JP2015119169A - 熱源からヒート・シンクに熱を移動させるための熱電デバイスおよびモジュール - Google Patents

熱源からヒート・シンクに熱を移動させるための熱電デバイスおよびモジュール Download PDF

Info

Publication number
JP2015119169A
JP2015119169A JP2014213393A JP2014213393A JP2015119169A JP 2015119169 A JP2015119169 A JP 2015119169A JP 2014213393 A JP2014213393 A JP 2014213393A JP 2014213393 A JP2014213393 A JP 2014213393A JP 2015119169 A JP2015119169 A JP 2015119169A
Authority
JP
Japan
Prior art keywords
leg
thermoelectric device
thermoelectric
resistive element
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014213393A
Other languages
English (en)
Other versions
JP5936242B2 (ja
Inventor
フォルカー、シュミット
Schmidt Volker
ハイケ、イー、リエル
E Riel Heike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2015119169A publication Critical patent/JP2015119169A/ja
Application granted granted Critical
Publication of JP5936242B2 publication Critical patent/JP5936242B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction

Abstract

【課題】熱源からヒート・シンクに熱を移動させるための熱電デバイスおよびモジュールを提供すること。【解決手段】熱源(2)からヒート・シンク(3)に熱を移動させるための熱電デバイス(1)が、n型半導体材料を含む第1の脚部(4)、およびp型半導体材料を含む第2の脚部(5)を有する少なくとも1つの熱電脚対(10)を備える。第1の脚部(4)と第2の脚部(5)が電気的に直列に結合される。抵抗性要素(9)が、熱源(2)とヒート・シンク(3)との間で、第1の脚部(4)と第2の脚部(5)を電気的に結合する。【選択図】図1

Description

本発明は、一般に熱移動デバイスに関し、詳細には、熱源からヒート・シンクに熱を移動させるための熱電デバイスおよびモジュールに関する。より詳細には、本発明は、加熱または冷却される物体に結合することができる、熱電デバイスに関する。
センサ、能動電気光学構成要素、赤外CCDチップなどの電子デバイスから過剰な熱を移動させるために、冷却のための熱電デバイスが使用される。多くの電子デバイスが低電力損失を有するので、追加の冷却手段が求められる。電子冷却は、n型またはp型半導体など異なる導体間の接合部を通って流れる電流が、接合部を通る電流の関数として加熱または冷却を引き起こすことが可能であることを観測したJohn Charles Peltierにより、最初に発見された。この効果は、ペルチエ効果または熱電効果と呼ばれる。温度は、接合部を通る電流の方向に依存して、上昇または下降することができる。
熱電デバイスは、熱源とヒート・シンクとの間に置かれたヒート・ポンプとしてしばしば使用され、ここで、熱源は、電気構成要素であってよく、ヒート・シンクは、場合によって、表面板(surface plate)または対流型のヒート・シンクである。従来型の熱電冷却デバイスは、しばしば複数のステージを使用して、物体を段階的に冷却する、または熱を熱源から取り去り移動させる。そのような複数ステージのモジュールは、基本的に、互いの上部にスタックされた別個の熱電モジュールからなる。これにより、追加の空間が必要になり、含まれる熱電構成要素が複数で複雑であることに起因して経費が増加することになる。熱電冷却モジュールの効率を向上させることが、一般的に望ましい。
したがって、熱源からヒート・シンクに熱を移動させるための改善された熱電デバイスを提供することが、本開示の態様である。熱電デバイスは、さらなる熱電モジュールまたは構成を実装するのに特に好適であってよい。
本発明の態様の実施形態によれば、熱源からヒート・シンクに熱を移動させるための熱電デバイスが、n型半導体材料を含む第1の脚部、およびp型半導体材料を含む第2の脚部を有する少なくとも1つの熱電脚対であって、第1の脚部と第2の脚部が電気的に直列に結合される、少なくとも1つの熱電脚対と、熱源とヒート・シンクの間で、第1の脚部と第2の脚部を電気的に結合する抵抗性要素と、を備える。
対を形成する2つの脚部を、例えば、互いに平行に配置して、それぞれ熱源およびヒート・シンクへの境界面の間に置くことができる。熱電デバイスの動作では、第1および第2の脚部を通して電流を注入することができ、p型半導体材料とn型半導体材料の間の接合部で、ペルチエ効果を使用することができる。結果として、熱源に面する脚対の側とヒート・シンクに面する脚対の側との間に、温度勾配が存在する。例えば、熱源は、冷却される必要がある電子デバイスであってよい。ヒート・シンクは、例えば、デシペータであってよい。抵抗性要素によって、pn接合部から離れた、または遠隔の領域で、第1の脚部と第2の脚部の間の電流が可能になる。
熱電デバイスの実施形態では、第1の脚部と第2の脚部は、熱源とヒート・シンクとの間で並列に熱的に結合される。n型脚部とp型脚部が交番する構成も意図することができ、脚部は、電気的には直列に、しかし熱移動に関しては並列に結合される。
少なくとも1つの抵抗性要素は、第1の脚部と第2の脚部との間の接合部を通して少なくとも部分的に電流をバイパスするように構成することができる。抵抗性要素は、接合部または材料境界面において熱電効果のために使用される電流を入れるための、2つの脚部または接触部あるいはその両方の間の電気結合または電気接続よりも高い電気抵抗を有することができる。例えば、バイパス電流は、第1の脚部、金属層または接触部および第2の脚部により形成される回路を通る動作電流よりも小さい。
電流をバイパスし、それによりペルチエ効果を呈する接合部と異なる領域に熱を生成することによって、熱電デバイスに、熱源に面する脚部の側とヒート・シンクに面する脚部の側との間で、より大きい温度差を達成可能にすることができる。ヒート・シンクに近い電流を可能にする抵抗性要素によって、ヒート・シンクの近くに熱集中をもたらすことができる。抵抗性要素を、例えば、バイパス電流を可能にするように実装し、それによって、ヒート・シンクに近い領域内の第1および第2の脚部に沿って、より急峻な温度勾配を生成することができる。好ましくは、pn接合部においてペルチエ効果により生成される熱は、ヒート・シンクに局在化される。
したがって、実施形態では、少なくとも1つの抵抗性要素が第1の脚部と第2の脚部の間に配置され、そのため、電流を変えることにより、脚部のジュール加熱は、ヒート・シンクの側にシフトされる、または集中される。
抵抗性要素は、構造的な支持要素を含むことができる。例えば、抵抗性要素自体またはその一部分が、デバイスを機構的により頑強にすることができる。実施形態では、抵抗性要素は、少なくとも部分的に堅固な材料を含む。
実施形態では、第1の脚部または第2の脚部あるいはその両方の断面は、熱源からヒート・シンクの方向に沿って変わる。
幾何学的に、脚部の断面の厚みを変化させることによって、脚部を通る電流の変調をもたらすことができる。例えば、ヒート・シンクに向かって第1の脚部または第2の脚部あるいはその両方の断面を増加することによって、第1の脚部を第2の脚部に電気的に接続する抵抗性要素が存在する場合に、大きな電流密度をもたらし、そのことによってシンクに熱集中をもたらす。
抵抗性要素は、温度依存性コンダクタンスを示す材料を含むことができる。例えば、抵抗性要素用の材料は、温度の関数で増加するコンダクタンスを有する。結果として、より多くの電流が2つの脚部間の抵抗性要素を流れ、他の領域に対して高い温度が生じる。
熱電デバイスの実施形態では、少なくとも1つの抵抗性要素は材料を含み、この材料は、第1の脚部と第2の脚部との間に配置され、第1の脚部と第2の脚部との間の接合部と、第1の脚部または第2の脚部あるいはその両方に電流を入れるための接触部との間で、第1の脚部および第2の脚部に沿って少なくとも部分的に延在する。
例えば、抵抗性要素は、脚部間の層または充填物として実装することができる。追加で温度依存性コンダクタンスを示してよい、半導体材料、金属、半金属、または酸化物ならびに有機導電性材料またはそれらの組合せを意図することができる。
実施形態では、熱電デバイスは、熱源とヒート・シンクの間で、第1の脚部と第2の脚部を電気的に結合する複数の抵抗性要素を備える。2つの脚部を互いに部分的に結合するブリッジ要素として抵抗性要素を意図することができる。ブリッジ要素は、2つの脚部を互いに対して機構的に安定化させることができる。
複数の抵抗性要素を使用することによって、要素は、抵抗率、導電率、または熱特性に対してそれぞれ構成することができる。したがって、複数の抵抗性要素を使用することによって、脚部および抵抗性要素を通る電流ならびに熱電デバイス内の熱分布をより良く変調することが可能になる。
実施形態では、各抵抗性要素が所定のコンダクタンスを有し、そのため、抵抗性要素のコンダクタンスは、熱源の側に向かって増加する。
実施形態では、抵抗性要素が第1の脚部と第2の脚部との間に延在し、抵抗性要素が、第1の脚部および第2の脚部の長手方向の長さ(extension)に沿って、所定の距離で、互いに対し離間される。距離は、デバイス内で、所望の電流および熱分布を達成するように調整することができる。
実施形態では、第1の脚部と第2の脚部との間の抵抗性要素は、異なる断面を有することができる。断面を調整することにより、抵抗性要素またはブリッジ要素の電気特性および熱特性をチューニングすることができる。
実施形態では、第1の脚部と第2の脚部との間の抵抗性要素は、異なる長さ/厚みを有することができる。長さ/厚みを調整することにより、抵抗性要素またはブリッジ要素の電気特性および熱特性をチューニングすることができる。
熱電デバイスの実施形態では、基本的に互いに平行に配置される複数の熱電脚対が設けられる。例えば、p型脚部およびn型脚部は、ヒート・シンクと熱源との間で、互いに電気的に直列で熱的に並列に交互に接続される。ペルチエ効果は、n型脚部およびp型脚部に電圧が印加され、n型領域とp型領域との間に直列の電気接合部を通して電流が流れると、生じる。結果として、並列な順方向の接続で、n型脚部およびp型脚部にわたって熱移動が生じる。さらに、バイパス電流が、ブリッジまたは抵抗性要素を通って流れることができる。
脚対の数を増加することにより、より多くの熱を移動させることができる。熱電デバイスの実施形態では、複数の熱電脚対が、基板上に配置される脚部の配列を形成する。基板によって、熱電デバイスのより良好な機構的安定性または頑強性をもたらすことができる。
本発明の別の態様の実施形態によれば、上記の熱電デバイスのうちの少なくとも1つを備える熱電モジュールが開示される。実施形態によれば、少なくとも1つの脚対が熱源とヒート・シンクとの間に接着される。さらに良好な熱移動を達成するために、いくつかの熱電モジュールをスタックとして取り付けることを、さらに意図することができる。
提示される熱電デバイスおよびモジュールの特定の実施形態は、例示的な実施形態に関して上記でまたは下記で言及されるような、個別のもしくは組み合わせた特徴または態様を備えることができる。
以下では、熱電デバイスおよびモジュールの実施形態が、添付される図面を参照して記載される。
熱電デバイスの第1の実施形態を示す概略図である。 熱電デバイスのさらなる実施形態を示す概略図である。 熱電デバイスのさらなる実施形態を示す概略図である。 熱電デバイスのさらなる実施形態を示す概略図である。 熱電デバイスのさらなる実施形態を示す概略図である。 熱電デバイスのさらなる実施形態を示す概略図である。 熱電デバイスのさらなる実施形態を示す概略図である。 熱電モジュールの実施形態を示す概略図である。 熱電モジュールのさらなる実施形態を示す斜視図である。
別段の指示がない場合、図面内で、同様のまたは機能的に同様の要素は、同じ参照符号を割り当てられている。
本開示では、用語「熱源」とは、そこから過剰な熱が、例えば熱電デバイスを通して移動されることになる要素または物体のことをいう。用語「ヒート・シンク」とは、熱を放散するまたは取り込むことができる要素または物体のことをいう。一般的に、熱源は熱電デバイスを通して冷却され、ヒート・シンクは加熱される。開示されるような熱電デバイスは、熱源からヒート・シンクに熱を移動させるためのヒート・ポンプと考えることができる。用語「断面」は、要素の断面積を画定するために使用される。「脚部」は、長手方向の長さおよび横方向の長さを有する構造である。脚部は、棒状または柱状の幾何形状を有することができる。場合によっては、長手方向の長さが横方向の長さを超える。しかし、他の縦横比を意図することができる。脚部の実施形態では、長手方向の長さは、熱源からヒート・シンクの方向またはその逆の方向にある。脚部は、電流および熱流を基本的に並列に搬送すると仮定することができる。
「抵抗性要素」は、脚部間でバイパス電流が流れることを可能にすることを意味するものであると理解される。抵抗性要素は、例えば、抵抗性材料または脚部の互いに対する特定の幾何形状あるいはその両方といった、様々な構造手段によって機能的に定義され、実装することができる。脚部間の横方向距離を減らすことによる脚部間の接触領域も、抵抗性要素としての機能を果たすことができる。抵抗性要素は、個別構造要素またはデバイスであってよいが、脚部の一部または脚部に一体化されてもよい。
熱電デバイスは、ペルチエ効果または熱電効果を使用する。p型およびn型にドープされた半導体材料を、熱電材料として使用することができる。例えば、ビスマス、アンチモン、テルル化ビスマス、セレン化ビスマス、アンチモン化ビスマス、テルル化アンチモン、テルル化鉛、セレン化鉛、アンチモン化鉛、ケイ化鉄、ケイ化マンガン、ケイ化コバルト、ケイ化マグネシウム、ケイ化クロム、カルシウムマンガン酸化物またはこれらの組合せを使用することができる。熱電効果を示す他の半導体材料を意図することができる。
図1は、熱電デバイス1の第1の実施形態を示す。熱電デバイス1は、例えば、熱を放散する電気デバイスを冷却するために使用される。図1では、熱源2およびヒート・シンク3が示される。熱源は、冷却されることになる電気構成要素または別のデバイスであってよい。ヒート・シンク3は、例えば、デシペータまたは他の冷却要素であってよい。
熱電デバイス1は、脚部4、5の対10を備える。図1の向きで、上側の脚部4はn型半導体であり、下側の脚部5はp型半導体である。脚部4、5のn型およびp型半導体材料は、金属層6を介して互いに取り付けられ、または電気的に接続されており、それによってpn接合部11を有効に形成する。接合部11は、熱源2に面している。第1の脚部4に結合された電気的な接触部7および第2の脚部5に結合された電気的な接触部8がある。接触部によって、例えば、電気的な接触部7と電気的な接触部8との間に電圧を印加することにより、脚部4、5を直列に通って電流を入れることが可能になる。
2つの脚部5、4を含む熱電脚対10は、熱源2とヒート・シンク3との間で、熱的に並列に結合され、電気的に直列に結合される。このことによって、熱源2からヒート・シンク3への熱流を図示する矢印HFにより示される、左から右への熱移動が可能になる。pn接合部11から離れて、例えば好適な半導体材料である抵抗性要素9が、2つの脚部4、5間に置かれる。抵抗性要素9によって、ペルチエ効果が使用される接合部11から離れて2つの脚部4、5間にバイパス電流を流すことが可能になる。抵抗性要素9は、熱源2よりもヒート・シンク3に近い。
抵抗性要素9を追加することにより、脚部、ならびに第1の接触部7、第1の脚部4、接合部11または金属層6、第2の脚部5および第2の接触部8の間の経路を通る電流分布を調整することができる。例えば、電流が、抵抗性要素9でバイパスを流れ、このことによって、熱電デバイス1の暖かいまたは熱い側で、ジュール加熱を増大させる結果になる。従来型の熱電デバイスと比較して、電気ブリッジまたは抵抗性要素9は、バイパス電流を可能にする。熱源2に面する側とヒート・シンクに面する側の間の温度差を増加することを達成することができる。熱電デバイスの性能は、ジュール加熱をもたらす電流をデバイスの高温側に向けてシフトするまたは集中することにより、改善することができる。
図2は、熱電デバイス100の第2の実施形態を示す。熱電デバイス100は、熱源2とヒート・シンク3との間に置かれる。熱電脚対10は、第1の脚部4および第2の脚部5を有する。図2に示されるセクションでは、第1の脚部がn型材料を含み、第2の脚部がp型材料を含む2つの脚部4、5は、薄い金属層6により結合される。金属層15および16が、接合部11に対して、脚部4、5の遠位端に設けられる。
2つの脚部4、5の間で、いくつかの抵抗性要素またはブリッジ9、12、13、および14が、2つの脚部4、5の間にそれらの長手方向の長さに沿って置かれる。ブリッジまたは抵抗性要素9、12、13、14によって、バイパス電流j、j12、j13、j14が脚部4、5間を流れることが可能になる。熱電デバイス100を動作させると、例えば金属層15を通して上側または第1の脚部4の中に電流jが入れられる。電流の一部は、脚部4を通って接合部11に向かって流れ、第2の脚部5に入り、第2の金属層16を通って熱電デバイス100を出る。加えて、バイパス電流j、j12、j13、j14は、脚部4、5間のブリッジまたは抵抗性要素9、12、13、14を通って流れる。適切にブリッジまたは抵抗性要素9、12、13、14を分散させることにより、熱電デバイス内の電流密度、最終的には温度分布をチューニングすることができる。
出願人の調査は、図2に示されるような抵抗性要素なしの熱電デバイス100では、300Kにおいて0.9の熱電材料のZT値を仮定し、0.17Vの電圧を金属層15および16の接点間に印加するとき、68Kの温度差を得ることができることを示す。しかし、抵抗性要素9、12、13、14を含み、0.26Vの電圧を印加することによって、図2の下部でグラフにより示される、最小温度195Kがもたらされる。したがって、熱電デバイス101を介して達成可能な温度差が増大される。モデル計算は、導電率10×1/(Ωm)、3W/(mK)の熱伝導率、ならびにp型脚部では3×10−4V/Kのゼーベック係数およびn型脚部では−3×10−4V/Kのゼーベック係数を有するn型およびp型熱電材料に基づいて、実施された。
ZT値は、熱起電力を効率的に生成する所与の材料の能力を表す数字であり、次式により定義される。
Figure 2015119169
上式は、ゼーベック係数S、熱伝導率λ、電気伝導率σ、および温度Tに依存する。
図3は、図2に示されたものと同様の熱電デバイスの別の実施形態を示す。やはり、熱電材料を含む対10を形成する2つの脚部4、5が示されており、これらは互いに金属層6を介して結合される。脚部4、5間に複数のブリッジまたは抵抗性要素9、12、13、14が置かれる。抵抗性要素9、12、13、14は、単に例として示される。デバイス101内に、描かれた抵抗性要素よりも多くのブリッジがあってよい。ブリッジまたは抵抗性要素9、12、13、14は、互いに対し、距離d、d12、d14だけ離間される。互いに対する距離を調節することにより、熱電デバイス101にわたる電流分布を調節することができる。例えば、距離dおよびd12は、金属層6により実現される接合部の隣にある、ブリッジ要素14または抵抗性要素の距離d14よりも短い。
ブリッジまたは抵抗性要素9、12間の距離が、脚部の、ヒート・シンクに面する側から熱源に面する側の距離の関数として増加する実施形態を意図することができる。このことによって、ヒート・シンクに近い領域を通って流れる電流がより多くなり、電流により生成される熱をより容易に取り出すことができる。
ブリッジまたは抵抗性要素の材料または幾何形状を調節することにより、2つの脚部4、5内の電流密度も変更することができる。別の実施形態が図4に示されており、ここでは、熱電デバイス102は、金属層6により互いに直列に結合され、電流を入れるための金属層15、16を有する2つの脚部4、5を含む。複数のブリッジまたは抵抗性要素9、14(図4では、そのうちの2つのみが示される)は、熱電脚対10の2つの脚部4、5を電気的に結合する。ブリッジまたは抵抗性要素9、14は、所定の断面A14、Aを有する。例えば、ヒート・シンク(図示せず)に近い断面Aは、ヒート・シンクから遠い断面A14よりも大きい。結果として、異なるバイパス電流が2つのブリッジを通る。電流jは、通常、電流j14よりも大きい。したがって、大きいバイパス電流が生じるところでジュール加熱が特に発生し、そのため、全体の温度勾配は、右手側のヒート・シンクに向かってより急峻になる。
図5は、熱電デバイス103のさらに別の実施形態を示す。デバイス103は、金属層6を介して互いに結合される、2つの熱電脚部4、5を備える。2つの金属層15、16が示される。熱電脚対10の長さはlにより示される。別個のブリッジまたは抵抗性要素の代わりに、第1の脚部4と第2の脚部5の間の領域は、抵抗性充填材90で充填される。例えば、抵抗性充填材90によって、2つの脚部4、5間のバイパス電流が可能になる。好ましくは、抵抗性充填材90に使用される材料は、例えば、抵抗性充填材90のための材料のコンダクタンスが温度とともに増加する温度依存特性を示す。逆に、抵抗性充填材90の、ヒート・シンクに面する側と熱源に面する側との間の抵抗率は、熱源に向かって増加する。このことは、図5の下部に示されており、ここで、実線の曲線Tは、長さlの関数としての温度プロファイルを示し、点線の曲線Rは、2つの脚部4、5間の抵抗を指す。例えば、温度依存性抵抗率または伝導率を示す有機材料を意図することができる。温度がヒート・シンクに面する側(右)から熱源に面する側(左)に減少すると、バイパス電流密度は、温度とともに増加する。
別の実施形態が図6に示される。熱電デバイス104は、上側の第1の脚部4および下側の第2の脚部5を有する。対10の熱電脚部4、5は、金属層6により左で結合される。脚部4、5間に抵抗性ブリッジまたは抵抗性要素9、14が置かれ、前に詳述されたようにバイパス電流が流れることを可能にする。左手側に(熱源に向かって)面する抵抗性要素14は断面A14を有し、一方、右手側(ヒート・シンク)に向かって面する抵抗性要素9は断面Aを有することがわかる。AはA14よりも大きく、それによって、断面積がコンダクタンス値に換算されるので、バイパス電流を増加することが可能になる。
さらに、脚部4、5の断面自体が、脚部4、5の長手方向の長さに沿って変化する。各脚部4、5は、3つのセクション41、42、43、51、52、53を有し、それにより、各々は、参照番号B41、B42、B43、B51、B52、およびB53により示される異なる断面を有する。金属層15および16が、脚部4、5間に電圧を印加するために設けられる。示された方式で脚部の断面をスケーリングすることにより、ジュール加熱が、大部分は、ヒート・シンク側(図6では右手側)で生じる。したがって、全体の熱移動が、より効果的に生じる。
図6に示されるような脚部断面の段階的な変化を使用する代わりに、脚部は、断面積が連続的に変化することができる。これは、図7による実施形態で示される。熱電デバイス105は、金属層6を介して互いに結合された2つの脚部54および55を有し、脚部の厚みは、ヒート・シンク(右手側)に向かって、脚部の長さに沿って増加する。脚部54と脚部55を電気的に結合するオプションの抵抗性要素とともに、この方策によって、図6に関して上記で説明されたように、温度の広がりをもたらし、それにより、熱電デバイス105を特に効率的にする。
1つまたは複数の抵抗性要素は、脚部54、55間の別個のブリッジまたは充填材91あるいはその両方であってよい。図7では、抵抗性材料を含む充填材91が例として示される。長手方向の長さに沿った脚部54、55の厚みの変化は、脚部間の充填材91の抵抗性材料の「厚み」の変動に換算される。結果として、充填材91に関して抵抗性要素の抵抗率は、ヒート・シンク(図示せず、図7では右手側)に向かって減少することができる。図7の実施形態に示された脚部54、55の漸減および特殊な抵抗分布によって、デバイス105内の温度移動および温度分布の改善をもたらすことができる。
脚部の長さに沿った、他の幾何形状および断面変動を意図することができる。実施形態では、脚部は、熱源とヒート・シンクとの間の領域で互いに部分的に取り付けられ、そのようなpn接合部を通るバイパス電流を実装することができる。
図8は、前に描かれたような複数の熱電デバイスを備える熱電モジュールの概略図を示す。図8は、熱電モジュール60の断面を示す。熱電モジュール60は、熱源2とヒート・シンク3との間に置かれる。ヒート・シンク3は、例えばデシペータを有する。点線の枠1に示される複数の脚対は、2つの基板18、17間に置かれる。基板18、17は、特定の機械剛性を保証することができる。図8では、金属結合部6を有する1対の脚4、5だけが参照符号により明示的に示される。それぞれの脚部は、例えば、柱形状を有することができる。図8は、熱源に面する側とヒート・シンクに面する側との間の、複数の直列な交互に結合された脚部を示す。直列に結合された、n型材料およびp型材料が交互にある。脚部は、全て電気的に直列に結合されるが、ヒート・シンクと熱源の境界面に対して熱的に並列に結合される。電気的な接触部7および8が、熱電モジュール60の中に電流を入れるために設けられる。モジュールは、任意の数の、上に記載した熱電デバイスの実施形態を備えることができる。
図9は、熱電モジュール61のさらなる実施形態の斜視図を示す。図8の図面と同様に、複数の熱電脚対10、少なくとも対10から選択されたものは、バイパス電流が流れることを可能にするブリッジまたは抵抗性要素9を有する。脚部は、配列状の方式で基板18から突出して配置される。n型の脚部4は、斜線で示された面で図示され、p型の脚部5は白い面を有する。上側の基板17は、破線の外形で図示される。電気的な接触部7および8が設けられて、電流を熱電モジュール61の中に入れ、上側の金属層6の接触部および下側の金属層6’の接触部が、脚部の直列接続を実施する。
開示される熱電デバイスおよびモジュールは、熱源からヒート・シンクへの効果的な熱移動を可能にすることができる。特に、電気チップ、CCDチップなどの冷却を必要とする物体は、そのような熱電モジュールに取り付けることができる。本発明による熱電デバイスおよびモジュールの実施形態は、間に熱電脚部を有する多くて2つの基板を必要とする。このことは、同じ性能に到達するために、または劣った性能に到達するためにさえ、いくつかの基板を必要とする従来型の複数ステージの熱電モジュールを超える利点を実現する。
本発明の様々な実施形態の記載が説明のため提示されてきたが、それらの記載は網羅的であること、または開示される実施形態に限定されることを意図していない。記載された実施形態の範囲および精神から逸脱することなく、多くの変更形態および変形形態が、当業者に明らかとなるであろう。本明細書で使用された用語は、実施形態の原理、実用的な用途もしくは市場に見られる技術に対する技術的な改善を最も良好に説明するため、またはその他を可能にするために選択された。
1 熱電デバイス
2 熱源
3 ヒート・シンク
4 脚部
5 脚部
6 金属層
7 接触部
8 接触部
9 抵抗性要素
10 熱電脚対
11 接合部
12 抵抗性要素
13 抵抗性要素
14 抵抗性要素
15 金属層
16 金属層
17 基板
18 基板
41 n型脚部のセクション
42 n型脚部のセクション
43 n型脚部のセクション
44 n型脚部
51 p型脚部のセクション
52 p型脚部のセクション
53 p型脚部のセクション
54 p型脚部
60 熱電モジュール
61 熱電モジュール
90 抵抗性要素
91 抵抗性要素
100 熱電デバイス
101 熱電デバイス
102 熱電デバイス
103 熱電デバイス
104 熱電デバイス
105 熱電デバイス
HF 熱流
j 電流
T 温度
R 抵抗
断面
断面
距離
l 長さ

Claims (15)

  1. 熱源(2)からヒート・シンク(3)に熱を移動させるための熱電デバイス(1)であって、
    n型半導体材料を含む第1の脚部(4)、およびp型半導体材料を含む第2の脚部(5)を有する少なくとも1つの熱電脚対(10)であって、前記第1の脚部(4)と前記第2の脚部(5)が電気的に直列に結合される、前記少なくとも1つの熱電脚対(10)と、
    前記熱源(2)と前記ヒート・シンク(3)との間で、前記第1の脚部(4)と前記第2の脚部(5)を電気的に結合する抵抗性要素(9)と
    を備える熱電デバイス(1)。
  2. 前記第1の脚部(4)と前記第2の脚部(5)が、前記熱源(2)と前記ヒート・シンク(3)との間で並列に熱的に結合される、請求項1に記載の熱電デバイス。
  3. 前記少なくとも1つの抵抗性要素(9)が、前記第1の脚部(4)と前記第2の脚部(5)との間の接合部(11)を通して少なくとも部分的に電流をバイパスするように構成される、請求項1または2に記載の熱電デバイス。
  4. 前記少なくとも1つの抵抗性要素(9)が前記第1の脚部(4)と前記第2の脚部(5)との間に配置され、前記脚部(4、5)のジュール加熱が、前記ヒート・シンク(3)の側へと集中される、請求項1ないし3のいずれか一項に記載の熱電デバイス。
  5. 前記第1の脚部(4)または前記第2の脚部(5)あるいはその両方の断面が、前記熱源(2)から前記ヒート・シンク(3)の方向に沿って変わる、請求項1ないし4のいずれか一項に記載の熱電デバイス。
  6. 前記少なくとも1つの抵抗性要素(90)が、温度依存性コンダクタンスを有する材料を含む、請求項1ないし5のいずれか一項に記載の熱電デバイス。
  7. 前記少なくとも1つの抵抗性要素(90)が材料を含み、前記材料は、前記第1の脚部(4)と前記第2の脚部(5)との間に配置され、前記第1の脚部(4)と前記第2の脚部(5)との間の接合部(11)と、前記第1の脚部(4)または前記第2の脚部(5)あるいはその両方に電流(j)を入れるための接触部(7、8)との間で、前記第1の脚部(4)および前記第2の脚部(5)に少なくとも部分的に沿って延在する、請求項1ないし6のいずれか一項に記載の熱電デバイス。
  8. 前記熱源(2)と前記ヒート・シンク(3)との間で、前記第1の脚部(4)と前記第2の脚部(5)を電気的に結合する複数の抵抗性要素(9、12、13、14)を備える、請求項1ないし7のいずれか一項に記載の熱電デバイス。
  9. 各抵抗性要素(9、12、13、14)が所定のコンダクタンスを有し、前記抵抗性要素(9、12、13、14)の前記コンダクタンスが、前記熱源(2)の側に向かって増加する、請求項8に記載の熱電デバイス。
  10. 前記抵抗性要素(9、12、13、14)が前記第1の脚部(4)と前記第2の脚部(5)との間に延在し、前記抵抗性要素(9、12、13、14)が、前記第1の脚部(4)および前記第2の脚部(5)の長手方向への長さに沿って、所定の距離(d、d12、d13)で、互いに対し離間される、請求項8または9に記載の熱電デバイス。
  11. 前記抵抗性要素(9、12、13、14)が前記第1の脚部(4)と前記第2の脚部(5)との間に延在し、前記抵抗性要素(9、12、13、14)が異なる断面を有する、請求項8ないし10のいずれか一項に記載の熱電デバイス。
  12. 互いに平行に配置される複数の熱電脚対(10)を備える、請求項8ないし10のいずれか一項に記載の熱電デバイス。
  13. 少なくとも1つのグループの前記熱電脚対(10)が電気的に直列に結合され、電流が、一連の交互に配置されたn型脚部およびp型脚部を流れることができる、請求項8ないし10のいずれか一項に記載の熱電デバイス。
  14. 前記複数の熱電脚対(10)が、基板(17、18)上に配置される脚部の配列を形成する、請求項8ないし13のいずれか一項に記載の熱電デバイス。
  15. 請求項1ないし14のいずれか一項に記載の少なくとも1つの熱電デバイス(1)を備え、少なくとも1つの脚対(10)が熱源(2)とヒート・シンク(3)との間に接着される、熱電モジュール(60)。
JP2014213393A 2013-12-17 2014-10-20 熱源からヒート・シンクに熱を移動させるための熱電デバイスおよびモジュール Active JP5936242B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1322245.0 2013-12-17
GB1322245.0A GB2521353A (en) 2013-12-17 2013-12-17 Thermoelectric device

Publications (2)

Publication Number Publication Date
JP2015119169A true JP2015119169A (ja) 2015-06-25
JP5936242B2 JP5936242B2 (ja) 2016-06-22

Family

ID=50031003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213393A Active JP5936242B2 (ja) 2013-12-17 2014-10-20 熱源からヒート・シンクに熱を移動させるための熱電デバイスおよびモジュール

Country Status (5)

Country Link
US (1) US9947853B2 (ja)
JP (1) JP5936242B2 (ja)
CN (1) CN104716253B (ja)
DE (1) DE102014117584B4 (ja)
GB (1) GB2521353A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501932A (ja) * 2017-11-02 2021-01-21 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 動的熱電クイック・レスポンス・コード・デバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2544787A (en) * 2015-11-27 2017-05-31 European Thermodynamics Ltd Thermoelectric module
CN112240649A (zh) * 2020-10-10 2021-01-19 蔚县中天电子股份合作公司 一种温差电致冷组件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140652A1 (en) * 2011-04-11 2012-10-18 Lamos Inc. Anodized aluminum substrate
JP2013528940A (ja) * 2010-05-05 2013-07-11 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ ペルティエモードまたはゼーベックモードでの動作のため最適化された熱電モジュール

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1539330A1 (de) * 1966-12-06 1969-11-06 Siemens Ag Thermoelektrische Anordnung
JPH0864874A (ja) * 1994-08-24 1996-03-08 Hitachi Ltd 熱電素子
CZ281281B6 (cs) * 1994-11-08 1996-08-14 Zdeněk Ing. Csc. Starý Kaskáda termoelektrických článků využívající Peltierův jev
JP4019014B2 (ja) 1994-11-21 2007-12-05 株式会社ワイ・ワイ・エル 熱電冷却型パワーリード
US5802855A (en) 1994-11-21 1998-09-08 Yamaguchi; Sataro Power lead for electrically connecting a superconducting coil to a power supply
US6121539A (en) * 1998-08-27 2000-09-19 International Business Machines Corporation Thermoelectric devices and methods for making the same
US6094919A (en) 1999-01-04 2000-08-01 Intel Corporation Package with integrated thermoelectric module for cooling of integrated circuits
JP3399425B2 (ja) * 1999-11-19 2003-04-21 株式会社村田製作所 サーモパイル型熱電センサ
US6282907B1 (en) 1999-12-09 2001-09-04 International Business Machines Corporation Thermoelectric cooling apparatus and method for maximizing energy transport
US6385976B1 (en) * 2000-09-08 2002-05-14 Ferrotec (Usa) Corporation Thermoelectric module with integrated heat exchanger and method of use
US6608250B2 (en) 2000-12-07 2003-08-19 International Business Machines Corporation Enhanced interface thermoelectric coolers using etched thermoelectric material tips
WO2004105144A1 (ja) * 2003-05-20 2004-12-02 Matsushita Electric Industrial Co., Ltd. 熱電変換材料及びその製法
US20050045702A1 (en) * 2003-08-29 2005-03-03 William Freeman Thermoelectric modules and methods of manufacture
JP2005116746A (ja) * 2003-10-07 2005-04-28 Toshiba Corp 熱電変換材料及びこれを用いた熱電変換素子
CN100397671C (zh) * 2003-10-29 2008-06-25 京瓷株式会社 热电换能模块
US20060016248A1 (en) * 2004-07-26 2006-01-26 Kevin Walsh Thermoelectric Circuits Utilizing Series Isothermal Heterojunctions
US20080308140A1 (en) 2004-08-17 2008-12-18 The Furukawa Electric Co., Ltd. Thermo-Electric Cooling Device
US20090007952A1 (en) * 2004-10-18 2009-01-08 Yoshiomi Kondoh Structure of Peltier Element or Seebeck Element and Its Manufacturing Method
JP2010093009A (ja) * 2008-10-07 2010-04-22 Sumitomo Chemical Co Ltd 熱電変換モジュールおよび熱電変換素子
US20100124022A1 (en) 2008-11-14 2010-05-20 Suad Causevic Thermoelectric cooling apparatus and method for cooling an integrated circuit
WO2010067367A2 (en) 2008-12-11 2010-06-17 Lamos Inc. Split-thermo-electric structures
JP5523769B2 (ja) * 2009-08-28 2014-06-18 株式会社Kelk 熱電モジュール
US20110048489A1 (en) * 2009-09-01 2011-03-03 Gabriel Karim M Combined thermoelectric/photovoltaic device for high heat flux applications and method of making the same
US20110139203A1 (en) * 2009-12-16 2011-06-16 Gm Global Technology Operations, Inc. Heterostructure thermoelectric generator
KR20130035016A (ko) * 2011-09-29 2013-04-08 삼성전기주식회사 열전 모듈
DE102012104927A1 (de) * 2012-06-06 2013-12-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelektrisches Modul und Verfahren zum Betrieb
US9960288B2 (en) * 2012-08-09 2018-05-01 The United State of America as represented by the Administrator of NASA Solar radiation control and energy harvesting film
WO2014030264A1 (ja) * 2012-08-21 2014-02-27 Mabuchi Mahito 熱電材料に伝熱量を低減し作業物質流は本来の熱電材料以上となる空間部分あるいは繋がった空間部分を含んだ熱電変換素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528940A (ja) * 2010-05-05 2013-07-11 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ ペルティエモードまたはゼーベックモードでの動作のため最適化された熱電モジュール
WO2012140652A1 (en) * 2011-04-11 2012-10-18 Lamos Inc. Anodized aluminum substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501932A (ja) * 2017-11-02 2021-01-21 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 動的熱電クイック・レスポンス・コード・デバイス

Also Published As

Publication number Publication date
DE102014117584A1 (de) 2015-06-18
CN104716253B (zh) 2017-04-19
CN104716253A (zh) 2015-06-17
US9947853B2 (en) 2018-04-17
US20150171301A1 (en) 2015-06-18
GB2521353A (en) 2015-06-24
JP5936242B2 (ja) 2016-06-22
GB201322245D0 (en) 2014-01-29
DE102014117584B4 (de) 2018-10-18

Similar Documents

Publication Publication Date Title
Min et al. Cooling performance of integrated thermoelectric microcooler
US9516790B2 (en) Thermoelectric cooler/heater integrated in printed circuit board
JP3921602B2 (ja) 熱電素子
US9620700B2 (en) Wafer scale thermoelectric energy harvester
US8143510B2 (en) Thermoelectric composite semiconductor
JP2003533031A5 (ja)
JP2010251692A (ja) 熱電素子
US7825324B2 (en) Spreading thermoelectric coolers
JP5936242B2 (ja) 熱源からヒート・シンクに熱を移動させるための熱電デバイスおよびモジュール
KR100959437B1 (ko) 몰드가능한 펠티에 열전달 장치 및 그 제조방법
CN103794581A (zh) 一种热电散热装置
US20130160808A1 (en) Thermoelectric generating apparatus and module
Bulman et al. High heat flux, high temperature cooling of electronics with thermoelectric devices
US20170005251A1 (en) Thermoelectric device
WO2015166474A1 (en) Thermoelectric device and method for fabrication thereof
JP2011082272A (ja) 熱電冷却装置
Chavan et al. Compact design of thermoelectric cooler and its performance analysis
Zhang et al. Improved maximum cooling by optimizing the geometry of thermoelectric leg elements
Poddar Eco-friendly transition metal silicide for high temperature thermoelectricity
RU2575614C2 (ru) Термоэлектрический генератор с высоким градиентом температур между спаями
US20170170378A1 (en) Thermoelectric module
Chen et al. A novel VLSI technology to manufacture high-density thermoelectric cooling devices
Ali et al. Review on Solid State Thermoelectric Module and Its Use in Energy Recycling
RU2018117710A (ru) Способ работы обратного обратимого термоэлектрического цикла и устройство теплового насоса на его основе
KR20190090929A (ko) 열전 발전 모듈

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160415

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20160415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5936242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150