JP2015123457A - BUTTING WELDING METHOD OF Ni STEEL PLATE - Google Patents

BUTTING WELDING METHOD OF Ni STEEL PLATE Download PDF

Info

Publication number
JP2015123457A
JP2015123457A JP2013267877A JP2013267877A JP2015123457A JP 2015123457 A JP2015123457 A JP 2015123457A JP 2013267877 A JP2013267877 A JP 2013267877A JP 2013267877 A JP2013267877 A JP 2013267877A JP 2015123457 A JP2015123457 A JP 2015123457A
Authority
JP
Japan
Prior art keywords
welding
pair
butt
welding method
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013267877A
Other languages
Japanese (ja)
Inventor
小西 浩之
Hiroyuki Konishi
浩之 小西
響輝 秋山
Hibiki Akiyama
響輝 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2013267877A priority Critical patent/JP2015123457A/en
Publication of JP2015123457A publication Critical patent/JP2015123457A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a butting welding method of an Ni steel plate, capable of forming a welding part having sufficient strength and low temperature toughness, and also excellent in welding efficiency.SOLUTION: An Ni-based alloy including Ni of 55% or more in a mass percentage and having an austenite structure is used for a welding material, and a pair of side plates 20 being Ni steel plates including Ni of 3%-15% in a mass percentage and having a ferrite structure are but-welded. A first wire W1 held by a first welding torch E1 and a second wire W2 held by a second welding torch E2 are arranged on both sides of a butting part constituted of the pair of side plates 20, and at least welding of a first layer is simultaneously performed from both sides of the butting part by DC bar minus polarity.

Description

本発明はNi鋼板の突き合わせ溶接方法に関する。   The present invention relates to a butt welding method for Ni steel plates.

LNG(液化天然ガス)やLPG(液化石油ガス)等の液化ガスを貯蔵するための低温タンクは、一例として内槽と、内槽の外周を覆う外槽とを備える。内槽は円形の底部と、底部の周縁に沿って立設された側部と、側部の上部開口部分を覆う屋根板とを有する。側部は、例えばタンクの周方向に延びる円弧状の複数の側板を横並びにするとともに積み上げられ、隣接する側板を突き合わせ溶接により連結して構成される。   A low temperature tank for storing liquefied gas such as LNG (liquefied natural gas) and LPG (liquefied petroleum gas) includes an inner tank and an outer tank covering the outer periphery of the inner tank as an example. The inner tub has a circular bottom, a side erected along the periphery of the bottom, and a roof plate that covers the upper opening of the side. For example, the side portions are arranged side by side with a plurality of arc-shaped side plates extending in the circumferential direction of the tank, and are connected to each other by butt welding.

各側板の溶接部には、十分な強度と低温靱性とを有することが求められる。従って側板(母材)には、例えば9%Ni鋼等のフェライト構造を有するNi鋼が採用される。また、溶接材料には、例えばNiを質量パーセントで55%以上含有するオーステナイト構造を有するNi基合金が採用される。溶込不良や融合不良の発生を極力防ぐため、各側板は通常、表裏両面から直流棒プラスの極性で溶接される。溶接方法としてはサブマージアーク溶接法やTIG溶接法が採用される。   The welded portion of each side plate is required to have sufficient strength and low temperature toughness. Therefore, Ni steel having a ferrite structure such as 9% Ni steel is employed for the side plate (base material). As the welding material, for example, a Ni-based alloy having an austenitic structure containing 55% or more of Ni by mass percent is employed. In order to prevent the occurrence of poor penetration and poor fusion as much as possible, each side plate is usually welded from both front and back surfaces with a positive polarity of a DC bar. As the welding method, a submerged arc welding method or a TIG welding method is employed.

従来の溶接方法では、一対の側板の一方の面から突き合わせ部における初層の溶接を実施した後に裏ハツリ工程を実施し、その後に他方の面の初層の溶接を実施していた。この工法によれば、裏ハツリ工程により一対の側板の突き合わせ部における開先底部の欠陥を除去できるが、その溶接工程(特に裏ハツリ工程)に長時間を要する。   In the conventional welding method, after the first layer was welded at the butt portion from one surface of the pair of side plates, the back chipping process was performed, and then the first layer on the other surface was welded. According to this method, it is possible to remove defects at the bottom of the groove at the butted portion of the pair of side plates by the back chipping process, but the welding process (particularly the back chipping process) takes a long time.

裏ハツリ工程を省略できれば、溶接工程の工期を大幅に短縮することが可能である。ここで特許文献1には、開先の両面から同時に溶接を行い、溶接部の初層の溶け残りや欠陥の発生を抑制することにより裏ハツリ工程を省略して溶接効率の向上をねらった溶接方法が開示されている。   If the back chipping process can be omitted, the construction period of the welding process can be greatly shortened. Here, in Patent Document 1, welding is performed simultaneously from both sides of the groove, and by suppressing the undissolved residue and the occurrence of defects in the first layer of the welded portion, the back chipping process is omitted and the welding efficiency is improved. A method is disclosed.

特開昭61−206564号公報JP-A-61-206564

上記したようなNi鋼とNi基合金からなる異材継手では、溶接部における溶接金属部の合金成分は溶け込んだ母材により薄められ、溶接材料の合金成分よりも薄くなる。この現象を「希釈」といい、この希釈の割合を「希釈率」という。   In the dissimilar joint made of Ni steel and Ni-base alloy as described above, the alloy component of the weld metal portion in the welded portion is diluted by the melted base material and becomes thinner than the alloy component of the welding material. This phenomenon is called “dilution”, and the ratio of this dilution is called “dilution rate”.

溶接部の強度および低温靱性を確保するためには、溶接金属部への母材の溶け込みを小さくすること、即ち希釈率を抑えることが重要である。しかしながら、特許文献1に記載された溶接方法は軟鋼の共金継手を対象としたものであり、両面から同時に溶接することによって溶接金属部に対する母材の溶け込みが大きくなること、即ち希釈率が増大することへの対策は記載されていない。   In order to ensure the strength and low temperature toughness of the welded part, it is important to reduce the penetration of the base material into the welded metal part, that is, to suppress the dilution rate. However, the welding method described in Patent Document 1 is intended for a mild steel co-joint joint, and by simultaneously welding from both sides, the penetration of the base metal into the weld metal part increases, that is, the dilution rate increases. No countermeasures for doing are described.

そこで本発明は、十分な強度と低温靱性とを有する溶接部を形成でき、且つ溶接効率に優れたNi鋼板の突き合わせ溶接方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a butt welding method for Ni steel sheets, which can form a welded portion having sufficient strength and low temperature toughness and is excellent in welding efficiency.

上記課題を解決するために、本発明の一態様は、質量パーセントで55%以上のNiを含有し且つオーステナイト構造を有するNi基合金を溶接材料に用い、質量パーセントで3%以上15%以下のNiを含有し且つフェライト構造を有する一対のNi鋼板を突き合わせ溶接する方法であって、前記一対のNi鋼板により構成される突き合わせ部の表裏両側に溶接電極を配置し、少なくとも初層の溶接を、直流棒マイナスの極性で前記突き合わせ部の表裏両面側から同時に行う。   In order to solve the above problems, according to one embodiment of the present invention, a Ni-based alloy containing 55% or more Ni by mass and having an austenite structure is used as a welding material, and 3% or more and 15% or less by mass. A method of butt welding a pair of Ni steel sheets containing Ni and having a ferrite structure, wherein welding electrodes are arranged on both front and back sides of a butt portion constituted by the pair of Ni steel sheets, and welding of at least a first layer, It is simultaneously performed from both the front and back sides of the abutting portion with a negative polarity of the DC bar.

このように突き合わせ部の表裏両面側から同時に溶接することで、開先底部の溶け残りや欠陥の発生を抑制し、裏ハツリ工程を省略できる。従って溶接工程の工期短縮を図ることができる。   Thus, by welding simultaneously from the front and back both sides of a butt | matching part, the melt | dissolution residue of a groove bottom part and generation | occurrence | production of a defect are suppressed, and a back chipping process can be skipped. Therefore, the work period of the welding process can be shortened.

また、片面ずつ溶接を順次行う場合に比べて迅速に溶接を行うことができる。これにより、溶接効率の向上を図ることができる。   In addition, welding can be performed more quickly than in the case where welding is sequentially performed on each side. Thereby, the improvement of welding efficiency can be aimed at.

さらに溶接電極の極性を直流棒マイナスとすることにより、直流棒プラスとしたときよりも溶接金属部に対する母材の溶け込みを小さくすること、即ち希釈率を抑えることが可能となる。従ってNi鋼板の表裏両面側から同時に溶接する場合であっても、希釈率の増大に伴う溶接部の強度および低温靱性の低下を防止することができる。   Further, by setting the polarity of the welding electrode to a negative DC rod, it is possible to reduce the penetration of the base material into the weld metal portion, that is, to suppress the dilution rate, compared to the case of using a positive DC rod. Therefore, even when simultaneously welding from both the front and back sides of the Ni steel plate, it is possible to prevent a decrease in strength and low temperature toughness of the welded portion accompanying an increase in the dilution rate.

Ni鋼板中のNi含有量は、強度や低温靱性を確保する点から質量パーセントで3%以上15%以下であることが好ましい。また、Ni基合金中のNi含有量は、溶接金属部の靱性確保等の点から質量パーセントで55%以上であることが好ましい。   The Ni content in the Ni steel sheet is preferably 3% or more and 15% or less in terms of mass percentage from the viewpoint of securing strength and low temperature toughness. Further, the Ni content in the Ni-based alloy is preferably 55% or more by mass percent from the viewpoint of ensuring the toughness of the weld metal part.

さらに、フェライト構造を有することにより十分な強度を有する一対のNi鋼板を母材とし、オーステナイト構造を有することにより低温靱性に優れる溶接材料を用いることで、十分な強度と低温靱性とを有する溶接部を形成できる。   Further, a welded portion having sufficient strength and low temperature toughness by using a welding material having a pair of Ni steel plates having sufficient strength by having a ferrite structure as a base material and having an austenite structure and having excellent low temperature toughness. Can be formed.

また、本発明の別の態様では、溶接電極の極性を交流とすることもできる。これにより、溶接電極の極性が直流棒マイナスのときと同様、溶接電極の極性が直流棒プラスのときと比べ、溶接金属部に対する母材の溶け込みを小さくすること、即ち希釈率を抑えることができる。従って、Ni鋼板の表裏両面側から同時に溶接する場合であっても、希釈率の増大に伴う溶接部の強度および低温靱性の低下を防止することができる。   Moreover, in another aspect of the present invention, the polarity of the welding electrode can be AC. As a result, in the same way as when the polarity of the welding electrode is a negative DC rod, compared to when the polarity of the welding electrode is a positive DC rod, the penetration of the base material into the weld metal part can be reduced, that is, the dilution rate can be suppressed. . Therefore, even when simultaneously welding from both the front and back sides of the Ni steel plate, it is possible to prevent a decrease in strength and low-temperature toughness of the welded portion accompanying an increase in dilution rate.

また本発明の別の態様では、前記溶接を横向姿勢で行うこともできる。このように前記溶接を横向姿勢で行う場合には、一対のNi鋼板の両面側において同じ向きに重力が作用する条件下で溶接を行うことが可能となり、Ni鋼板の両面で均一な溶接部を形成し易い。   In another aspect of the present invention, the welding can be performed in a lateral posture. As described above, when the welding is performed in a lateral orientation, it is possible to perform the welding under the condition that gravity acts in the same direction on both sides of the pair of Ni steel plates, and a uniform welded portion is formed on both sides of the Ni steel plates. Easy to form.

また本発明の別の態様では、サブマージアーク溶接法により前記溶接を行うこともできる。
本溶接方法は、サブマージアーク溶接法のように比較的大電流で溶接する場合に効果が大きいので特に有利となる。
In another aspect of the present invention, the welding can be performed by a submerged arc welding method.
This welding method is particularly advantageous because the effect is great when welding is performed with a relatively large current as in the submerged arc welding method.

また本発明の別の態様では、前記一対のNi鋼板を、液化ガスを貯蔵するための低温タンクの側部を構成するものとすることもできる。   In another aspect of the present invention, the pair of Ni steel plates may constitute a side portion of a low-temperature tank for storing liquefied gas.

このような低温タンクの側部を構成する部材として一対のNi鋼板を用いれば、特に液化ガスに触れるような極めて低温の環境下においても十分な靱性を有する溶接部を形成できる。   If a pair of Ni steel plates is used as a member constituting the side portion of such a low temperature tank, a welded portion having sufficient toughness can be formed even in an extremely low temperature environment such as being in contact with liquefied gas.

以上の説明から明らかなように本発明によれば、十分な強度と低温靱性とを有する溶接部を形成でき、且つ溶接効率に優れたNi鋼板の突き合わせ溶接方法を提供することができる。   As is apparent from the above description, according to the present invention, it is possible to provide a butt welding method for Ni steel sheets that can form a welded portion having sufficient strength and low temperature toughness and is excellent in welding efficiency.

実施形態に係る低温タンクの構成を示す断面図である。It is sectional drawing which shows the structure of the low temperature tank which concerns on embodiment. 低温タンクの側板の構成を示す正面図である。It is a front view which shows the structure of the side plate of a low-temperature tank. 実施形態に係る溶接方法を説明するための図である。It is a figure for demonstrating the welding method which concerns on embodiment. 側板の突き合わせ継手周辺の構成を示す断面図である。It is sectional drawing which shows the structure of the butt joint periphery of a side plate. 変形例の溶接方法を説明するための図である。It is a figure for demonstrating the welding method of a modification. 第1ワイヤ及び第2溶接ワイヤの位置関係を示す図である。It is a figure which shows the positional relationship of a 1st wire and a 2nd welding wire.

一般に低温タンクの内槽において、側部を構成する複数の側板を連結するために形成される溶接部は、質量パーセントで9%程度のNiを含む鋼などの低温圧力容器用Ni鋼板と、インコネル(登録商標)やハステロイ(登録商標)等の質量パーセントで55%以上のNiを含むNi基合金からなる溶接材料とで構成される。このような溶接部を形成するための溶接方法としては、例えばサブマージアーク溶接法が用いられる。溶込不良や融合不良を防止する点から、極性は直流棒プラスとするのが通常である。   Generally, in an inner tank of a low-temperature tank, a welded portion formed to connect a plurality of side plates constituting the side portion is a Ni steel plate for a low-temperature pressure vessel such as steel containing Ni of about 9% by mass, Inconel (Registered trademark), Hastelloy (registered trademark), etc., and a welding material made of a Ni-based alloy containing Ni of 55% or more by mass percentage. As a welding method for forming such a welded portion, for example, a submerged arc welding method is used. From the standpoint of preventing poor penetration and poor fusion, the polarity is usually a positive DC bar.

低温タンクの内槽の側部を構成する側板のように、低温環境下で使用される母材を溶接で連結する場合には、十分な強度および低温靱性を有する溶接部を形成することが求められる。ここで、一対の側板の端部同士を側板の両面側から同時に溶接すると、前記端部同士を側板の片面側から溶接した場合に比べ、溶接金属部に対する母材の溶け込みが大きくなることで希釈率が高くなり、十分な強度および低温靱性を有する溶接部を形成することが困難となる。   When the base material used in a low temperature environment is connected by welding, such as the side plate constituting the side of the inner tank of the low temperature tank, it is required to form a welded portion having sufficient strength and low temperature toughness. It is done. Here, when the end portions of the pair of side plates are welded simultaneously from both sides of the side plate, dilution occurs because the penetration of the base material into the weld metal portion becomes larger than when the end portions are welded from one side of the side plate. The rate becomes high and it becomes difficult to form a weld having sufficient strength and low temperature toughness.

この課題は、初層溶接時のみならず2層目以降を溶接する場合にも共通して存在する。   This problem exists not only when welding the first layer but also when welding the second and subsequent layers.

また上記と同様の課題は、サブマージアーク溶接方法以外の溶接法を用いた場合においても共通して存在する。   The same problem as described above also exists in common when a welding method other than the submerged arc welding method is used.

以下に示す実施形態は、上記した各課題を解決し得るものである。   The embodiment described below can solve the above-described problems.

<実施形態>
以下、本発明の実施形態を各図を参照して説明する。
<Embodiment>
Embodiments of the present invention will be described below with reference to the drawings.

図1に、本実施形態に係るNi鋼板の溶接方法を用いて作製した低温タンク1の構成を示す。   In FIG. 1, the structure of the low temperature tank 1 produced using the welding method of the Ni steel plate which concerns on this embodiment is shown.

低温タンク1は、有底円筒状の内槽2と、内槽2の外周及び上部を覆うように配された外槽3とを備える。内槽2と外槽3との間には不図示の断熱材が配されている。低温タンク1は、内槽2の内部にLNGやPNG、エチレン等の液化ガスを高圧で貯蔵するための貯蔵タンクとして構成されている。   The low-temperature tank 1 includes a bottomed cylindrical inner tank 2 and an outer tank 3 arranged so as to cover the outer periphery and the upper part of the inner tank 2. A heat insulating material (not shown) is disposed between the inner tank 2 and the outer tank 3. The low temperature tank 1 is configured as a storage tank for storing a liquefied gas such as LNG, PNG, ethylene, or the like in the inner tank 2 at a high pressure.

内槽2は、円盤状の底部2aと、底部2aの周縁の周方向に沿って立設された大口径且つ筒状の側部2bと、不図示のナックルプレートを介して側部2bの上部開口を覆うように配された、圧延鋼材からなるドーム状の屋根板2cとを有する。底部2aと屋根板2cとは、一例として長方形主面を有する複数のNi鋼板を連結して構成される。側部2bは図2に示すように、複数の円弧状の側板20bが長手方向を水平、短手方向を垂直にそれぞれ向けた状態で、底部2aの周方向に数十枚にわたり横並び、且つ十数枚から数十枚にわたり積み上げられて配置され、各側板20bを互いに突き合わせて溶接により連結されて構成される。   The inner tub 2 includes a disc-shaped bottom 2a, a large-diameter and cylindrical side 2b erected along the circumferential direction of the periphery of the bottom 2a, and an upper portion of the side 2b via a knuckle plate (not shown). And a dome-shaped roof plate 2c made of rolled steel and covering the opening. As an example, the bottom 2a and the roof plate 2c are configured by connecting a plurality of Ni steel plates having a rectangular main surface. As shown in FIG. 2, the side portion 2b has several arcuate side plates 20b arranged side by side in the circumferential direction of the bottom portion 2a in a state where the longitudinal direction is horizontal and the short side direction is vertical, respectively. Several to tens of sheets are stacked and arranged, and the side plates 20b are brought into contact with each other and connected by welding.

側板20はフェライト構造(体心立方格子(bcc)構造)を有し、低温靱性に優れ、且つ常温及び低温にて優れた引張強度を有するNi鋼板を用いてなる。本実施形態では、JIS規格(JIS G 3127 SL 9N)に準拠する9%Ni鋼板を側板20に用いている。側板20の厚みは、一例として一般的なLNGタンクの内槽2の厚さである6mm以上50mm以下の範囲に設定しているが、当然ながら側板20の厚みはこれに限定されない。側板20は側部2bの周方向に沿うように曲げ加工されている。   The side plate 20 is made of a Ni steel plate having a ferrite structure (body-centered cubic lattice (bcc) structure), excellent in low-temperature toughness, and excellent tensile strength at normal and low temperatures. In this embodiment, a 9% Ni steel plate conforming to the JIS standard (JIS G 3127 SL 9N) is used for the side plate 20. As an example, the thickness of the side plate 20 is set in a range of 6 mm to 50 mm which is the thickness of the inner tank 2 of a general LNG tank, but the thickness of the side plate 20 is not limited to this. The side plate 20 is bent so as to follow the circumferential direction of the side portion 2b.

側部2bを構成する各側板20は、下方に位置するほど厚みが増しており、内槽2に貯蔵される液化ガスの圧力に耐えられるように調整されている。また、隣接する側板20の一対の垂直端部21(突き合わせ部)は、例えば立向き被覆アーク溶接またはTIG溶接により連結される。また、隣接する側板20の一対の水平端部22(突き合わせ部)は、以下に示す両面同時横向きサブマージアーク溶接により連結され、低温環境(例えば−5℃以下の環境)下でも良好な靱性を有する溶接部Jが形成されている。   Each side plate 20 constituting the side portion 2b increases in thickness as it is positioned below, and is adjusted to withstand the pressure of the liquefied gas stored in the inner tank 2. Moreover, a pair of vertical edge part 21 (butting | matching part) of the adjacent side plate 20 is connected, for example by standing covering arc welding or TIG welding. Moreover, a pair of horizontal edge part 22 (butting | matching part) of the adjacent side plate 20 is connected by the double-sided simultaneous horizontal direction submerged arc welding shown below, and has favorable toughness also in a low temperature environment (for example, -5 degrees C or less environment). A weld J is formed.

外槽3は、内槽2の側部2bを外方より覆う側部3aと、不図示のナックルプレートを介して内槽2の屋根板2cを上方より覆う屋根板3bとを有する。外槽3は、例えば複数の圧延鋼板を溶接で連結して構成される。   The outer tub 3 includes a side portion 3a that covers the side portion 2b of the inner tub 2 from the outside, and a roof plate 3b that covers the roof plate 2c of the inner tub 2 from above via a knuckle plate (not shown). The outer tub 3 is configured by connecting a plurality of rolled steel plates by welding, for example.

次に図3〜図6を用い、側部2bの溶接方法について説明する。   Next, the welding method of the side part 2b is demonstrated using FIGS.

まず、底部2aの周縁の周方向に沿って、側部2bの1段目に位置する複数の側板20をクレーンで釣り上げて配置し、仮付溶接と治具とで各側板20を互いに固定する。その後、互いに突き合わせた各側板20の一対の垂直端部21を、例えば立向き被覆アーク溶接またはTIG溶接にて溶接する。   First, along the circumferential direction of the periphery of the bottom portion 2a, a plurality of side plates 20 positioned at the first stage of the side portion 2b are picked up by a crane and arranged, and the side plates 20 are fixed to each other by temporary welding and a jig. . Thereafter, the pair of vertical end portions 21 of the side plates 20 butted against each other are welded by, for example, vertical covering arc welding or TIG welding.

1段目に位置する各側板20の垂直端部21同士を溶接し、且つ、各側板20を底部2aと溶接した後、2段目に位置する複数の側板20を1段目の各側板20の上方にクレーンで配置する。そして2段目に位置する各側板20を立て、1段目に位置する各側板20と垂直方向で並べた状態で仮付溶接と治具にて互いに固定する。この状態で、水平方向に沿って互いに突き合わせた各側板20の一対の垂直端部21を、1段目に位置する各側板20と同様に、例えば立向き被覆アーク溶接またはTIG溶接にて溶接する。   After welding the vertical ends 21 of the side plates 20 positioned in the first stage and welding the side plates 20 to the bottom 2a, the side plates 20 positioned in the second stage are connected to the side plates 20 of the first stage. Place with a crane above. Then, the side plates 20 positioned in the second stage are erected and fixed to each other by temporary welding and a jig in a state in which the side plates 20 are positioned in the vertical direction. In this state, a pair of vertical end portions 21 of the side plates 20 that are abutted to each other along the horizontal direction are welded by, for example, vertical covering arc welding or TIG welding in the same manner as the side plates 20 positioned in the first stage. .

続いて、互いに突き合わせた1段目及び2段目に位置する各側板20の一対の水平端部22を、以下の両面同時サブマージアーク溶接方法で溶接する。   Subsequently, the pair of horizontal end portions 22 of the side plates 20 positioned in the first and second stages that are in contact with each other are welded by the following double-sided simultaneous submerged arc welding method.

具体的には、まず公知のフラックス供給装置(不図示)を一対用意する。図3に示すように、垂直方向に立てて並べた各側板20の両面側より、垂直方向で互いに突き合わせた一対の水平端部22付近にフラックス供給装置のフラックスベルトB1、B2の上面を配置する。フラックスベルトB1、B2上に粒状のフラックスFを載せ、一対の水平端部22の間とその付近にフラックスFを配置する。   Specifically, first, a pair of known flux supply devices (not shown) are prepared. As shown in FIG. 3, the upper surfaces of the flux belts B1 and B2 of the flux supply device are arranged in the vicinity of a pair of horizontal end portions 22 that face each other in the vertical direction from both sides of the side plates 20 arranged vertically. . A granular flux F is placed on the flux belts B1 and B2, and the flux F is disposed between and in the vicinity of the pair of horizontal ends 22.

続いて一例として、第1溶接トーチE1を有する溶接装置と、第2溶接トーチE2を有する溶接装置(ともに装置は不図示)を個別に用意する。また、フェライト構造(面心立方格子(fcc)構造)を有し且つ側板20よりも多量のNiを含む溶接材料(消耗式電極)として、例えばNiを質量パーセントで55%以上含むNi基合金からなる溶接電極(溶接ワイヤW1、W2)を用意する。溶接ワイヤW1を第1溶接トーチE1、溶接ワイヤW2を第2溶接トーチE2にそれぞれ繰り出し可能に保持させる。第1溶接トーチE1、第2溶接トーチE2を隣接する各側板20の一対の水平端部22の表裏両側に配置し、第1溶接トーチE1から溶接ワイヤW1を、第2溶接トーチE2から溶接ワイヤW2を一対の水平端部22間におけるフラックスFの内部に差し込む。   Subsequently, as an example, a welding apparatus having a first welding torch E1 and a welding apparatus having a second welding torch E2 (both apparatuses are not shown) are separately prepared. Further, as a welding material (consumable electrode) having a ferrite structure (face-centered cubic lattice (fcc) structure) and containing a larger amount of Ni than the side plate 20, for example, a Ni-based alloy containing 55% or more of Ni by mass percent The welding electrode (welding wires W1, W2) to be prepared is prepared. The welding wire W1 is held on the first welding torch E1 and the welding wire W2 is held on the second welding torch E2 so as to be fed out. The first welding torch E1 and the second welding torch E2 are arranged on both front and back sides of the pair of horizontal end portions 22 of the adjacent side plates 20, and the welding wire W1 from the first welding torch E1 and the welding wire from the second welding torch E2 to each other. W2 is inserted into the flux F between the pair of horizontal ends 22.

この状態で各溶接装置を操作し、直流棒マイナスの極性とし、一対の側板20で構成される水平端部22の表裏両面側から同時に初層の溶接を行う。   In this state, each welding apparatus is operated so that the polarity of the DC bar is negative, and the first layer is welded simultaneously from both the front and back sides of the horizontal end portion 22 constituted by the pair of side plates 20.

その後、2層目以降に関しても、初層の溶接と同じ方法により溶接施工を繰り返すことで、図4に示すような溶接金属部30を有する溶接部Jを形成する。   Thereafter, also for the second and subsequent layers, the welded portion J having the weld metal portion 30 as shown in FIG. 4 is formed by repeating the welding work by the same method as the welding of the first layer.

尚、本実施形態では溶接部Jの初層と、これに順次積層される2層目以降の各層とを本溶接方法で形成したが、溶接部Jの2層目以降に関しては別の溶接方法で形成してもよい。   In this embodiment, the first layer of the welded portion J and the second and subsequent layers sequentially stacked thereon are formed by this welding method. However, another welding method is applied to the second and subsequent layers of the welded portion J. May be formed.

このように溶接ワイヤW1、W2を負極性とすれば、溶接ワイヤW1、W2を正極性とした場合に比べ、溶接金属部30を構成するNi基合金への母材Ni鋼の溶け込みを小さくして希釈率を抑えることができる。従って、一対の水平端部22の表裏両面側から同時に溶接する場合であっても希釈率の増大による強度や低温靱性の低下を防止できる。   If the welding wires W1 and W2 are made negative in this way, the penetration of the base material Ni steel into the Ni-based alloy constituting the weld metal portion 30 is made smaller than when the welding wires W1 and W2 are made positive. To reduce the dilution rate. Therefore, even when welding is performed simultaneously from the front and back both sides of the pair of horizontal end portions 22, it is possible to prevent a decrease in strength and low temperature toughness due to an increase in dilution rate.

また、本溶接方法では各側板20の両面側から一対の水平端部22を同時溶接するので、各側板20の片面ずつから一対の水平端部22を両面溶接する従来の溶接方法に比べ、溶接工期を短縮できる。また、開先底部の溶け込み不良や欠陥を抑制するためのガウジングによる裏ハツリ工程等の加工が不要になる。これにより、従来の溶接方法よりも溶接効率を向上させることができる。   Moreover, in this welding method, since a pair of horizontal edge part 22 is simultaneously welded from the both surface sides of each side plate 20, compared with the conventional welding method which welds a pair of horizontal edge part 22 from one side of each side plate 20 for each side, it welds. The construction period can be shortened. In addition, processing such as a back chipping process by gouging for suppressing poor penetration and defects at the bottom of the groove becomes unnecessary. Thereby, welding efficiency can be improved rather than the conventional welding method.

上記のように本溶接方法に基づき、底部2aの周方向に沿って1段目と2段目に位置する各側板20に周継手を形成したら、垂直方向に複数段にわたり複数の側板20を上記溶接方法に基づいて連結し、立継手と周継手を形成して積み上げる。これにより所定高さの側部2bを得ることができる。   As described above, based on the main welding method, when the circumferential joint is formed on each side plate 20 located in the first and second steps along the circumferential direction of the bottom portion 2a, the plurality of side plates 20 are arranged in a plurality of steps in the vertical direction. They are connected based on the welding method, and a vertical joint and a peripheral joint are formed and stacked. Thereby, the side part 2b of predetermined height can be obtained.

<変形例>
図5に実施形態の変形例を示す。
<Modification>
FIG. 5 shows a modification of the embodiment.

この変形例では2台の溶接装置を用い、一対の側板20により構成される水平端部22における少なくとも初層の溶接を、各溶接装置の溶接電極(溶接ワイヤW1、W2)の極性を交流として前記一対の水平端部22の表裏両面から同時に行う。尚、溶接ワイヤW1、W2の電位に対して各側板20が正極性になる比率(正極性比率)は、例えば50%とすることができる。   In this modification, two welding devices are used, and welding of at least the first layer in the horizontal end portion 22 constituted by the pair of side plates 20 is performed with the polarity of the welding electrodes (welding wires W1, W2) of each welding device being an alternating current. Simultaneously from both the front and back surfaces of the pair of horizontal ends 22. In addition, the ratio (positive ratio) which each side plate 20 becomes positive with respect to the electric potential of welding wire W1, W2 can be 50%, for example.

このような変形例の両面同時横向きサブマージアーク溶接方法を実施する場合でも、溶接ワイヤW1、W2の電位が各側板20の電位に対して負極性となるタイミングが存在するため、上記実施形態と同様に希釈率を抑えることができる。従って、Ni鋼板の表裏両面側から同時に溶接する場合であっても希釈率の増大による強度や低温靱性の低下を防止できる。   Even in the case of performing the double-sided simultaneous horizontal submerged arc welding method of such a modification, there is a timing at which the potentials of the welding wires W1 and W2 are negative with respect to the potentials of the side plates 20, and thus the same as in the above embodiment. The dilution rate can be reduced. Therefore, even when simultaneously welding from both the front and back sides of the Ni steel plate, it is possible to prevent a decrease in strength and low temperature toughness due to an increase in dilution rate.

<その他の事項>
本発明は上記実施形態及び変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲でその構成を変更、追加、又は削除することができる。
<Other matters>
The present invention is not limited to the above embodiments and modifications, and the configuration can be changed, added, or deleted without departing from the spirit of the present invention.

上記実施形態及び変形例では、溶接方法としてサブマージアーク溶接方法を例示したが、溶接方法はサブマージアーク溶接方法に限定されず、その他のアーク溶接を用いた溶接方法であってもよい。   In the said embodiment and modification, although the submerged arc welding method was illustrated as a welding method, the welding method is not limited to a submerged arc welding method, The welding method using other arc welding may be sufficient.

上記実施形態及び変形例では、溶接電極である溶接ワイヤW1、W2を各側板20の両面側に一つずつ配置したが、いわゆるタンデム溶接方法に基づき、複数の溶接ワイヤとこれを保持する溶接トーチを各側板20の両面側に配置し、同時溶接を実施してもよい。   In the embodiment and the modification, the welding wires W1 and W2 which are welding electrodes are arranged one on each side of each side plate 20, but based on a so-called tandem welding method, a plurality of welding wires and a welding torch for holding the welding wires are provided. May be arranged on both sides of each side plate 20 and simultaneous welding may be performed.

上記実施形態において、母材の側板20は質量パーセントで9%のNiを含む鋼からなるものとしたが、これはLNGタンクに用いられる母材の規格として定められたNi鋼を例示したものであり、母材に含まれるNi量の質量パーセントとしては当然ながら9%以外の数値をとることも可能である。Ni鋼板に含まれるNi量としては、質量パーセントで3%以上15%以下の範囲とすることが好ましい。溶接ワイヤW1、W2に含まれるNi量は質量パーセントで55%以上としたが、これはLNGタンクに用いられる母材、溶材の規格として定められた数値である。   In the above embodiment, the base material side plate 20 is made of steel containing 9% Ni by mass, but this is an example of Ni steel defined as a standard for the base material used in the LNG tank. In addition, as a mass percentage of the amount of Ni contained in the base material, it is of course possible to take a numerical value other than 9%. The amount of Ni contained in the Ni steel plate is preferably in the range of 3% to 15% by mass percent. The amount of Ni contained in the welding wires W1 and W2 is 55% or more in mass percent, which is a numerical value determined as a standard for the base material and the molten material used in the LNG tank.

図3〜図5では各側板20の両面側から一対の水平端部22に開先及びルート面を形成した構成を図示したが、一対の水平端部22の構成はこれに限定されない。例えば各側板20の一方の面側のみに開先を形成した構成としてもよい。   3 to 5 illustrate the configuration in which the groove and the root surface are formed on the pair of horizontal end portions 22 from both sides of each side plate 20, the configuration of the pair of horizontal end portions 22 is not limited thereto. For example, a groove may be formed only on one side of each side plate 20.

尚、本発明における「同時溶接」とは、各側板20の両面側から厳密な同一の位置に溶接ワイヤW1、W2の先端を配向させて溶接する場合に限定されず、各側板20の各長手方向に沿った一定の範囲内で溶接ワイヤW1、W2の先端をずらして配置して溶接する場合も含む。例えば図6に示すように、第1溶接トーチE1に保持させた溶接ワイヤW1を第2溶接トーチE2に保持させた溶接ワイヤW2よりも各側板20の長手方向に沿って距離Lだけ先行させて溶接を行っている場合には、溶接ワイヤW2の先端を溶接ワイヤW1の溶接により形成された溶融プール30a内に配向させて溶接を実施すれば、本発明における「同時溶接」に含まれる。尚、図6では便宜上、側板20の水平端部22と溶接金属部30とを直線状に図示し、フラックスF及びフラックスベルトB1、B2を不図示としている。   The “simultaneous welding” in the present invention is not limited to the case where welding is performed by orienting the tips of the welding wires W1 and W2 to the exact same position from both sides of each side plate 20, and each longitudinal length of each side plate 20 is determined. This includes the case where welding is performed by shifting the tips of the welding wires W1 and W2 within a certain range along the direction. For example, as shown in FIG. 6, the welding wire W1 held by the first welding torch E1 is made to precede the welding wire W2 held by the second welding torch E2 by a distance L along the longitudinal direction of each side plate 20. When welding is performed, the welding wire W2 is included in the “simultaneous welding” in the present invention if welding is performed with the tip of the welding wire W2 oriented in the molten pool 30a formed by welding the welding wire W1. In FIG. 6, for convenience, the horizontal end portion 22 and the weld metal portion 30 of the side plate 20 are shown in a straight line, and the flux F and the flux belts B1 and B2 are not shown.

上記実施形態及びその変形例では、一対の側板20により構成される水平端部22の両面同時横向き溶接に本発明の溶接方法を適用したが、本発明の溶接方法は低温環境で用いられる一対のNi鋼板で構成される突き合わせ部を表裏両面から溶接する際に、溶接方向を限定せずに適用することが可能である。従って、例えば各側部20の垂直端部21同士の溶接や、底部2aを構成する各Ni鋼板等、いわゆる低温圧力容器用Ni鋼板の連結に本発明の溶接方法を適用してもよい。或いは低温タンク1の内槽2の内部に配置される構造物において、当該構造物の構成部材同士で構成される突き合わせ部の溶接方法に本発明の溶接方法を適用してもよい。   In the said embodiment and its modification, although the welding method of this invention was applied to the double-sided simultaneous horizontal welding of the horizontal edge part 22 comprised by a pair of side plate 20, the welding method of this invention is a pair of used in a low-temperature environment. When welding the butt | matching part comprised with Ni steel plate from front and back both surfaces, it is possible to apply, without limiting a welding direction. Therefore, for example, the welding method of the present invention may be applied to the connection of the so-called Ni steel plates for low-temperature pressure vessels, such as welding of the vertical ends 21 of the side portions 20 and each Ni steel plate constituting the bottom portion 2a. Or in the structure arrange | positioned inside the inner tank 2 of the low-temperature tank 1, you may apply the welding method of this invention to the welding method of the butt | matching part comprised by the structural members of the said structure.

本発明における「低温」とは、−5℃以下の温度範囲を指すものとする。また「常温」とは(5℃以上35℃以下)の温度範囲を指すものとする。   The “low temperature” in the present invention refers to a temperature range of −5 ° C. or lower. “Normal temperature” refers to a temperature range of 5 ° C. or more and 35 ° C. or less.

本発明において、溶接材料は溶接ワイヤに限定されず、例えば溶接棒等、その他の材料を用いることもできる。   In the present invention, the welding material is not limited to the welding wire, and other materials such as a welding rod may be used.

本発明で使用するNi鋼板は、炭素及びNiの他にCr、Mn等の元素を含んでいてもよい。   The Ni steel sheet used in the present invention may contain elements such as Cr and Mn in addition to carbon and Ni.

以上のように本発明は、十分な強度と低温靱性とを有する溶接部を形成でき、且つ溶接効率に優れたNi鋼板の突き合わせ溶接方法を提供することができる、優れた効果を有する。従って、この効果の意義を発揮できる溶接方法として広く適用すると有益である。   As mentioned above, this invention has the outstanding effect which can form the weld part which has sufficient intensity | strength and low temperature toughness, and can provide the butt welding method of the Ni steel plate excellent in welding efficiency. Therefore, it is beneficial to apply widely as a welding method that can exhibit the significance of this effect.

E1、E2 溶接トーチ
J 溶接部
W1、W2 溶接ワイヤ
1 低温タンク
2 内槽
2a 底板
2b、3a 側部
2c、3b 屋根板
3 外槽
20 側板(母材)
21 垂直端部
22 水平端部
30 溶接金属部
30a 溶融プール
E1, E2 Welding torch J Welded part W1, W2 Welding wire 1 Low temperature tank 2 Inner tank 2a Bottom plate 2b, 3a Side part 2c, 3b Roof plate 3 Outer tank 20 Side plate (base material)
21 Vertical end portion 22 Horizontal end portion 30 Weld metal portion 30a Molten pool

Claims (5)

質量パーセントで55%以上のNiを含有し且つオーステナイト構造を有するNi基合金を溶接材料に用い、質量パーセントで3%以上15%以下のNiを含有し且つフェライト構造を有する一対のNi鋼板を突き合わせ溶接する方法であって、
前記一対のNi鋼板により構成される突き合わせ部の表裏両側に溶接電極を配置し、少なくとも初層の溶接を、直流棒マイナスの極性で前記突き合わせ部の表裏両面から同時に行うことを特徴とする、Ni鋼板の突き合わせ溶接方法。
A Ni-based alloy containing 55% or more Ni in mass percent and having an austenite structure is used as a welding material, and a pair of Ni steel plates containing 3% or more and 15% or less Ni in mass percent and having a ferrite structure are butt-matched A method of welding,
The welding electrodes are arranged on both front and back sides of the butt portion constituted by the pair of Ni steel plates, and at least the first layer is welded simultaneously from both the front and back surfaces of the butt portion with a negative polarity of a DC rod, Ni Butt welding method for steel plates.
質量パーセントで55%以上のNiを含有し且つオーステナイト構造を有するNi基合金を溶接材料に用い、質量パーセントで3%以上15%以下のNiを含有し且つフェライト構造を有する一対のNi鋼板を突き合わせ溶接する方法であって、
前記一対のNi鋼板により構成される突き合わせ部の表裏両側に溶接電極を配置し、少なくとも初層の溶接を、前記溶接電極の極性を交流として前記突き合わせ部の表裏両面から同時に行うことを特徴とする、Ni鋼板の突き合わせ溶接方法。
A Ni-based alloy containing 55% or more Ni in mass percent and having an austenite structure is used as a welding material, and a pair of Ni steel plates containing 3% or more and 15% or less Ni in mass percent and having a ferrite structure are butt-matched A method of welding,
Welding electrodes are arranged on both front and back sides of the butt portion constituted by the pair of Ni steel plates, and welding of at least the first layer is simultaneously performed from both the front and back surfaces of the butt portion using the polarity of the welding electrode as an alternating current. A butt welding method for Ni steel sheets.
前記溶接を横向き姿勢で行う、請求項1または2に記載のNi鋼板の突き合わせ溶接方法。   The butt welding method for Ni steel sheets according to claim 1 or 2, wherein the welding is performed in a lateral orientation. 前記溶接はサブマージアーク溶接である、請求項1〜3のいずれか1項に記載のNi鋼板の突き合わせ溶接方法。   The butt welding method for Ni steel sheets according to any one of claims 1 to 3, wherein the welding is submerged arc welding. 前記一対のNi鋼板は、液化ガスを貯蔵するための低温タンクの側部を構成するものである、請求項1〜4のいずれか1項に記載のNi鋼板の突き合わせ溶接方法。   The pair of Ni steel plates is a butt welding method for Ni steel plates according to any one of claims 1 to 4, which constitutes a side portion of a low-temperature tank for storing liquefied gas.
JP2013267877A 2013-12-25 2013-12-25 BUTTING WELDING METHOD OF Ni STEEL PLATE Pending JP2015123457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013267877A JP2015123457A (en) 2013-12-25 2013-12-25 BUTTING WELDING METHOD OF Ni STEEL PLATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013267877A JP2015123457A (en) 2013-12-25 2013-12-25 BUTTING WELDING METHOD OF Ni STEEL PLATE

Publications (1)

Publication Number Publication Date
JP2015123457A true JP2015123457A (en) 2015-07-06

Family

ID=53534592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013267877A Pending JP2015123457A (en) 2013-12-25 2013-12-25 BUTTING WELDING METHOD OF Ni STEEL PLATE

Country Status (1)

Country Link
JP (1) JP2015123457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003461A (en) * 2016-07-04 2018-01-11 川崎重工業株式会社 Inner tank side plate building method of flat-bottomed cylindrical tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003461A (en) * 2016-07-04 2018-01-11 川崎重工業株式会社 Inner tank side plate building method of flat-bottomed cylindrical tank

Similar Documents

Publication Publication Date Title
US20080057341A1 (en) Wire, flux and process for welding steel having a high nickel content
CN104191072A (en) Welding method of stainless steel clad plate
CN102699493B (en) Carbon dioxide (CO2) gas shielded welding vertical downwards welding method for waste heat boiler heat pipe and connecting plate
CN102699484A (en) Method for welding titanium composites for titanium-steel composite plates
US10792769B2 (en) Welding flux for duplex stainless steel
CN108080773A (en) A kind of all positon ultra-narrow gap high frequency heated filament TIG weld method of multiple tube
CN110369837A (en) A kind of welding procedure of super-duplex stainless steel and super austenitic stainless steel
CN106041309A (en) A kind of welding method of Q420 high strength steel
TWI629134B (en) Submerged arc welding method on both sides
JP2014172063A (en) Submerged arc weld method, method for manufacturing steel pipe by using this submerged arc weld method, weld joint and steel pipe having this weld joint
JP5949539B2 (en) Electrogas arc welding method
Lezzi et al. The development of conventional welding processes in naval construction
CN107252955B (en) The welding procedure of offshore wind farm jacket basis bracket
JP2015123457A (en) BUTTING WELDING METHOD OF Ni STEEL PLATE
CN110722252B (en) Method for assembling and positioning composite joint and aluminum alloy light enclosure wall
JP6257508B2 (en) Flux-cored wire and welded joint manufacturing method
JP2001038472A (en) Welding method of stainless steel clad plate
JPH0623553A (en) Manufacture of welded steel tube
CN112276387A (en) Double-side welding process method for dual-phase steel explosion-proof wall
CN105127567B (en) Welding method of chrome-molybdenum vanadium steel for super-thick pressure vessels
JPH067934A (en) Method for seal-welding end of double tubes
JP5579316B1 (en) Welding method and welded structure
CN108127276B (en) Welding method of zirconium alloy pressure container
CN107538142A (en) A kind of welding procedure of ERW
CN104148788A (en) Small-diameter pipe inner wall consumable electrode nickel base alloy anti-corrosion build up welding method