short glass fibers and the heat treatment temperature was changed to 260 ° C. × 2 min. The properties of the obtained film are shown in Table 1. In the solder heat resistance evaluation, the film was deformed.

[比較例3]
ガラス短繊維を含まないP1のみからなり、熱処理温度を260℃×5minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。ハンダ耐熱評価ではフィルムが変形してしまった。
[Comparative Example 3]
The same operation as in Example 1 was carried out except that it consisted of only P1 not containing short glass fibers and the heat treatment temperature was changed to 260 ° C. × 5 min. The properties of the obtained film are shown in Table 1. In the solder heat resistance evaluation, the film was deformed.

[比較例4]
ガラス短繊維を含まないP2のみに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。ハンダ耐熱評価ではフィルムが変形してしまった。
[Comparative Example 4]
The same operation as in Example 1 was performed except that only P2 containing no short glass fibers was used. The properties of the obtained film are shown in Table 1. In the solder heat resistance evaluation, the film was deformed.

[比較例5]
ガラス短繊維を含まないP2のみからなり、熱処理温度を260℃×2minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。ハンダ耐熱評価ではフィルムが変形してしまった。
[Comparative Example 5]
The same operation as in Example 1 was carried out except that it consisted only of P2 containing no short glass fibers and the heat treatment temperature was changed to 260 ° C. × 2 min. The properties of the obtained film are shown in Table 1. In the solder heat resistance evaluation, the film was deformed.

[比較例6]
ガラス短繊維を含まないP2のみからなり、熱処理温度を260℃×5minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。ハンダ耐熱評価ではフィルムが変形してしまった。
[Comparative Example 6]
The same operation as in Example 1 was carried out except that it consisted only of P2 containing no short glass fibers and the heat treatment temperature was changed to 260 ° C. × 5 min. The properties of the obtained film are shown in Table 1. In the solder heat resistance evaluation, the film was deformed.

[比較例7]
ガラス短繊維の含有量が5重量%となるようにP1、P3を表1の組成割合に変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。ハンダ耐熱評価ではフィルムが変形してしまった。
[Comparative Example 7]
The same operation as in Example 1 was performed except that P1 and P3 were changed to the composition ratios in Table 1 so that the content of the short glass fibers was 5% by weight. The properties of the obtained film are shown in Table 1. In the solder heat resistance evaluation, the film was deformed.

[比較例8]
ガラス短繊維の含有量が5重量%となるようにP1、P3を表1の組成割合に変更し、熱処理温度を260℃×2minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。ハンダ耐熱評価ではフィルムが変形してしまった。
[Comparative Example 8]
The same operation as in Example 1 was performed except that P1 and P3 were changed to the composition ratios in Table 1 so that the content of the short glass fibers was 5% by weight, and the heat treatment temperature was changed to 260 ° C. × 2 min. The properties of the obtained film are shown in Table 1. In the solder heat resistance evaluation, the film was deformed.

[比較例9]
ガラス短繊維の含有量が5重量%となるようにP1、P3を表1の組成割合に変更し、熱処理温度を260℃×5minに変更した以外は実施例1と同様の操作を行った。得られたフィルムの特性を表1に示す。ハンダ耐熱評価ではフィルムが変形してしまった。
[Comparative Example 9]
The same operation as in Example 1 was performed except that P1 and P3 were changed to the composition ratios shown in Table 1 so that the content of short glass fibers was 5% by weight, and the heat treatment temperature was changed to 260 ° C. × 5 min. The properties of the obtained film are shown in Table 1. In the solder heat resistance evaluation, the film was deformed.

[比較例10]
表1に示すようにP1のみの組成に変更し、熱処理温度を260℃×240minに変更した以外は実施例1と同様の操作を行い、50μm厚みの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。ガラス短繊維を含まない場合、本発明と同等の耐熱寸法安定性および機械特性を得るためには、熱固定時間を相当長くする必要があり、実用的には適用が難しい製造条件が必要であった。
[Comparative Example 10]
As shown in Table 1, the same operation as in Example 1 was performed except that the composition was changed to P1 alone and the heat treatment temperature was changed to 260 ° C. × 240 min to obtain a biaxially stretched film having a thickness of 50 μm. The properties of the obtained film are shown in Table 1. When short glass fibers are not included, in order to obtain the same heat resistant dimensional stability and mechanical properties as those of the present invention, it is necessary to lengthen the heat setting time, and manufacturing conditions that are difficult to apply practically are necessary. It was.

Figure 2015123581
Figure 2015123581

本発明の高耐熱延伸フィルムは、熱可塑性ポリエステルを主成分とするフィルムでありながら、簡便な方法で融点近傍の高温領域での耐熱寸法安定性および機械強度に優れるフィルムが得られるため、これまでに適用の難しかったフレキシブル回路基板用に好適に用いることができる。   Since the highly heat-resistant stretched film of the present invention is a film mainly composed of thermoplastic polyester, a film excellent in heat-resistant dimensional stability and mechanical strength in a high-temperature region near the melting point can be obtained by a simple method. It can be suitably used for flexible circuit boards that have been difficult to apply to the above.

Claims (4)

ガラス短繊維を含む熱可塑性ポリエステル樹脂組成物からなる延伸フィルムであって、かかるガラス短繊維の直径が0.1〜7.0μm、平均繊維長が1〜300μmであり、該延伸フィルムの粘弾性測定における260℃の貯蔵弾性率がフィルム長手方向において200MPa以上であり、かつ260℃、10分間熱処理したときのフィルム長手方向および幅方向の熱収縮率がともに1.0%以下であることを特徴とする高耐熱延伸フィルム。   A stretched film comprising a thermoplastic polyester resin composition containing short glass fibers, wherein the short glass fibers have a diameter of 0.1 to 7.0 μm, an average fiber length of 1 to 300 μm, and the viscoelasticity of the stretched film The storage elastic modulus at 260 ° C. in the measurement is 200 MPa or more in the film longitudinal direction, and the heat shrinkage in the film longitudinal direction and the width direction when both are heat-treated at 260 ° C. for 10 minutes is 1.0% or less. A highly heat-resistant stretched film. 前記熱可塑性ポリエステル樹脂がポリエチレンナフタレンジカルボキシレートである請求項1に記載の高耐熱延伸フィルム。   The highly heat-resistant stretched film according to claim 1, wherein the thermoplastic polyester resin is polyethylene naphthalene dicarboxylate. 前記樹脂組成物の重量を基準として該ガラス短繊維の含有量が5重量%を超え50重量%以下の範囲である、請求項1〜2のいずれかに記載の高耐熱延伸フィルム。   The highly heat-resistant stretched film according to any one of claims 1 to 2, wherein the content of the short glass fibers is in the range of more than 5% by weight and 50% by weight or less based on the weight of the resin composition. フィルム全層厚さが10〜300μmである請求項1〜3のいずれかに記載の高耐熱延伸フィルム。   The high heat-resistant stretched film according to any one of claims 1 to 3, wherein the total film thickness is 10 to 300 µm.
JP2013267099A 2013-12-25 2013-12-25 High heat-resistant stretched film Active JP6215690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013267099A JP6215690B2 (en) 2013-12-25 2013-12-25 High heat-resistant stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013267099A JP6215690B2 (en) 2013-12-25 2013-12-25 High heat-resistant stretched film

Publications (2)

Publication Number Publication Date
JP2015123581A true JP2015123581A (en) 2015-07-06
JP6215690B2 JP6215690B2 (en) 2017-10-18

Family

ID=53534681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013267099A Active JP6215690B2 (en) 2013-12-25 2013-12-25 High heat-resistant stretched film

Country Status (1)

Country Link
JP (1) JP6215690B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932971A (en) * 1972-07-26 1974-03-26
JPS4973451A (en) * 1972-11-16 1974-07-16
JPS6293991A (en) * 1985-10-21 1987-04-30 帝人株式会社 Flexible circuit substrate
JPH0639895A (en) * 1992-07-23 1994-02-15 Unitika Ltd Reinforced sheet of polyethyene naphthalate
JPH11168267A (en) * 1997-12-03 1999-06-22 Teijin Ltd Flexible circuit board film
JP2001191405A (en) * 2000-01-06 2001-07-17 Teijin Ltd Biaxially oriented film and its manufacturing method
JP2011094059A (en) * 2009-10-30 2011-05-12 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film and method for producing the same
JP2011157442A (en) * 2010-01-29 2011-08-18 Teijin Dupont Films Japan Ltd Oriented polyester film and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932971A (en) * 1972-07-26 1974-03-26
JPS4973451A (en) * 1972-11-16 1974-07-16
JPS6293991A (en) * 1985-10-21 1987-04-30 帝人株式会社 Flexible circuit substrate
JPH0639895A (en) * 1992-07-23 1994-02-15 Unitika Ltd Reinforced sheet of polyethyene naphthalate
JPH11168267A (en) * 1997-12-03 1999-06-22 Teijin Ltd Flexible circuit board film
JP2001191405A (en) * 2000-01-06 2001-07-17 Teijin Ltd Biaxially oriented film and its manufacturing method
JP2011094059A (en) * 2009-10-30 2011-05-12 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film and method for producing the same
JP2011157442A (en) * 2010-01-29 2011-08-18 Teijin Dupont Films Japan Ltd Oriented polyester film and method for producing the same

Also Published As

Publication number Publication date
JP6215690B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
CN100593467C (en) Oriented polyester film
JP2006312263A (en) Laminated mat-like polyester film
JP2021504512A (en) Polyester resin composition and biaxially stretched polyester film containing it
JP6463952B2 (en) Biaxially oriented polyester film
JP3896324B2 (en) Liquid crystal polymer blend film
JP6247577B2 (en) Polyester film for electromagnetic wave shield film transfer
JP5614112B2 (en) Biaxially oriented laminated polyester film
US10699827B2 (en) Film, and electrical insulation sheet, adhesive tape, rotating machine using same
JP2013082087A (en) Plastic film and production method thereof
JP2011094059A (en) Biaxially oriented polyester film and method for producing the same
JP2002252458A (en) Polyester film used for manufacturing multilayer printed wiring board
JP6215690B2 (en) High heat-resistant stretched film
JP5379033B2 (en) Oriented polyester film and method for producing the same
JP3948908B2 (en) Polyester film for coverlay film
JP5249796B2 (en) Flexible printed circuit board reinforcing film, flexible printed circuit board reinforcing plate, and flexible printed circuit board laminate
JP4845233B2 (en) Release film for printed circuit board manufacturing
JP2021003808A (en) Biaxially oriented polyester film and method for producing the same
JP4496807B2 (en) Multi-layer film
JP4904019B2 (en) Biaxially oriented polyester film
JP2001191405A (en) Biaxially oriented film and its manufacturing method
JP2006054239A (en) Biaxially oriented polyester film for flexible printed circuit board
JP4885419B2 (en) Biaxially stretched polyester film
JP2003191419A (en) Polyester film for ic card
JP5405968B2 (en) Flame retardant laminated polyester film for flat cable
JP2011111575A (en) Substrate for formation of interlayer insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170921

R150 Certificate of patent or registration of utility model

Ref document number: 6215690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250