JP2015119176A - Composition for solar battery electrode formation, and electrode manufactured by use thereof - Google Patents

Composition for solar battery electrode formation, and electrode manufactured by use thereof Download PDF

Info

Publication number
JP2015119176A
JP2015119176A JP2014230794A JP2014230794A JP2015119176A JP 2015119176 A JP2015119176 A JP 2015119176A JP 2014230794 A JP2014230794 A JP 2014230794A JP 2014230794 A JP2014230794 A JP 2014230794A JP 2015119176 A JP2015119176 A JP 2015119176A
Authority
JP
Japan
Prior art keywords
mass
composition
solar cell
cell electrode
glass frit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014230794A
Other languages
Japanese (ja)
Other versions
JP6605800B2 (en
Inventor
錫 鉉 鄭
Seok Hyun Jung
錫 鉉 鄭
永 起 朴
Young Ki Park
永 起 朴
東 ▲せき▼ 金
Dong-Joek Kim
東 ▲せき▼ 金
周 熙 金
Ju Hee Kim
周 熙 金
▲びん▼ 秀 朴
Min-Su Park
▲びん▼ 秀 朴
君 浩 金
Koon Ho Kim
君 浩 金
▲びん▼ 載 金
Min Jae Kim
▲びん▼ 載 金
碩 徹 金
Seak Cheol Kim
碩 徹 金
相 賢 梁
Sang Hyun Yang
相 賢 梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2015119176A publication Critical patent/JP2015119176A/en
Application granted granted Critical
Publication of JP6605800B2 publication Critical patent/JP6605800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a composition for solar battery electrode formation which makes possible to solve the problem that a sufficient adhesive force cannot be ensured between a ribbon and an electrode manufactured by a conventional composition for solar battery electrode formation including flexible glass frit.SOLUTION: A composition for solar battery electrode formation comprises: silver powder; glass frit; and an organic vehicle. The glass frit includes bismuth (Bi), tellurium (Te) and chromium (Cr) elements. A solar battery electrode manufactured by the composition for solar battery electrode formation has a series resistance(Rs) minimized to achieve a superior conversion efficiency, and is superior in the strength of bonding with a ribbon.

Description

本発明は、太陽電池電極形成用組成物およびこれにより製造された電極に関する。   The present invention relates to a composition for forming a solar cell electrode and an electrode produced thereby.

太陽電池は、太陽光のフォトン(photon)を電気に変換させるpn接合の光電効果を用いて電気エネルギーを発生させる。太陽電池は、pn接合が構成される半導体ウエハ又は基板の上・下面にそれぞれ前面電極と後面電極が形成されている。太陽電池は、半導体ウエハに入射される太陽光によってpn接合の光電効果が誘導され、これにより発生した電子が電極を通じて外部に流れる電流を提供する。このような太陽電池の電極は、電極用ペースト組成物の塗布、パターニングおよび焼成によって、ウエハ表面に形成できる(例えば、特許文献1参照)。   Solar cells generate electrical energy using the photoelectric effect of a pn junction that converts photons of sunlight into electricity. In a solar cell, a front electrode and a rear electrode are respectively formed on the upper and lower surfaces of a semiconductor wafer or substrate on which a pn junction is formed. In a solar cell, a photoelectric effect of a pn junction is induced by sunlight incident on a semiconductor wafer, and an electron generated thereby provides a current that flows to the outside through an electrode. The electrode of such a solar cell can be formed on the wafer surface by application of an electrode paste composition, patterning, and baking (see, for example, Patent Document 1).

近年、太陽電池の効率を増加させるためにエミッター(emitter)の厚さが持続的に薄くなっていることにより、太陽電池の性能を低下させ得るシャンティング(shunting)現象を誘発させ得る。また、太陽電池の効率を増加させるために、太陽電池の面積を徐々に増加させているが、これは太陽電池の接触抵抗を高めて太陽電池の効率を減少させ得る。   In recent years, the thickness of the emitter has been continuously reduced in order to increase the efficiency of the solar cell, which can induce a shunting phenomenon that can degrade the performance of the solar cell. In addition, in order to increase the efficiency of the solar cell, the area of the solar cell is gradually increased, but this can increase the contact resistance of the solar cell and decrease the efficiency of the solar cell.

また、太陽電池を構成するセル(cell)は、太陽電池用のリボン(ないしリボン線;インターコネクタ、バスバー、セル連結用板、セル結合板、リボン状のタブ線(導電性ワイヤ(例えば、銅線)の織物若しくは編物)、リボンワイヤ等)で相互連結されるが、電極とリボンの接着力が良くない場合は、直列抵抗が大きく、変換効率が低下するおそれがある。   In addition, a cell constituting a solar cell includes a ribbon for a solar cell (or ribbon wire; an interconnector, a bus bar, a cell connecting plate, a cell coupling plate, a ribbon-like tab wire (conductive wire (for example, copper Wire) woven or knitted), ribbon wire, etc.), but if the adhesion between the electrode and the ribbon is not good, the series resistance is large and the conversion efficiency may be reduced.

本発明者は、従来の柔軟ガラスフリットを含む太陽電池電極形成用組成物で製造された電極とリボンの接着力が十分に確保されていない点に着目して、これを改善しようと、本発明を完成するに至った。   The present inventor has paid attention to the fact that the adhesive force between an electrode and a ribbon manufactured with a composition for forming a solar cell electrode containing a conventional flexible glass frit is not sufficiently secured, and to improve the present invention, It came to complete.

特表2013−504152号公報Special table 2013-504152 gazette

本発明の目的は、直列抵抗(Rs)を最小化できる太陽電池電極形成用組成物を提供することである。   The objective of this invention is providing the composition for solar cell electrode formation which can minimize series resistance (Rs).

本発明の別の目的は、フィルファクターおよび変換効率に優れた太陽電池電極を提供することである。   Another object of the present invention is to provide a solar cell electrode excellent in fill factor and conversion efficiency.

本発明のまた別の目的は、電極とリボンの接着強度に優れた太陽電池電極形成用組成物を提供することである。   Another object of the present invention is to provide a composition for forming a solar cell electrode having excellent adhesive strength between an electrode and a ribbon.

本発明の前記およびその他の目的は、下記で説明する本発明によって全て達成することができる。   The above and other objects of the present invention can all be achieved by the present invention described below.

本発明の一つの観点は、銀粉末;ガラスフリット;および有機ビヒクルを含み、前記ガラスフリットは、ビスマス(Bi)、テルル(Te)およびクロム(Cr)元素を含むことを特徴とする太陽電池電極形成用組成物に関することである。   One aspect of the present invention includes a silver powder; a glass frit; and an organic vehicle, wherein the glass frit includes bismuth (Bi), tellurium (Te), and chromium (Cr) elements. It relates to a forming composition.

前記クロム(Cr)と前記テルル(Te)のモル比(Cr:Te)は、1:1ないし1:80でもよい。   The molar ratio (Cr: Te) of chromium (Cr) to tellurium (Te) may be 1: 1 to 1:80.

前記ガラスフリットは、鉛(Pb)、リチウム(Li)、亜鉛(Zn)、タングステン(W)、リン(P)、ケイ素(Si)、マグネシウム(Mg)、セリウム(Ce)、ストロンチウム(Sr)、モリブデン(Mo)、チタン(Ti)、スズ(Sn)、インジウム(In)、バナジウム(V)、バリウム(Ba)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、カリウム(K)、アンチモン(Sb)、ゲルマニウム(Ge)、ガリウム(Ga)、カルシウム(Ca)、ヒ素(As)、コバルト(Co)、ジルコニウム(Zr)、マンガン(Mn)、アルミニウム(Al)、およびホウ素(B)よりなる群から選ばれてなる一つ以上の元素をさらに含んでもよい。   The glass frit includes lead (Pb), lithium (Li), zinc (Zn), tungsten (W), phosphorus (P), silicon (Si), magnesium (Mg), cerium (Ce), strontium (Sr), Molybdenum (Mo), titanium (Ti), tin (Sn), indium (In), vanadium (V), barium (Ba), nickel (Ni), copper (Cu), sodium (Na), potassium (K), Antimony (Sb), germanium (Ge), gallium (Ga), calcium (Ca), arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn), aluminum (Al), and boron (B) It may further contain one or more elements selected from the group consisting of:

前記ガラスフリットは、鉛(Pb)元素をガラスフリット全重量に対して5モル%ないし50モル%さらに含んでもよい。   The glass frit may further include 5 mol% to 50 mol% of lead (Pb) element with respect to the total weight of the glass frit.

前記ガラスフリットは、ビスマス酸化物5質量%ないし30質量%;テルル酸化物(酸化テルル)40質量%ないし80質量%;クロム酸化物1質量%ないし15質量%、および第4金属酸化物1質量%ないし50質量%を含む酸化金属混合物から製造されたものでもよい。   The glass frit comprises 5% to 30% by weight of bismuth oxide; 40% to 80% by weight of tellurium oxide (tellurium oxide); 1% to 15% by weight of chromium oxide, and 1% by weight of fourth metal oxide. It may be produced from a metal oxide mixture containing from 50% to 50% by weight.

前記第4金属酸化物は、鉛(Pb)、リチウム(Li)、亜鉛(Zn)、タングステン(W)、リン(P)、ケイ素(Si)、マグネシウム(Mg)、セリウム(Ce)、ストロンチウム(Sr)、モリブデン(Mo)、チタン(Ti)、スズ(Sn)、インジウム(In)、バナジウム(V)、バリウム(Ba)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、カリウム(K)、アンチモン(Sb)、ゲルマニウム(Ge)、ガリウム(Ga)、カルシウム(Ca)、ヒ素(As)、コバルト(Co)、ジルコニウム(Zr)、マンガン(Mn)、アルミニウム(Al)、およびホウ素(B)の一つ以上の金属の酸化物を含んでもよい。   The fourth metal oxide includes lead (Pb), lithium (Li), zinc (Zn), tungsten (W), phosphorus (P), silicon (Si), magnesium (Mg), cerium (Ce), strontium ( Sr), molybdenum (Mo), titanium (Ti), tin (Sn), indium (In), vanadium (V), barium (Ba), nickel (Ni), copper (Cu), sodium (Na), potassium ( K), antimony (Sb), germanium (Ge), gallium (Ga), calcium (Ca), arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn), aluminum (Al), and boron One or more metal oxides of (B) may be included.

前記第4金属酸化物は、前記酸化金属混合物の全質量に対して、酸化リチウム1質量%ないし10質量%、酸化亜鉛1質量%ないし10質量%、および酸化タングステン1質量%ないし10質量%を含んでもよい。   The fourth metal oxide comprises 1% by mass to 10% by mass of lithium oxide, 1% by mass to 10% by mass of zinc oxide, and 1% by mass to 10% by mass of tungsten oxide based on the total mass of the metal oxide mixture. May be included.

前記第4金属酸化物は、前記酸化金属混合物の全質量に対して、酸化鉛(PbO)を15質量%ないし50質量%含んでもよい。   The fourth metal oxide may include 15% by mass to 50% by mass of lead oxide (PbO) with respect to the total mass of the metal oxide mixture.

前記組成物は、前記銀粉末60質量%ないし95質量%;前記ガラスフリット0.5質量%ないし20質量%;および前記有機ビヒクル1質量%ないし30質量%;を含んでもよい。   The composition may include 60% to 95% by weight of the silver powder; 0.5% to 20% by weight of the glass frit; and 1% to 30% by weight of the organic vehicle.

前記ガラスフリットは、平均粒径(D50;メディアン径)が0.1μmないし10μmでもよい。   The glass frit may have an average particle diameter (D50; median diameter) of 0.1 μm to 10 μm.

前記組成物は、分散剤、揺変剤(チクソトロピック剤)、可塑剤、粘度安定化剤、消泡剤、顔料、紫外線安定剤、酸化防止剤およびカップリング剤よりなる群から選ばれてなる一つ以上の添加剤をさらに含んでもよい。   The composition is selected from the group consisting of a dispersant, a thixotropic agent, a plasticizer, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet stabilizer, an antioxidant, and a coupling agent. One or more additives may further be included.

前記有機ビヒクルは、バインダー樹脂を含み、前記バインダー樹脂の重量平均分子量(Mw)は、30,000g/molないし200,000g/molでもよい。   The organic vehicle may include a binder resin, and the binder resin may have a weight average molecular weight (Mw) of 30,000 g / mol to 200,000 g / mol.

前記組成物は、粘度が100,000cpsないし500,000cpsでもよい。   The composition may have a viscosity of 100,000 cps to 500,000 cps.

本発明の別の観点である太陽電池電極は、前記太陽電池電極形成用組成物から形成できる。   The solar cell electrode which is another viewpoint of this invention can be formed from the said composition for solar cell electrode formation.

本発明の太陽電池電極形成用組成物で製造された太陽電池電極は,直列抵抗(Rs)が最小化されてフィルファクターおよび変換効率に優れ、リボンとの接着強度が優れている。   The solar cell electrode manufactured with the composition for forming a solar cell electrode of the present invention has a low series resistance (Rs), an excellent fill factor and conversion efficiency, and an excellent adhesive strength with a ribbon.

本発明の一実施形態にかかる太陽電池の構造を簡略に図示した概略図である。It is the schematic which illustrated the structure of the solar cell concerning one Embodiment of this invention simply.

<太陽電池電極形成用組成物>
本発明の太陽電池電極形成用組成物(以下、単に組成物ともいう)は、銀粉末;ビスマス(Bi)、テルル(Te)およびクロム(Cr)元素を含むガラスフリット;および有機ビヒクルを含む太陽電池電極形成用組成物であって、直列抵抗(Rs)が最小化されるためフィルファクターおよび変換効率が優れ、太陽電池セル(cell)を連結するリボンとの接着強度に優れる。
<Solar cell electrode forming composition>
The composition for forming a solar cell electrode of the present invention (hereinafter also simply referred to as a composition) includes a silver powder; a glass frit containing bismuth (Bi), tellurium (Te) and chromium (Cr) elements; and a sun containing an organic vehicle. It is a composition for battery electrode formation, and since the series resistance (Rs) is minimized, the fill factor and the conversion efficiency are excellent, and the adhesive strength with the ribbon connecting the solar cells (cells) is excellent.

以下、本発明を詳しく説明する。   The present invention will be described in detail below.

(A)銀粉末
本発明の太陽電池電極形成用組成物は、導電性粉末として銀(Ag)粉末を使用する。前記銀粉末は、ナノサイズ又はマイクロサイズの粒径を有する粉末でもよいが、例えば、数十ないし数百ナノメーターの大きさの銀粉末、数ないし数十マイクロメーターの銀粉末でもよく、2以上の相違する大きさを有する銀粉末を混合して使用することもできる。
(A) Silver powder The composition for solar cell electrode formation of this invention uses silver (Ag) powder as electroconductive powder. The silver powder may be a powder having a nano-size or micro-size particle size, for example, a silver powder having a size of several tens to several hundred nanometers, or a silver powder having several tens to several tens of micrometers, and two or more Silver powders having different sizes can be mixed and used.

銀粉末は、粒子形状が球形、板状、無定形形状を有してもよい。   The silver powder may have a spherical shape, a plate shape, or an amorphous shape.

本実施形態(一具体例)において、前記銀粉末の平均粒径(D50)は、0.1μmないし10μmでもよい。例えば、0.5μmないし5μmでもよい。前記平均粒径は、イソプロピルアルコール(IPA)に導電性粉末である銀(Ag)粉末を超音波で25℃で3分間分散させた後、CILAS社で製作した1064LDモデルを使用して測定されたものである。前記銀粉末の平均粒径が前記範囲内であれば、接触抵抗と線抵抗が低くなるという効果を有することができる。   In the present embodiment (one specific example), the average particle diameter (D50) of the silver powder may be 0.1 μm to 10 μm. For example, it may be 0.5 μm to 5 μm. The average particle size was measured using a 1064LD model manufactured by CILAS after dispersing silver (Ag) powder, which is a conductive powder, in isopropyl alcohol (IPA) at 25 ° C. for 3 minutes by ultrasonic waves. Is. If the average particle diameter of the silver powder is within the above range, the contact resistance and the line resistance can be reduced.

前記銀粉末は、組成物の全質量に対して60質量%ないし95質量%で含むことができる。前記銀粉末が、組成物全質量に対して前記範囲内であれば、抵抗の増加により変換効率が低くなることを防ぐことができる。例えば、70質量%ないし90質量%で含んでもよい。本実施形態(具体例)において、前記銀粉末は、組成物の全質量に対して、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94又は95質量%で含んでもよい。   The silver powder may be included at 60 mass% to 95 mass% with respect to the total mass of the composition. When the silver powder is within the above range with respect to the total mass of the composition, it is possible to prevent the conversion efficiency from being lowered due to an increase in resistance. For example, it may be included at 70 mass% to 90 mass%. In this embodiment (specific example), the silver powder is 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73 with respect to the total mass of the composition. 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95% by mass. .

(B)ビスマス(Bi)、テルル(Te)およびクロム(Cr)元素を含むガラスフリット
ガラスフリット(glass frit)は、電極ペースト(太陽電池電極形成用組成物)の焼成工程中に反射防止膜をエッチング(etching)し、銀粒子(銀粉末)を溶融させて抵抗が低くなるようにエミッタ領域に銀結晶粒子を生成させ、伝導性粉末(導電性粉末)とウエハ間の接着力を向上させ、焼結時に軟化して焼成温度をより下げる効果を誘導する。
(B) Glass frit containing bismuth (Bi), tellurium (Te) and chromium (Cr) elements A glass frit is used as an antireflective coating during the baking process of an electrode paste (a composition for forming a solar cell electrode). Etching to produce silver crystal particles in the emitter region so that the resistance is lowered by melting silver particles (silver powder), improving the adhesion between the conductive powder (conductive powder) and the wafer, It softens during sintering and induces the effect of lowering the firing temperature.

太陽電池の変換効率(Efficiency)を増加させるために太陽電池の面積を増加させると、太陽電池の接触抵抗が高くなり得るため、pn接合(pn junction)に対する被害を最小化すると同時に直列抵抗(Rs)を最小化し、開放電圧(Voc)を最小化させることが有利である。また、多様な面抵抗のウエハの増加によって焼成温度の変動幅が大きくなるため、広い焼成温度でも熱安定性を十分に確保できるガラスフリットを使用することが好ましい。   Increasing the area of the solar cell to increase the conversion efficiency of the solar cell can increase the contact resistance of the solar cell, thus minimizing damage to the pn junction and simultaneously reducing the series resistance (Rs). ) To minimize the open circuit voltage (Voc). In addition, since the variation range of the firing temperature is increased by increasing the number of wafers having various surface resistances, it is preferable to use a glass frit that can sufficiently ensure thermal stability even at a wide firing temperature.

さらに、太陽電池を構成するセル(cell)は、リボンによって相互連結されるが、リボンと接着される太陽電池電極の接着強度(adhesion strength)が十分に確保されないと、セル(cell)が脱落したり信頼性が低下するおそれがある。   Furthermore, the cells constituting the solar cell are interconnected by a ribbon. However, if the adhesion strength of the solar cell electrode bonded to the ribbon is not sufficiently secured, the cell is dropped. Reliability may be reduced.

本発明では、前記の太陽電池電極の電気的特性と接着強度のような物理的特性を同時に確保するために、ビスマス(Bi)、テルル(Te)及びクロム(Cr)元素を含むガラスフリットを導入した。   In the present invention, a glass frit containing bismuth (Bi), tellurium (Te) and chromium (Cr) elements is introduced in order to simultaneously secure the electrical characteristics and physical characteristics such as adhesive strength of the solar cell electrode. did.

本発明の実施形態(別の具体例)において、前記クロム(Cr)対前記テルル(Te)のモル比は、1:1ないし1:80でもよい。前記モル比の範囲内であれば、リボンと接着される太陽電池電極の接着強度および変換効率に優れ、低い直列抵抗および接触抵抗を確保することができる。本実施形態(具体例)では、前記モル比は、1:1ないし1:40でもよい。例えば、前記モル比は、1:5ないし1:35でもよい。   In an embodiment of the present invention (another specific example), the molar ratio of the chromium (Cr) to the tellurium (Te) may be 1: 1 to 1:80. If it is in the range of the molar ratio, it is excellent in the adhesive strength and conversion efficiency of the solar cell electrode bonded to the ribbon, and low series resistance and contact resistance can be ensured. In this embodiment (specific example), the molar ratio may be 1: 1 to 1:40. For example, the molar ratio may be 1: 5 to 1:35.

本実施形態(具体例)において、前記ガラスフリットは、ビスマス(Bi)、テルル(Te)およびクロム(Cr)元素以外に、鉛(Pb)、リチウム(Li)、亜鉛(Zn)、タングステン(W)、リン(P)、ケイ素(Si)、マグネシウム(Mg)、セリウム(Ce)、ストロンチウム(Sr)、モリブデン(Mo)、チタン(Ti)、スズ(Sn)、インジウム(In)、バナジウム(V)、バリウム(Ba)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、カリウム(K)、アンチモン(Sb)、ゲルマニウム(Ge)、ガリウム(Ga)、カルシウム(Ca)、ヒ素(As)、コバルト(Co)、ジルコニウム(Zr)、マンガン(Mn)、アルミニウム(Al)およびホウ素(B)よりなる群から選ばれてなる一つ以上の元素をさらに含んでもよい。   In this embodiment (specific example), the glass frit includes lead (Pb), lithium (Li), zinc (Zn), tungsten (W) in addition to bismuth (Bi), tellurium (Te), and chromium (Cr) elements. ), Phosphorus (P), silicon (Si), magnesium (Mg), cerium (Ce), strontium (Sr), molybdenum (Mo), titanium (Ti), tin (Sn), indium (In), vanadium (V ), Barium (Ba), nickel (Ni), copper (Cu), sodium (Na), potassium (K), antimony (Sb), germanium (Ge), gallium (Ga), calcium (Ca), arsenic (As ), Cobalt (Co), zirconium (Zr), manganese (Mn), aluminum (Al) and boron (B). Element may further comprise a.

特に、本発明のガラスフリットは、ビスマス(Bi)、テルル(Te)、及びクロム(Cr)元素以外に、鉛(Pb)元素を、前記ガラスフリットの全重量に対して、5モル%ないし50モル%含有してもよい。この場合、工程性(Process window)の面で優れた効果を有することができる。本実施形態(具体例)において、前記鉛(Pb)元素は、前記ガラスフリットの全重量に対して、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49又は50モル%含有してもよい。   In particular, the glass frit of the present invention contains lead (Pb) element in addition to bismuth (Bi), tellurium (Te), and chromium (Cr) elements in an amount of 5 mol% to 50% with respect to the total weight of the glass frit. You may contain mol%. In this case, it is possible to have an excellent effect in terms of processability. In this embodiment (specific example), the lead (Pb) element is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 with respect to the total weight of the glass frit. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 42, 43, 44, 45, 46, 47, 48, 49 or 50 mol%.

前記ガラスフリットは、ビスマス酸化物、テルル酸化物、クロム酸化物および第4金属酸化物を含む酸化金属混合物から製造されたものでもよい。   The glass frit may be manufactured from a metal oxide mixture including bismuth oxide, tellurium oxide, chromium oxide and a fourth metal oxide.

本実施形態(具体例)において、前記第4金属酸化物は、鉛(Pb)、リチウム(Li)、亜鉛(Zn)、タングステン(W)、リン(P)、ケイ素(Si)、マグネシウム(Mg)、セリウム(Ce)、ストロンチウム(Sr)、モリブデン(Mo)、チタン(Ti)、スズ(Sn)、インジウム(In)、バナジウム(V)、バリウム(Ba)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、カリウム(K)、アンチモン(Sb)、ゲルマニウム(Ge)、ガリウム(Ga)、カルシウム(Ca)、ヒ素(As)、コバルト(Co)、ジルコニウム(Zr)、マンガン(Mn)、アルミニウム(Al)およびホウ素(B)から選ばれた一つ以上の金属の酸化物を含んでもよい。   In the present embodiment (specific example), the fourth metal oxide is lead (Pb), lithium (Li), zinc (Zn), tungsten (W), phosphorus (P), silicon (Si), magnesium (Mg). ), Cerium (Ce), strontium (Sr), molybdenum (Mo), titanium (Ti), tin (Sn), indium (In), vanadium (V), barium (Ba), nickel (Ni), copper (Cu) ), Sodium (Na), potassium (K), antimony (Sb), germanium (Ge), gallium (Ga), calcium (Ca), arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn) ), One or more metal oxides selected from aluminum (Al) and boron (B).

本実施形態(一具体例)において、前記酸化金属混合物は、ビスマス酸化物5質量%ないし30質量%;テルル酸化物40質量%ないし80質量%;クロム酸化物1質量%ないし15質量%、および第4金属酸化物1質量%ないし50質量%を含んでもよい。前記範囲で優れた変換効率(Efficiency)および接着強度(Adhesion Strength)を同時に確保することができる。   In this embodiment (one specific example), the metal oxide mixture comprises 5% to 30% by weight of bismuth oxide; 40% to 80% by weight of tellurium oxide; 1% to 15% by weight of chromium oxide, and The fourth metal oxide may contain 1% by mass to 50% by mass. Excellent conversion efficiency (Efficiency) and adhesion strength (Adhesion Strength) can be simultaneously secured within the above range.

本実施形態(具体例)において、前記第4金属酸化物は、前記酸化金属混合物の全質量に対して、酸化鉛(PbO)を15質量%ないし50質量%含んでもよい。前記範囲で含む場合、工程性(Process window)の面で優れた効果を有することができる。本実施形態(具体例)において、前記第4金属酸化物は、前記酸化金属混合物の全質量に対して、前記酸化鉛を、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49又は50質量%含有してもよい。   In this embodiment (specific example), the fourth metal oxide may include 15% by mass to 50% by mass of lead oxide (PbO) with respect to the total mass of the metal oxide mixture. When it is contained in the above range, it can have an excellent effect in terms of processability. In this embodiment (specific example), the fourth metal oxide contains 15, 16, 17, 18, 19, 20, 21, 22, 22, 23 with respect to the total mass of the metal oxide mixture. 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 49 or 50% by mass.

本実施形態(具体例)において、前記第4金属酸化物は、前記酸化金属混合物の全質量に対して、酸化リチウム(LiO)1質量%ないし10質量%、酸化亜鉛(ZnO)1質量%ないし10質量%、および酸化タングステン(WO)1質量%ないし10質量%を含んでもよい。前記範囲で優れた変換効率および接着強度を同時に確保することができる。本実施形態(具体例)において、前記ガラスフリットは、ビスマス酸化物5質量%ないし30質量%;テルル酸化物(酸化テルル)40質量%ないし80質量%;クロム酸化物1質量%ないし15質量%、酸化リチウム(LiO)1質量%ないし10質量%、酸化亜鉛(ZnO)1質量%ないし10質量%、および酸化タングステン(WO)1質量%ないし10質量%を含む酸化金属混合物から製造されたものでもよい。 前記範囲で優れた変換効率および接着強度を同時に確保することができる。 In the present embodiment (specific example), the fourth metal oxide is 1% by mass to 10% by mass of lithium oxide (Li 2 O) and 1% by mass of zinc oxide (ZnO) with respect to the total mass of the metal oxide mixture. % To 10% by mass, and tungsten oxide (WO 3 ) 1% to 10% by mass. Within the above range, excellent conversion efficiency and adhesive strength can be secured at the same time. In the present embodiment (specific example), the glass frit comprises bismuth oxide 5 mass% to 30 mass%; tellurium oxide (tellurium oxide) 40 mass% to 80 mass%; chromium oxide 1 mass% to 15 mass%. Manufactured from a metal oxide mixture comprising 1% to 10% by weight of lithium oxide (Li 2 O), 1% to 10% by weight of zinc oxide (ZnO), and 1% to 10% by weight of tungsten oxide (WO 3 ) It may be done. Within the above range, excellent conversion efficiency and adhesive strength can be secured at the same time.

前記ガラスフリットは、通常の方法を用いて前記の金属酸化物から製造することができる。例えば、前記の金属酸化物の組成で混合する。前記混合は、ボールミル(ball mill)又はプラネタリーミル(planetary mill)を使用して混合することができる。次に、混合された組成物を900℃ないし1300℃の条件で溶融させ、25℃でクエンチング(quenching)する。得た結果物をディスクミル(disk mill)、プラネタリーミル等によって粉砕してガラスフリットを得ることができる。   The glass frit can be produced from the metal oxide using a conventional method. For example, it mixes with the composition of the said metal oxide. The mixing can be performed using a ball mill or a planetary mill. Next, the mixed composition is melted at 900 ° C. to 1300 ° C. and quenched at 25 ° C. The obtained product can be pulverized by a disk mill, a planetary mill or the like to obtain a glass frit.

本実施形態(具体例)において、前記ガラスフリットは、平均粒径(D50;メディアン径)が0.1μmないし10μmであるものを使用することができる。本発明において、前記ガラスフリットの形状は、球形や不定形でも構わない。   In this embodiment (specific example), the glass frit having an average particle diameter (D50; median diameter) of 0.1 μm to 10 μm can be used. In the present invention, the glass frit may have a spherical shape or an indefinite shape.

本実施形態(具体例)において、前記ガラスフリットは、組成物の全質量を基準に0.5質量%ないし20質量%含むことができる。前記範囲で含まれると、多様な面抵抗下で接着強度および変換効率に優れ、直列抵抗値を最小化させることができ、最終的に太陽電池の効率を改善することができる。本実施形態(具体例)において、前記ガラスフリットは、前記組成物の全質量を基準に、0.5、1、1.5、2、2.5、3、3.5、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19又は20質量%含んでもよい。   In this embodiment (specific example), the glass frit may include 0.5% by mass to 20% by mass based on the total mass of the composition. When included in the above range, the adhesive strength and the conversion efficiency are excellent under various surface resistances, the series resistance value can be minimized, and finally the efficiency of the solar cell can be improved. In this embodiment (specific example), the glass frit is 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, based on the total mass of the composition. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20% by mass may be included.

(C)有機ビヒクル
有機ビヒクルは、太陽電池電極形成用組成物の無機成分と機械的混合を通じて、ペースト組成物(太陽電池電極形成用組成物)に印刷に適した粘度および流変学的特性を付与する。
(C) Organic vehicle The organic vehicle has a viscosity and rheological characteristics suitable for printing on a paste composition (solar cell electrode forming composition) through mechanical mixing with inorganic components of the solar cell electrode forming composition. Give.

前記有機ビヒクルは、通常の太陽電池電極形成用組成物に使用される有機ビヒクルが使用され得るが、通常、バインダー樹脂と溶媒等を含むことができる。   As the organic vehicle, an organic vehicle used in a normal composition for forming a solar cell electrode may be used, but a binder resin, a solvent, and the like can usually be included.

前記バインダー樹脂としては、アクリレート系またはセルロース系樹脂等を使用でき、エチルセルロースが一般的に使用される樹脂である。ただし、これらに制限されるものではなく、エチルヒドロキシエチルセルロース、ニトロセルロース、エチルセルロースとフェノール樹脂の混合物、アルキド樹脂、フェノール系樹脂、アクリル酸エステル系樹脂、キシレン系樹脂、ポリブテン系樹脂、ポリエステル系樹脂、尿素系樹脂、メラミン系樹脂、酢酸ビニル系樹脂、木材ロジン(rosin)又はアルコールのポリメタクリレート等を使用することもできる。   As the binder resin, an acrylate-based or cellulose-based resin can be used, and ethyl cellulose is generally used. However, it is not limited thereto, ethyl hydroxyethyl cellulose, nitrocellulose, a mixture of ethyl cellulose and phenol resin, alkyd resin, phenol resin, acrylate resin, xylene resin, polybutene resin, polyester resin, Urea resins, melamine resins, vinyl acetate resins, wood rosins, alcohol polymethacrylates, and the like can also be used.

本実施形態(具体例)において、前記バインダー樹脂の重量平均分子量(Mw)は、30,000g/molないし200,000g/molでもよい。前記バインダー樹脂の重量平均分子量(Mw)が前記範囲内の場合、印刷性の面で優れた効果を有することができる。例えば、40,000g/molないし150,000g/molでもよい。   In the present embodiment (specific example), the binder resin may have a weight average molecular weight (Mw) of 30,000 g / mol to 200,000 g / mol. When the weight average molecular weight (Mw) of the binder resin is within the above range, an excellent effect can be obtained in terms of printability. For example, it may be 40,000 g / mol to 150,000 g / mol.

前記溶媒としては、例えば、ヘキサン、トルエン、エチルセロソルブ、シクロヘキサノン、ブチルセロソルブ、ブチルカルビトール(ジエチレングリコールモノブチルエーテル)、ジブチルカルビトール(ジエチレングリコールジブチルエーテル)、ブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート)、プロピレングリコールモノメチルエーテル、ヘキシレングリコール、テルピネオール(Terpineol)、メチルエチルケトン、ベンジルアルコール、ガンマブチロラクトン又は乳酸エチル等を単独あるいは2種以上混合して使用してもよい。   Examples of the solvent include hexane, toluene, ethyl cellosolve, cyclohexanone, butyl cellosolve, butyl carbitol (diethylene glycol monobutyl ether), dibutyl carbitol (diethylene glycol dibutyl ether), butyl carbitol acetate (diethylene glycol monobutyl ether acetate), and propylene glycol monomethyl. Ether, hexylene glycol, terpineol, terpeneol, methyl ethyl ketone, benzyl alcohol, gamma butyrolactone, ethyl lactate, or the like may be used alone or in combination.

前記有機ビヒクルは、組成物の全質量に対して、1質量%ないし30質量%含むことができる。前記範囲で十分な接触強度と優れた印刷性を確保することができる。本実施形態(具体例)において、前記有機ビヒクルの配合量は、組成物の全質量に対して、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29又は30質量%含んでもよい。   The organic vehicle may be included in an amount of 1% by mass to 30% by mass with respect to the total mass of the composition. Sufficient contact strength and excellent printability can be secured within the above range. In this embodiment (specific example), the blending amount of the organic vehicle is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, with respect to the total mass of the composition. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30% by mass may be included.

(D)添加剤
本発明の太陽電池電極形成用組成物は、前記(A)〜(C)の構成要素以外に、流動特性、工程特性および安定性を向上させるために必要に応じて通常の添加剤を更に含んでもよい。本実施形態(具体例)において、前記添加剤は、分散剤、揺変剤(チクソトロピック剤)、可塑剤、粘度安定化剤、消泡剤、顔料、紫外線安定剤、酸化防止剤およびカップリング剤の一つ以上を含んでもよい。
(D) Additive In addition to the components (A) to (C) described above, the composition for forming a solar cell electrode of the present invention is usually used as necessary to improve flow characteristics, process characteristics and stability. An additive may be further included. In this embodiment (specific example), the additive includes a dispersant, a thixotropic agent (thixotropic agent), a plasticizer, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet stabilizer, an antioxidant, and a coupling. One or more agents may be included.

前記添加剤は、組成物の全質量に対して、0.1質量%ないし5質量%で添加できるが、必要に応じて変えてもよい。本実施形態(具体例)において、前記添加剤の配合量は、組成物の全質量に対して、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.5、2、2.5、3、3.5、4、4.5又は5質量%含んでもよい。   The additive can be added at 0.1% by mass to 5% by mass with respect to the total mass of the composition, but may be changed as necessary. In this embodiment (specific example), the compounding amount of the additive is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, relative to the total mass of the composition. You may include 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, or 5 mass%.

また、前記太陽電池電極形成用組成物の粘度(viscosity)は、100,000cpsないし500,000cps(100kcpsないし500kcps)でもよい。粘度が前記範囲の場合、印刷性の面で優れた効果を有することができる。例えば、250,000cpsないし400,000cps(250kcpsないし400kcps)でもよい。   The viscosity of the solar cell electrode forming composition may be 100,000 cps to 500,000 cps (100 kcps to 500 kcps). When the viscosity is in the above range, it can have an excellent effect in terms of printability. For example, it may be 250,000 cps to 400,000 cps (250 kcps to 400 kcps).

<太陽電池電極およびこれを含む太陽電池>
本発明の別の観点は、前記太陽電池電極形成用組成物から形成された電極およびこれを含む太陽電池に関するものである。図1は、本発明の一実施形態(一具体例)にかかる太陽電池の構造を表したものである。
<Solar cell electrode and solar cell including the same>
Another viewpoint of this invention is related with the electrode formed from the said composition for solar cell electrode formation, and a solar cell containing the same. FIG. 1 shows the structure of a solar cell according to an embodiment (one specific example) of the present invention.

前記図1を参照すると、p層(又はn層)101およびエミッターとしてのn層(又はp層)102を含むウエハ100又は基板の上に、前記太陽電池電極形成用組成物を印刷し、焼成して後面電極210および前面電極230を形成することができる。例えば、太陽電池電極形成用組成物をウエハの後面に印刷塗布した後、200℃ないし400℃の温度で10秒ないし60秒程度乾燥して後面電極のための事前準備ステップを行ってもよい。また、ウエハの前面に太陽電池電極形成用組成物を印刷した後、乾燥して前面電極のための事前準備ステップを行うことができる。その後、400℃ないし950℃、例えば、850℃ないし950℃で30秒ないし50秒焼成する焼成過程を行って前面電極および後面電極を形成することができる。   Referring to FIG. 1, the composition for forming a solar cell electrode is printed on a wafer 100 or a substrate including a p layer (or n layer) 101 and an n layer (or p layer) 102 as an emitter, and fired. Thus, the rear electrode 210 and the front electrode 230 can be formed. For example, the solar cell electrode forming composition may be printed and applied on the rear surface of the wafer and then dried at a temperature of 200 ° C. to 400 ° C. for about 10 seconds to 60 seconds to perform a preliminary preparation step for the rear electrode. Moreover, after printing the composition for solar cell electrode formation on the front surface of a wafer, it can dry and can perform the preliminary preparation step for a front electrode. Thereafter, a front electrode and a rear electrode can be formed by performing a baking process of baking at 400 ° C. to 950 ° C., for example, 850 ° C. to 950 ° C. for 30 seconds to 50 seconds.

以下、実施例を通じて本発明をより具体的に説明するが、この実施例は、単に説明の目的のためのものであり、本発明を制限するものと解釈してはならない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the examples are only for the purpose of explanation and should not be construed as limiting the present invention.

実施例1
酸化ビスマス、酸化テルル、酸化クロムおよび第4金属酸化物として、酸化リチウム、酸化亜鉛および酸化タングステンを下記表1の組成で混合して900℃ないし1400℃で溶融および焼結過程を経て平均粒径(D50)が2.0μmのガラスフリットを製造した。
Example 1
As the bismuth oxide, tellurium oxide, chromium oxide and the fourth metal oxide, lithium oxide, zinc oxide and tungsten oxide are mixed in the composition shown in Table 1 below and melted and sintered at 900 ° C. to 1400 ° C. to obtain an average particle size. A glass frit having a (D50) of 2.0 μm was produced.

有機バインダー(有機ビヒクルのバインダー樹脂)として、エチルセルロース(Dow chemical company,STD4)(重量平均分子量(Mw)=50,000g/mol)0.8質量%を溶媒であるブチルカルビトール(Butyl Carbitol)8.5質量%に60℃で十分に溶解した後、平均粒径が2.0μmの球形の銀粉末(Dowa Hightech CO.LTD,AG‐4‐8)86.5質量%、前記で製造されたガラスフリット3.5質量%、添加剤として分散剤BYK102(BYK‐chemie)0.2質量%、および揺変剤Thixatrol‐ST(Elementis co.)0.5質量%を投入して均等に混ぜた後、3ロール混錬器で混合分散させて太陽電池電極形成用組成物を製造した。   As an organic binder (a binder resin of an organic vehicle), ethyl cellulose (Dow chemical company, STD4) (weight average molecular weight (Mw) = 50,000 g / mol) 0.8% by mass of butyl carbitol (Butyl Carbitol) 8 as a solvent After being sufficiently dissolved in 5% by mass at 60 ° C., 86.5% by mass of spherical silver powder (Dowa Hightech CO. LTD, AG-4-8) having an average particle size of 2.0 μm, produced as described above Glass frit 3.5% by mass, dispersant BYK102 (BYK-chemie) 0.2% by mass, and thixtrol-ST (Elementis co.) 0.5% by mass were added and mixed evenly. After that, a solar cell electrode forming composition is manufactured by mixing and dispersing with a three-roll kneader. It was.

前記の製造された組成物の粘度は、回転粘度計であるブルックフィールド社のHBDV−II+Proを使用して常温で測定し、測定時にサンプルカップに試料を完全に満たし、14番スピンを装着して5分間温度を安定化させた後、10rpmのせん断速度で測定した。測定した粘度値は表2に表した。   The viscosity of the manufactured composition was measured at room temperature using a Brookfield HBDV-II + Pro, which is a rotational viscometer, and the sample was completely filled in the sample cup at the time of measurement, and a 14th spin was attached. After stabilizing the temperature for 5 minutes, it was measured at a shear rate of 10 rpm. The measured viscosity values are shown in Table 2.

前記の製造された太陽電池電極形成用組成物を結晶系モノウエハ(Wafer)前面に一定のパターンでスクリーンプリントして印刷し、赤外線乾燥炉を使用して乾燥させて、前面電極を製造した。その後、ウエハの後面にアルミニウムを含む電極形成用組成物を後面印刷した後、同様の方法で乾燥した。前記過程で形成されたセルを、ベルト型焼成炉を使用して980℃で40秒間焼成を行い、製造完了した。このように製造完了したセルは、太陽電池効率測定装備(Pasan社、CT‐801)を使用して直列抵抗(Rs)(mΩ)、フィルファクター(FF、%)および変換効率(%)を測定した後、前面電極にフラックス(flux)を塗り、半田ごて機(HAKKO社)で300℃ないし400℃でリボンと接合させた。その後、剥離角180°の条件で張力機(Tinius olsen社)を使用して50mm/minの伸張速度で接着強度を測定した。測定した変換効率、直列抵抗および接着強度(N/mm)を下記表2に示した。   The manufactured composition for forming a solar cell electrode was screen-printed in a predetermined pattern on the front surface of a crystalline monowafer (Wafer), printed, and dried using an infrared drying oven to manufacture a front electrode. Thereafter, the electrode-forming composition containing aluminum was printed on the rear surface of the wafer, and then dried in the same manner. The cell formed in the above process was baked at 980 ° C. for 40 seconds using a belt-type baking furnace to complete the manufacture. The cell thus manufactured is measured for series resistance (Rs) (mΩ), fill factor (FF,%) and conversion efficiency (%) using a solar cell efficiency measurement equipment (Pasan, CT-801). After that, flux was applied to the front electrode, and the ribbon was joined to the ribbon at 300 ° C. to 400 ° C. with a soldering iron (HAKKO). Thereafter, the adhesive strength was measured at a stretching speed of 50 mm / min using a tension machine (Tinius olsen) under the condition of a peeling angle of 180 °. The measured conversion efficiency, series resistance and adhesive strength (N / mm) are shown in Table 2 below.

実施例2ないし20および比較例1ないし3
下記表1の組成でガラスフリットを製造したことを除いては、前記実施例1と同様の方法で太陽電池電極形成用組成物を製造した後、物性を測定して下記表2に示した。
Examples 2 to 20 and Comparative Examples 1 to 3
Except that a glass frit was produced with the composition shown in Table 1 below, a composition for forming a solar cell electrode was produced in the same manner as in Example 1, and the physical properties were measured and shown in Table 2 below.

前記表2から分かるように、実施例1ないし実施例20のガラスフリットを使用した太陽電池電極形成用組成物で製造された太陽電池電極は、本発明のガラスフリット組成から外れる比較例1ないし比較例3に比べて直列抵抗値が低く、フィルファクターおよび変換効率に優れ、リボンとの接着強度に優れることが分かる。   As can be seen from Table 2, the solar cell electrodes manufactured with the composition for forming a solar cell electrode using the glass frit of Examples 1 to 20 are comparative examples 1 to 1 that are out of the glass frit composition of the present invention. It can be seen that the series resistance value is lower than in Example 3, the fill factor and conversion efficiency are excellent, and the adhesive strength with the ribbon is excellent.

本発明の単純な変形ないし変更は、本分野の通常の知識を有する者によって容易に実施でき、このような変形や変更は全て本発明の領域に含まれると見なすことができる。   Simple variations or modifications of the present invention can be easily implemented by those having ordinary knowledge in the field, and all such variations and modifications can be considered to be included in the scope of the present invention.

100:ウエハ、
101:p層、
102:n層、
210:後面電極、
230:前面電極。
100: wafer,
101: p layer,
102: n layer,
210: rear electrode,
230: Front electrode.

Claims (14)

銀粉末;ガラスフリット;および有機ビヒクルを含み、
前記ガラスフリットは、ビスマス(Bi)、テルル(Te)およびクロム(Cr)元素を含むことを特徴とする太陽電池電極形成用組成物。
Silver powder; glass frit; and organic vehicle,
The glass frit includes a bismuth (Bi), tellurium (Te), and chromium (Cr) element, and the composition for forming a solar cell electrode.
前記クロム(Cr)と前記テルル(Te)のモル比は、1:1〜1:80であることを特徴とする請求項1に記載の太陽電池電極形成用組成物。   2. The composition for forming a solar cell electrode according to claim 1, wherein a molar ratio of the chromium (Cr) and the tellurium (Te) is 1: 1 to 1:80. 前記ガラスフリットは、鉛(Pb)、リチウム(Li)、亜鉛(Zn)、タングステン(W)、リン(P)、ケイ素(Si)、マグネシウム(Mg)、セリウム(Ce)、ストロンチウム(Sr)、モリブデン(Mo)、チタン(Ti)、スズ(Sn)、インジウム(In)、バナジウム(V)、バリウム(Ba)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、カリウム(K)、アンチモン(Sb)、ゲルマニウム(Ge)、ガリウム(Ga)、カルシウム(Ca)、ヒ素(As)、コバルト(Co)、ジルコニウム(Zr)、マンガン(Mn)、アルミニウム(Al)およびホウ素(B)よりなる群から選ばれてなる一つ以上の元素をさらに含むものである請求項1または2に記載の太陽電池電極形成用組成物。   The glass frit includes lead (Pb), lithium (Li), zinc (Zn), tungsten (W), phosphorus (P), silicon (Si), magnesium (Mg), cerium (Ce), strontium (Sr), Molybdenum (Mo), titanium (Ti), tin (Sn), indium (In), vanadium (V), barium (Ba), nickel (Ni), copper (Cu), sodium (Na), potassium (K), From antimony (Sb), germanium (Ge), gallium (Ga), calcium (Ca), arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn), aluminum (Al) and boron (B) The composition for forming a solar cell electrode according to claim 1 or 2, further comprising one or more elements selected from the group consisting of: 前記ガラスフリットは、鉛(Pb)元素を前記ガラスフリットの全重量に対して5モル%〜50モル%含むことを特徴とする請求項1〜3のいずれか1項に記載の太陽電池電極形成用組成物。   The said glass frit contains 5 mol%-50 mol% of lead (Pb) elements with respect to the total weight of the said glass frit, The solar cell electrode formation of any one of Claims 1-3 characterized by the above-mentioned. Composition. 前記ガラスフリットは、ビスマス酸化物5質量%〜30質量%;テルル酸化物40質量%〜80質量%;クロム酸化物1質量%〜15質量%、および第4金属酸化物1質量%〜50質量%を含む酸化金属混合物から製造されたことを特徴とする請求項1〜4のいずれか1項に記載の太陽電池電極形成用組成物。   The glass frit is composed of bismuth oxide 5 mass% to 30 mass%; tellurium oxide 40 mass% to 80 mass%; chromium oxide 1 mass% to 15 mass%, and fourth metal oxide 1 mass% to 50 mass%. 5. The composition for forming a solar cell electrode according to claim 1, wherein the composition is formed from a metal oxide mixture containing at least 1%. 前記第4金属酸化物は、鉛(Pb)、リチウム(Li)、亜鉛(Zn)、タングステン(W)、リン(P)、ケイ素(Si)、マグネシウム(Mg)、セリウム(Ce)、ストロンチウム(Sr)、モリブデン(Mo)、チタン(Ti)、スズ(Sn)、インジウム(In)、バナジウム(V)、バリウム(Ba)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、カリウム(K)、アンチモン(Sb)、ゲルマニウム(Ge)、ガリウム(Ga)、カルシウム(Ca)、ヒ素(As)、コバルト(Co)、ジルコニウム(Zr)、マンガン(Mn)、アルミニウム(Al)およびホウ素(B)よりなる群から選ばれてなる一つ以上の金属の酸化物を含むことを特徴とする請求項5に記載の太陽電池電極形成用組成物。   The fourth metal oxide includes lead (Pb), lithium (Li), zinc (Zn), tungsten (W), phosphorus (P), silicon (Si), magnesium (Mg), cerium (Ce), strontium ( Sr), molybdenum (Mo), titanium (Ti), tin (Sn), indium (In), vanadium (V), barium (Ba), nickel (Ni), copper (Cu), sodium (Na), potassium ( K), antimony (Sb), germanium (Ge), gallium (Ga), calcium (Ca), arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn), aluminum (Al) and boron ( The composition for forming a solar cell electrode according to claim 5, comprising one or more metal oxides selected from the group consisting of B). 前記第4金属酸化物は、前記酸化金属混合物の全重量に対して、酸化リチウム1質量%〜10質量%、酸化亜鉛1質量%〜10質量%、および酸化タングステン1質量%〜10質量%を含むことを特徴とする請求項5または6に記載の太陽電池電極形成用組成物。   The fourth metal oxide comprises 1% by mass to 10% by mass of lithium oxide, 1% by mass to 10% by mass of zinc oxide, and 1% by mass to 10% by mass of tungsten oxide based on the total weight of the metal oxide mixture. The composition for solar cell electrode formation of Claim 5 or 6 characterized by the above-mentioned. 前記第4金属酸化物は、前記酸化金属混合物の全重量に対して、酸化鉛(PbO)を15質量%〜50質量%含むことを特徴とする請求項5〜7のいずれか1項に記載の太陽電池電極形成用組成物。   The said 4th metal oxide contains 15 mass%-50 mass% of lead oxide (PbO) with respect to the total weight of the said metal oxide mixture, The any one of Claims 5-7 characterized by the above-mentioned. A solar cell electrode forming composition. 前記銀粉末60質量%〜95質量%;前記ガラスフリット0.5質量%〜20質量%;および前記有機ビヒクル1質量%〜30質量%;を含む請求項1〜8のいずれか1項に記載の太陽電池電極形成用組成物。   The said silver powder 60 mass%-95 mass%; The said glass frit 0.5 mass%-20 mass%; and the said organic vehicle 1 mass%-30 mass%; A solar cell electrode forming composition. 前記ガラスフリットは、平均粒径(D50)が0.1μm〜10μmであることを特徴とする請求項1〜9のいずれか1項に記載の太陽電池電極形成用組成物。   The composition for forming a solar cell electrode according to any one of claims 1 to 9, wherein the glass frit has an average particle size (D50) of 0.1 µm to 10 µm. 前記組成物は、分散剤、揺変剤、可塑剤、粘度安定化剤、消泡剤、顔料、紫外線安定剤、酸化防止剤、およびカップリング剤よりなる群から選ばれてなる一つ以上の添加剤をさらに含むことを特徴とする請求項1〜10のいずれか1項に記載の太陽電池電極形成用組成物。   The composition is one or more selected from the group consisting of a dispersant, a thixotropic agent, a plasticizer, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet stabilizer, an antioxidant, and a coupling agent. The composition for forming a solar cell electrode according to any one of claims 1 to 10, further comprising an additive. 前記有機ビヒクルは、バインダー樹脂を含み、前記バインダー樹脂の重量平均分子量(Mw)は、30,000g/mol〜200,000g/molであることを特徴とする請求項1〜11のいずれか1項に記載の太陽電池電極形成用組成物。   The organic vehicle includes a binder resin, and the binder resin has a weight average molecular weight (Mw) of 30,000 g / mol to 200,000 g / mol. The composition for solar cell electrode formation as described in any one of. 前記組成物は、粘度が100,000cps〜500,000cpsであることを特徴とする請求項1〜12のいずれか1項に記載の太陽電池電極形成用組成物。   The composition for forming a solar cell electrode according to any one of claims 1 to 12, wherein the composition has a viscosity of 100,000 cps to 500,000 cps. 請求項1〜13のいずれかに記載の太陽電池電極形成用組成物で製造された太陽電池電極。   The solar cell electrode manufactured with the composition for solar cell electrode formation in any one of Claims 1-13.
JP2014230794A 2013-12-17 2014-11-13 Composition for forming solar cell electrode and electrode produced thereby Active JP6605800B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0157659 2013-12-17
KR20130157659 2013-12-17
KR10-2014-0124652 2014-09-18
KR1020140124652A KR101780531B1 (en) 2013-12-17 2014-09-18 Composition for forming solar cell electrode and electrode prepared using the same

Publications (2)

Publication Number Publication Date
JP2015119176A true JP2015119176A (en) 2015-06-25
JP6605800B2 JP6605800B2 (en) 2019-11-13

Family

ID=53517862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014230794A Active JP6605800B2 (en) 2013-12-17 2014-11-13 Composition for forming solar cell electrode and electrode produced thereby

Country Status (2)

Country Link
JP (1) JP6605800B2 (en)
KR (1) KR101780531B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084915A1 (en) * 2014-11-27 2016-06-02 株式会社ノリタケカンパニーリミテド Conductive composition
JP2016103627A (en) * 2015-09-17 2016-06-02 株式会社ノリタケカンパニーリミテド Conductive composition
CN111630012A (en) * 2017-10-31 2020-09-04 LS-Nikko铜制炼株式会社 Conductive paste for solar cell electrode, glass frit contained in conductive paste, and solar cell

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655378B1 (en) * 2015-10-12 2016-09-07 주식회사 휘닉스소재 Paste composition for forming solar cell front electrode, n-type solar cell front electrode formed by using the same composition, and solar cell including the same front electrode
KR101955759B1 (en) * 2016-06-23 2019-03-07 삼성에스디아이 주식회사 Composition for forming p-type solar cell electrode, electrode prepared and p-type solar cell prepared by using the same
KR101930286B1 (en) * 2016-10-31 2019-03-12 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
KR101917799B1 (en) * 2017-02-24 2018-11-12 주식회사 휘닉스소재 Glass frit for forming solar cell electrode, paste composition including the same glass frit
KR101981660B1 (en) * 2017-07-21 2019-05-23 주식회사 휘닉스소재 Glass frit for forming solar cell electrode, paste composition including the same glass frit
KR102316662B1 (en) * 2018-10-10 2021-10-25 창저우 퓨전 뉴 머티리얼 씨오. 엘티디. Method for forming solar cell electrode, solar cell electrode manufactured therefrom and solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100037941A1 (en) * 2008-08-13 2010-02-18 E. I. Du Pont De Nemours And Company Compositions and processes for forming photovoltaic devices
WO2012129554A2 (en) * 2011-03-24 2012-09-27 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
JP2013089600A (en) * 2011-10-20 2013-05-13 E I Du Pont De Nemours & Co Thick film silver paste and its use in manufacture of semiconductor devices
JP2013531863A (en) * 2010-05-04 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film pastes containing lead-tellurium-lithium-oxides and their use in the manufacture of semiconductor devices
JP2014049743A (en) * 2012-08-30 2014-03-17 E.I.Du Pont De Nemours And Company Use of conductive composition containing lead-tellurium-based oxide in manufacture of semiconductor devices with lightly doped emitters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696948B2 (en) * 2011-08-11 2014-04-15 E I Du Pont De Nemours And Company Thick film paste containing lead—tellurium—lithium—titanium—oxide and its use in the manufacture of semiconductor devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100037941A1 (en) * 2008-08-13 2010-02-18 E. I. Du Pont De Nemours And Company Compositions and processes for forming photovoltaic devices
JP2013531863A (en) * 2010-05-04 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film pastes containing lead-tellurium-lithium-oxides and their use in the manufacture of semiconductor devices
WO2012129554A2 (en) * 2011-03-24 2012-09-27 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
JP2013089600A (en) * 2011-10-20 2013-05-13 E I Du Pont De Nemours & Co Thick film silver paste and its use in manufacture of semiconductor devices
JP2014049743A (en) * 2012-08-30 2014-03-17 E.I.Du Pont De Nemours And Company Use of conductive composition containing lead-tellurium-based oxide in manufacture of semiconductor devices with lightly doped emitters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084915A1 (en) * 2014-11-27 2016-06-02 株式会社ノリタケカンパニーリミテド Conductive composition
JP2016103627A (en) * 2015-09-17 2016-06-02 株式会社ノリタケカンパニーリミテド Conductive composition
CN111630012A (en) * 2017-10-31 2020-09-04 LS-Nikko铜制炼株式会社 Conductive paste for solar cell electrode, glass frit contained in conductive paste, and solar cell
CN111630012B (en) * 2017-10-31 2023-05-09 韩国Ls先进金属材料株式会社 Conductive paste for solar cell electrode, glass frit contained in the conductive paste, and solar cell

Also Published As

Publication number Publication date
KR20150071632A (en) 2015-06-26
JP6605800B2 (en) 2019-11-13
KR101780531B1 (en) 2017-09-22

Similar Documents

Publication Publication Date Title
JP6396335B2 (en) Composition for forming solar cell electrode and electrode manufactured using the same
JP6343661B2 (en) Composition for forming solar cell electrode and electrode produced thereby
TWI520156B (en) Composition for solar cell electrodes and electrode fabricated using the same
JP6605800B2 (en) Composition for forming solar cell electrode and electrode produced thereby
TWI622180B (en) Composition for solar cell electrode and solar cell electrode
JP6392354B2 (en) Composition for forming solar cell electrode and electrode produced thereby
US10164128B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
JP6404900B2 (en) Composition for forming solar cell electrode and electrode manufactured using the same
JP6293877B2 (en) Composition for forming solar cell electrode and electrode manufactured using the same
WO2019056418A1 (en) Glass powder for preparing solar cell electrode, paste composition comprising same, solar cell electrode, and solar cell
JP2016210962A (en) Electrode forming composition, electrode manufactured using the same, and solar cell
KR101940170B1 (en) Composition forforming electrode, electrode manufactured using the same and solar cell
JP6940166B2 (en) P-type solar cell electrode forming composition, electrodes manufactured using the composition, and P-type solar cell
TWI714323B (en) Method for forming solar cell electrode and solar cell
TWI681410B (en) Composition for solar cell electrode and solar cell electrode prepared using the same
CN111048601B (en) Solar cell electrode, preparation method thereof and solar cell comprising solar cell electrode
KR101835921B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
TWI663739B (en) Composition for solar cell electrodes and solar cell electrode fabricated using the same
JP6804255B2 (en) Electrode forming composition and electrodes and solar cells manufactured using the composition
KR20170025892A (en) Composition forforming electrode, electrode manufactured using the same and solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R150 Certificate of patent or registration of utility model

Ref document number: 6605800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250