JP2015118219A - Light intensity distribution measuring device, drawing device, and light intensity distribution measuring method - Google Patents

Light intensity distribution measuring device, drawing device, and light intensity distribution measuring method Download PDF

Info

Publication number
JP2015118219A
JP2015118219A JP2013261109A JP2013261109A JP2015118219A JP 2015118219 A JP2015118219 A JP 2015118219A JP 2013261109 A JP2013261109 A JP 2013261109A JP 2013261109 A JP2013261109 A JP 2013261109A JP 2015118219 A JP2015118219 A JP 2015118219A
Authority
JP
Japan
Prior art keywords
light
linear
irradiation
light quantity
irradiation surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013261109A
Other languages
Japanese (ja)
Other versions
JP6113064B2 (en
Inventor
北村 藤和
Fujikazu Kitamura
藤和 北村
小久保 正彦
Masahiko Kokubo
正彦 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2013261109A priority Critical patent/JP6113064B2/en
Priority to PCT/JP2014/079361 priority patent/WO2015093171A1/en
Publication of JP2015118219A publication Critical patent/JP2015118219A/en
Application granted granted Critical
Publication of JP6113064B2 publication Critical patent/JP6113064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • G01J2001/4261Scan through beam in order to obtain a cross-sectional profile of the beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure light intensity distribution of linear light repeatedly and accurately with a simple constitution.SOLUTION: A light intensity distribution measuring device 4 includes a mask unit 41 having a cylindrical irradiation surface 412 and a light intensity measurement unit 42 provided inside the mask unit 41. Linear light from a head unit 3 that emits the linear light irradiates the irradiation surface 412, and a linear irradiation region 415 parallel to the center axis J1 of the irradiation surface 412 is formed. The irradiation surface 412 continuously rotates about the center axis J1. The irradiation surface 412 is provided with a slit 414 inclined with respect to the center axis J1. If the slit 414, which is a linear transmission region, is interpreted as being an aggregation of a plurality of transmission region components arranged continuously in a line, the plurality of transmission region components pass through a plurality of different positions on the linear irradiation region 415 at different timings, and the light transmitted through the transmission region components is received by the light intensity measurement unit 42. Thus, light intensity distribution of linear light can be measured repeatedly and accurately with a simple constitution.

Description

本発明は、線状光の光量分布を測定する技術、および、当該技術を利用する描画装置に関する。   The present invention relates to a technique for measuring a light amount distribution of linear light, and a drawing apparatus using the technique.

従来より、感光材料が表面に付与された半導体基板やガラス基板等の基板の表面に光ビームを照射してパターンを描画する描画装置(直接描画型パターン描画装置)が用いられている。描画装置では、例えば、回折格子型の空間光変調器に線状光が照射され、空間変調された光が基板上に導かれる。   2. Description of the Related Art Conventionally, a drawing apparatus (direct drawing type pattern drawing apparatus) that draws a pattern by irradiating the surface of a substrate such as a semiconductor substrate or a glass substrate provided with a photosensitive material with a light beam has been used. In the drawing apparatus, for example, linear light is irradiated to a diffraction grating type spatial light modulator, and the spatially modulated light is guided onto the substrate.

基板上にパターンを精度よく描画するには、基板上に照射される光の光量分布を所望の分布とする必要がある。例えば、特許文献1の画像記録装置では、複数の光変調素子が設けられた光変調デバイスの各光変調素子に対応する信号光の光量がラインセンサにより取得され、各光変調素子の出力光量を補正するための補正パラメータが修正される。信号光の光量のばらつきが許容範囲内となるまで、信号光の光量の取得および補正パラメータの修正が繰り返される。なお、特許文献1では、スリットを移動させながら各光変調素子に対応する信号光の光量を取得するという手法も開示されている。   In order to draw a pattern on the substrate with high accuracy, it is necessary to make the light amount distribution of the light irradiated on the substrate a desired distribution. For example, in the image recording apparatus of Patent Document 1, the amount of signal light corresponding to each light modulation element of a light modulation device provided with a plurality of light modulation elements is acquired by a line sensor, and the output light amount of each light modulation element is calculated. Correction parameters for correction are corrected. The acquisition of the light amount of the signal light and the correction of the correction parameter are repeated until the variation in the light amount of the signal light is within the allowable range. Note that Patent Document 1 also discloses a method of acquiring the amount of signal light corresponding to each light modulation element while moving the slit.

特開2003−140355号公報JP 2003-140355 A

ところで、近年、基板上に描画されるパターンの微細化が進められており、空間光変調器に設けられる光変調素子の個数も増大している(例えば、回折格子型の空間光変調器では、8000個)。したがって、線状光の光量分布を取得する場合にラインセンサを用いるときには、線状光の照射領域とラインセンサとの位置決めが容易ではない。また、ラインセンサの受光面において、1つの検出素子よりも1つの光変調素子に対応する領域が小さいときには、線状光の光量分布の測定における分解能が不十分となる。線状光の照射領域との位置決めを容易にするため、ラインセンサに代えて、検出素子が2次元に配列されたエリアセンサを用いることも考えられるが、光量分布の測定における分解能を向上することは困難である。   Incidentally, in recent years, the pattern drawn on the substrate has been miniaturized, and the number of light modulation elements provided in the spatial light modulator has also increased (for example, in a diffraction grating type spatial light modulator, 8000). Therefore, when the line sensor is used when acquiring the light amount distribution of the linear light, it is not easy to position the linear light irradiation area and the line sensor. Further, when the area corresponding to one light modulation element is smaller than one detection element on the light receiving surface of the line sensor, the resolution in measuring the light amount distribution of the linear light becomes insufficient. In order to facilitate positioning with the irradiation area of the linear light, it may be possible to use an area sensor in which detection elements are arranged two-dimensionally instead of the line sensor, but to improve the resolution in measuring the light quantity distribution. It is difficult.

線状光の長手方向にスリットおよび受光器を移動して光量分布を測定する場合、往路および復路においてヒステリシスが生じるため、繰り返し測定する際の測定精度が低下するという問題がある。また、光量分布の測定に求められる精度によっては、スリットおよび受光器の位置精度を確保するために、レーザ測長システムが必要となり、光量分布の測定に係る装置の製造コストが増大してしまう。   When the light quantity distribution is measured by moving the slit and the light receiver in the longitudinal direction of the linear light, hysteresis occurs in the forward path and the return path, and there is a problem that the measurement accuracy during repeated measurement is lowered. Further, depending on the accuracy required for the measurement of the light amount distribution, a laser length measurement system is required to ensure the positional accuracy of the slit and the light receiver, and the manufacturing cost of the apparatus related to the measurement of the light amount distribution increases.

本発明は上記課題に鑑みなされたものであり、簡単な構成にて線状光の光量分布を精度よく繰り返し測定することを目的としている。   The present invention has been made in view of the above problems, and an object thereof is to repeatedly and accurately measure the light amount distribution of linear light with a simple configuration.

請求項1に記載の発明は、線状光の光量分布を測定する光量分布測定装置であって、線状光を出射するヘッド部からの前記線状光が照射される照射面を有し、平面である前記照射面を前記平面に垂直な軸を中心として回転することにより、または、円筒面もしくは円錐面である回転面の少なくとも一部である前記照射面を前記回転面の中心軸を中心として回転することにより、前記照射面に形成された複数の透過領域要素が、前記照射面上における前記線状光の線状照射領域の互いに異なる複数の位置をそれぞれ異なるタイミングで通過するマスク部と、前記マスク部の各透過領域要素を透過した光を受ける光量測定部とを備える。   The invention according to claim 1 is a light amount distribution measuring device for measuring a light amount distribution of linear light, and has an irradiation surface to which the linear light from the head part that emits linear light is irradiated, The irradiation surface that is a plane is rotated around an axis perpendicular to the plane, or the irradiation surface that is at least a part of a rotation surface that is a cylindrical surface or a conical surface is centered on the central axis of the rotation surface A plurality of transmission region elements formed on the irradiation surface pass through a plurality of different positions of the linear irradiation region of the linear light on the irradiation surface at different timings, respectively. And a light quantity measuring unit that receives light transmitted through each transmission region element of the mask unit.

請求項2に記載の発明は、請求項1に記載の光量分布測定装置であって、前記複数の透過領域要素が、線状透過領域に含まれる。   A second aspect of the present invention is the light quantity distribution measuring device according to the first aspect, wherein the plurality of transmission region elements are included in the linear transmission region.

請求項3に記載の発明は、請求項2に記載の光量分布測定装置であって、前記線状透過領域が、前記線状照射領域の全ての位置を通過する。   A third aspect of the present invention is the light amount distribution measuring apparatus according to the second aspect, wherein the linear transmission region passes through all positions of the linear irradiation region.

請求項4に記載の発明は、請求項2または3に記載の光量分布測定装置であって、前記線状透過領域と同様のもう1つの線状透過領域が前記照射面に形成され、前記照射面の回転角において、前記線状透過領域が前記線状照射領域を通過する角度範囲と、前記もう1つの線状透過領域が前記線状照射領域を通過する角度範囲とが相違する。   The invention according to claim 4 is the light quantity distribution measuring device according to claim 2 or 3, wherein another linear transmission region similar to the linear transmission region is formed on the irradiation surface, and the irradiation is performed. In the rotation angle of the surface, an angle range in which the linear transmission region passes through the linear irradiation region and an angular range in which the other linear transmission region passes through the linear irradiation region are different.

請求項5に記載の発明は、請求項1ないし4のいずれかに記載の光量分布測定装置であって、線状光を出射するもう1つのヘッド部からの前記線状光が前記照射面に照射され、前記もう1つのヘッド部からの前記線状光のうち、前記マスク部の前記各透過領域要素を透過した光を受けるもう1つの光量測定部をさらに備える。   A fifth aspect of the present invention is the light quantity distribution measuring device according to any one of the first to fourth aspects, wherein the linear light from another head unit that emits linear light is applied to the irradiation surface. It further includes another light quantity measurement unit that receives the light that has been irradiated and transmitted through each of the transmission region elements of the mask unit out of the linear light from the other head unit.

請求項6に記載の発明は、描画装置であって、線状光を出射する出射部と、前記出射部からの前記線状光が照射される空間光変調器と、前記空間光変調器により空間変調された光を対象物上に導く投影光学系と、前記空間変調された光の対象物上における照射位置を移動する移動機構と、前記移動機構による前記照射位置の移動に同期して前記空間光変調器を制御する制御部と、対象物上における前記線状光の光量分布を測定する際に、前記空間光変調器および前記投影光学系を経由した前記線状光が入射する請求項1ないし5のいずれかに記載の光量分布測定装置とを備える。   The invention according to claim 6 is a drawing apparatus comprising: an emitting unit that emits linear light; a spatial light modulator that is irradiated with the linear light from the emitting unit; and the spatial light modulator. A projection optical system for guiding spatially modulated light onto an object, a moving mechanism for moving an irradiation position on the object of the spatially modulated light, and the movement of the irradiation position by the moving mechanism in synchronization with the movement The controller that controls the spatial light modulator and the linear light that has passed through the spatial light modulator and the projection optical system are incident when measuring the light amount distribution of the linear light on the object. The light quantity distribution measuring device according to any one of 1 to 5 is provided.

請求項7に記載の発明は、線状光の光量分布を測定する光量分布測定方法であって、a)ヘッド部から線状光を出射して、マスク部の照射面に前記線状光を照射する工程と、b)平面である前記照射面を前記平面に垂直な軸を中心として回転することにより、または、円筒面もしくは円錐面である回転面の少なくとも一部である前記照射面を前記回転面の中心軸を中心として回転することにより、前記照射面に形成された複数の透過領域要素に、前記照射面上における前記線状光の線状照射領域の互いに異なる複数の位置をそれぞれ異なるタイミングで通過させる工程と、前記b)工程に並行して、前記マスク部の各透過領域要素を透過した光の光量を測定する工程とを備える。   The invention according to claim 7 is a light amount distribution measuring method for measuring a light amount distribution of linear light, wherein a) linear light is emitted from a head portion, and the linear light is irradiated on an irradiation surface of a mask portion. Irradiating; and b) rotating the irradiation surface that is a plane around an axis perpendicular to the plane, or the irradiation surface that is at least part of a rotation surface that is a cylindrical surface or a conical surface. By rotating about the central axis of the rotation surface, the plurality of transmission region elements formed on the irradiation surface are different from each other in a plurality of different positions of the linear irradiation region of the linear light on the irradiation surface. A step of passing at a timing; and a step of measuring the amount of light transmitted through each transmission region element of the mask portion in parallel with the step b).

本発明によれば、簡単な構成にて線状光の光量分布を精度よく繰り返し測定することができる。   According to the present invention, it is possible to repeatedly and accurately measure the light amount distribution of linear light with a simple configuration.

第1の実施の形態に係る描画装置の構成を示す図である。It is a figure which shows the structure of the drawing apparatus which concerns on 1st Embodiment. ヘッド部の内部構成を示す図である。It is a figure which shows the internal structure of a head part. 複数のヘッド部および複数の光量分布測定装置を示す図である。It is a figure which shows a some head part and a some light quantity distribution measuring apparatus. 光量分布測定装置を示す図である。It is a figure which shows a light quantity distribution measuring apparatus. 照射面上のスリットを示す図である。It is a figure which shows the slit on an irradiation surface. 線状光の光量分布を補正する処理の流れを示す図である。It is a figure which shows the flow of the process which correct | amends the light quantity distribution of linear light. 光量分布測定装置の他の例を示す図である。It is a figure which shows the other example of a light quantity distribution measuring apparatus. 第2の実施の形態に係る光量分布測定装置を示す斜視図である。It is a perspective view which shows the light quantity distribution measuring apparatus which concerns on 2nd Embodiment. マスク部を示す平面図である。It is a top view which shows a mask part. アルキメデスの渦巻線を示す図である。It is a figure which shows the spiral of Archimedes. 光量分布測定装置の他の例を示す斜視図である。It is a perspective view which shows the other example of a light quantity distribution measuring apparatus. マスク部を示す平面図である。It is a top view which shows a mask part. アルキメデスの渦巻線を示す図である。It is a figure which shows the spiral of Archimedes. 描画装置の他の例を示す図である。It is a figure which shows the other example of a drawing apparatus. 光量分布測定装置を示す斜視図である。It is a perspective view which shows a light quantity distribution measuring apparatus. マスク部を示す平面図である。It is a top view which shows a mask part. 照射面上の複数の透過領域要素を示す図である。It is a figure which shows the some permeation | transmission area | region element on an irradiation surface. マスク部の他の例を示す断面図である。It is sectional drawing which shows the other example of a mask part. マスク部の他の例を示す断面図である。It is sectional drawing which shows the other example of a mask part.

図1は、本発明の第1の実施の形態に係る描画装置1の構成を示す図である。描画装置1は、感光材料が表面に付与された半導体基板やガラス基板等の基板9の表面に光ビームを照射してパターンを描画する直接描画装置である。図1では、互いに直交するX方向、Y方向およびZ方向を矢印にて示している。   FIG. 1 is a diagram showing a configuration of a drawing apparatus 1 according to the first embodiment of the present invention. The drawing apparatus 1 is a direct drawing apparatus that draws a pattern by irradiating the surface of a substrate 9 such as a semiconductor substrate or a glass substrate, to which a photosensitive material is applied, with a light beam. In FIG. 1, the X, Y, and Z directions orthogonal to each other are indicated by arrows.

描画装置1は、ステージ21と、移動機構22と、複数のヘッド部3と、複数の光量分布測定装置4と、制御部11と、を備える。ステージ21は基板9を保持する。移動機構22は基台20上に設けられ、X方向移動機構221と、Y方向移動機構222と、を備える。ステージ21はX方向移動機構221の移動体に固定され、X方向移動機構221により、ステージ21が基板9の主面に沿うX方向に移動する。X方向移動機構221はY方向移動機構222の移動体に固定され、Y方向移動機構222により、X方向移動機構221が基板9の主面に沿うY方向に移動する。移動機構22は、基板9を、主面に垂直な軸(図1中のZ方向に伸びる軸)を中心として回動してもよい。   The drawing apparatus 1 includes a stage 21, a moving mechanism 22, a plurality of head units 3, a plurality of light quantity distribution measuring devices 4, and a control unit 11. The stage 21 holds the substrate 9. The moving mechanism 22 is provided on the base 20 and includes an X-direction moving mechanism 221 and a Y-direction moving mechanism 222. The stage 21 is fixed to a moving body of the X direction moving mechanism 221, and the stage 21 moves in the X direction along the main surface of the substrate 9 by the X direction moving mechanism 221. The X direction moving mechanism 221 is fixed to the moving body of the Y direction moving mechanism 222, and the Y direction moving mechanism 222 moves the X direction moving mechanism 221 in the Y direction along the main surface of the substrate 9. The moving mechanism 22 may rotate the substrate 9 about an axis perpendicular to the main surface (an axis extending in the Z direction in FIG. 1).

基台20には、移動機構22を跨ぐように、支持台30が設けられる。複数のヘッド部3は、支持台30に固定され、ステージ21の上方にてX方向に配列される。ステージ21の(+Y)側には、複数のヘッド部3と同数の光量分布測定装置4がX方向に配列される。複数の光量分布測定装置4はY方向移動機構222の移動体に固定され、ステージ21と共にY方向に移動する。X方向に関して、複数の光量分布測定装置4は、複数のヘッド部3とそれぞれ同じ位置に配置される。光量分布測定装置4の詳細については後述する。   A support base 30 is provided on the base 20 so as to straddle the moving mechanism 22. The plurality of head portions 3 are fixed to the support base 30 and arranged in the X direction above the stage 21. On the (+ Y) side of the stage 21, the same number of light quantity distribution measuring devices 4 as the plurality of head units 3 are arranged in the X direction. The plurality of light quantity distribution measuring devices 4 are fixed to the moving body of the Y direction moving mechanism 222 and move in the Y direction together with the stage 21. With respect to the X direction, the plurality of light quantity distribution measuring devices 4 are arranged at the same positions as the plurality of head units 3. Details of the light quantity distribution measuring device 4 will be described later.

図2は、ヘッド部3の内部構成を示す図である。ヘッド部3は、出射部31と、空間光変調器32と、投影光学系33と、を備える。出射部31は線状光を出射し、ミラー39を介して空間光変調器32に線状光を照射する。空間光変調器32は、例えば回折格子型かつ反射型であり、格子の深さを変更することができる回折格子である。空間光変調器32は、半導体装置製造技術を利用して製造される。本実施の形態に用いられる回折格子型の光変調器は、例えば、GLV(グレーティング・ライト・バルブ)(シリコン・ライト・マシーンズ(サニーベール、カリフォルニア)の登録商標)である。空間光変調器32は一列に配列された複数の格子要素(リボン対)を有し、各格子要素は、1次回折光が出射される状態と、0次回折光(0次光)が出射される状態との間で遷移する。このようにして、空間光変調器32から空間変調された光が出射される。以下の説明では、1つの格子要素を「光変調素子」と呼ぶ。互いに隣接する数個の格子要素が1つの光変調素子と捉えられてもよい。   FIG. 2 is a diagram illustrating an internal configuration of the head unit 3. The head unit 3 includes an emitting unit 31, a spatial light modulator 32, and a projection optical system 33. The emitting unit 31 emits linear light and irradiates the spatial light modulator 32 with the linear light via the mirror 39. The spatial light modulator 32 is, for example, a diffraction grating type and a reflection type, and is a diffraction grating capable of changing the depth of the grating. The spatial light modulator 32 is manufactured using a semiconductor device manufacturing technique. The diffraction grating type optical modulator used in the present embodiment is, for example, GLV (Grating Light Valve) (registered trademark of Silicon Light Machines (Sunnyvale, Calif.)). The spatial light modulator 32 has a plurality of grating elements (ribbon pairs) arranged in a line, and each grating element emits first-order diffracted light and zero-order diffracted light (0th-order light). Transition between states. In this way, the spatially modulated light is emitted from the spatial light modulator 32. In the following description, one grating element is referred to as “light modulation element”. Several lattice elements adjacent to each other may be regarded as one light modulation element.

投影光学系33は、遮光板331と、レンズ332と、レンズ333と、絞り板334と、フォーカシングレンズ335と、を備える。遮光板331は、ゴースト光および高次回折光の一部を遮蔽し、空間光変調器32からの光を通過させる。レンズ332,333はズーム部を構成する。絞り板334は、(±1)次回折光(および高次回折光)を遮蔽し、0次回折光を通過させる。絞り板334を通過した光は、フォーカシングレンズ335により基板9の主面上に導かれる。このようにして、空間光変調器32により空間変調された光が、投影光学系33により基板9上に導かれる。なお、絞り板334は0次回折光のみを遮断し、(±1)次回折光(および高次回折光)を通過させるものであってもよい。   The projection optical system 33 includes a light shielding plate 331, a lens 332, a lens 333, a diaphragm plate 334, and a focusing lens 335. The light shielding plate 331 shields part of the ghost light and the high-order diffracted light and allows the light from the spatial light modulator 32 to pass through. The lenses 332 and 333 constitute a zoom unit. The diaphragm plate 334 shields the (± 1) order diffracted light (and higher order diffracted light) and allows the 0th order diffracted light to pass through. The light that has passed through the diaphragm plate 334 is guided onto the main surface of the substrate 9 by the focusing lens 335. In this way, the light spatially modulated by the spatial light modulator 32 is guided onto the substrate 9 by the projection optical system 33. The diaphragm plate 334 may block only the 0th order diffracted light and allow the (± 1) order diffracted light (and higher order diffracted light) to pass therethrough.

図1の制御部11は、複数のヘッド部3、移動機構22、および、複数の光量分布測定装置4に接続され、これらの構成を制御する。描画装置1では、移動機構22がステージ21を移動することにより、空間光変調器32からの光の基板9上における照射位置が移動する。また、制御部11が、移動機構22による当該照射位置の移動に同期して、空間光変調器32を制御する。これにより、基板9上の感光材料に所望のパターンが描画される。   The control unit 11 in FIG. 1 is connected to the plurality of head units 3, the moving mechanism 22, and the plurality of light quantity distribution measuring devices 4, and controls these configurations. In the drawing apparatus 1, when the moving mechanism 22 moves the stage 21, the irradiation position on the substrate 9 of the light from the spatial light modulator 32 moves. Further, the control unit 11 controls the spatial light modulator 32 in synchronization with the movement of the irradiation position by the moving mechanism 22. Thereby, a desired pattern is drawn on the photosensitive material on the substrate 9.

図3は、複数のヘッド部3および複数の光量分布測定装置4を(−Y)側から(+Y)方向を向いて見た様子を示す図である。既述のように、X方向に関して複数の光量分布測定装置4は、複数のヘッド部3とそれぞれ同じ位置に配置される。ヘッド部3から出射される線状光の光量分布を測定する際には、移動機構22により複数の光量分布測定装置4がY方向に移動し、複数のヘッド部3の真下にそれぞれ配置される。これにより、各ヘッド部3において空間光変調器32および投影光学系33を経由した線状光が、当該ヘッド部3の真下に配置された光量分布測定装置4に入射する。   FIG. 3 is a diagram illustrating a state in which the plurality of head units 3 and the plurality of light quantity distribution measuring devices 4 are viewed from the (−Y) side toward the (+ Y) direction. As described above, the plurality of light quantity distribution measuring devices 4 in the X direction are arranged at the same positions as the plurality of head units 3, respectively. When measuring the light amount distribution of the linear light emitted from the head unit 3, the plurality of light amount distribution measuring devices 4 are moved in the Y direction by the moving mechanism 22 and are respectively disposed directly below the plurality of head units 3. . As a result, the linear light that has passed through the spatial light modulator 32 and the projection optical system 33 in each head unit 3 is incident on the light amount distribution measuring device 4 that is disposed directly below the head unit 3.

図4は、1つの光量分布測定装置4を(−X)側から(+X)方向を向いて見た様子を示す図である。図3および図4に示すように、各光量分布測定装置4は、マスク部41と、光量測定部42と、モータ43と、を備える。マスク部41は、有蓋円筒状であり、蓋部411の中央には、回転機構であるモータ43のシャフトが接続される。モータ43のシャフトが回転することにより、X方向に伸びるシャフトの中心軸J1を中心としてマスク部41が連続的に回転する。マスク部41は、例えば金属にて形成される。複数の光量分布測定装置4のモータ43は、1つの支持部40に対して固定される。支持部40は、既述のY方向移動機構222の移動体に固定される。   FIG. 4 is a diagram illustrating a state in which one light quantity distribution measuring device 4 is viewed from the (−X) side in the (+ X) direction. As shown in FIGS. 3 and 4, each light quantity distribution measuring device 4 includes a mask part 41, a light quantity measuring part 42, and a motor 43. The mask portion 41 has a cylindrical shape with a lid, and a shaft of a motor 43 that is a rotation mechanism is connected to the center of the lid portion 411. When the shaft of the motor 43 is rotated, the mask portion 41 is continuously rotated around the central axis J1 of the shaft extending in the X direction. The mask part 41 is made of metal, for example. The motors 43 of the plurality of light quantity distribution measuring devices 4 are fixed with respect to one support part 40. The support part 40 is fixed to the moving body of the Y-direction moving mechanism 222 described above.

図4に示すように、マスク部41の外周面412は、中心軸J1を中心とする円筒面である。線状光の光量分布を測定する際には、ヘッド部3からの線状光が、投影光学系33(図2参照)の光軸J2に沿って外周面412上に照射される。以下の説明では、外周面412を「照射面412」という。光軸J2および中心軸J1は同一平面上に配置される。照射面412上における線状光の線状照射領域415は、中心軸J1に平行である。図3および図4では、線状照射領域415を太い実線にて示している。線状照射領域415は照射面412の最上部413(最も(+Z)側の部位)に形成される。Z方向に関して、照射面412の最上部413は、描画面である基板9の主面と同じ高さである。すなわち、照射面412の最上部413は、描画装置1における描画面と等価な位置である。   As shown in FIG. 4, the outer peripheral surface 412 of the mask part 41 is a cylindrical surface centering on the central axis J1. When measuring the light amount distribution of the linear light, the linear light from the head unit 3 is irradiated on the outer peripheral surface 412 along the optical axis J2 of the projection optical system 33 (see FIG. 2). In the following description, the outer peripheral surface 412 is referred to as an “irradiation surface 412”. The optical axis J2 and the central axis J1 are arranged on the same plane. A linear irradiation region 415 of linear light on the irradiation surface 412 is parallel to the central axis J1. 3 and 4, the linear irradiation region 415 is indicated by a thick solid line. The linear irradiation region 415 is formed at the uppermost portion 413 (the most (+ Z) side portion) of the irradiation surface 412. With respect to the Z direction, the uppermost part 413 of the irradiation surface 412 has the same height as the main surface of the substrate 9 which is the drawing surface. That is, the uppermost part 413 of the irradiation surface 412 is a position equivalent to the drawing surface in the drawing apparatus 1.

図3に示すように、照射面412には、線状の貫通孔であるスリット414が形成される。スリット414は中心軸J1および線状照射領域415に対して傾斜した方向に伸びる。光量測定部42は、ヘッド部3と中心軸J1との間においてマスク部41の内部に配置される。すなわち、光量測定部42は照射面412の最上部413と中心軸J1との間に配置される。光量測定部42はマスク部41の内周面に近接して配置される。また、X方向に関して、光量測定部42は、線状照射領域415よりも長い受光面を有し、仮にマスク部41を省略した場合に、線状光のほぼ全体が光量測定部42の受光面に入射する。光量測定部42は、図示省略の支持部材により支持部40に対して支持される。光量測定部42とマスク部41との間に、必要に応じて拡散板やレンズ等が設けられてよい。   As shown in FIG. 3, slits 414 that are linear through holes are formed on the irradiation surface 412. The slit 414 extends in a direction inclined with respect to the central axis J1 and the linear irradiation region 415. The light quantity measuring unit 42 is disposed inside the mask unit 41 between the head unit 3 and the central axis J1. That is, the light quantity measuring unit 42 is disposed between the uppermost part 413 of the irradiation surface 412 and the central axis J1. The light quantity measuring unit 42 is disposed close to the inner peripheral surface of the mask unit 41. Further, with respect to the X direction, the light quantity measuring unit 42 has a light receiving surface longer than the linear irradiation region 415, and if the mask unit 41 is omitted, almost the entire linear light is received by the light quantity measuring unit 42. Is incident on. The light quantity measurement unit 42 is supported with respect to the support unit 40 by a support member (not shown). A diffusion plate, a lens, or the like may be provided between the light amount measurement unit 42 and the mask unit 41 as necessary.

図5は、照射面412を展開した状態におけるスリット414を示す図である。図5では、線状照射領域415も図示しており、線状照射領域415に平行斜線を付している。図5中の縦方向は、中心軸J1を中心とする周方向に対応し、図5中の横方向はX方向である。照射面412を展開した状態では、スリット414は直線状であり、周方向の位置が変化するに従って、X方向の位置が変化する。線状の透過領域であるスリット414を、連続的に一列に並ぶ複数の透過領域要素の集合として捉えると、X方向および周方向の双方において、複数の透過領域要素は互いに異なる位置に配置される。照射面412上に照射される線状光のうち、スリット414を通過する光のみがマスク部41の内部へと進入し、光量測定部42へと導かれる。換言すると、線状光は、最上部413を通過するスリット414の一部により部分的に切り出され、切り出された光が光量測定部42にて受けられる。図5では、スリット414と線状照射領域415とが重なる領域419(以下、「切出領域419」という。)を、太い実線にて囲むとともに内部にクロスハッチングを付している。図5の切出領域419の形状は平行四辺形である。   FIG. 5 is a view showing the slit 414 in a state where the irradiation surface 412 is developed. In FIG. 5, the linear irradiation region 415 is also illustrated, and the linear irradiation region 415 is indicated by parallel oblique lines. The vertical direction in FIG. 5 corresponds to the circumferential direction centering on the central axis J1, and the horizontal direction in FIG. 5 is the X direction. In a state where the irradiation surface 412 is developed, the slit 414 is linear, and the position in the X direction changes as the position in the circumferential direction changes. When the slits 414 that are linear transmission regions are regarded as a set of a plurality of transmission region elements that are continuously arranged in a line, the plurality of transmission region elements are arranged at different positions in both the X direction and the circumferential direction. . Of the linear light irradiated on the irradiation surface 412, only the light passing through the slit 414 enters the mask portion 41 and is guided to the light amount measuring portion 42. In other words, the linear light is partially cut out by a part of the slit 414 that passes through the uppermost part 413, and the cut-out light is received by the light quantity measuring unit 42. In FIG. 5, a region 419 where the slit 414 and the linear irradiation region 415 overlap (hereinafter referred to as “cutout region 419”) is surrounded by a thick solid line and is internally cross-hatched. The shape of the cutout region 419 in FIG. 5 is a parallelogram.

図6は、光量分布測定装置4を用いてヘッド部3からの線状光の光量分布を補正する処理の流れを示す図である。以下の説明では、1つのヘッド部3および1つの光量分布測定装置4のみに着目するが、他のヘッド部3および他の光量分布測定装置4においても同様の処理が行われる。光量分布の測定では、制御部11により全ての光変調素子が0次回折光を出射する状態とされることにより、ヘッド部3からの線状光の出射が開始される(ステップS11)。これにより、図3のマスク部41の照射面412に線状光が照射され、照射面412上にX方向に伸びる線状照射領域415が形成される。すなわち、照射面412の最上部413に空間光変調器32の像が形成される。線状照射領域415においてX方向(長手方向)における複数の位置は、空間光変調器32における複数の光変調素子にそれぞれ対応する。すなわち、線状照射領域415の複数の位置には、空間光変調器32の複数の光変調素子をそれぞれ経由した光(0次回折光)が照射される。実際には、全ての光変調素子に対して補正パラメータの値が個別に設定されており、各光変調素子からの出力光量は補正パラメータの値に従って調整される。   FIG. 6 is a diagram showing a flow of processing for correcting the light amount distribution of the linear light from the head unit 3 using the light amount distribution measuring device 4. In the following description, attention is paid only to one head unit 3 and one light quantity distribution measuring device 4, but the same processing is performed in other head units 3 and other light quantity distribution measuring devices 4. In the measurement of the light amount distribution, emission of linear light from the head unit 3 is started by setting all the light modulation elements to emit 0th-order diffracted light by the control unit 11 (step S11). Thereby, linear light is irradiated to the irradiation surface 412 of the mask part 41 of FIG. 3, and the linear irradiation area | region 415 extended in a X direction on the irradiation surface 412 is formed. That is, an image of the spatial light modulator 32 is formed on the uppermost part 413 of the irradiation surface 412. A plurality of positions in the X direction (longitudinal direction) in the linear irradiation region 415 correspond to a plurality of light modulation elements in the spatial light modulator 32, respectively. That is, light (0th-order diffracted light) that respectively passes through the plurality of light modulation elements of the spatial light modulator 32 is irradiated to a plurality of positions in the linear irradiation region 415. Actually, the correction parameter values are individually set for all the light modulation elements, and the output light amount from each light modulation element is adjusted according to the correction parameter values.

続いて、モータ43を駆動することにより、マスク部41の回転が開始される(ステップS12)。これにより、円筒面である照射面412が中心軸J1を中心として高速に(例えば、数百rpmの回転速度にて)回転し、照射面412がスリット414と共に図5の縦方向(周方向)に移動する。したがって、線状照射領域415において切出領域419が照射面412の回転角に従ってX方向に連続的に移動する。また、マスク部41の回転に並行して、マスク部41のスリット414を透過した光の光量が光量測定部42により繰り返し測定される(ステップS13)。このようにして、複数の光変調素子から出力される光量が、1つの光量測定部42により照射面412の回転角に従って順次取得される。以下の説明では、光量測定部42により取得される光量を「測定光量」という。   Subsequently, the rotation of the mask unit 41 is started by driving the motor 43 (step S12). Thereby, the irradiation surface 412 which is a cylindrical surface rotates around the central axis J1 at a high speed (for example, at a rotation speed of several hundred rpm), and the irradiation surface 412 together with the slit 414 in the vertical direction (circumferential direction) in FIG. Move to. Therefore, the cutout region 419 moves continuously in the X direction in the linear irradiation region 415 according to the rotation angle of the irradiation surface 412. In parallel with the rotation of the mask unit 41, the light amount of the light transmitted through the slit 414 of the mask unit 41 is repeatedly measured by the light amount measuring unit 42 (step S13). In this manner, the light amounts output from the plurality of light modulation elements are sequentially acquired by the single light amount measuring unit 42 according to the rotation angle of the irradiation surface 412. In the following description, the light quantity acquired by the light quantity measuring unit 42 is referred to as “measured light quantity”.

描画装置1では、基板9上にパターンを精度よく描画するための理想的な光量分布が予め取得されており、各光変調素子に対応する測定光量が、当該光変調素子からの光が照射される位置における理想的な光量分布の光量(以下、「理想光量」という。)と比較される。そして、測定光量と理想光量との差(差の絶対値)が所定の閾値よりも大きい光変調素子では、当該光変調素子の出力光量を補正するための補正パラメータの値が修正される(ステップS14,S15)。例えば、測定光量が理想光量よりも小さい場合には、出力光量を増大させるために補正パラメータの値がより大きい値に修正される。測定光量が理想光量よりも大きい場合には、出力光量を低下させるために補正パラメータの値がより小さい値に修正される。補正パラメータの値が修正されると、実際に各光変調素子から出力される光(0次回折光)の光量も、修正後の補正パラメータの値に従って変化する。なお、ステップS15の処理において、測定光量と理想光量との差が閾値以下である光変調素子では、補正パラメータの値は修正されない(修正されてもよい)。   In the drawing apparatus 1, an ideal light amount distribution for accurately drawing a pattern on the substrate 9 is acquired in advance, and the measurement light amount corresponding to each light modulation element is irradiated with light from the light modulation element. Compared to an ideal light amount distribution at a certain position (hereinafter referred to as “ideal light amount”). Then, in the light modulation element in which the difference between the measurement light quantity and the ideal light quantity (absolute value of the difference) is larger than a predetermined threshold value, the value of the correction parameter for correcting the output light quantity of the light modulation element is corrected (step). S14, S15). For example, when the measured light amount is smaller than the ideal light amount, the correction parameter value is corrected to a larger value in order to increase the output light amount. When the measurement light quantity is larger than the ideal light quantity, the correction parameter value is corrected to a smaller value in order to reduce the output light quantity. When the correction parameter value is corrected, the amount of light (0th-order diffracted light) actually output from each light modulation element also changes according to the corrected correction parameter value. In the process of step S15, the value of the correction parameter is not corrected (may be corrected) in the light modulation element in which the difference between the measured light amount and the ideal light amount is equal to or less than the threshold value.

実際には、各光変調素子の測定光量が取得されると直ぐに(他の光変調素子の測定光量の取得を待つこと無く)、当該測定光量と理想光量とが比較され、必要に応じて光変調素子の補正パラメータの値が修正される。すなわち、ステップS13における測定光量の取得、および、ステップS15における補正パラ−メータの値の修正は、複数の光変調素子において部分的に並行して行われる。そして、マスク部41が1回転して当該光変調素子からの光の照射位置に切出領域419が配置されると、当該光変調素子の測定光量が取得される(ステップS13)。測定光量と理想光量との差が閾値よりも大きい光変調素子では、補正パラメータの値が修正される(ステップS14,S15)。   Actually, as soon as the measurement light quantity of each light modulation element is acquired (without waiting for acquisition of the measurement light quantity of other light modulation elements), the measurement light quantity and the ideal light quantity are compared, and light is emitted as necessary. The value of the correction parameter of the modulation element is corrected. That is, the measurement light quantity acquisition in step S13 and the correction parameter value correction in step S15 are performed partially in parallel in the plurality of light modulation elements. Then, when the mask portion 41 rotates once and the cutout region 419 is arranged at the irradiation position of the light from the light modulation element, the measurement light quantity of the light modulation element is acquired (step S13). In the light modulation element in which the difference between the measured light amount and the ideal light amount is larger than the threshold value, the correction parameter value is corrected (steps S14 and S15).

上記ステップS13,S15の処理は、全ての光変調素子において測定光量と理想光量との差が閾値以下となるまで繰り返される(ステップS14)。このとき、光量分布測定装置4では、マスク部41が連続的に回転していることにより、線状照射領域415の各位置に対して、ステップS13における測定光量の取得を、直前のステップS13における測定光量の取得から短時間にて行うことが可能となる。   The processes in steps S13 and S15 are repeated until the difference between the measured light amount and the ideal light amount is less than or equal to the threshold value in all the light modulation elements (step S14). At this time, in the light quantity distribution measuring device 4, the mask unit 41 is continuously rotated, so that the measured light quantity is acquired in step S13 for each position of the linear irradiation region 415 in the immediately preceding step S13. It becomes possible to carry out in a short time from acquisition of the measurement light quantity.

全ての光変調素子において測定光量と理想光量との差が閾値以下となると(ステップS14)、マスク部41の回転が停止される(ステップS16)。また、全ての光変調素子が1次回折光を出射する状態とされ、ヘッド部3からの線状光の出射が停止される(ステップS17)。これにより、ヘッド部3からの線状光の光量分布を補正する処理が完了する。   When the difference between the measured light amount and the ideal light amount is less than or equal to the threshold value in all the light modulation elements (step S14), the rotation of the mask unit 41 is stopped (step S16). Further, all the light modulation elements are in a state of emitting the first-order diffracted light, and the emission of the linear light from the head unit 3 is stopped (step S17). Thereby, the process which correct | amends the light quantity distribution of the linear light from the head part 3 is completed.

次に、図5を参照して、スリット414の長さや、照射面412の周方向の長さ、切出領域419の面積について述べる。ここでは、線状照射領域415の長手方向の長さをL、周方向の幅(ビーム幅)をW、スリット414の幅をS、スリット414のX方向に対する傾きをθとする。線状照射領域415の全体において光量分布を測定するには、線状照射領域415の各位置をスリット414のいずれかの位置が通過する、すなわち、スリット414の長さmを(L/cosθ)以上とする必要がある。また、中心軸J1を中心とする周方向におけるスリット414の長さPは(m・sinθ)として表される。したがって、周方向における照射面412の長さ(円周)を(m・sinθ)以上とする必要がある。さらに、切出領域419を2つの直角三角形と、1つの矩形とに分割した場合に、各直角三角形のX方向の幅kは(W/tanθ)として表され、矩形のX方向の幅nは(−k+(S/sinθ))として表され、切出領域419の面積Aは((k+n)・W)として表される。   Next, the length of the slit 414, the length of the irradiation surface 412 in the circumferential direction, and the area of the cutout region 419 will be described with reference to FIG. Here, the length of the linear irradiation region 415 in the longitudinal direction is L, the width in the circumferential direction (beam width) is W, the width of the slit 414 is S, and the inclination of the slit 414 with respect to the X direction is θ. In order to measure the light amount distribution in the entire linear irradiation region 415, any position of the slit 414 passes through each position of the linear irradiation region 415, that is, the length m of the slit 414 is (L / cos θ). It is necessary to do it above. Further, the length P of the slit 414 in the circumferential direction around the central axis J1 is expressed as (m · sin θ). Therefore, the length (circumference) of the irradiation surface 412 in the circumferential direction needs to be not less than (m · sin θ). Further, when the cutout region 419 is divided into two right triangles and one rectangle, the width k in the X direction of each right triangle is expressed as (W / tan θ), and the width n in the X direction of the rectangle is It is expressed as (−k + (S / sin θ)), and the area A of the cutout region 419 is expressed as ((k + n) · W).

以上のように、周方向における照射面412の長さを(m・sinθ)以上として、(L/cosθ)以上の長さmのスリット414を照射面412に設けることにより、線状照射領域415のほぼ全ての位置において、面積Aが((k+n)・W)にて一定である切出領域419を透過した光の光量を測定することが可能となる。   As described above, when the length of the irradiation surface 412 in the circumferential direction is set to (m · sin θ) or more and the slit 414 having a length m of (L / cos θ) or more is provided on the irradiation surface 412, the linear irradiation region 415 is provided. It is possible to measure the amount of light transmitted through the cut-out region 419 having an area A constant ((k + n) · W) at almost all positions.

描画装置1の一例では、空間光変調器32において8000個の光変調素子が所定の配列方向に密に配列される。配列方向における各光変調素子の幅は5マイクロメートル(μm)であり、配列方向に長い線状光が複数の光変調素子に照射される。空間光変調器32上において配列方向に垂直な方向における線状光の幅は15μmである。投影光学系33では、0.2倍の倍率にて空間光変調器32からの0次回折光による複数の光変調素子の像が基板9の主面に形成される。したがって、全ての光変調素子が0次回折光を出射する状態である場合に描画面における線状照射領域415のX方向(長手方向)の長さLは8000μm、Y方向の幅Wは3μmであり、1つの光変調素子の像、すなわち、1画素の幅は1μmである。   In an example of the drawing apparatus 1, 8000 light modulation elements are densely arranged in a predetermined arrangement direction in the spatial light modulator 32. The width of each light modulation element in the arrangement direction is 5 micrometers (μm), and linear light long in the arrangement direction is irradiated to the plurality of light modulation elements. On the spatial light modulator 32, the width of the linear light in the direction perpendicular to the arrangement direction is 15 μm. In the projection optical system 33, images of a plurality of light modulation elements are formed on the main surface of the substrate 9 by 0th-order diffracted light from the spatial light modulator 32 at a magnification of 0.2 times. Therefore, when all the light modulation elements emit 0th-order diffracted light, the length L in the X direction (longitudinal direction) of the linear irradiation region 415 on the drawing surface is 8000 μm, and the width W in the Y direction is 3 μm. The image of one light modulation element, that is, the width of one pixel is 1 μm.

また、マスク部41におけるスリット414の幅Sは5μmであり、スリット414のX方向に対する傾きθは60度である。この場合、スリット414の長さmを16000μm以上とすることにより、線状照射領域415の全体において光量分布を測定することが可能となる。なお、周方向における照射面412の長さPは、13856μm以上とする必要がある。また、切出領域419を2つの直角三角形と、1つの矩形とに分割した場合に、各直角三角形のX方向の幅kは1.73μmであり、矩形のX方向の幅nは4.04μmである。よって、切出領域419の面積Aは17.32μmとなる。 The width S of the slit 414 in the mask portion 41 is 5 μm, and the inclination θ of the slit 414 with respect to the X direction is 60 degrees. In this case, by setting the length m of the slit 414 to 16000 μm or more, it is possible to measure the light amount distribution in the entire linear irradiation region 415. Note that the length P of the irradiation surface 412 in the circumferential direction needs to be 13856 μm or more. When the cutout region 419 is divided into two right triangles and one rectangle, the width k in the X direction of each right triangle is 1.73 μm, and the width n in the X direction of the rectangle is 4.04 μm. It is. Therefore, the area A of the cutout region 419 is 17.32 μm 2 .

この例では、1つの切出領域419は、数個の画素に相当する幅を有するため、1つの光変調素子に厳密に対応する測定光量が取得される訳ではない。したがって、例えば、線状照射領域415において各光変調素子に対応する照射位置に切出領域419の中央が位置する際に取得される光量を当該光変調素子の測定光量として扱って、当該光変調素子の測定パラメータの値が修正される。また、数個の光変調素子に対して同じ補正パラメータの値を用いて光量分布が補正されてもよく、この場合でも、線状光の光量分布をある程度の精度にて補正することが可能である。   In this example, one cut-out region 419 has a width corresponding to several pixels, and thus a measurement light quantity that exactly corresponds to one light modulation element is not acquired. Therefore, for example, the light amount acquired when the center of the cutout region 419 is located at the irradiation position corresponding to each light modulation element in the linear irradiation region 415 is treated as the measurement light amount of the light modulation element, and the light modulation is performed. The value of the measurement parameter of the element is modified. Further, the light amount distribution may be corrected using the same correction parameter value for several light modulation elements, and even in this case, the light amount distribution of the linear light can be corrected with a certain degree of accuracy. is there.

以上に説明したように、光量分布測定装置4は、円筒面である照射面412を有するマスク部41と、マスク部41の内部に設けられる光量測定部42と、を備える。照射面412には、線状光を出射するヘッド部3からの線状光が照射され、照射面412は中心軸J1を中心として連続的に回転する。また、照射面412には、中心軸J1に対して傾斜する線状透過領域であるスリット414が設けられる。連続的に並ぶ複数の透過領域要素の集合であるスリット414では、線状照射領域415の互いに異なる複数の位置を、複数の透過領域要素がそれぞれ異なるタイミングで通過し、各透過領域要素を透過した光が光量測定部42にて受けられる。これにより、簡単な構成にて線状光の光量分布を精度よく繰り返し測定することが可能となり、コンパクトかつ製造コストが安価な光量分布測定装置4を実現することができる。また、光量分布測定装置4を有する描画装置1では、基板9上にパターンを精度よく描画することができる。   As described above, the light quantity distribution measuring device 4 includes the mask part 41 having the irradiation surface 412 that is a cylindrical surface, and the light quantity measuring part 42 provided inside the mask part 41. The irradiation surface 412 is irradiated with linear light from the head unit 3 that emits linear light, and the irradiation surface 412 continuously rotates about the central axis J1. In addition, the irradiation surface 412 is provided with a slit 414 that is a linear transmission region inclined with respect to the central axis J1. In the slit 414, which is a set of a plurality of transmission region elements arranged in a row, the plurality of transmission region elements pass through a plurality of different positions of the linear irradiation region 415 at different timings, and transmitted through each transmission region element. Light is received by the light quantity measuring unit 42. Thereby, it becomes possible to measure the light amount distribution of the linear light accurately and repeatedly with a simple configuration, and the light amount distribution measuring device 4 that is compact and inexpensive to manufacture can be realized. Further, the drawing apparatus 1 having the light quantity distribution measuring device 4 can draw a pattern on the substrate 9 with high accuracy.

光量分布測定装置4では、スリット414が線状照射領域415の全ての位置を通過することにより、線状照射領域415の全体において線状光の光量分布を取得することができる。また、描画装置1では、複数のヘッド部3にそれぞれ対応する複数の光量分布測定装置4が設けられる。これにより、線状光の光量分布の補正を、複数のヘッド部3において並行して行うことができ、描画装置1における生産性を向上することが実現される。   In the light amount distribution measuring device 4, the slit 414 passes through all the positions of the linear irradiation region 415, whereby the light amount distribution of the linear light can be acquired in the entire linear irradiation region 415. Further, the drawing apparatus 1 is provided with a plurality of light quantity distribution measuring devices 4 respectively corresponding to the plurality of head units 3. Thereby, the correction of the light amount distribution of the linear light can be performed in parallel in the plurality of head units 3, and the productivity in the drawing apparatus 1 is improved.

図7は、光量分布測定装置4の他の例を示す図である。図7の光量分布測定装置4では、マスク部41の照射面412に複数のスリット414が形成される。照射面412を展開した状態において、複数のスリット414の幅および長さ、並びに、中心軸J1に対する角度は互いに同じである。また、複数のスリット414は、中心軸J1を中心とする周方向において互いに離間している。連続的に並ぶ複数の透過領域要素の集合である各スリット414では、中心軸J1の方向および周方向の双方において、複数の透過領域要素が互いに異なる位置に配置される。   FIG. 7 is a diagram illustrating another example of the light amount distribution measuring apparatus 4. In the light quantity distribution measuring device 4 of FIG. 7, a plurality of slits 414 are formed on the irradiation surface 412 of the mask portion 41. In the state where the irradiation surface 412 is developed, the width and length of the plurality of slits 414 and the angle with respect to the central axis J1 are the same. The plurality of slits 414 are separated from each other in the circumferential direction with the central axis J1 as the center. In each slit 414, which is a set of a plurality of transmission region elements arranged continuously, the plurality of transmission region elements are arranged at different positions in both the direction of the central axis J1 and the circumferential direction.

以上のように、図7の光量分布測定装置4では、同様の形状を有する複数のスリット414が、複数の線状透過領域として照射面412に形成される。また、中心軸J1を中心とする照射面412の回転角において、一のスリット414が線状照射領域415を通過する角度範囲と、他の一のスリット414が線状照射領域415を通過する角度範囲とが相違する(すなわち、複数のスリット414が、周方向において互いに異なる範囲に存在する。)。これにより、線状光の光量分布をマスク部41の1回転で複数回測定することができ、線状光の光量分布の補正処理を短時間にて完了することができる。なお、図4および図7の光量分布測定装置4では、線状照射領域415が形成される位置は照射面412の最上部413には限定されず、最上部413に近接した位置に線状照射領域415が形成されてもよい。例えば、基板9の厚さが変化した場合に、ステージ21をZ方向に移動させることなく、Y方向に僅かに移動することにより、照射面412上において線状照射領域415が形成されるZ方向の位置を、描画面である基板9の主面に合わせる、すなわち、描画面と光量分布測定装置4における線状照射領域415との位置関係を正確に調整することが可能である。なお、線状光のフォーカス位置は、投影光学系33のフォーカシングレンズ335により正確に調整することができる。   As described above, in the light amount distribution measuring apparatus 4 of FIG. 7, a plurality of slits 414 having the same shape are formed on the irradiation surface 412 as a plurality of linear transmission regions. In addition, in the rotation angle of the irradiation surface 412 around the central axis J1, an angle range in which one slit 414 passes through the linear irradiation region 415 and an angle in which the other slit 414 passes through the linear irradiation region 415. The range is different (that is, the plurality of slits 414 exist in different ranges in the circumferential direction). Thereby, the light quantity distribution of the linear light can be measured a plurality of times by one rotation of the mask unit 41, and the correction process of the light quantity distribution of the linear light can be completed in a short time. 4 and 7, the position where the linear irradiation region 415 is formed is not limited to the uppermost part 413 of the irradiation surface 412, and linear irradiation is performed at a position close to the uppermost part 413. Region 415 may be formed. For example, when the thickness of the substrate 9 changes, the stage 21 is moved slightly in the Y direction without moving in the Z direction, so that the linear irradiation region 415 is formed on the irradiation surface 412. Is aligned with the main surface of the substrate 9 which is the drawing surface, that is, the positional relationship between the drawing surface and the linear irradiation region 415 in the light quantity distribution measuring device 4 can be accurately adjusted. Note that the focus position of the linear light can be accurately adjusted by the focusing lens 335 of the projection optical system 33.

図8は、本発明の第2の実施の形態に係る光量分布測定装置4aを示す斜視図であり、図9は、光量分布測定装置4aのマスク部41aを示す平面図である。光量分布測定装置4aでは、中心軸J1を中心とする円板状のマスク部41aが設けられ、モータ43により、マスク部41aが中心軸J1を中心として回転する。中心軸J1は、投影光学系33(図2参照)の光軸J2と平行であり、マスク部41aの上面(図8中の上側の面)である照射面412上に線状光の線状照射領域415が形成される。照射面412は、中心軸J1および光軸J2に垂直に広がる平面であり、Z方向(中心軸J1の方向)に関して描画面と等価な位置に配置される。マスク部41aの下方には、光量測定部42が設けられる。(+Z)側から(−Z)方向を向いて見た場合に、線状照射領域415の全体は光量測定部42の受光面と重なる。マスク部41aには、渦巻線状(スパイラル状)のスリット414が形成される。   FIG. 8 is a perspective view showing a light quantity distribution measuring device 4a according to the second embodiment of the present invention, and FIG. 9 is a plan view showing a mask portion 41a of the light quantity distribution measuring device 4a. In the light quantity distribution measuring device 4a, a disc-shaped mask portion 41a centering on the central axis J1 is provided, and the mask portion 41a is rotated about the central axis J1 by the motor 43. The central axis J1 is parallel to the optical axis J2 of the projection optical system 33 (see FIG. 2), and the linear light is linear on the irradiation surface 412 that is the upper surface (upper surface in FIG. 8) of the mask portion 41a. An irradiation region 415 is formed. The irradiation surface 412 is a plane extending perpendicular to the central axis J1 and the optical axis J2, and is disposed at a position equivalent to the drawing surface in the Z direction (the direction of the central axis J1). A light amount measurement unit 42 is provided below the mask unit 41a. When viewed in the (−Z) direction from the (+ Z) side, the entire linear irradiation region 415 overlaps the light receiving surface of the light quantity measuring unit 42. In the mask portion 41a, a spiral slit 414 is formed.

図10は、アルキメデスの渦巻線を示す図である。アルキメデスの渦巻線は、2次元座標系における座標(0,0)である原点を中心とする角度をα、原点からの距離をr、所定の係数をaとして、(r=aα)を満たす。マスク部41aのスリット414は、図10中にて破線にて示すアルキメデスの渦巻線の一部(360度よりも僅かに小さい角度範囲にて連続する部分)を抽出した形状を有する。図10では、スリット414に対応する部分を実線にて示している。   FIG. 10 is a diagram illustrating Archimedean spirals. Archimedean spirals satisfy (r = aα), where α is the angle centered at the origin, which is the coordinate (0, 0) in the two-dimensional coordinate system, r is the distance from the origin, and a is a predetermined coefficient. The slit 414 of the mask portion 41a has a shape obtained by extracting a part of Archimedean spirals (parts continuous in an angle range slightly smaller than 360 degrees) indicated by a broken line in FIG. In FIG. 10, a portion corresponding to the slit 414 is indicated by a solid line.

図9に示すスリット414では、中心軸J1を中心とする周方向の位置が変化するに従って、中心軸J1からの距離が変化する。線状の透過領域であるスリット414を、線状に連続的に並ぶ複数の透過領域要素の集合として捉えると、中心軸J1を中心とする径方向および周方向の双方において、複数の透過領域要素は互いに異なる位置に配置される。照射面412上に照射される線状光のうち、スリット414を通過する光のみがマスク部41の下方へと到達し、光量測定部42へと導かれる。換言すると、線状光はスリット414により部分的に切り出され、切り出された光が光量測定部42にて受けられる。径方向に関して、スリット414の一端は線状照射領域415よりも僅かに内側(中心軸J1側)に位置し、他端は線状照射領域415よりも僅かに外側に位置する。   In the slit 414 shown in FIG. 9, the distance from the central axis J1 changes as the circumferential position around the central axis J1 changes. When the slit 414 that is a linear transmission region is regarded as a set of a plurality of transmission region elements arranged in a line continuously, a plurality of transmission region elements are provided in both the radial direction and the circumferential direction centering on the central axis J1. Are arranged at different positions. Of the linear light irradiated onto the irradiation surface 412, only the light passing through the slit 414 reaches the lower part of the mask part 41 and is guided to the light quantity measuring part 42. In other words, the linear light is partially cut out by the slit 414, and the cut-out light is received by the light quantity measuring unit 42. With respect to the radial direction, one end of the slit 414 is positioned slightly inside (center axis J1 side) from the linear irradiation region 415, and the other end is positioned slightly outside the linear irradiation region 415.

光量分布測定装置4aを用いてヘッド部3からの線状光の光量分布を補正する際には、ヘッド部3からの線状光の出射が開始されることにより、照射面412上にX方向に伸びる線状照射領域415が形成される(図6:ステップS11)。続いて、モータ43を駆動することにより、マスク部41aの回転が開始される(ステップS12)。これにより、平面である照射面412が中心軸J1を中心として回転し、線状照射領域415とスリット414とが重なる切出領域が照射面412の回転角に従ってX方向に移動する。また、マスク部41aの回転に並行して、スリット414を透過した光の光量が光量測定部42により繰り返し測定される(ステップS13)。すなわち、線状照射領域415におけるX方向の複数の位置にそれぞれ対応する複数の測定光量が取得される。そして、測定光量と理想光量との差が所定の閾値よりも大きい位置に対応する光変調素子では、当該光変調素子の補正パラメータの値が修正される(ステップS14,S15)。   When the light amount distribution of the linear light from the head unit 3 is corrected using the light amount distribution measuring device 4a, the emission of the linear light from the head unit 3 is started, so that the X direction on the irradiation surface 412 is started. The linear irradiation area | region 415 extended in (FIG. 6: step S11) is formed. Subsequently, the rotation of the mask portion 41a is started by driving the motor 43 (step S12). Thereby, the irradiation surface 412 which is a plane rotates around the central axis J1, and the cut-out region where the linear irradiation region 415 and the slit 414 overlap moves in the X direction according to the rotation angle of the irradiation surface 412. In parallel with the rotation of the mask part 41a, the light quantity of the light transmitted through the slit 414 is repeatedly measured by the light quantity measuring part 42 (step S13). That is, a plurality of measured light amounts respectively corresponding to a plurality of positions in the X direction in the linear irradiation region 415 are acquired. Then, in the light modulation element corresponding to the position where the difference between the measured light quantity and the ideal light quantity is larger than the predetermined threshold value, the correction parameter value of the light modulation element is corrected (steps S14 and S15).

既述の処理例と同様に、ステップS13における測定光量の取得、および、ステップS15における補正パラ−メータの値の修正は、複数の光変調素子において部分的に並行して行われる。また、ステップS13,S15の処理は、全ての光変調素子において測定光量と理想光量との差が閾値以下となるまで繰り返される(ステップS14)。このとき、光量分布測定装置4aでは、マスク部41aが連続的に回転していることにより、線状照射領域415の各位置に対して、ステップS13における測定光量の取得を、直前のステップS13における測定光量の取得から短時間にて行うことが可能となる。   Similar to the above-described processing example, the acquisition of the measurement light quantity in step S13 and the correction parameter value correction in step S15 are performed partially in parallel in the plurality of light modulation elements. Further, the processes in steps S13 and S15 are repeated until the difference between the measured light amount and the ideal light amount is less than or equal to the threshold value in all the light modulation elements (step S14). At this time, in the light quantity distribution measuring device 4a, the mask part 41a is continuously rotated, so that the measured light quantity is obtained in step S13 for each position of the linear irradiation region 415 in the immediately preceding step S13. It becomes possible to carry out in a short time from acquisition of the measurement light quantity.

全ての光変調素子(線状照射領域415の全ての位置)において測定光量と理想光量との差が閾値以下となると(ステップS14)、マスク部41aの回転が停止されるとともに、ヘッド部3からの線状光の出射が停止される(ステップS16,S17)。なお、光量分布測定装置4aのマスク部41aの直径は、ヘッド部3の配列ピッチよりも小さく、光量分布の補正の際には、複数のヘッド部3の下方に複数の光量分布測定装置4aがそれぞれ配置される。そして、複数のヘッド部3において光量分布の補正が並行して行われる。   When the difference between the measured light amount and the ideal light amount is less than or equal to the threshold value in all the light modulation elements (all positions in the linear irradiation region 415) (step S14), the rotation of the mask unit 41a is stopped and the head unit 3 The emission of the linear light is stopped (steps S16 and S17). The diameter of the mask portion 41a of the light amount distribution measuring device 4a is smaller than the arrangement pitch of the head portions 3, and when correcting the light amount distribution, a plurality of light amount distribution measuring devices 4a are provided below the plurality of head portions 3. Each is arranged. The light quantity distribution is corrected in parallel in the plurality of head units 3.

以上に説明したように、光量分布測定装置4aでは、平面である照射面412を有するマスク部41aが設けられ、照射面412には、線状透過領域である渦巻線状のスリット414が設けられる。連続的に並ぶ複数の透過領域要素の集合であるスリット414では、線状照射領域415の互いに異なる複数の位置を、複数の透過領域要素がそれぞれ異なるタイミングで通過し、各透過領域要素を透過した光が光量測定部42にて受けられる。これにより、簡単な構成にて線状光の光量分布を精度よく繰り返し測定することが可能となる。その結果、光量分布測定装置4aを有する描画装置1では、基板9上にパターンを精度よく描画することができる。   As described above, in the light quantity distribution measuring device 4a, the mask part 41a having the irradiation surface 412 which is a plane is provided, and the irradiation surface 412 is provided with the spiral slit 414 which is a linear transmission region. . In the slit 414, which is a set of a plurality of transmission region elements arranged in a row, the plurality of transmission region elements pass through a plurality of different positions of the linear irradiation region 415 at different timings, and transmitted through each transmission region element. Light is received by the light quantity measuring unit 42. As a result, it is possible to accurately and repeatedly measure the light amount distribution of the linear light with a simple configuration. As a result, the drawing apparatus 1 having the light quantity distribution measuring device 4a can draw a pattern on the substrate 9 with high accuracy.

図11は、光量分布測定装置4aの他の例を示す斜視図であり、図12は、マスク部41aを示す平面図である。図11および図12に示すマスク部41aでは、照射面412に、同形状の複数のスリット414が形成される。複数のスリット414は、渦巻線状(スパイラル状)である。   FIG. 11 is a perspective view showing another example of the light quantity distribution measuring device 4a, and FIG. 12 is a plan view showing the mask portion 41a. In the mask portion 41 a shown in FIGS. 11 and 12, a plurality of slits 414 having the same shape are formed on the irradiation surface 412. The plurality of slits 414 have a spiral shape (spiral shape).

図13は、アルキメデスの渦巻線を示す図である。図12のマスク部41aの各スリット414は、図13中にて破線にて示すアルキメデスの渦巻線の一部(90度よりも僅かに小さい角度範囲にて連続する部分)を抽出した形状を有する。図13のアルキメデスの渦巻線も、図10の渦巻線と同様に(r=aα)を満たすが、図10の渦巻線に比べて係数aの値が大きい。図13では、スリット414に対応する部分を実線にて示している。また、図11および図12に示すように、複数のスリット414は、中心軸J1を中心とする周方向において互いに離間している。連続的に並ぶ複数の透過領域要素の集合である各スリット414では、径方向および周方向の双方において、当該複数の透過領域要素は互いに異なる位置に配置される。   FIG. 13 is a diagram illustrating Archimedean spirals. Each slit 414 of the mask portion 41a in FIG. 12 has a shape obtained by extracting a part of the Archimedean spiral shown by a broken line in FIG. 13 (a portion continuous in an angle range slightly smaller than 90 degrees). . The Archimedean spiral of FIG. 13 satisfies (r = aα) similarly to the spiral of FIG. 10, but has a larger coefficient a than the spiral of FIG. In FIG. 13, a portion corresponding to the slit 414 is indicated by a solid line. As shown in FIGS. 11 and 12, the plurality of slits 414 are separated from each other in the circumferential direction around the central axis J1. In each slit 414 that is a set of a plurality of transmission region elements arranged continuously, the plurality of transmission region elements are arranged at different positions in both the radial direction and the circumferential direction.

以上のように、図11の光量分布測定装置4aでは、同様の形状を有する複数のスリット414が、複数の線状透過領域として照射面412に形成される。また、中心軸J1を中心とする照射面412の回転角において、一のスリット414が線状照射領域415を通過する角度範囲と、他の一のスリット414が線状照射領域415を通過する角度範囲とが相違する。これにより、線状光の光量分布をマスク部41aの1回転で複数回測定することができ、線状光の光量分布の補正処理を短時間にて完了することができる。   As described above, in the light quantity distribution measuring device 4a of FIG. 11, a plurality of slits 414 having the same shape are formed on the irradiation surface 412 as a plurality of linear transmission regions. In addition, in the rotation angle of the irradiation surface 412 around the central axis J1, an angle range in which one slit 414 passes through the linear irradiation region 415 and an angle in which the other slit 414 passes through the linear irradiation region 415. The range is different. Thereby, the light quantity distribution of the linear light can be measured a plurality of times by one rotation of the mask portion 41a, and the correction process of the light quantity distribution of the linear light can be completed in a short time.

図14は、描画装置1の他の例を示す図であり、複数のヘッド部3および複数の光量分布測定装置4aを(−Y)側から(+Y)方向を向いて見た様子を示す。図14に示す光量分布測定装置4aのマスク部41aの直径は、ヘッド部3の配列ピッチよりも大きく、かつ、当該配列ピッチの2倍よりも小さい。また、互いに隣接する2つのヘッド部3の下方に、1つの光量分布測定装置4aが設けられる。   FIG. 14 is a diagram illustrating another example of the drawing apparatus 1 and illustrates a state in which the plurality of head units 3 and the plurality of light amount distribution measuring apparatuses 4a are viewed from the (−Y) side in the (+ Y) direction. The diameter of the mask part 41a of the light quantity distribution measuring device 4a shown in FIG. 14 is larger than the arrangement pitch of the head parts 3 and smaller than twice the arrangement pitch. One light quantity distribution measuring device 4a is provided below the two head portions 3 adjacent to each other.

図15は、光量分布測定装置4aを示す斜視図であり、図16は、マスク部41aを示す平面図である。図15および図16に示すマスク部41aでは、図11および図12の例と同様に、照射面412に、同形状の複数のスリット414が形成される。光量分布測定装置4aでは、2つのヘッド部3からの線状光が照射面412に照射され、照射面412上に2つの線状照射領域415が形成される。また、マスク部41aの下方には、中心軸J1を挟んで2つの光量測定部42が設けられる。図14に示すように、当該2つの光量測定部42は、ヘッド部3の配列ピッチだけ離れて配置される。(+Z)側から(−Z)方向を向いて見た場合に、一方の線状照射領域415の全体は一方の光量測定部42の受光面と重なり、他方の線状照射領域415の全体は他方の光量測定部42の受光面と重なる。   FIG. 15 is a perspective view showing the light quantity distribution measuring device 4a, and FIG. 16 is a plan view showing the mask portion 41a. In the mask portion 41a shown in FIGS. 15 and 16, a plurality of slits 414 having the same shape are formed on the irradiation surface 412 as in the examples of FIGS. In the light quantity distribution measuring device 4 a, the linear light from the two head units 3 is irradiated onto the irradiation surface 412, and two linear irradiation regions 415 are formed on the irradiation surface 412. Further, two light quantity measuring units 42 are provided below the mask unit 41a with the central axis J1 interposed therebetween. As shown in FIG. 14, the two light quantity measuring units 42 are arranged apart from each other by the arrangement pitch of the head units 3. When viewed from the (+ Z) side in the (−Z) direction, the entire one linear irradiation region 415 overlaps the light receiving surface of one light quantity measurement unit 42, and the other linear irradiation region 415 It overlaps with the light receiving surface of the other light quantity measuring unit 42.

以上のように、図15の光量分布測定装置4aでは、2つのヘッド部3からの線状光が照射面412に照射され、2つの線状照射領域415が形成される。また、マスク部41aの下方には、2つの線状照射領域415にそれぞれ対応する位置に2つの光量測定部42が設けられる。そして、各スリット414を、線状に連続的に並ぶ複数の透過領域要素の集合として捉える場合に、一方のヘッド部3からの線状光のうち、マスク部41aの各透過領域要素を透過した光が一方の光量測定部42により受けられ、他方のヘッド部3からの線状光のうち、マスク部41aの各透過領域要素を透過した光が他方の光量測定部42により受けられる。これにより、1つのマスク部41aを用いて複数のヘッド部3の光量分布を測定することができ、描画装置1の製造コストを削減することができる。なお、複数の光量測定部42が設けられる光量分布測定装置4aにおいて、1つのスリット414のみがマスク部41aに設けられてもよい。   As described above, in the light quantity distribution measuring device 4a in FIG. 15, the linear light from the two head portions 3 is irradiated onto the irradiation surface 412 to form the two linear irradiation regions 415. Also, two light quantity measuring units 42 are provided below the mask unit 41a at positions corresponding to the two linear irradiation regions 415, respectively. Then, when each slit 414 is regarded as a set of a plurality of transmission region elements arranged in a line continuously, the transmission region element of the mask portion 41a is transmitted through the linear light from one head portion 3. The light is received by one light quantity measurement unit 42, and the light transmitted through each transmission region element of the mask part 41 a among the linear light from the other head part 3 is received by the other light quantity measurement unit 42. Thereby, the light quantity distribution of the plurality of head units 3 can be measured using one mask unit 41a, and the manufacturing cost of the drawing apparatus 1 can be reduced. In the light amount distribution measuring device 4a provided with a plurality of light amount measuring units 42, only one slit 414 may be provided in the mask unit 41a.

上記描画装置1および光量分布測定装置4,4aでは様々な変形が可能である。   The drawing apparatus 1 and the light amount distribution measuring apparatuses 4 and 4a can be variously modified.

線状透過領域であるスリット414の形状は適宜変更されてよく、例えば、円板状のマスク部41aにおいて、両端が径方向および周方向の異なる位置に配置される直線状のスリット414が設けられてもよい。   The shape of the slit 414 that is the linear transmission region may be appropriately changed. For example, in the disk-shaped mask portion 41a, linear slits 414 having both ends arranged at different positions in the radial direction and the circumferential direction are provided. May be.

マスク部41,41aでは、複数のドット状の貫通孔が複数の透過領域要素として形成されてもよい。円筒状の照射面412を展開した図17の例では、離散的に一列に並ぶ複数の透過領域要素416を要素列417として、2つの要素列417が周方向(図17の縦方向)に離れて形成される。X方向のみに着目した場合に、一方の要素列417において互いに隣接する2つの透過領域要素416の間に(図17の例では、当該2つの透過領域要素416から同じ距離D1だけ離れた位置に)、他方の要素列417に含まれる1つの透過領域要素416が配置される。円筒面である照射面412が中心軸J1を中心として回転すると、複数の透過領域要素416が、照射面412上における線状照射領域415の互いに異なる複数の位置をそれぞれ異なるタイミングで通過し、各透過領域要素416を透過した光が光量測定部42にて受けられる。   In the mask portions 41 and 41a, a plurality of dot-like through holes may be formed as a plurality of transmission region elements. In the example of FIG. 17 in which the cylindrical irradiation surface 412 is developed, a plurality of transmission region elements 416 that are discretely arranged in a row are used as the element row 417, and the two element rows 417 are separated in the circumferential direction (vertical direction in FIG. 17). Formed. When focusing only on the X direction, in one element row 417, between two adjacent transmission region elements 416 (in the example of FIG. 17, at a position separated from the two transmission region elements 416 by the same distance D1). ), One transmissive region element 416 included in the other element row 417 is arranged. When the irradiation surface 412 that is a cylindrical surface rotates about the central axis J1, a plurality of transmission region elements 416 pass through a plurality of different positions of the linear irradiation region 415 on the irradiation surface 412 at different timings, respectively. The light that has passed through the transmission region element 416 is received by the light quantity measurement unit 42.

このように、マスク部41,41aに複数の貫通孔を設ける場合でも、線状光の光量分布を精度よく繰り返し測定することができる。ある程度の精度にて光量分布を取得するという観点では、好ましくは、空間光変調器32に含まれる光変調素子の個数の1/20以上、より好ましくは、1/10以上(例えば、光変調素子の個数以下)のドット状の透過領域要素416が設けられる。   Thus, even when a plurality of through holes are provided in the mask portions 41 and 41a, the light amount distribution of the linear light can be repeatedly measured with high accuracy. From the viewpoint of obtaining the light amount distribution with a certain degree of accuracy, it is preferably 1/20 or more, more preferably 1/10 or more of the number of light modulation elements included in the spatial light modulator 32 (for example, light modulation elements). Or less) of dot-like transmission region elements 416 are provided.

一方、スリット414のように、複数の透過領域要素が線状透過領域に含まれる場合には、光量測定部42におけるサンプリング周波数に応じて、線状光の光量分布を高分解能にて測定することが可能である。   On the other hand, when a plurality of transmission region elements are included in the linear transmission region like the slit 414, the light amount distribution of the linear light is measured with high resolution according to the sampling frequency in the light amount measurement unit 42. Is possible.

また、円筒状のマスク部41に代えて円錐状(円錐台状を含む。)のマスク部41が設けられてもよい。この場合、図18に示すように、ヘッド部3の光軸J2を含み、かつ、線状光の長手方向に平行な平面上に、マスク部41bの中心軸J1が配置される。また、当該平面によるマスク部41bの照射面412の断面のうち上側の部位が光軸J2に直交するように、マスク部41bの中心軸J1がX方向に対して傾斜する。さらに、光量分布測定装置4では、半円筒状のマスク部41が設けられてもよく、この場合でも、照射面412がヘッド部3と光量測定部42との間を通過する際に、線状光の光量分布が測定可能である。   Further, instead of the cylindrical mask portion 41, a conical (including a truncated cone) mask portion 41 may be provided. In this case, as shown in FIG. 18, the central axis J1 of the mask portion 41b is disposed on a plane including the optical axis J2 of the head portion 3 and parallel to the longitudinal direction of the linear light. Further, the central axis J1 of the mask portion 41b is inclined with respect to the X direction so that the upper portion of the cross section of the irradiation surface 412 of the mask portion 41b by the plane is orthogonal to the optical axis J2. Further, the light quantity distribution measuring device 4 may be provided with a semi-cylindrical mask part 41. Even in this case, when the irradiation surface 412 passes between the head part 3 and the light quantity measuring part 42, a linear shape is provided. The light quantity distribution of light can be measured.

以上のように、マスク部では、平面である照射面が当該平面に垂直な軸を中心として回転する、または、円筒面もしくは円錐面である回転面の少なくとも一部である照射面が当該回転面の中心軸を中心として回転する。そして、照射面に形成された複数の透過領域要素が、照射面上における線状光の線状照射領域の互いに異なる複数の位置をそれぞれ異なるタイミングで通過する。これにより、線状光の光量分布を精度よく繰り返し測定することが可能となる。   As described above, in the mask portion, the irradiation surface that is a plane rotates around an axis perpendicular to the plane, or the irradiation surface that is at least part of a rotation surface that is a cylindrical surface or a conical surface corresponds to the rotation surface. Rotate around the center axis. The plurality of transmission region elements formed on the irradiation surface pass through a plurality of different positions of the linear irradiation region of the linear light on the irradiation surface at different timings. This makes it possible to repeatedly measure the light amount distribution of the linear light with high accuracy.

マスク部41,41aが、ヘッド部3からの光を透過する材料(例えば、透明なガラス)にて形成されてよい。この場合、当該光を遮蔽する膜がマスク部41,41aに形成され、一部の領域において当該膜を除去することにより、複数の透過領域要素が形成される。また、図19に示すように、マスク部41においてスリット414に対して中心軸J1を挟んで対向する位置に(例えば、中心軸J1を基準としてスリット414と軸対称の位置に)、周方向における幅がスリット414よりも大きい開口418が設けられ、光量測定部42がマスク部41の下方に配置されてもよい。この場合、開口418およびスリット414を通過した光が光量測定部42にて受けられる。このように、光量測定部42がマスク部41の外側に配置される光量分布測定装置4では、光量測定部42をマスク部41の内側に設ける場合に比べて、光量測定部42を容易に支持することが可能である。さらに、平面である照射面412を有するマスク部41aにおいて、中心軸J1がYZ平面に平行な面内において光軸J2に対して傾斜してもよい。また、線状照射領域415が照射面412上に形成されるのであるならば、中心軸J1が光軸J1に対して任意の方向に僅かに傾斜してもよい。   The mask portions 41 and 41a may be formed of a material that transmits light from the head portion 3 (for example, transparent glass). In this case, a film that shields the light is formed in the mask portions 41 and 41a, and a plurality of transmission region elements are formed by removing the film in a part of the region. Further, as shown in FIG. 19, in the mask portion 41, at a position facing the slit 414 across the central axis J1 (for example, at a position symmetrical to the slit 414 with respect to the central axis J1), in the circumferential direction. An opening 418 having a width larger than that of the slit 414 may be provided, and the light amount measurement unit 42 may be disposed below the mask unit 41. In this case, the light passing through the opening 418 and the slit 414 is received by the light quantity measuring unit 42. As described above, in the light amount distribution measuring device 4 in which the light amount measuring unit 42 is arranged outside the mask unit 41, the light amount measuring unit 42 is easily supported as compared with the case where the light amount measuring unit 42 is provided inside the mask unit 41. Is possible. Further, in the mask portion 41a having the irradiation surface 412 that is a plane, the central axis J1 may be inclined with respect to the optical axis J2 in a plane parallel to the YZ plane. Further, if the linear irradiation region 415 is formed on the irradiation surface 412, the central axis J1 may be slightly inclined in an arbitrary direction with respect to the optical axis J1.

図3および図7の円筒状のマスク部41を、中心軸J1の方向に長くするとともに、当該方向に沿って複数の光量測定部42を配列することにより、1つのマスク部41を用いて複数のヘッド部3の光量分布が測定されてよい。また、円筒状のマスク部41の外周面に回転機構と係合する部位が設けられることにより、マスク部41が回転してもよい。さらに、複数の光量分布測定装置4,4aにおけるマスク部41,41aが、1つの回転機構により回転してもよい。   The cylindrical mask portion 41 of FIGS. 3 and 7 is elongated in the direction of the central axis J1, and a plurality of light quantity measuring portions 42 are arranged along the direction, thereby using a plurality of mask portions 41. The light quantity distribution of the head unit 3 may be measured. Moreover, the mask part 41 may rotate by providing the site | part engaged with a rotation mechanism in the outer peripheral surface of the cylindrical mask part 41. FIG. Furthermore, the mask portions 41 and 41a in the plurality of light quantity distribution measuring devices 4 and 4a may be rotated by one rotating mechanism.

描画装置1において、例えば、音響光学偏向素子(AOD:acousto-optic deflector)や微小なミラーの集合を用いた空間光変調器32が設けられてよい。   In the drawing apparatus 1, for example, a spatial light modulator 32 using an acousto-optic deflector (AOD) or a set of minute mirrors may be provided.

図1の描画装置1では、半導体基板や、液晶表示装置用のガラス基板、プリント配線基板等の基板9がパターン描画の対象物であるが、描画装置1では、基板以外の対象物に対してパターンの描画が行われてよい。   In the drawing apparatus 1 of FIG. 1, a substrate 9 such as a semiconductor substrate, a glass substrate for a liquid crystal display device, or a printed wiring board is an object for pattern drawing. A pattern may be drawn.

上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。   The configurations in the above-described embodiments and modifications may be combined as appropriate as long as they do not contradict each other.

1 描画装置
3 ヘッド部
4,4a 光量分布測定装置
9 基板
11 制御部
22 移動機構
31 出射部
32 空間光変調器
33 投影光学系
41,41a,41b マスク部
42 光量測定部
412 照射面
414 スリット
415 線状照射領域
416 透過領域要素
J1 中心軸
S11〜S17 ステップ
DESCRIPTION OF SYMBOLS 1 Drawing apparatus 3 Head part 4, 4a Light quantity distribution measuring apparatus 9 Board | substrate 11 Control part 22 Movement mechanism 31 Output part 32 Spatial light modulator 33 Projection optical system 41, 41a, 41b Mask part 42 Light quantity measurement part 412 Irradiation surface 414 Slit 415 Linear irradiation area 416 Transmission area element J1 Central axis S11 to S17 Steps

Claims (7)

線状光の光量分布を測定する光量分布測定装置であって、
線状光を出射するヘッド部からの前記線状光が照射される照射面を有し、平面である前記照射面を前記平面に垂直な軸を中心として回転することにより、または、円筒面もしくは円錐面である回転面の少なくとも一部である前記照射面を前記回転面の中心軸を中心として回転することにより、前記照射面に形成された複数の透過領域要素が、前記照射面上における前記線状光の線状照射領域の互いに異なる複数の位置をそれぞれ異なるタイミングで通過するマスク部と、
前記マスク部の各透過領域要素を透過した光を受ける光量測定部と、
を備えることを特徴とする光量分布測定装置。
A light quantity distribution measuring device for measuring a light quantity distribution of linear light,
The irradiation surface is irradiated with the linear light from the head unit that emits linear light, and the irradiation surface, which is a plane, is rotated around an axis perpendicular to the plane, or a cylindrical surface or By rotating the irradiation surface that is at least part of the rotation surface that is a conical surface around the central axis of the rotation surface, a plurality of transmission region elements formed on the irradiation surface are formed on the irradiation surface. Mask portions that pass through different positions of the linear irradiation region of the linear light at different timings, and
A light amount measurement unit that receives light transmitted through each transmission region element of the mask unit;
A light quantity distribution measuring device comprising:
請求項1に記載の光量分布測定装置であって、
前記複数の透過領域要素が、線状透過領域に含まれることを特徴とする光量分布測定装置。
The light quantity distribution measuring device according to claim 1,
The light quantity distribution measuring apparatus, wherein the plurality of transmission region elements are included in a linear transmission region.
請求項2に記載の光量分布測定装置であって、
前記線状透過領域が、前記線状照射領域の全ての位置を通過することを特徴とする光量分布測定装置。
The light quantity distribution measuring device according to claim 2,
The light quantity distribution measuring apparatus, wherein the linear transmission region passes through all positions of the linear irradiation region.
請求項2または3に記載の光量分布測定装置であって、
前記線状透過領域と同様のもう1つの線状透過領域が前記照射面に形成され、
前記照射面の回転角において、前記線状透過領域が前記線状照射領域を通過する角度範囲と、前記もう1つの線状透過領域が前記線状照射領域を通過する角度範囲とが相違することを特徴とする光量分布測定装置。
It is a light quantity distribution measuring apparatus of Claim 2 or 3,
Another linear transmission region similar to the linear transmission region is formed on the irradiation surface,
In the rotation angle of the irradiation surface, an angular range in which the linear transmission region passes through the linear irradiation region and an angular range in which the other linear transmission region passes through the linear irradiation region are different. A light quantity distribution measuring device characterized by
請求項1ないし4のいずれかに記載の光量分布測定装置であって、
線状光を出射するもう1つのヘッド部からの前記線状光が前記照射面に照射され、前記もう1つのヘッド部からの前記線状光のうち、前記マスク部の前記各透過領域要素を透過した光を受けるもう1つの光量測定部をさらに備えることを特徴とする光量分布測定装置。
The light quantity distribution measuring device according to any one of claims 1 to 4,
The irradiation surface is irradiated with the linear light from another head unit that emits linear light, and the transmission region elements of the mask unit are included in the linear light from the other head unit. A light quantity distribution measuring device, further comprising another light quantity measuring unit that receives the transmitted light.
描画装置であって、
線状光を出射する出射部と、
前記出射部からの前記線状光が照射される空間光変調器と、
前記空間光変調器により空間変調された光を対象物上に導く投影光学系と、
前記空間変調された光の対象物上における照射位置を移動する移動機構と、
前記移動機構による前記照射位置の移動に同期して前記空間光変調器を制御する制御部と、
対象物上における前記線状光の光量分布を測定する際に、前記空間光変調器および前記投影光学系を経由した前記線状光が入射する請求項1ないし5のいずれかに記載の光量分布測定装置と、
を備えることを特徴とする描画装置。
A drawing device,
An emission part for emitting linear light;
A spatial light modulator that is irradiated with the linear light from the emitting section;
A projection optical system for guiding light spatially modulated by the spatial light modulator onto an object;
A moving mechanism for moving an irradiation position on the object of the spatially modulated light;
A controller that controls the spatial light modulator in synchronization with the movement of the irradiation position by the moving mechanism;
The light quantity distribution according to any one of claims 1 to 5, wherein when the light quantity distribution of the linear light on an object is measured, the linear light incident through the spatial light modulator and the projection optical system is incident. A measuring device;
A drawing apparatus comprising:
線状光の光量分布を測定する光量分布測定方法であって、
a)ヘッド部から線状光を出射して、マスク部の照射面に前記線状光を照射する工程と、
b)平面である前記照射面を前記平面に垂直な軸を中心として回転することにより、または、円筒面もしくは円錐面である回転面の少なくとも一部である前記照射面を前記回転面の中心軸を中心として回転することにより、前記照射面に形成された複数の透過領域要素に、前記照射面上における前記線状光の線状照射領域の互いに異なる複数の位置をそれぞれ異なるタイミングで通過させる工程と、
前記b)工程に並行して、前記マスク部の各透過領域要素を透過した光の光量を測定する工程と、
を備えることを特徴とする光量分布測定方法。
A light amount distribution measuring method for measuring a light amount distribution of linear light,
a) emitting linear light from the head portion and irradiating the irradiation surface of the mask portion with the linear light;
b) Rotating the irradiation surface, which is a plane, around an axis perpendicular to the plane, or setting the irradiation surface, which is at least a part of a rotation surface, which is a cylindrical surface or a conical surface, as the central axis of the rotation surface A plurality of transmission region elements formed on the irradiation surface to pass a plurality of different positions of the linear irradiation region of the linear light on the irradiation surface at different timings by rotating around the irradiation surface. When,
In parallel with the step b), measuring the amount of light transmitted through each transmission region element of the mask portion;
A light quantity distribution measuring method comprising:
JP2013261109A 2013-12-18 2013-12-18 Light quantity distribution measuring apparatus, drawing apparatus, and light quantity distribution measuring method Active JP6113064B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013261109A JP6113064B2 (en) 2013-12-18 2013-12-18 Light quantity distribution measuring apparatus, drawing apparatus, and light quantity distribution measuring method
PCT/JP2014/079361 WO2015093171A1 (en) 2013-12-18 2014-11-05 Light intensity distribution measurement device, drawing device, and light intensity distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261109A JP6113064B2 (en) 2013-12-18 2013-12-18 Light quantity distribution measuring apparatus, drawing apparatus, and light quantity distribution measuring method

Publications (2)

Publication Number Publication Date
JP2015118219A true JP2015118219A (en) 2015-06-25
JP6113064B2 JP6113064B2 (en) 2017-04-12

Family

ID=53402528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261109A Active JP6113064B2 (en) 2013-12-18 2013-12-18 Light quantity distribution measuring apparatus, drawing apparatus, and light quantity distribution measuring method

Country Status (2)

Country Link
JP (1) JP6113064B2 (en)
WO (1) WO2015093171A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188952A (en) * 2015-03-30 2016-11-04 株式会社オーク製作所 Exposure apparatus, photometric device for exposure apparatus, and exposure method
EP3324240A1 (en) * 2016-11-17 2018-05-23 Tokyo Electron Limited Exposure apparatus, exposure apparatus adjustment method and storage medium
CN108073049A (en) * 2016-11-17 2018-05-25 东京毅力科创株式会社 Exposure device, the method for adjustment of exposure device and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015016240B3 (en) 2015-12-16 2017-05-24 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Transparent measuring probe for beam scanning
DE102016011568B4 (en) * 2016-09-26 2019-03-07 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Apparatus and method for determining spatial dimensions of a light beam
CN106768316B (en) * 2017-03-07 2019-05-07 西北核技术研究所 Apparatus for measuring quality of laser beam and method based on the sampling of plate involute hole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274217A (en) * 1985-05-30 1986-12-04 Matsushita Electric Ind Co Ltd Position-detecting device
JPH01170811A (en) * 1987-12-25 1989-07-05 Sharp Corp Optical position and speed detector
JPH0493728A (en) * 1990-08-09 1992-03-26 Ando Electric Co Ltd Apparatus for measuring diameter of light beam of led array
JPH0495727A (en) * 1990-08-06 1992-03-27 Fujitsu Ltd Apparatus for measuring diameter of optical beam from led array
JPH05223633A (en) * 1992-02-14 1993-08-31 Ricoh Co Ltd Method and apparatus for measuring shape of beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274217A (en) * 1985-05-30 1986-12-04 Matsushita Electric Ind Co Ltd Position-detecting device
JPH01170811A (en) * 1987-12-25 1989-07-05 Sharp Corp Optical position and speed detector
JPH0495727A (en) * 1990-08-06 1992-03-27 Fujitsu Ltd Apparatus for measuring diameter of optical beam from led array
JPH0493728A (en) * 1990-08-09 1992-03-26 Ando Electric Co Ltd Apparatus for measuring diameter of light beam of led array
JPH05223633A (en) * 1992-02-14 1993-08-31 Ricoh Co Ltd Method and apparatus for measuring shape of beam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188952A (en) * 2015-03-30 2016-11-04 株式会社オーク製作所 Exposure apparatus, photometric device for exposure apparatus, and exposure method
EP3324240A1 (en) * 2016-11-17 2018-05-23 Tokyo Electron Limited Exposure apparatus, exposure apparatus adjustment method and storage medium
CN108073049A (en) * 2016-11-17 2018-05-25 东京毅力科创株式会社 Exposure device, the method for adjustment of exposure device and storage medium
US10558125B2 (en) 2016-11-17 2020-02-11 Tokyo Electron Limited Exposure apparatus, exposure apparatus adjustment method and storage medium
TWI751218B (en) * 2016-11-17 2022-01-01 日商東京威力科創股份有限公司 Exposure device, adjustment method of exposure device and storage medium

Also Published As

Publication number Publication date
JP6113064B2 (en) 2017-04-12
WO2015093171A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6113064B2 (en) Light quantity distribution measuring apparatus, drawing apparatus, and light quantity distribution measuring method
JP6558484B2 (en) Pattern forming device
KR102430139B1 (en) Pattern drawing device and pattern drawing method
KR102377751B1 (en) Substrate-processing apparatus, and device manufacturing method
WO2012046540A1 (en) Scanning exposure device using microlens array
JP2002351055A (en) Defect correcting method of photomask
KR101506388B1 (en) Drawing apparatus and drawing method
KR101214657B1 (en) Digital explosure apparatus and the method
TWI567505B (en) Exposure optical system, exposure apparatus, and exposure method
TWI645255B (en) Drawing method
JP2013026383A (en) Alignment device, alignment method, and drawing device
JP2009145494A (en) Focal position detection method and drawing device
TWI572991B (en) Exposure apparatus, exposure method, and device manufacturing method
JP2012128193A (en) Microlens array and scan exposure device using the same
TW201909241A (en) Exposure device and exposure method
JP7465636B2 (en) Drawing device
JP7431532B2 (en) Drawing method and drawing device
JP6638355B2 (en) Pattern drawing equipment
JP2016133726A (en) Optical modulator calibration method, drawing method, and drawing device
JP5113583B2 (en) Spatial light modulator calibration method
JP5953038B2 (en) Apparatus and method for measuring focal length of microlens array
JP2017003631A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R150 Certificate of patent or registration of utility model

Ref document number: 6113064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250