JP2015117533A - Bearing wall of combinedly using face bar and brace - Google Patents

Bearing wall of combinedly using face bar and brace Download PDF

Info

Publication number
JP2015117533A
JP2015117533A JP2013262391A JP2013262391A JP2015117533A JP 2015117533 A JP2015117533 A JP 2015117533A JP 2013262391 A JP2013262391 A JP 2013262391A JP 2013262391 A JP2013262391 A JP 2013262391A JP 2015117533 A JP2015117533 A JP 2015117533A
Authority
JP
Japan
Prior art keywords
diagonal
brace
bearing wall
partition
horizontal frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262391A
Other languages
Japanese (ja)
Other versions
JP6022435B2 (en
Inventor
武 東郷
Takeshi Togo
武 東郷
則男 大垣
Norio Ogaki
則男 大垣
智文 野村
Tomofumi Nomura
智文 野村
内藤 晃
Akira Naito
晃 内藤
小林 昌弘
Masahiro Kobayashi
昌弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2013262391A priority Critical patent/JP6022435B2/en
Publication of JP2015117533A publication Critical patent/JP2015117533A/en
Application granted granted Critical
Publication of JP6022435B2 publication Critical patent/JP6022435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearing wall of combinedly using a face bar and a brace, capable of reducing a steel material use amount while being excellent in energy absorption performance, capable of providing an opening part without causing performance reduction and disadvantage on construction, and capable of also easily preventing a property of a waist-folding shape of a vertical frame material.SOLUTION: In the bearing wall, a frame body 2 is partitioned into a plurality of partition layers (a and b) vertically juxtaposed with a horizontal frame material 6 of becoming a muntin as a boundary, and a bearing element is provided in the respective partition layers. The bearing element provided in a partial partition layer (a) is a face bar 7, and the bearing element provided in the other partition layer (b) is a diagonal member 8. Deformation absorption means 9 for absorbing deformation of this partition layer (b) is provided in the partition layer (b) provided with the diagonal member 8.

Description

この発明は、建築物の外壁等として用いられる面材・ブレース併用耐力壁に関する。     The present invention relates to a bearing material / brace combined bearing wall used as an outer wall of a building.

低層建築物の耐力壁では、耐力要素として引張り型耐力ブレースを用いることが多い。例えば、柱・梁接合部はピン接合とし、地震等による水平力に対しては、柱間に配置される外壁パネルにおいて、引張り力のみ負担するブレースで負担する構造形式(パネル併用軸組構造)である。
引張り型耐力ブレースは、比較的軽量な鋼材を用いて安価に生産できる特長を持つ一方、荷重・変形履歴(復元力特性)は、「スリップ型」の特性を示す。スリップ型の欠点としては、次の点が挙げられる。
・大地震の際、ブレースが塑性化して伸びた後、地震による揺れ戻しの力が作用したとき、伸びた分だけブレースが水平力に全く抵抗しない。
・そのため、揺れ戻し時には、建物が逆方向の水平力に対してブレースで抵抗するまで、何の抵抗力も持たないままで水平に動くことになり、ブレースが抵抗し出すときに衝撃を生じる。このことは、住人が建物に対する不安や不満を持つ一要因となり得る。
In a load bearing wall of a low-rise building, a tensile load-bearing brace is often used as a load bearing element. For example, the column / beam joint is a pin joint, and for horizontal forces due to earthquakes, etc., the outer wall panel placed between the columns is supported by a brace that bears only the tensile force (panel combined frame structure) It is.
Tensile type strength braces have the advantage that they can be produced at low cost using relatively light steel materials, while the load / deformation history (restoring force characteristics) exhibits “slip type” characteristics. The following points can be cited as slip-type defects.
・ In the event of a large earthquake, after the brace is plasticized and stretched, when the trembling force of the earthquake acts, the brace does not resist the horizontal force at all.
-Therefore, when swinging back, the building will move horizontally without any resistance until the building resists against the horizontal force in the opposite direction, causing an impact when the brace begins to resist. This can be a factor for residents to have anxiety and dissatisfaction with the building.

図28は、スリップ型の挙動履歴を示す代表的な例であり、ピン接合の縦フレーム材101、横フレーム材102の間に引張り力のみを示すブレース103を入れた耐力壁100である。前記縦フレーム材101および横フレーム材102は、例えば、それぞれ柱、梁である。水平荷重Pによる押しの時はブレース103が抵抗するが、引き戻し時にブレース103が何の抵抗もしない。図29に完全スリップ型履歴の耐力壁における、繰り返荷重作用時の変形−荷重グラフを示す。変形δを戻す向きに力を掛けたとき、ブレースが力を負担しないので、滑るように変形(スリップ)する。   FIG. 28 is a typical example showing a slip-type behavior history, and is a load bearing wall 100 in which a brace 103 showing only a tensile force is inserted between a pin-joint vertical frame member 101 and a horizontal frame member 102. The vertical frame material 101 and the horizontal frame material 102 are, for example, columns and beams, respectively. The brace 103 resists when pushed by the horizontal load P, but the brace 103 does not resist anything when pulled back. FIG. 29 shows a deformation-load graph at the time of repeated load action on the load bearing wall of the complete slip type hysteresis. When a force is applied in a direction to return the deformation δ, the brace does not bear the force, so that it deforms (slips) to slide.

これらの問題を解決する為には、「紡錘型」の履歴を持つラーメン架構が一般的には有効である。ただし、ラーメン架構は、柱・梁を剛接合とするために、厚肉の柱を用いる必要があるので、コストや鋼材量の面では不利となる。圧縮ブレースを用いた耐力壁も紡錘型となるが、圧縮ブレースは一般的に断面寸法が大きくなり、コスト面で不利となる。   In order to solve these problems, a frame structure having a “spindle type” history is generally effective. However, the ramen frame is disadvantageous in terms of cost and the amount of steel because it requires the use of thick-walled columns in order to make the columns and beams rigidly connected. The bearing wall using the compression brace is also a spindle type, but the compression brace generally has a large cross-sectional dimension, which is disadvantageous in terms of cost.

図30は、紡錘型の挙動履歴を示す代表的な例を示す。同図は、圧縮ブレース103A入りの耐力壁100Aである。この例では、引き戻すときにもブレース103Aが水平力に抵抗する。図31は完全紡錘型履歴の耐力壁の繰り返荷重作用時の変形−荷重グラフである。スリップ型に比べ、引き戻しときにもブレース103Aが抵抗するので、より多くのエネルギーを吸収することができる(グラフで囲まれた面積がエネルギー吸収量を示し、この面積が大きい)。   FIG. 30 shows a typical example showing a spindle-type behavior history. This figure shows a load bearing wall 100A containing a compression brace 103A. In this example, the brace 103A resists the horizontal force when it is pulled back. FIG. 31 is a deformation-load graph at the time of repeated load action of a load-bearing wall of a complete spindle type hysteresis. Compared to the slip type, the brace 103A resists even when pulled back, so that more energy can be absorbed (the area surrounded by the graph indicates the amount of energy absorption, and this area is large).

このように、引張り型耐力ブレースは、スリップ型の挙動となってエネルギー吸収力が少なく、揺れ戻し時に衝撃が生じ、またラーメン架構や圧縮ブレース使用の架構は、鋼材使用量やコスト面で不利となる。そのため、鋼材量が少なくて済み、かつ紡錘型の履歴を示す架構の開発が必要となる。   In this way, the tensile-type load-bearing brace has a slip-type behavior and has a low energy absorption capacity, and an impact occurs when swinging back. Become. Therefore, it is necessary to develop a frame that requires a small amount of steel and shows a spindle-type history.

紡錘型履歴を示し、軽量鉄骨等の安価な材料を用いた耐力壁としては、耐力要素に波形鋼板を用いたメンブレン型耐力壁がある(例えば、特許文献1)。
メンブレン型耐力壁は、一例を示すと、図32のように、壁面を複数(4分割または6分割)に区画し、各区画層に折板104を用いている。地震時に、水平力に対しては折板104がエネルギーを吸収する機構となっている。同耐力壁は、実験により適切な条件下では紡錘型に近い挙動を示すことが確認されている。
As a load bearing wall that shows a spindle type history and uses an inexpensive material such as a lightweight steel frame, there is a membrane type load bearing wall that uses a corrugated steel plate as a load bearing element (for example, Patent Document 1).
As an example, the membrane-type bearing wall divides the wall surface into a plurality (4 or 6) as shown in FIG. 32, and the folded plate 104 is used for each partition layer. In the event of an earthquake, the folded plate 104 has a mechanism for absorbing energy against horizontal force. It has been confirmed by experiments that the bearing wall behaves like a spindle type under appropriate conditions.

特開2010−090650号公報JP 2010-090650 A

耐力要素に折板を用いたメンブレン型耐力壁は、鋼材量が少なくて済み、紡錘型の履歴を示すという点で優れるが、次の課題がある。
・耐力壁の全面に折板104を張るため、設備開口用等の孔を得ることができない。孔を開けることで耐力性能低下が予測される。耐力壁に設備開口用の孔を設けないようにするには、建物のプランが制約される。建築物建築計画においては、やむなくその耐力壁位置に開口部(給・排気用貫通口、採光用開口等)を設けなくてはならないこともある。
・切り欠かれた設備開口部分を、施工現場において同様な折板を増し張りする補強方法が先行技術として提案されているが、その施工の手間、品質保持、施工管理上等の現場省略施工の観点から、採用するには難がある。
・仮に折板104に設備開口用の孔を開けて補強したとしても、その部分の剛性評価方法が確立されていない。
A membrane-type load-bearing wall using a folded plate as a load-bearing element is excellent in that it requires a small amount of steel and exhibits a spindle-type history, but has the following problems.
-Since the folded plate 104 is stretched over the entire surface of the load-bearing wall, holes for opening the equipment cannot be obtained. It is predicted that the yield strength will be lowered by opening the hole. In order not to provide a hole for opening the equipment in the bearing wall, the plan of the building is restricted. In a building construction plan, it may be necessary to provide openings (supply / exhaust through-holes, daylighting openings, etc.) at the bearing wall positions.
・ Reinforcing methods have been proposed in the construction site to reinforce the same folded plate at the construction site where the notched opening of the equipment has been cut. From the point of view, there are difficulties in hiring.
Even if a hole for opening an equipment is formed in the folded plate 104 and reinforced, the rigidity evaluation method for that portion has not been established.

そこで、本出願人は、図33に示すように、メンブレン型耐力壁において、設備開口を設ける部分については、折板を用いるのではなく、ブレース105を耐力要素して組み込んだ構成を提案した(例えば、特願2013−038631号)。しかし、次の点で今一つ満足することができない。
すなわち、ブレース105で構成される区画層と折板104で構成される区画層の剛性が異なるため、縦フレーム材に曲げ応力が発生してしまう。具体的には、図34(A)のように地震が来て水平力Pがかかったときに、同図(B)のように耐力壁の各区画層の剛性が同じであると、各区画層の変形が同じとなり、縦フレーム材101に曲げが入らない。しかし、同図(C)のように、折板104を用いた区画層に対してブレース105を用いた区画層の剛性が高くて曲がり難いと、折板104を用いた区画層とブレース105を用いた区画層との間の部分106で縦フレーム材101に曲げ応力が発生してしまう。
この場合、縦フレーム材101に地震時の負荷(曲げ)応力を考慮した構造計算が必要であり、構造計算が煩雑となる。このため、煩雑な構造計算を必要とせずに、鉛直方向の荷重(圧縮、引張り)のみを受けるようにしたい。この為には、折板104を用いた区画層とブレース105を用いた区画層の剛性(単位変形量当たりの力の大きさ)を合わせる必要がある。
Therefore, as shown in FIG. 33, the applicant of the present invention has proposed a configuration in which a brace 105 is incorporated as a load-bearing element, instead of using a folded plate, in a membrane-type load-bearing wall where a facility opening is provided ( For example, Japanese Patent Application No. 2013-038631). However, I cannot be satisfied with the following points.
That is, since the partition layer composed of the brace 105 and the partition layer composed of the folded plate 104 have different rigidity, bending stress is generated in the vertical frame member. Specifically, when an earthquake occurs and a horizontal force P is applied as shown in FIG. 34 (A), each partition layer of the bearing wall has the same rigidity as shown in FIG. The deformation of the layers is the same, and the vertical frame member 101 is not bent. However, as shown in FIG. 5C, if the partition layer using the brace 105 is rigid and difficult to bend with respect to the partition layer using the folded plate 104, the partition layer using the folded plate 104 and the brace 105 are separated. Bending stress is generated in the vertical frame member 101 at the portion 106 between the used partition layers.
In this case, the vertical frame member 101 needs to have a structural calculation in consideration of the load (bending) stress at the time of the earthquake, and the structural calculation becomes complicated. For this reason, it is desired to receive only the load in the vertical direction (compression, tension) without requiring complicated structural calculations. For this purpose, it is necessary to match the rigidity (magnitude of force per unit deformation amount) of the partition layer using the folded plate 104 and the partition layer using the brace 105.

この発明の目的は、エネルギー吸収性能に優れながら、鋼材使用量が少なくて済み、また性能低下や施工上の不利を生じることなく開口部分を設けることができ、かつ異なる種類の耐力要素を用いることにより生じる縦フレーム材の腰折れ状の性状を簡易に防止することができる面材・ブレース併用耐力壁を提供することである。   The object of the present invention is to use a different type of load-bearing element, with excellent energy-absorbing performance, and with a small amount of steel material used, and with the ability to provide openings without causing performance degradation or construction disadvantages. It is intended to provide a bearing material / brace combined bearing wall that can easily prevent the folded shape of the vertical frame material caused by the above.

この発明の面材・ブレース併用耐力壁は、左右の縦フレーム材と、これら左右の縦フレーム材の上端間および下端間にそれぞれ接合された上下端の横フレーム材と、前記左右の縦フレーム材間に接合された中桟となる横フレーム材とを備え、前記中桟となる横フレーム材を境界として上下に並ぶ複数の区画層に区画され、各区画層に耐力要素が設けられた耐力壁であって、
一部の区画層に設けられた前記耐力要素がこの区画層を覆う面材であり、他の一部の区画層に設けられた前記耐力要素が斜材であり、前記斜材を設けた区画層に、この区画層の変形を吸収する変形吸収手段を設けたことを特徴とする。
The bearing material / brace combined bearing wall according to the present invention includes left and right vertical frame members, upper and lower horizontal frame members joined between upper and lower ends of the left and right vertical frame members, and the left and right vertical frame members. A load-bearing wall that is divided into a plurality of partition layers arranged vertically with the horizontal frame material serving as the middle rail as a boundary, and having a load-bearing element in each partition layer Because
The strength element provided in a part of the partition layer is a surface material covering the partition layer, the strength element provided in the other part of the partition layer is a diagonal material, and the partition provided with the diagonal material The layer is provided with a deformation absorbing means for absorbing the deformation of the partition layer.

この構成の面材・ブレース併用耐力壁によると、上下に並ぶ複数の区画層に分け、一部の区画層の耐力要素を面材としたため、その区画層において、紡錘型に近い履歴を示しエネルギー吸収性能に優れた構成となる。他の一部の区画層における耐力要素は斜材としたため、その区画層に、耐力の低下や施工上の不利を伴うことなく、設備用や採光用等の開口部を設けることができる。斜材を用いた区画層は、そのままでは面材を用いた区画層に比べて剛性が高くなるが、この区画層の変形を吸収する変形吸収手段を設けたため、面材を用いた区画層と同様の剛性となるように調整できる。そのため、耐力要素して面材を用いる区画層と斜材を用いる区画層を併用しながら、異なる種類の耐力要素を用いることにより生じる縦フレーム材の腰折れ状の性状を防止することができる。変形を吸収する変形吸収手段を用いるため、この変形吸収手段によって区画層の剛性調整ができ、各フレーム材や斜材の強度を変えて構造設計で区画層の剛性の調整を行う場合と異なり、煩雑な構造計算を行うことなく、簡単に剛性が調整できる。
このように、紡錘型に近い履歴を示しエネルギー吸収性能に優れながら、鋼材使用量が少なくて済み、また性能低下や施工上の不利を生じることな開口部分を設けることができ、かつ異なる種類の耐力要素を用いることにより生じる縦フレーム材の腰折れ状の性状を簡易に防止することができる。
According to the bearing wall with brace and brace with this structure, it is divided into a plurality of partition layers lined up and down, and the load bearing elements of some partition layers are used as face materials. The structure has excellent absorption performance. Since the load bearing elements in the other part of the partition layers are diagonal materials, the partition layers can be provided with openings for facilities, daylighting, and the like without lowering the yield strength and disadvantages in construction. The partition layer using the diagonal material is higher in rigidity than the partition layer using the face material as it is, but since the deformation absorbing means for absorbing the deformation of the partition layer is provided, the partition layer using the face material It can be adjusted to have the same rigidity. For this reason, it is possible to prevent the waist frame-like properties of the vertical frame material that are generated by using different types of load bearing elements while using both the partition layer using the face material as the load bearing element and the partition layer using the diagonal material. Because the deformation absorbing means that absorbs deformation is used, the rigidity of the partition layer can be adjusted by this deformation absorbing means, and unlike the case of adjusting the rigidity of the partition layer in the structural design by changing the strength of each frame material or diagonal material, Rigidity can be easily adjusted without performing complicated structural calculations.
In this way, while showing a history close to that of a spindle type and excellent in energy absorption performance, it is possible to provide a small amount of steel material used, and to provide an opening that can cause performance degradation and construction disadvantages. It is possible to easily prevent the folded shape of the vertical frame material caused by using the load bearing element.

なお、この面材・ブレース併用耐力壁は、壁パネルとして構成されたものであっても、また現場組立されたものであっても良い。壁パネルとして構成されたものである場合、前記縦フレーム材は、それぞれ建築物の柱となるものであっても、またパネル併用軸組み構造の建築物等において、柱とは別に設けられる壁パネル内のフレーム材であっても良い。また、前記変形吸収手段は、変形吸収専用に設けられて自身が変形するデバイスに限らず、前記横フレーム材やブレース等の材質や接合位置の関係によって、これら横フレーム材や斜材の全体または一部が変形吸収機能を持つようにしたものであっても良い。   The bearing material / brace combined bearing wall may be configured as a wall panel or may be assembled on site. In the case of being configured as a wall panel, the vertical frame material is a wall panel provided separately from the pillar in a building with a combined frame structure, etc. The inner frame material may be used. Further, the deformation absorbing means is not limited to a device that is provided exclusively for deformation absorption and deforms itself, but depending on the material of the horizontal frame material, brace, etc., and the relationship of the joining position, the entire horizontal frame material or diagonal material or Some of them may have a deformation absorbing function.

この発明において、前記変形吸収手段は、この変形吸収手段を有する区画層に2本設けられた互いに傾斜方向が逆の前記斜材の交点、または前記区画層に設けられた前記斜材の中間に位置する構成としても良い。
斜材の交点、中間のいずれに設ける場合も、前記変形吸収手段による区画層の剛性の調整が容易に行える。
In this invention, the deformation absorbing means is provided at the intersection of the diagonal materials provided in the partition layer having the deformation absorbing means, the inclination directions being opposite to each other, or between the diagonal materials provided in the partition layer. It is good also as a structure located.
Regardless of whether it is provided at the intersection or in the middle of the diagonal member, the rigidity of the partition layer can be easily adjusted by the deformation absorbing means.

この発明において、前記面材が波形鋼板であっても良い。前記耐力要素とする面材は、波型形鋼板に限らず、スキンパネルや耐力合板等であっても良いが、波形鋼板であると、面内せん断力が負荷された場合に、その波形の山部が稜線方向と交差する方向に歪むことにより、前記面内せん断力に対してスリップ性状のない安定したエネルギー吸収が行える。そのため、紡錘型により一層近い履歴を示す。   In the present invention, the face material may be a corrugated steel plate. The face material as the load bearing element is not limited to the corrugated steel sheet, but may be a skin panel, a load bearing plywood, or the like. By distorting the ridge in the direction intersecting the ridge line direction, stable energy absorption without slip property can be performed with respect to the in-plane shear force. Therefore, a history closer to the spindle type is shown.

この発明において、前記区画層は4つであり、前記面材を用いた区画層、および前記斜材を用いた区画層を、それぞれ最低1箇所以上有する構成としても良い。
前記区画層の高さを低くすると、耐力要素となる面材の面積を小さくでき、取扱性が良くなるが、日本建築学会「鋼構造設計規準」において隅肉溶接部で有効に応力伝達する為には、接合部材同士の角度が60度超120度未満である必要があるとされている。この為ブレースの水平面に対する傾斜角度は60度よりも大であることが好ましい。一般的な建築物における1つの階層の高さは2700mm程度であり、パネル幅は1モジュール(建物の基準寸法であり、800〜1100mm内で適宜に設定される)とされるため、耐力壁の一般的な横幅を考慮すると、区画層は4つであることが好ましい。
In the present invention, the number of the partition layers is four, and the partition layer using the face material and the partition layer using the diagonal material may each have at least one location.
If the height of the partition layer is reduced, the area of the face material as a load-bearing element can be reduced, and the handleability is improved. In other words, the angle between the joining members needs to be more than 60 degrees and less than 120 degrees. Therefore, the inclination angle of the brace with respect to the horizontal plane is preferably larger than 60 degrees. In a general building, the height of one floor is about 2700 mm, and the panel width is one module (the standard dimension of the building, set appropriately within 800 to 1100 mm). Considering a general width, it is preferable that the number of partition layers is four.

この発明において、前記斜材を用いた少なくとも一つの区画層における前記斜材は、互いに逆方向に傾斜しかつ一端が互いに近づく2本であり、前記変形吸収手段は、前記2本の斜材の軸心の交点を、これら斜材の近づき側の端部を接合する前記横フレーム材に対して上下に偏心させた構成であっても良い。   In the present invention, the diagonal materials in at least one partition layer using the diagonal materials are two that are inclined in opposite directions and one end approaches each other, and the deformation absorbing means includes the two diagonal materials. A configuration may be adopted in which the intersections of the shaft centers are decentered up and down with respect to the horizontal frame member that joins the end portions on the approaching side of the diagonal members.

この場合に、前記2本の斜材の近づき側の端部を、前記横フレーム材に対してこの横フレーム材の長手方向に互いに離れた位置で接合し、この2本の斜材の近づき側の端部を接合しても良い。すなわち、2本の斜材が横フレーム材における接合箇所よりも延長する位置で交差するように、その交点を偏心させる。
また、前記2本の斜材の近づき側の端部を、前記横フレーム材に接合された取合プレートに、前記横フレーム材から上下方向に離れた位置で、かつ互いの交点で接合した構成としても良い。この場合、2本の斜材が横フレーム材に対して互いに手前位置で交差するように偏心する。
In this case, the approaching end portions of the two diagonal members are joined to the horizontal frame member at positions separated from each other in the longitudinal direction of the horizontal frame member, and the approaching sides of the two diagonal members These ends may be joined. That is, the intersection of the two diagonal members is decentered so that the two diagonal members intersect at a position extending from the joining portion in the horizontal frame member.
In addition, the approaching end of the two diagonal members is joined to the coupling plate joined to the horizontal frame material at a position away from the horizontal frame material in the vertical direction and at the intersection of each other. It is also good. In this case, the two diagonal members are decentered so as to intersect with each other at the front position with respect to the horizontal frame member.

これら、延長位置および手前位置のいずれで偏心する場合も、斜材の軸力による横フレーム材の全体の偏心曲げ変形によるエネルギー吸収を行う。
剛性の調整は、交点が前記延長位置となる構成の場合は、2本の斜材の横フレーム材における接合箇所間の距離で調整できる。交点が前記手前位置となる構成の場合は、前記取合プレートの水平方向のプレート幅と、横フレーム材に対する前記交点の偏心距離で前記剛性の調整が行える。
Even in the case of eccentricity at either the extended position or the near position, energy is absorbed by the eccentric bending deformation of the entire horizontal frame material due to the axial force of the diagonal material.
The rigidity can be adjusted by the distance between the joints of the two diagonal frame members in the case where the intersection is the extended position. When the intersection is the front position, the rigidity can be adjusted by the horizontal plate width of the coupling plate and the eccentric distance of the intersection with respect to the horizontal frame material.

この発明において、前記変形吸収手段が、変形吸収専用に設けられて自身が変形するデバイスであっても良い。
前記変形吸収手段が、それ自身が変形するデバイスであると、このデバイスの大きさ、形状の調整によって、容易に前記区画層の剛性を調整することができる。
In the present invention, the deformation absorbing means may be a device which is provided exclusively for deformation absorption and deforms itself.
If the deformation absorbing means is a device that itself deforms, the rigidity of the partition layer can be easily adjusted by adjusting the size and shape of the device.

この発明の面材・ブレース併用耐力壁は、左右の縦フレーム材と、これら左右の縦フレーム材の上端間および下端間にそれぞれ接合された上下端の横フレーム材と、前記左右の縦フレーム材間に接合された中桟となる横フレーム材とを備え、前記中桟となる横フレーム材を境界として上下に並ぶ複数の区画層に区画され、各区画層に耐力要素が設けられた耐力壁であって、一部の区画層に設けられた前記耐力要素がこの区画層を覆う面材であり、他の一部の区画層に設けられた前記耐力要素が斜材であり、前記斜材を設けた区画層に、この区画層の変形を吸収する変形吸収手段を設けたため、紡錘型に近い履歴を示しエネルギー吸収性能に優れながら、鋼材使用量が少なくて済み、また性能低下や施工上の不利を生じることなく開口部分を設けることができ、かつ異なる種類の耐力要素を用いることにより生じる縦フレーム材の腰折れ状の性状を簡易に防止することができる。   The bearing material / brace combined bearing wall according to the present invention includes left and right vertical frame members, upper and lower horizontal frame members joined between upper and lower ends of the left and right vertical frame members, and the left and right vertical frame members. A load-bearing wall that is divided into a plurality of partition layers arranged vertically with the horizontal frame material serving as the middle rail as a boundary, and having a load-bearing element in each partition layer The load bearing element provided in a part of the partition layer is a face material covering the partition layer, the load bearing element provided in the other part of the partition layer is a diagonal material, and the diagonal material Since the partition layer provided with a deformation absorbing means that absorbs the deformation of this partition layer shows a history similar to a spindle type and has excellent energy absorption performance, the amount of steel used can be reduced, and performance degradation and construction Without opening the opening. Rukoto can, and different types of buckling-like nature of the vertical frame member caused by the use of load-bearing elements can be prevented easily.

この発明の一実施形態に係る面材・ブレース併用耐力壁の正面図、水平断面図、および平面図である。It is the front view, horizontal sectional view, and top view of a bearing material / brace combined bearing wall according to an embodiment of the present invention. 同面材・ブレース併用耐力壁の面材の拡大断面図である。It is an expanded sectional view of the face material of the same face material / brace combined bearing wall. 同面材・ブレース併用耐力壁の面材と横フレーム材の関係を示す部分斜視図である。It is a fragmentary perspective view which shows the relationship between the face material of the same face material / brace combined use bearing wall, and a horizontal frame material. 面材・ブレース併用耐力壁が2枚隣合う部分の拡大水平断面図である。It is an enlarged horizontal sectional view of a portion where two bearing materials / brace bearing walls are adjacent to each other. 同面材・ブレース併用耐力壁における面材の部分拡大断面図および部分拡大斜視図である。It is the partial expanded sectional view and partial expanded perspective view of the face material in the same face material and brace combined bearing wall. 同面材・ブレース併用耐力壁における上端の角部付近を示す拡大正面図、同破断側面図、および平面図である。It is an enlarged front view, the fracture | rupture side view, and top view which show the vicinity of the corner | angular part of the upper end in the same face material and brace combined bearing wall. 同面材・ブレース併用耐力壁における下端の角部付近を示す拡大正面図、および同破断側面図である。It is the enlarged front view which shows the corner | angular part vicinity of the lower end in the same-surface material and brace combined bearing wall, and the fracture | rupture side view. 同面材・ブレース併用耐力壁における斜材および面材を使用した区画層および変形吸収手段の各種配置例を示す模式正面図である。It is a schematic front view which shows the various arrangement | positioning example of the division layer and deformation | transformation absorption means which used the diagonal material and the face material in the same face material and brace combined bearing wall. 同面材・ブレース併用耐力壁における斜材を用いた区画層の各種構成例を示す正面図である。It is a front view which shows the various structural examples of the division layer using the diagonal material in the same-surface material and brace combined bearing wall. 同面材・ブレース併用耐力壁における斜材を用いた区画層の一例を示す正面図とその作用を示す図とを組み合わせた説明図である。It is explanatory drawing which combined the front view which shows an example of the division layer using the diagonal material in the same-surface material and brace combined bearing wall, and the figure which shows the effect | action. 同区画層の部分拡大正面図および部分拡大側面図である。It is the partial expanded front view and partial expanded side view of the division layer. 同面材・ブレース併用耐力壁における斜材を用いた区画層の他の例を示す正面図とその作用を示す図とを組み合わせた説明図である。It is explanatory drawing which combined the front view which shows the other example of the division layer using the diagonal material in the same-surface material and brace combined bearing wall, and the figure which shows the effect | action. 同区画層の部分拡大正面図および部分拡大側面図である。It is the partial expanded front view and partial expanded side view of the division layer. 同面材・ブレース併用耐力壁における斜材を用いた区画層のさらに他の例を示す正面図とその作用を示す図とを組み合わせた説明図である。It is explanatory drawing which combined the front view which shows the further another example of the division layer using the diagonal material in the same-surface material and brace combined bearing wall, and the figure which shows the effect | action. 同区画層の斜材とデバイスの関係を示す部分斜視図である。It is a fragmentary perspective view which shows the relationship between the diagonal material of the division layer, and a device. 同区画層の部分拡大正面図および部分拡大側面図である。It is the partial expanded front view and partial expanded side view of the division layer. 図16の部分拡大図、XVIIB- XVIB 矢視図、およびXVIIC- XVIC 矢視図である。FIG. 17 is a partially enlarged view of FIG. 16, an XVIIB-XVIB arrow view, and an XVIIC-XVIC arrow view. 同面材・ブレース併用耐力壁における斜材を用いた区画層のさらに他の例を示す正面図とその作用を示す図とを組み合わせた説明図である。It is explanatory drawing which combined the front view which shows the further another example of the division layer using the diagonal material in the same-surface material and brace combined bearing wall, and the figure which shows the effect | action. 同区画層の部分拡大正面図および部分拡大側面図である。It is the partial expanded front view and partial expanded side view of the division layer. 同面材・ブレース併用耐力壁における斜材を用いた区画層のさらに他の例を示す正面図とその作用を示す図とを組み合わせた説明図である。It is explanatory drawing which combined the front view which shows the further another example of the division layer using the diagonal material in the same-surface material and brace combined bearing wall, and the figure which shows the effect | action. 同区画層の部分拡大正面図および部分拡大破断側面図である。It is the partial expanded front view and partial expanded fracture side view of the division layer. 同区画層の分解斜視図である。It is a disassembled perspective view of the division layer. 同面材・ブレース併用耐力壁における斜材を用いた区画層のさらに他の例を示す正面図とその作用を示す図とを組み合わせた説明図である。It is explanatory drawing which combined the front view which shows the further another example of the division layer using the diagonal material in the same-surface material and brace combined bearing wall, and the figure which shows the effect | action. 同区画層の部分拡大正面図および部分拡大側面図である。It is the partial expanded front view and partial expanded side view of the division layer. 同面材・ブレース併用耐力壁における斜材を用いた区画層のさらに他の例を示す正面図とその作用を示す図とを組み合わせた説明図である。It is explanatory drawing which combined the front view which shows the further another example of the division layer using the diagonal material in the same-surface material and brace combined bearing wall, and the figure which shows the effect | action. 一般的な鋼材の焼鈍前と焼鈍後の荷重/変形履歴を模式化し焼鈍による効果を記載した図である。It is the figure which modeled the load / deformation history before annealing of general steel materials, and after annealing, and indicated the effect by annealing. 焼鈍の効果を示すための斜材を用いた区画層の説明図である。It is explanatory drawing of the division layer using the diagonal for showing the effect of annealing. 従来のブレースを用いた耐力壁の水平力作用前後の説明図である。It is explanatory drawing before and behind the horizontal force effect | action of a load bearing wall using the conventional brace. 同耐力壁の変形履歴の説明図である。It is explanatory drawing of the deformation | transformation log | history of the same bearing wall. 従来の圧縮ブレース構造の耐力壁の水平力作用前後の説明図である。It is explanatory drawing before and behind the horizontal force effect | action of the load-bearing wall of the conventional compression brace structure. 同耐力壁の変形履歴の説明図である。It is explanatory drawing of the deformation | transformation log | history of the same bearing wall. 従来の耐力要素に面材を用いた耐力壁の正面図である。It is a front view of the bearing wall which used the face material for the conventional bearing element. 提案例に係る耐力壁の正面図である。It is a front view of the bearing wall concerning a proposal example. 同提案例に係る耐力壁の作用説明図である。It is operation | movement explanatory drawing of the bearing wall which concerns on the example of a proposal.

この発明の実施形態を図面と共に説明する。図1に示すように、この面材・ブレース併用耐力壁1(以下、単に「耐力壁1」と略称する場合がある)は、矩形に組まれた枠体2を、中桟となる複数の横フレーム材6をそれぞれ境界として、上下に並ぶ複数の区画層a,bに区画し、一部の区画層aに耐力要素として面材7を設け、他の区画層bに耐力要素として斜材8を設けている。斜材8を設けた区画層bには、この区画層bの変形を吸収する変形吸収手段9を設けている。同図の例では、4つの区画層に等分割し、上下端の区画層bに斜材8が設けられ、中間の2つの区画層aに面材7が設けられている。   An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, this bearing material / brace combined bearing wall 1 (hereinafter sometimes simply referred to as “bearing wall 1”) includes a rectangular frame 2 and a plurality of intermediate frames. The horizontal frame material 6 is divided into a plurality of partition layers a and b arranged in the vertical direction with the horizontal frame member 6 as a boundary. 8 is provided. The partition layer b provided with the diagonal material 8 is provided with deformation absorbing means 9 for absorbing deformation of the partition layer b. In the example of the figure, it is equally divided into four partition layers, the diagonal material 8 is provided in the upper and lower partition layers b, and the face material 7 is provided in the middle two partition layers a.

枠体2は、左右の縦フレーム材3,3と、これら左右の縦フレーム材3,3の上端間および下端間にそれぞれ接合された上下端の横フレーム材4,5と、前記左右の縦フレーム材3,3間に接合された中桟となる横フレーム材6とを備える。横フレーム材6は、3本が等間隔に設けられている。
なお、この面材・ブレース併用耐力壁1は、外壁パネル等の壁パネルとして構成されているが、軸組工法建物の一部となる壁として構成されたものであっても良い。また、縦フレーム材3は、建築物の柱となる部材であっても、またパネル併用軸組み工法建物等において、柱とは別に設けられて柱に沿って設けられる部材であっても良い。前記柱は、壁に内蔵される柱であっても良い。
The frame 2 includes left and right vertical frame members 3 and 3, upper and lower horizontal frame members 4 and 5 joined between upper and lower ends of the left and right vertical frame members 3 and 3, and the left and right vertical frame members 3 and 3. And a horizontal frame member 6 serving as an intermediate beam joined between the frame members 3 and 3. Three horizontal frame members 6 are provided at equal intervals.
The bearing material / brace combined bearing wall 1 is configured as a wall panel such as an outer wall panel, but may be configured as a wall that is a part of a frame construction method building. Further, the vertical frame member 3 may be a member that becomes a pillar of a building, or may be a member that is provided separately from the pillar and provided along the pillar in a panel combined use frame construction method or the like. The pillar may be a pillar built in a wall.

左右の縦フレーム材3,3には形鋼が用いられ、図示の例では角パイプ(角形鋼管とも言う)が用いられている。上下端の横フレーム材4,5は、縦フレーム材3よりも断面が細い形鋼、例えば図6,図7に示すように角パイプが用いられ、縦フレーム材3の室内側面に揃うように接合される。図1において、中桟となる横フレーム材6は、上下端の横フレーム材4,5と同様な形鋼、例えば角パイプが用いられる。中桟となる横フレーム材6は、この他に、図3,図5(B)の例のように、2本の溝形鋼を背合わせに接合した形鋼を用いても良い。なお、この明細書の各実施形態で用いる形鋼は、いずれも軽量形鋼である。縦フレーム材3と各横フレーム材4,5,6との接合は、例えば横フレーム材4,5,6の端面を縦フレーム材3の端面に突き合わせて溶接する接合形式とされている。   Shaped steel is used for the left and right vertical frame members 3 and 3, and square pipes (also called square steel pipes) are used in the illustrated example. The horizontal frame members 4 and 5 at the upper and lower ends are shaped steel having a narrower cross section than the vertical frame member 3, for example, square pipes are used as shown in FIGS. 6 and 7, so that they are aligned with the indoor side surface of the vertical frame member 3. Be joined. In FIG. 1, the horizontal frame member 6 serving as an intermediate rail is formed of the same shape steel as the horizontal frame members 4 and 5 at the upper and lower ends, for example, a square pipe. In addition to this, as the horizontal frame member 6 serving as the intermediate rail, a steel shape obtained by joining two channel steels back to back as shown in the examples of FIGS. 3 and 5B may be used. The shape steel used in each embodiment of this specification is a lightweight shape steel. The vertical frame member 3 and the horizontal frame members 4, 5, 6 are joined, for example, by joining the end surfaces of the horizontal frame members 4, 5, 6 to the end surface of the vertical frame member 3.

前記耐力要素となる面材7には、波形鋼板からなる波板を用いている。この波板からなる面材7は、一方向に延びる山部7aと谷部7b(図2,図3)とが交互に並ぶ断面波形の鋼板であり、ここでは波山稜線方向が上下方向に延びるように、すなわち波の山部7aおよび谷部7bの延びる方向が上下方向となるように前記区画層aに張られている。この波板からなる面材7は、この例ではデッキプレートが用いられており、波山となる山部7aの頂部および波谷となる谷部7bの底部が平坦部分となる断面矩形または台形である。前記波板からなる面材7の上下端は、図3に示すように、その谷部7bが、各横フレーム材4,5,6に、ビス等の固着具または溶接等で固定されている。なお、各区画層aの前記波板からなる面材7は、それぞれ個別に製造されたものであっても良いし、1枚の波板が切断されたものであっても良い。   A corrugated plate made of a corrugated steel plate is used as the face material 7 serving as the load bearing element. The corrugated sheet material 7 is a corrugated steel plate in which crests 7a and troughs 7b (FIGS. 2 and 3) extending in one direction are alternately arranged. Here, the wavy ridge line direction extends in the vertical direction. That is, it is stretched on the partition layer a so that the direction in which the wave crests 7a and troughs 7b extend is the vertical direction. In this example, the face plate 7 made of corrugated plates uses a deck plate, and has a rectangular or trapezoidal cross section in which the top of the crest 7a serving as a wavy mountain and the bottom of the trough 7b serving as a wave trough are flat portions. As shown in FIG. 3, the upper and lower ends of the face material 7 made of corrugated plates are fixed at their troughs 7b to the horizontal frame members 4, 5 and 6 by fixing tools such as screws or welding. . In addition, the face material 7 made of the corrugated plate of each partition layer a may be individually manufactured, or may be one in which one corrugated plate is cut.

前記耐力要素となる面材7が波板であると、面内せん断力が負荷された場合に、その波形の山部が稜線方向と交差する方向に歪むことにより、前記面内せん断力に対してスリップ性状のない安定したエネルギー吸収が行える。そのため、紡錘型により一層近い履歴を示す。
前記波板の他に、図5に示すように平坦な板材を用いても良い。この場合、例えば前記面材7として、スキンパネルや耐力合板を使用しても良い。
When the face material 7 serving as the load bearing element is a corrugated sheet, when an in-plane shear force is applied, the ridges of the corrugation are distorted in a direction intersecting the ridge line direction. Stable energy absorption without slip property. Therefore, a history closer to the spindle type is shown.
In addition to the corrugated sheet, a flat sheet material may be used as shown in FIG. In this case, for example, a skin panel or a load-bearing plywood may be used as the face material 7.

図1において、斜材8は、角パイプまたはその他の形鋼からなり、個々の区画層bに互いに逆方向に傾斜しかつ互いに一端が近づくように2本設けられている。図1の例では、上端の区画層bの2本の斜材8は、上端が互いの近づき側端とされて、上端の横フレーム材4に接合され、下端が互いの広がり側端とされて、縦フレーム材3または中桟となる横フレーム材6に接合されている。また、下端の区画層bの2本の斜材8は、下端が互いの近づき側端とされて、下端の横フレーム材5に接合され、上端が互いの広がり側端とされて、縦フレーム材3または中桟となる横フレーム材6に接合されている。斜材8の各フレーム材への接合は、図1の例では前記変形吸収手段9となる部材、または接合部材10を介して行っているが、直接に溶接等で溶接しても良い。2本の斜材8の互いに広がり側の端部は、図1では縦フレーム材3に接合した例を図示しているが、図7に示す例では、横フレーム材5の端部付近に接合している。他の横フレーム材4,6に接合する場合も、図7の例と同様である。図7以降の各図の例では、2本の斜材8の広がり側の端部を横フレーム材4,5,6の端部付近に接合した例を示している。   In FIG. 1, the diagonal member 8 is made of a square pipe or other shape steel, and is provided on each partition layer b so as to incline in opposite directions to each other and to approach one end. In the example of FIG. 1, the two diagonal members 8 of the partition layer b at the upper end are joined to the upper lateral frame member 4 with the upper ends being close to each other, and the lower ends are being spread side ends. Then, it is joined to the vertical frame material 3 or the horizontal frame material 6 which becomes the middle rail. Further, the two diagonal members 8 of the partition layer b at the lower end are joined to the lower frame member 5 at the lower end and joined to the horizontal frame member 5 at the lower end, and are spread to the lateral ends of the vertical frame. It is joined to the horizontal frame material 6 which becomes the material 3 or the middle rail. In the example of FIG. 1, the diagonal member 8 is joined to each frame member via the member serving as the deformation absorbing means 9 or the joining member 10, but may be directly welded. In FIG. 1, the end portions of the two diagonal members 8 that are spread to each other are illustrated as being joined to the vertical frame member 3, but in the example illustrated in FIG. 7, they are joined to the vicinity of the end portion of the horizontal frame member 5. doing. The case of joining to the other horizontal frame members 4 and 6 is the same as the example of FIG. In the example of each figure after FIG. 7, an example is shown in which the end portions on the spreading side of the two diagonal members 8 are joined in the vicinity of the end portions of the horizontal frame members 4, 5, 6.

図4は、2枚の面材・ブレース併用耐力壁1,1の隣接部付近の拡大水平断面を、外装材等を施した外壁パネルとして構成した状態で示す。枠体2の屋外側には合板からなる下地材41および空気層42を介して外装面材43が張られ、枠体2内の前記波板からなる面材7を張った箇所にはこの面材7の両面にグラスウール等の断熱材44,45が充填されている。枠体2の屋内側には内装面材46が張られる。2枚の面材・ブレース併用耐力壁1,1の隣合う縦フレーム材3の屋外側および屋内側には、グラスウールボード等からなる柱部断熱面材47が張られている。   FIG. 4 shows an enlarged horizontal cross section in the vicinity of an adjacent portion of the two bearing members and bracing bearing walls 1, 1 in a state of being configured as an outer wall panel provided with an exterior material or the like. An exterior surface material 43 is stretched on the outdoor side of the frame body 2 through a base material 41 made of plywood and an air layer 42, and this surface is placed on the surface of the frame body 2 where the surface material 7 made of the corrugated sheet is stretched. Both surfaces of the material 7 are filled with heat insulating materials 44 and 45 such as glass wool. An interior surface material 46 is stretched on the indoor side of the frame body 2. A column heat insulating surface material 47 made of glass wool board or the like is stretched on the outdoor side and the indoor side of the vertical frame material 3 adjacent to the two face materials / brace combined bearing walls 1 and 1.

図8は、耐力要素として面材7を設けた区画層aと、斜材8を設けた区画層bとの配置、および変形吸収手段9の配置の各例を示している。いずれも、区画層a,bの数は合計で4つとし、面材7を設けた区画層aと斜材8を設けた区画層bとは2箇所ずつとしている。図8(A)は、図1の実施形態の例である。
図8(B)の例は、斜材8を設けた区画層bを中央側の2箇所とし、これらの区画層aでは、いずれも2本の斜材8は上端側が交点側となり、交点の付近に変形吸収手段9を配置している。
図8(C)の例は、同図(B)の例と同じく、斜材8を設けた区画層bを中央側の2箇所としているが、中央側2箇所の区画層bにおいて、斜材8の傾斜方向が互いに逆であり、上側の区画層bの斜材8と下側の区画層の斜材8とが一直線上に位置してX形を成すように配置されている。変形吸収手段9は、4本の斜材8の交点に配置している。この場合、変形吸収手段9は、各区画層b毎に別々に設けても、一つで2つの区画層bの変形を吸収する構成としても良い。
FIG. 8 shows examples of the arrangement of the partition layer a provided with the face material 7 as the load bearing element, the partition layer b provided with the diagonal material 8, and the arrangement of the deformation absorbing means 9. In any case, the total number of the partition layers a and b is four, and the partition layer a provided with the face material 7 and the partition layer b provided with the diagonal material 8 are provided in two places. FIG. 8A is an example of the embodiment of FIG.
In the example of FIG. 8 (B), the partition layer b provided with the diagonal material 8 has two locations on the center side, and in these partition layers a, the two diagonal materials 8 both have the upper end side at the intersection side, The deformation absorbing means 9 is disposed in the vicinity.
8C, as in the example of FIG. 8B, the partition layer b provided with the diagonal material 8 is set at two locations on the central side. However, in the two partition layers b on the central side, the diagonal material is used. The diagonal directions 8 are opposite to each other, and the diagonal member 8 of the upper partition layer b and the diagonal member 8 of the lower partition layer are arranged in a straight line so as to form an X shape. The deformation absorbing means 9 is arranged at the intersection of the four diagonal members 8. In this case, the deformation absorbing means 9 may be provided separately for each partition layer b, or may be configured to absorb the deformation of the two partition layers b.

図8(D)の例は、斜材8を設けた区画層bを上下端に配置し、その区画層bにおいて斜材8は対角線方向に延びる1本ずつとしている。また、変形吸収手段9は、斜材8の長手方向の中央に配置している。
図8(E)の例は、図8(D)の例と同じく、斜材8は対角線方向に延びる1本とし、その中央に変形吸収手段9を設けているが、斜材8を設けた区画層bを、面材・ブレース併用耐力壁1の中央側の2箇所としている。
なお、斜材8の中間に設けられる変形吸収手段9は、例えば、斜材8の長手方向の一部を細く形成し、または熱処理することで変形吸収機能を持たせた箇所とされる。
In the example of FIG. 8D, the partition layers b provided with the diagonal members 8 are arranged at the upper and lower ends, and the diagonal members 8 in the partition layer b are one by one extending in the diagonal direction. Further, the deformation absorbing means 9 is disposed at the center in the longitudinal direction of the diagonal member 8.
In the example of FIG. 8 (E), the diagonal member 8 is one that extends in the diagonal direction, and the deformation absorbing means 9 is provided at the center, as in the example of FIG. 8 (D), but the diagonal member 8 is provided. The partition layer b is set at two locations on the center side of the bearing material / brace combined bearing wall 1.
In addition, the deformation | transformation absorption means 9 provided in the middle of the diagonal material 8 is made into the location which formed the part of the longitudinal direction of the diagonal material 8 thinly, or gave the deformation | transformation absorption function by heat-processing, for example.

図8の例ではいずれも、区画層a,bの合計を4つとしたが、区画層a,bの合計は、例えば3つとしても、また5つとしても良い。また、耐力要素として面材7を設けた区画層aの個数と、斜材8を設けた区画層bの個数は互いに異なっていても良い。例えば、全ての区画層の個数が4つであり、斜材8を設けた区画層bを1箇所として、残り3つを面材7を有する区画層aとしても良い。   In the example of FIG. 8, the total of the partition layers a and b is four, but the total of the partition layers a and b may be three or five, for example. Further, the number of partition layers a provided with the face material 7 as a load bearing element and the number of partition layers b provided with the diagonal material 8 may be different from each other. For example, the number of all the partition layers may be four, the partition layer b provided with the diagonal material 8 may be one place, and the remaining three may be partition layers a having the face material 7.

ただし、一般的な低層の建築物に適用する場合であって、斜材8を区画層bに2本逆傾斜に設ける場合、区画層a,bの合計は4つ以下とすることが好ましい。これは、接合部の隅肉溶接部で有効に応力負担する為に、斜材8の水平面に対する傾斜角度を60°以上とするためである。例えば、面材・ブレース併用耐力壁1の高さが、建築物の1つ階高の高さ(例えば.2700mm程度)、幅が1モジュール(800〜1000mm)である場合、区画層a,bの合計数を5つ以上にすると、斜材8の上記傾斜角度が60°以下となる。   However, when it is applied to a general low-rise building and two diagonal members 8 are provided on the partition layer b in a reverse inclination, the total of the partition layers a and b is preferably four or less. This is because the inclination angle of the diagonal member 8 with respect to the horizontal plane is set to 60 ° or more in order to effectively bear the stress at the fillet weld of the joint. For example, when the height of the bearing material / brace bearing wall 1 is the height of the first floor of the building (for example, about 2700 mm) and the width is 1 module (800 to 1000 mm), the partition layers a and b If the total number is 5 or more, the inclination angle of the diagonal member 8 is 60 ° or less.

これら各実施形態の構成の面材・ブレース併用耐力壁1によると、上下に並ぶ複数の区画層a,bに分け、一部の区画層aの耐力要素を面材7としたため、その区画層aにおいて、紡錘型に近い履歴を示しエネルギー吸収性能に優れた構成となる。他の一部の区画層bにおける耐力要素は斜材8としたため、その区画層bに、耐力の低下や施工上の不利を伴うことなく、設備用や採光用等の開口部(図示せず)を設けることができる。斜材8を用いた区画層bは、そのままでは面材7を用いた区画層aに比べて剛性が高くなるが、この区画層bの変形を吸収する変形吸収手段9を設けたため、面材7を用いた区画層aと同様の剛性となるように容易に調整できる。そのため、耐力要素して面材7を用いる区画層aと斜材8を用いる区画層bを併用しながら、異なる種類の耐力要素を用いることにより生じる縦フレーム材3の腰折れ状の性状を防止することができる。変形を吸収する変形吸収手段9を用いるため、この変形吸収手段9によって区画層bの剛性調整ができ、各横フレーム材4〜6や斜材8の強度を変えて構造設計で区画層a,bの剛性の調整を行う場合と異なり、煩雑な構造計算を行うことなく、簡単に剛性が調整できる。
このように、紡錘型に近い履歴を示しエネルギー吸収性能に優れながら、鋼材使用量が少なくて済み、また性能低下や施工上の不利を生じることなく開口部分を設けることができ、かつ異なる種類の耐力要素を用いることにより生じる縦フレーム材3の腰折れ状の性状を簡易に防止することができる。
According to the bearing material / brace combined bearing wall 1 of the configuration of each of these embodiments, the partitioning layer is divided into a plurality of partition layers a and b arranged in the vertical direction, and the bearing element of some partitioning layers a is the surface material 7, so that partitioning layer In a, it becomes a structure which shows the history near a spindle type, and was excellent in energy absorption performance. Since the load bearing element in the other part of the partition layer b is the diagonal member 8, the partition layer b is not provided with an opening for facilities or lighting (not shown) without lowering the yield strength or disadvantages in construction. ) Can be provided. The partition layer b using the diagonal material 8 is more rigid than the partition layer a using the face material 7 as it is, but since the deformation absorbing means 9 for absorbing the deformation of the partition layer b is provided, the face material 7 can be easily adjusted to have the same rigidity as the partition layer a using 7. Therefore, while using the partition layer a using the face material 7 as the load bearing element and the partition layer b using the diagonal member 8, the waist frame-like properties of the vertical frame member 3 caused by using different types of load bearing elements are prevented. be able to. Since the deformation absorbing means 9 for absorbing deformation is used, the rigidity of the partition layer b can be adjusted by the deformation absorbing means 9, and the strength of each of the horizontal frame members 4 to 6 and the diagonal member 8 can be changed to design the partition layers a, Unlike the case of adjusting the rigidity of b, the rigidity can be easily adjusted without performing complicated structural calculations.
In this way, while showing a history close to that of a spindle type and excellent in energy absorption performance, the amount of steel used can be reduced, an opening can be provided without causing performance degradation and construction disadvantages, and different types of It is possible to easily prevent the waist frame of the vertical frame member 3 caused by using the strength element.

次に、変形吸収手段9について具体的に説明する。変形吸収手段9は、変形吸収専用に設けられて自身が変形するデバイスであっても良く、また前記横フレーム材4〜6や斜材8等の材質や接合位置の関係によって、これら横フレーム材4〜6や斜材8の全体または一部が変形吸収機能を持つようにしたものであっても良い。   Next, the deformation absorbing means 9 will be specifically described. The deformation absorbing means 9 may be a device that is provided exclusively for deformation absorption and that deforms itself. Further, depending on the material of the horizontal frame materials 4 to 6 and the diagonal material 8 and the relationship of the joining positions, these horizontal frame materials may be used. The whole or a part of 4 to 6 or the diagonal member 8 may have a deformation absorbing function.

図9(A)〜(G)は、変形吸収手段9の構成が互いに異なる区画層bの例をそれぞれ示す。同図において、破線の円で囲った箇所は、変形吸収手段9を配置した箇所を示す。同図の各例は、いずれも互いに傾斜方向が逆となりかつ上側の端部が互いに近づく2本の斜材8を有し、これら2本の斜材8の近づき側端の付近に変形吸収手段9を設けた例である。同図(A)〜(C)、(F)は、変形吸収手段9が、変形吸収専用に設けられて自身が変形するデバイスである例をそれぞれ示し、同図(D),(E)、(G)は、2本の斜材8の交点を横フレーム材4(5,6)に変形吸収機能を持たせた各例をそれぞれ示す。なお、前記横フレーム材が上端の横フレーム材4である場合につき説明するが、下端の横フレーム材5の場合、および中桟となる横フレーム材6の場合も、上端の横フレーム材4の場合と同様である。以下、同図の各例を具体的に説明する。   FIGS. 9A to 9G show examples of partition layers b having different configurations of the deformation absorbing means 9. In the figure, a portion surrounded by a broken-line circle indicates a portion where the deformation absorbing means 9 is arranged. Each example in the figure includes two diagonal members 8 whose inclination directions are opposite to each other and whose upper ends are close to each other, and deformation absorbing means is provided near the approaching side ends of these two diagonal members 8. 9 is an example. (A) to (C), (F) respectively show examples in which the deformation absorbing means 9 is a device that is provided exclusively for deformation absorption and deforms itself, and (D), (E), (G) shows each example in which the cross frame member 4 (5, 6) has a deformation absorbing function at the intersection of two diagonal members 8. In addition, although the case where the said horizontal frame material is the horizontal frame material 4 of an upper end is demonstrated, in the case of the horizontal frame material 5 of a lower end, and the case of the horizontal frame material 6 used as an intermediate | middle cross, Same as the case. Hereinafter, each example of FIG.

図9(A)〜(C)の例は、図10〜図17に示すように、いずれも変形吸収手段9がデバイス9A,9B,9Cであって、このデバイス9A,9B,9Cは、区画層bの横フレーム材4(5,6)と斜材8の端部との間に設けられていて、横フレーム材4(5,6)に対して垂直な複数の鋼製の縦板12を有する。このうち、図9(A)の例は、図10,図11に拡大して示すように、上下に離れてそれぞれ斜材8の端部および横フレーム材4(5,6)に接合される水平鋼板13,14と、これら上下の水平鋼板13,14間に接合されて互いに横フレーム材4(5,6)の長手方向に並ぶ複数の前記垂直な鋼製の縦板12とでなる。水平鋼板13,14と垂直な縦板12とは、溶接により接合されている。垂直な縦板12は、等間隔で3枚並べられている。2本の斜材8は角パイプからなり、それぞれ上端面を下側の水平鋼板14の下面に溶接により接合している。上側の水平鋼板13の上面は、横フレーム材4(5,6)の下面に溶接により接合されている。   In the examples of FIGS. 9A to 9C, as shown in FIGS. 10 to 17, the deformation absorbing means 9 are devices 9A, 9B, and 9C, and the devices 9A, 9B, and 9C are partitioned. A plurality of vertical steel plates 12 provided between the horizontal frame member 4 (5, 6) of the layer b and the end of the diagonal member 8 and perpendicular to the horizontal frame member 4 (5, 6). Have Among them, the example of FIG. 9A is joined to the end portion of the diagonal member 8 and the lateral frame member 4 (5, 6) apart from each other as shown in an enlarged manner in FIGS. The horizontal steel plates 13 and 14 and the plurality of vertical steel vertical plates 12 joined between the upper and lower horizontal steel plates 13 and 14 and aligned with each other in the longitudinal direction of the horizontal frame member 4 (5, 6). The horizontal steel plates 13 and 14 and the vertical plate 12 are joined by welding. Three vertical vertical plates 12 are arranged at equal intervals. The two diagonal members 8 are formed of square pipes, and their upper end surfaces are joined to the lower surface of the lower horizontal steel plate 14 by welding. The upper surface of the upper horizontal steel plate 13 is joined to the lower surface of the horizontal frame member 4 (5, 6) by welding.

この構成の場合、エネルギー吸収は、デバイス9Aにおける縦板12のせん断変形により主に行い、またこのデバイス9Aが接合された横フレーム材4(5,6)の曲げ変形によっても行われる。区画層bの全体の剛性調整は、デバイス9Aにおける縦板12の厚さ、長さh、および奥行きにより行う。   In the case of this configuration, energy absorption is mainly performed by shear deformation of the vertical plate 12 in the device 9A, and is also performed by bending deformation of the lateral frame member 4 (5, 6) to which the device 9A is joined. The overall rigidity of the partition layer b is adjusted by the thickness, length h, and depth of the vertical plate 12 in the device 9A.

図9(B),(C)の例は、それぞれ図12,図13、または図14〜図17に拡大して示すように、いずれも、変形吸収手段9となるデバイス9B,9Cが、角パイプを輪切りにした形状を有し、その管壁となる一対の対向する板部が前記縦板12となる。図9(B)、図12,図13の例では、前記角パイプの輪切り状のデバイス本体9Baの下面に鋼板からなる水平な接合用板16が溶接され、この接合用板16の下面に斜材8の上端面が溶接により接合されている。   In the examples of FIGS. 9B and 9C, as shown in FIG. 12, FIG. 13 or FIG. 14 to FIG. 17, respectively, the devices 9B and 9C serving as the deformation absorbing means 9 are The vertical plate 12 has a shape in which a pipe is cut into a ring, and a pair of opposing plate portions serving as the tube walls. In the example of FIGS. 9B, 12 and 13, a horizontal joining plate 16 made of a steel plate is welded to the lower surface of the ring-shaped device body 9Ba of the square pipe, and the lower surface of the joining plate 16 is inclined. The upper end surface of the material 8 is joined by welding.

この構成の場合、エネルギー吸収は、デバイス9Bにおける縦板12のせん断変形により主に行い、またこのデバイス9Bが接合された横フレーム材4(5,6)の曲げ変形によっても行われる。区画層bの全体の剛性調整は、デバイス9Bにおける角パイプの板厚、断面サイズ、および輪切り厚さにより行う。   In the case of this configuration, energy absorption is mainly performed by shear deformation of the vertical plate 12 in the device 9B, and is also performed by bending deformation of the lateral frame member 4 (5, 6) to which the device 9B is joined. The overall rigidity of the partition layer b is adjusted by the plate thickness, the cross-sectional size, and the ring cut thickness of the square pipe in the device 9B.

図9(C)、図14〜図17の例では、前記角パイプの輪切り状のデバイス本体9Caの下面の中央に、鋼板からなる垂直な接合用板17が前記縦板12と平行な方向で溶接されている。一対の斜材8は、その上端がデバイス本体9Caの下面と前記垂直な接合用板17の側面とに沿うように切断加工されて、これらデバイス本体9Caの下面と接合用板17の側面とに溶接により接合される。   In the example of FIG. 9C and FIGS. 14 to 17, a vertical joining plate 17 made of a steel plate is arranged in a direction parallel to the vertical plate 12 in the center of the lower surface of the ring-shaped device body 9Ca of the square pipe. Welded. The pair of diagonal members 8 are cut so that the upper ends thereof are along the lower surface of the device main body 9Ca and the side surface of the vertical bonding plate 17, and the lower surface of the device main body 9Ca and the side surface of the bonding plate 17 are cut. Joined by welding.

この構成の場合も、エネルギー吸収は、デバイス9Cにおける縦板12のせん断変形により主に行い、またこのデバイス9Cが接合された横フレーム材4(5,6)の曲げ変形によっても行われる。区画層bの全体の剛性調整は、デバイス9Cにおける角パイプの板厚、断面サイズ、および輪切り厚さにより行う。この構成の場合、角パイプを輪切りにした形状の部材を前記デバイス9Cに用いるため、このデバイス9Cの製造が簡単に行える。   Also in this configuration, energy absorption is mainly performed by shear deformation of the vertical plate 12 in the device 9C, and is also performed by bending deformation of the lateral frame member 4 (5, 6) to which the device 9C is joined. The overall rigidity adjustment of the partition layer b is performed by the plate thickness, cross-sectional size, and ring thickness of the square pipe in the device 9C. In the case of this configuration, since a member having a shape obtained by rounding a square pipe is used for the device 9C, the device 9C can be easily manufactured.

このように前記図9(A),図10,図11の例、図9(B),図12,図13の例、または図9(C),図14〜図17の例のように、エネルギー吸収を行うデバイス9A,9B,9Cを設けることにより、次の各利点が得られる。
・耐力壁1の区画層bごとの剛性調製を容易に行うことができる。
・水平力エネルギーの吸収を行うことができる。
・耐力壁1内の波形鋼板等からなる面材7による区画層aと斜材8の区画層bの剛性を同じにすることにより、部分的な剛性低下を防ぐことができる。
・耐力壁1の両端部の縦フレーム材3が腰折れの性状とならず、耐力壁1の両端の縦フレーム材3に曲げモーメントが伝達されることを防ぐことができる。
9A, FIG. 10 and FIG. 11, examples of FIG. 9B, FIG. 12 and FIG. 13, or FIG. 9C and examples of FIGS. By providing the devices 9A, 9B, and 9C that perform energy absorption, the following advantages can be obtained.
-Stiffness adjustment for every division layer b of the bearing wall 1 can be performed easily.
-Absorbs horizontal force energy.
-By making the rigidity of the partition layer a by the face material 7 made of corrugated steel plate or the like in the bearing wall 1 and the partition layer b of the diagonal member 8 the same, a partial decrease in rigidity can be prevented.
The vertical frame member 3 at both ends of the load bearing wall 1 does not have a folding property, and it is possible to prevent a bending moment from being transmitted to the vertical frame member 3 at both ends of the load bearing wall 1.

これら図9(A)〜(C)の例において、斜材を設けた区画層bが耐力壁1の最上層または最下層に配置される場合は、斜材が接合された耐力壁1の上端または下端に位置する横フレーム材4,5と、この耐力壁1を設置する建物躯体の梁30(図10)との間に、前記横フレーム材4,5が変形する寸法以上の隙間dを設けることが必要である。
横フレーム材4,5が変形したときに建物躯体の梁30と干渉すると、前記横フレーム材4,5の変形が妨げられ、結果的に剛性が上がってしまうが、前記横フレーム材4,5が変形する寸法以上の隙間を設けることで、変形が妨げられることが防止され、区画層4bの適切な剛性が保持される。
図9(D)〜(G)の各例においても、上記と同様に隙間dを設ける。
In the examples of FIGS. 9A to 9C, when the partition layer b provided with the diagonal material is disposed in the uppermost layer or the lowermost layer of the load bearing wall 1, the upper end of the load bearing wall 1 to which the diagonal material is joined. Alternatively, a gap d larger than the dimension by which the horizontal frame members 4 and 5 are deformed is formed between the horizontal frame members 4 and 5 located at the lower end and the beam 30 (FIG. 10) of the building frame in which the bearing wall 1 is installed. It is necessary to provide it.
If the horizontal frame members 4 and 5 are deformed and interfere with the beams 30 of the building frame, the deformation of the horizontal frame members 4 and 5 is hindered, resulting in increased rigidity. By providing a gap larger than the dimension that deforms, deformation is prevented from being hindered, and appropriate rigidity of the partition layer 4b is maintained.
In each example of FIGS. 9D to 9G, the gap d is provided in the same manner as described above.

図9(D),(E)の例は、いずれも、前記変形吸収手段9は、2本の斜材8の軸心の交点Cを、これら斜材8の近づき側の端部を接合する前記横フレーム材4(5,6)に対して上下に偏心させた構成である。このうち、図9(D)の例は、図18,図19に拡大して示すように、2本の斜材8の互いの近づき側の端部を、横フレーム材4(5,6)に対してこの横フレーム材4(5,6)の長手方向に互いに離れた位置Eで接合している。2本の斜材8は、この例では、上端面を横フレーム材4(5,6)の下面に溶接により接合している。   9 (D) and 9 (E), the deformation absorbing means 9 joins the intersection C of the axes of the two diagonal members 8 and the end of the diagonal member 8 on the approaching side. The horizontal frame member 4 (5, 6) is vertically offset. Among these, in the example of FIG. 9D, as shown in enlarged views in FIG. 18 and FIG. 19, the end portions of the two diagonal members 8 that are close to each other are connected to the horizontal frame member 4 (5, 6). In contrast, the lateral frame members 4 (5, 6) are joined at positions E apart from each other in the longitudinal direction. In this example, the two diagonal members 8 have their upper end surfaces joined to the lower surfaces of the horizontal frame members 4 (5, 6) by welding.

この構成の場合、水平力に対し、斜材8の軸力(圧縮力、引張り力)による横フレーム材4(5,6)の全体の偏心曲げ変形によりエネルギー吸収を行う。剛性調整は、偏心距離B(ここで言う偏心距離Bは、2本の斜材8,8の横フレーム材4(5,6)に対する接合点の位置E,E間の距離)、および横フレーム材4(5,6)の断面の変更で行う。   In the case of this configuration, energy is absorbed by the eccentric bending deformation of the entire horizontal frame member 4 (5, 6) due to the axial force (compression force, tensile force) of the diagonal member 8 with respect to the horizontal force. Stiffness adjustment is performed by the eccentric distance B (here, the eccentric distance B is the distance between the positions E and E of the joint points of the two diagonal members 8 and 8 with respect to the horizontal frame member 4 (5, 6)), and the horizontal frame. This is done by changing the cross section of the material 4 (5, 6).

図9(E)の例は、図20〜図22に拡大して示すように、2本の斜材8の近づき側の端部を、横フレーム材4(5,6)に接合された取合プレート19に、前記横フレーム材4(5,6)から上下方向に離れた位置で、かつ互いの交点Cで接合している。具体的には、横フレーム材4(5,6)の前後厚さの中心位置で上下に貫通させた取合プレート19を溶接等で接合し、取合プレート19に設けた一つのボルト孔20の位置で、2本の斜材8の上端を取合プレート19の表裏両面にそれぞれ重ね、これら2本の斜材8に設けられたボルト孔22と取合プレート19のボルト孔20とに渡って挿通したボルトおよびナット(いずれも図示せず)により、2本の斜材8と取合プレート19とを接合している。   In the example of FIG. 9 (E), as shown in an enlarged view in FIGS. 20 to 22, the approaching end portions of the two diagonal members 8 are joined to the horizontal frame member 4 (5, 6). The joint plate 19 is joined to the horizontal frame member 4 (5, 6) at a position away from the horizontal frame member 4 (5, 6) in the vertical direction and at an intersection C with each other. Specifically, a connecting plate 19 that is vertically penetrated at the center position of the front and rear thickness of the horizontal frame member 4 (5, 6) is joined by welding or the like, and one bolt hole 20 provided in the connecting plate 19 is provided. At the position, the upper ends of the two diagonal members 8 are overlapped on both the front and back surfaces of the joining plate 19 and cross over the bolt holes 22 provided in the two oblique members 8 and the bolt holes 20 of the joining plate 19. The two diagonal members 8 and the coupling plate 19 are joined together by bolts and nuts (both not shown) that are inserted through.

各斜材8は、図22のように、2本のリップ溝形鋼等の細長鋼材8a,8bを背合わせに溶接した構成とし、互いに片方の線状鋼材8bを取合プレート19の近傍で切除して先端付近を相欠き形状としている。これにより、2本の斜材8の壁出入り方向の位置を互いに同じ位置としながら、中央の1枚の取合プレート19の表裏に接合可能としている。また、リップ溝形鋼からなる非切除側の線状鋼材8aの先端に、対向するリップ間に渡るボルト孔22付きの板23を接合し、前記ボルト・ナットのボルト頭およびナット裏面を当接させている。他方の長尺鋼材8bの端部には補強板24を接合している。また、斜材8の他端は、取合いプレート25を介して横フレーム材6(4,5)に接合している。   As shown in FIG. 22, each diagonal member 8 has a configuration in which two elongated steel members 8 a and 8 b such as lip groove steels are welded back to back, and one linear steel member 8 b is attached in the vicinity of the joining plate 19. It is excised and the vicinity of the tip is cut out. Thus, the two diagonal members 8 can be joined to the front and back of the single coupling plate 19 while the positions of the two diagonal members 8 in the wall entrance / exit direction are the same. Further, a plate 23 with a bolt hole 22 across the opposite lips is joined to the tip of the non-cut-out linear steel material 8a made of lip channel steel, and the bolt head and the nut back surface of the bolt and nut are brought into contact with each other. I am letting. A reinforcing plate 24 is joined to the end of the other long steel material 8b. Further, the other end of the diagonal member 8 is joined to the horizontal frame member 6 (4, 5) via the coupling plate 25.

この構成の場合、図18、図19の例と同様に、水平力に対し、斜材8の軸力(圧縮力、引張り力)による横フレーム材4(5,6)の全体の偏心曲げ変形によりエネルギー吸収を行う。剛性調整は、取合プレート19のプレート幅、この取合プレート19と斜材8とのボルト取り合い位置、および/または横フレーム材4(5,6)の断面の変更で行う。   In the case of this configuration, as in the examples of FIGS. 18 and 19, the entire eccentric bending deformation of the horizontal frame member 4 (5, 6) due to the axial force (compression force, tensile force) of the diagonal member 8 with respect to the horizontal force. To absorb energy. Rigidity adjustment is performed by changing the plate width of the coupling plate 19, the bolt coupling position between the coupling plate 19 and the diagonal member 8, and / or the cross section of the lateral frame member 4 (5, 6).

これら図9(D),(E)の偏心により変形吸収手段9を構成した場合も、次の各利点が得られる。
・耐力壁1の区画層aごとの剛性調製を容易に行うことができる。
・水平力エネルギーの吸収を行うことができる。
・耐力壁1内の波形鋼板等からなる面材7による区画層aと斜材8の区画層bの剛性を同じにすることにより、部分的な剛性低下を防ぐことができる。
・耐力壁1の両端部の縦フレーム材3が腰折れの性状とならず、耐力壁1の両端の縦フレーム材3に曲げモーメントが伝達されることを防ぐことができる。
Even when the deformation absorbing means 9 is configured by the eccentricity shown in FIGS. 9D and 9E, the following advantages can be obtained.
-Stiffness adjustment for every division layer a of the bearing wall 1 can be performed easily.
-Absorbs horizontal force energy.
-By making the rigidity of the partition layer a by the face material 7 made of corrugated steel plate or the like in the bearing wall 1 and the partition layer b of the diagonal member 8 the same, a partial decrease in rigidity can be prevented.
The vertical frame member 3 at both ends of the load bearing wall 1 does not have a folding property, and it is possible to prevent a bending moment from being transmitted to the vertical frame member 3 at both ends of the load bearing wall 1.

図9(F)の例は、図23、図24に拡大して示すように、変形吸収手段9となるデバイス9Dが、2本の斜材8,8の互いに近づき側の端部を接合した接合部材27を前記横フレーム材4(5,6)と接合する束材26により構成される。具体的には、このデバイス9Dは、束材26とこの束材26の下面に溶接した接合部材27とでなり、前記束材26は角パイプを縦に配置した構成とされている。接合部材27は、束材26と同様な角パイプを横に配置して構成される。2本の斜材8,8は、その上端面を前記接合部材27の下面に突き合わせて溶接により前記接合部材27に接合されている。   In the example of FIG. 9 (F), as shown in an enlarged view in FIGS. 23 and 24, the device 9D serving as the deformation absorbing means 9 joins the end portions of the two diagonal members 8 and 8 close to each other. The joining member 27 is constituted by a bundle member 26 that joins the lateral frame member 4 (5, 6). Specifically, the device 9D includes a bundle member 26 and a joining member 27 welded to the lower surface of the bundle member 26, and the bundle member 26 has a configuration in which square pipes are arranged vertically. The joining member 27 is configured by horizontally arranging square pipes similar to the bundle material 26. The two diagonal members 8, 8 are joined to the joining member 27 by welding with their upper end faces butted against the lower surface of the joining member 27.

この構成の場合、水平力に対し、エネルギー吸収はデバイス9Dの束材26の曲げモーメントM1による曲げ変形により主に行われ、また横フレーム材4(5,6)の曲げモーメントM2による曲げ変形によっても行われる。斜材8を設けた区画層bの全体の曲げ剛性は、デバイス9Dの束材26の長さ、断面、の変更、および/または横フレーム材4(5,6)の断面の変更により行う。   In the case of this configuration, energy absorption is mainly performed by bending deformation due to the bending moment M1 of the bundle member 26 of the device 9D with respect to the horizontal force, and by bending deformation due to the bending moment M2 of the lateral frame member 4 (5, 6). Is also done. The total bending rigidity of the partition layer b provided with the diagonal member 8 is performed by changing the length and cross section of the bundle member 26 of the device 9D and / or changing the cross section of the lateral frame member 4 (5, 6).

このように、前記図9(F)、図23,図24の例のようなエネルギー吸収を行うデバイス9Dを設けた場合も、次の各利点が得られる。
・耐力壁1の区画層bごとの剛性調製を容易に行うことができる。
・水平力エネルギーの吸収を行うことができる。
・耐力壁1内の波形鋼板等からなる面材7による区画層aと斜材8の区画層bの剛性を同じにすることにより、部分的な剛性低下を防ぐことができる。
・耐力壁1の両端部の縦フレーム材3が腰折れの性状とならず、耐力壁1の両端の縦フレーム材3に曲げモーメントが伝達されることを防ぐことができる。
As described above, the following advantages can be obtained even when the device 9D for absorbing energy as in the examples of FIGS. 9F, 23, and 24 is provided.
-Stiffness adjustment for every division layer b of the bearing wall 1 can be performed easily.
-Absorbs horizontal force energy.
-By making the rigidity of the partition layer a by the face material 7 made of corrugated steel plate or the like in the bearing wall 1 and the partition layer b of the diagonal member 8 the same, a partial decrease in rigidity can be prevented.
The vertical frame member 3 at both ends of the load bearing wall 1 does not have a folding property, and it is possible to prevent a bending moment from being transmitted to the vertical frame member 3 at both ends of the load bearing wall 1.

この例の場合も、斜材8を設けた区画層bが耐力壁1の最上層または最下層に配置される場合は、デバイス9A〜9Cが接合された耐力壁1の上端または下端に位置する横フレーム材4,5と、この耐力壁1を設置する建物躯体の梁30(図23)との間に、前記横フレーム材4,5が変形する寸法以上の隙間dを設けることが必要である。
横フレーム材4,5が変形したときに建物躯体の梁30と干渉すると、前記横フレーム材4,5の変形が妨げられ、結果的に剛性が上がってしまうが、前記横フレーム材4,5が変形する寸法以上の隙間を設けることで、変形が妨げられることが防止され、区画層4bの適切な剛性が保持される。
Also in this example, when the partition layer b provided with the diagonal member 8 is arranged in the uppermost layer or the lowermost layer of the load bearing wall 1, it is located at the upper end or the lower end of the load bearing wall 1 to which the devices 9A to 9C are joined. It is necessary to provide a gap d between the horizontal frame members 4 and 5 and the beam 30 (FIG. 23) of the building frame on which the load-bearing wall 1 is installed. is there.
If the horizontal frame members 4 and 5 are deformed and interfere with the beams 30 of the building frame, the deformation of the horizontal frame members 4 and 5 is hindered, resulting in increased rigidity. By providing a gap larger than the dimension that deforms, deformation is prevented from being hindered, and appropriate rigidity of the partition layer 4b is maintained.

図9(G)は、2本の斜材8の互いの近づき側の端部を接合する横フレーム材4(5,6)に焼鈍材を用いることで、前記変形吸収手段9とした例を示す。具体的には、図25に示すように、前記横フレーム材4(5,6)に焼鈍した角パイプを用いている。また、図9(D)の例と同様に、2本の斜材8の互いの近づき側の端部を、横フレーム材4(5,6)に対してこの横フレーム材4(5,6)の長手方向に互いに離れた位置Eで接合している。2本の斜材8は、上端面を横フレーム材4(5,6)の下面に溶接により接合している。
なお、焼鈍とは、加熱した後に徐冷するという処理であり、成分の拡散促進、内部応力の除去等のために行う熱処理法の一つである。
FIG. 9G shows an example in which the deformation absorbing means 9 is formed by using an annealing material for the lateral frame material 4 (5, 6) that joins the end portions of the two diagonal members 8 that are close to each other. Show. Specifically, as shown in FIG. 25, a square pipe annealed to the horizontal frame member 4 (5, 6) is used. Similarly to the example of FIG. 9D, the end portions of the two diagonal members 8 that are close to each other are connected to the horizontal frame member 4 (5, 6). ) At positions E separated from each other in the longitudinal direction. The two diagonal members 8 have upper end surfaces joined to the lower surfaces of the horizontal frame members 4 (5, 6) by welding.
Note that annealing is a process of slow cooling after heating, and is one of heat treatment methods performed for promoting diffusion of components, removing internal stress, and the like.

この例では、横フレーム材4(5,6)に焼鈍材を用いることによりエネルギー吸収量を増大させている。斜材8の軸力による横フレーム材4(5,6)の全体の偏心曲げによりエネルギー吸収を行う。区画層bの剛性の調整は、剛性調整は、図9(D)の例と同様に、偏心距離B(ここで言う偏心距離Bは、2本の斜材8,8の横フレーム材4(5,6)に対する接合点のE,E間の距離)、および/または横フレーム材4(5,6)の断面の変更で行う。   In this example, the amount of energy absorption is increased by using an annealing material for the horizontal frame material 4 (5, 6). Energy is absorbed by the eccentric bending of the entire horizontal frame member 4 (5, 6) by the axial force of the diagonal member 8. As for the rigidity adjustment of the partition layer b, the rigidity adjustment is the eccentric distance B (the eccentric distance B here is the horizontal frame material 4 of the two diagonal members 8 and 8 ( 5) and 6) by changing the cross-section of the lateral frame member 4 (5, 6).

図26は一般的な鋼材の焼鈍前(市中品)と焼鈍後の荷重/変形履歴を模型化し、焼鈍による効果を記載した図である。焼鈍で同図に示すように一次設計用の耐力を下げ、かつ鋼材の靱性を向上させることより、エネルギー吸収量を増大させつつ、周辺部材の断面増大を抑えることができる。同図のように降伏点は下がるが、靱性は向上するので、エネルギー吸収量(グラフの曲線で囲まれた面積)は増加する。   FIG. 26 is a diagram illustrating the effects of annealing by modeling the load / deformation history of a general steel material before annealing (commercial product) and after annealing. By reducing the yield strength for primary design and improving the toughness of the steel as shown in the figure by annealing, it is possible to suppress an increase in the cross-section of the peripheral member while increasing the amount of energy absorption. As shown in the figure, the yield point decreases, but the toughness improves, so the amount of energy absorption (area surrounded by the curve in the graph) increases.

焼鈍は、焼入れと焼きなましを行う処理であり、次の特徴がある。
・比較的板厚が薄い軽量形鋼は、鉄鋼製品として圧延加工されたままの一次製品ではなく、冷間圧延することで製品化している。
・これは、冷間成形により加工された軽量形鋼はその寸法精度に高い要求があるためである。
・この冷間圧延の過程では内部応力等によりひずみ硬化が起こった為、硬く(強度が強く)ねばり強さが劣る状態となっている。一般的に規格値(JIS規格等)では、降伏点等の下限値のみで定めているため、市中材の冷間鋼材は降伏点等の強度が規格値よりも上回っているものが多い。
・焼鈍は、鋼に所定の熱を加えて鋼を硬くした上で徐々に冷し、鋼を構成する結晶を調質することで内部応力除去や、そのねばり強さを向上させる効果が得られる熱処理加工である。
・焼鈍前の機械的性質は、規格値(降伏点、破断強度)を大きく上回っている。
・一方、所定の温度による焼鈍加工を行うことで、降伏点が規格値に近づき、ねばり強さが向上する。
Annealing is a process of quenching and annealing and has the following characteristics.
・ Lightweight steel with a relatively thin plate thickness is not a primary product that has been rolled as a steel product, but is produced by cold rolling.
・ This is because lightweight sections processed by cold forming have high demands on dimensional accuracy.
-In this cold rolling process, strain hardening has occurred due to internal stress, etc., so that it is hard (strong in strength) and inferior in stickiness. In general, standard values (JIS standards, etc.) are determined only by lower limit values such as the yield point. Therefore, many cold steel materials in the market have strengths such as the yield point exceeding the standard value.
・ Annealing is a heat treatment that hardens the steel by applying a certain amount of heat to the steel, then gradually cools it, and refining the crystals that make up the steel to relieve internal stress and improve its stickiness. It is processing.
・ The mechanical properties before annealing are significantly higher than the standard values (yield point, breaking strength).
・ On the other hand, by performing annealing at a predetermined temperature, the yield point approaches the standard value and the stickiness is improved.

この実施形態の場合、次の各利点が得られる。
・耐力壁1の区画層bごとの剛性調製を容易に行うことができる。
・水平力エネルギーの吸収を行うことができる。
・耐力壁1内の波形鋼板等からなる面材7による区画層aと斜材8の区画層bの剛性を同じにすることにより、部分的な剛性低下を防ぐことができる。
・耐力壁1の両端部の縦フレーム材3が腰折れの性状とならず、耐力壁1の両端の縦フレーム材3に曲げモーメントが伝達されることを防ぐことができる。
・焼鈍材を用いることにより、更なるエネルギー吸収が見込める。
In the case of this embodiment, the following advantages are obtained.
-Stiffness adjustment for every division layer b of the bearing wall 1 can be performed easily.
-Absorbs horizontal force energy.
-By making the rigidity of the partition layer a by the face material 7 made of corrugated steel plate or the like in the bearing wall 1 and the partition layer b of the diagonal member 8 the same, a partial decrease in rigidity can be prevented.
The vertical frame member 3 at both ends of the load bearing wall 1 does not have a folding property, and it is possible to prevent a bending moment from being transmitted to the vertical frame member 3 at both ends of the load bearing wall 1.
-Further energy absorption can be expected by using annealed materials.

なお、前記各デバイス9A〜9Dを設ける場合に、これらデバイス9A〜9Dを焼鈍しても良く、また横フレーム材4(5,6)の焼鈍と前記デバイス9A〜9Dの設置等の、焼鈍以外の変形吸収手段9とを併用しても良い。   In addition, when providing each said device 9A-9D, you may anneal these devices 9A-9D, and annealing other than annealing, such as annealing of the horizontal frame material 4 (5, 6) and installation of the said devices 9A-9D The deformation absorbing means 9 may be used in combination.

1…面材・ブレース併用耐力壁
2…枠体
3…縦フレーム材
4,5…横フレーム材
6…横フレーム材(中桟)
7…面材(耐力要素)
7a…山部
7b…谷部
8…斜材(耐力要素)
9…変形吸収手段
9A〜9D…デバイス
9Ba,9Ca…デバイス本体
10…接合部材
12…縦板
13,14…水平鋼板
16…接合用板
17…接合用板
19…取合いプレート
20,22…ボルト孔
30…梁
a,b…区画層
d…隙間
C…交点
DESCRIPTION OF SYMBOLS 1 ... Face-bearing and brace combined bearing wall 2 ... Frame 3 ... Vertical frame material 4, 5 ... Horizontal frame material 6 ... Horizontal frame material (middle rail)
7 ... Face material (proof element)
7a ... Mountain 7b ... Valley 8 ... Diagonal (strength element)
DESCRIPTION OF SYMBOLS 9 ... Deformation absorption means 9A-9D ... Device 9Ba, 9Ca ... Device main body 10 ... Joining member 12 ... Vertical plate 13, 14 ... Horizontal steel plate 16 ... Joining plate 17 ... Joining plate 19 ... Joint plate 20, 22 ... Bolt hole 30 ... Beams a, b ... Partition layer d ... Clearance C ... Intersection

Claims (8)

左右の縦フレーム材と、これら左右の縦フレーム材の上端間および下端間にそれぞれ接合された上下端の横フレーム材と、前記左右の縦フレーム材間に接合された中桟となる横フレーム材とを備え、前記中桟となる横フレーム材を境界として上下に並ぶ複数の区画層に区画され、各区画層に耐力要素が設けられた耐力壁であって、
一部の区画層に設けられた前記耐力要素がこの区画層を覆う面材であり、他の一部の区画層に設けられた前記耐力要素が斜材であり、前記斜材を設けた区画層に、この区画層の変形を吸収する変形吸収手段を設けたことを特徴とする面材・ブレース併用耐力壁。
Left and right vertical frame materials, upper and lower horizontal frame materials joined between the upper and lower ends of the left and right vertical frame materials, and a horizontal frame material serving as a middle rail joined between the left and right vertical frame materials Comprising a plurality of partition layers arranged vertically with the horizontal frame material serving as the middle rail as a boundary, and a load bearing wall provided with a load bearing element in each partition layer,
The strength element provided in a part of the partition layer is a surface material covering the partition layer, the strength element provided in the other part of the partition layer is a diagonal material, and the partition provided with the diagonal material A bearing material / brace combined bearing wall characterized in that the layer is provided with a deformation absorbing means for absorbing deformation of the partition layer.
請求項1に記載の面材・ブレース併用耐力壁において、前記変形吸収手段は、この変形吸収手段を有する区画層に2本設けられた互いに傾斜方向が逆の前記斜材の交点、または前記区画層に設けられた前記斜材の中間に位置する面材・ブレース併用耐力壁。   2. The bearing material / brace combined use bearing wall according to claim 1, wherein the deformation absorbing means is an intersection of the diagonal members provided in two partition layers having the deformation absorbing means and having mutually opposite inclination directions, or the partition. A bearing wall with braces and braces located in the middle of the diagonal material provided in the layer. 請求項1または請求項2に記載の面材・ブレース併用耐力壁において、前記面材が波形鋼板である面材・ブレース併用耐力壁。   The face material / brace combined use bearing wall according to claim 1 or 2, wherein the face material is a corrugated steel plate. 請求項1ないし請求項3のいずれか1項に記載の面材・ブレース併用耐力壁において、前記区画層は4つであり、前記面材を用いた区画層、および前記斜材を用いた区画層を、それぞれ最低1箇所以上有する面材・ブレース併用耐力壁。   The face material / brace combined use bearing wall according to any one of claims 1 to 3, wherein there are four partition layers, a partition layer using the face material, and a partition using the diagonal material. Bearing wall with brace and brace with at least one layer each. 請求項1ないし請求項4のいずれか1項に記載の面材・ブレース併用耐力壁において、前記斜材を用いた少なくとも一つの区画層における前記斜材は、互いに逆方向に傾斜しかつ一端が互いに近づく2本であり、前記変形吸収手段は、前記2本の斜材の軸心の交点を、これら斜材の近づき側の端部を接合する前記横フレーム材に対して上下に偏心させた構成である面材・ブレース併用耐力壁。   The face material / brace combined bearing wall according to any one of claims 1 to 4, wherein the diagonal material in at least one partition layer using the diagonal material is inclined in opposite directions and has one end thereof. The deformation absorbing means offsets the intersection of the axis of the two diagonal members up and down with respect to the horizontal frame member joining the end portions on the approaching side of the diagonal members. Bearing wall with brace and brace, which is the structure. 請求項5に記載の面材・ブレース併用耐力壁において、前記2本の斜材の近づき側の端部を、前記横フレーム材に対してこの横フレーム材の長手方向に互いに離れた位置で接合し、この2本の斜材の近づき側の端部を接合した前記横フレーム材自体が前記変形吸収手段となる面材・ブレース併用耐力壁。   6. The bearing material / brace combined use bearing wall according to claim 5, wherein the approaching end portions of the two diagonal members are joined to the horizontal frame material at positions separated from each other in the longitudinal direction of the horizontal frame material. Then, the bearing material wall combined with the face material and the brace, in which the horizontal frame material itself, which joins the end portions on the approaching side of the two diagonal materials, serves as the deformation absorbing means. 請求項5に記載の面材・ブレース併用耐力壁において、前記2本の斜材の近づき側の端部を、前記横フレーム材に接合された取合プレートに、前記横フレーム材から上下方向に離れた位置で、かつ互いの交点で接合した面材・ブレース併用耐力壁。   The face material / brace combined bearing wall according to claim 5, wherein the approaching end portions of the two diagonal members are connected to the coupling plate joined to the horizontal frame material in the vertical direction from the horizontal frame material. Bearing walls with braces and braces joined at separate points and at the intersections of each other. 請求項1ないし請求項3のいずれか1項に記載の面材・ブレース併用耐力壁において、前記変形吸収手段が、変形吸収専用に設けられて自身が変形するデバイスである面材・ブレース併用耐力壁。   The face material / brace combined use bearing wall according to any one of claims 1 to 3, wherein the deformation absorbing means is a device that is provided exclusively for deformation absorption and deforms itself. wall.
JP2013262391A 2013-12-19 2013-12-19 Bearing wall with brace and brace Expired - Fee Related JP6022435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262391A JP6022435B2 (en) 2013-12-19 2013-12-19 Bearing wall with brace and brace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262391A JP6022435B2 (en) 2013-12-19 2013-12-19 Bearing wall with brace and brace

Publications (2)

Publication Number Publication Date
JP2015117533A true JP2015117533A (en) 2015-06-25
JP6022435B2 JP6022435B2 (en) 2016-11-09

Family

ID=53530521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262391A Expired - Fee Related JP6022435B2 (en) 2013-12-19 2013-12-19 Bearing wall with brace and brace

Country Status (1)

Country Link
JP (1) JP6022435B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108776A (en) * 2017-12-20 2019-07-04 住友理工株式会社 Reinforcement structure and reinforcement method of wooden building
CN110067322A (en) * 2018-08-02 2019-07-30 内蒙古工业大学 A kind of energy consumption wall and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220709U (en) * 1975-07-31 1977-02-14
JPH01260142A (en) * 1988-04-11 1989-10-17 Sekisui House Ltd Bearing wall frame
JP2001090376A (en) * 1999-09-20 2001-04-03 Sekisui House Ltd Bearing wall
JP2001271510A (en) * 2000-03-23 2001-10-05 Building Research Inst Ministry Of Construction Vibration control unit, damper for residence and device for detached steel-construction residence
JP2009209582A (en) * 2008-03-04 2009-09-17 Nippon Steel Corp Panel, building, and building constructed of thin and lightweight shape steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220709U (en) * 1975-07-31 1977-02-14
JPH01260142A (en) * 1988-04-11 1989-10-17 Sekisui House Ltd Bearing wall frame
JP2001090376A (en) * 1999-09-20 2001-04-03 Sekisui House Ltd Bearing wall
JP2001271510A (en) * 2000-03-23 2001-10-05 Building Research Inst Ministry Of Construction Vibration control unit, damper for residence and device for detached steel-construction residence
JP2009209582A (en) * 2008-03-04 2009-09-17 Nippon Steel Corp Panel, building, and building constructed of thin and lightweight shape steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108776A (en) * 2017-12-20 2019-07-04 住友理工株式会社 Reinforcement structure and reinforcement method of wooden building
JP6998756B2 (en) 2017-12-20 2022-01-18 住友理工株式会社 Reinforcement structure and reinforcement method for wooden buildings
CN110067322A (en) * 2018-08-02 2019-07-30 内蒙古工业大学 A kind of energy consumption wall and preparation method thereof

Also Published As

Publication number Publication date
JP6022435B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
US20120017523A1 (en) Metal joint, damping structure, and architectural construction
JP4842755B2 (en) Seismic walls using corrugated steel plates made of ultra high strength steel
JP6230902B2 (en) Bearing wall
JP6163731B2 (en) Seismic walls and structures
JP6681277B2 (en) Joint strength evaluation method of beam-column joint structure, method of designing beam-column joint structure, and beam-column joint structure
JP6022435B2 (en) Bearing wall with brace and brace
JP4691210B2 (en) Seismic steel structure and its design method
JP4563872B2 (en) Seismic wall
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP6009432B2 (en) Bearing wall with brace and brace
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP4618805B2 (en) Reinforcement structure of multi-layer metal flat plate
JP6022436B2 (en) Bearing wall with brace and brace
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP6505377B2 (en) Load bearing wall with diagonal member and deformation absorbing device
JP7098363B2 (en) Ladder type bearing wall frame
JP5292881B2 (en) Vibration control panel
JP2009257079A (en) Aseismatic structure
JP4881084B2 (en) Seismic structure
JP2020070585A (en) Bearing wall and building
JP4485876B2 (en) Seismic walls and structures
JP6505378B2 (en) Load bearing element laminated load bearing wall using building
JP7262518B2 (en) Stud type steel damper
JP2010112085A (en) Compound vibration-control frame
JP6823980B2 (en) Construction method of steel earthquake-resistant wall, building with earthquake-resistant wall and building with earthquake-resistant wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161005

R150 Certificate of patent or registration of utility model

Ref document number: 6022435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees