JP2015117300A - Preparation method for thermosetting resin composition varnish, and prepreg, laminate and circuit board using the same - Google Patents

Preparation method for thermosetting resin composition varnish, and prepreg, laminate and circuit board using the same Download PDF

Info

Publication number
JP2015117300A
JP2015117300A JP2013261144A JP2013261144A JP2015117300A JP 2015117300 A JP2015117300 A JP 2015117300A JP 2013261144 A JP2013261144 A JP 2013261144A JP 2013261144 A JP2013261144 A JP 2013261144A JP 2015117300 A JP2015117300 A JP 2015117300A
Authority
JP
Japan
Prior art keywords
compound
thermosetting resin
molecule
resin composition
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013261144A
Other languages
Japanese (ja)
Other versions
JP6233637B2 (en
Inventor
直己 高原
Naoki Takahara
直己 高原
森田 高示
Koji Morita
高示 森田
周司 野本
Shuji Nomoto
周司 野本
寛之 泉
Hiroyuki Izumi
寛之 泉
久美子 石倉
Kumiko Ishikura
久美子 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013261144A priority Critical patent/JP6233637B2/en
Publication of JP2015117300A publication Critical patent/JP2015117300A/en
Application granted granted Critical
Publication of JP6233637B2 publication Critical patent/JP6233637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a preparation method for thermosetting resin composition varnish that has a high tolerance against desmear treatment and that realizes a low thermal expansion, and to provide a prepreg using the same, and a laminate and circuit board using said prepreg.SOLUTION: The thermosetting resin composition varnish is prepared by: obtaining a thermosetting resin (b) by subjecting a compound (a) comprising at least 2 or more cyanate groups in one molecule to 40 to 70 mol% triazine cyclization reaction in organic solvent; and formulating a compound (c) comprising at least 2 or more epoxy groups in one molecule during the period while the ratio of the reaction conversion of the thermosetting resin is 20 to 80% of the final reaction conversion.

Description

本発明は、低熱膨張性でデスミア処理に対する耐性の高い熱硬化性樹脂組成物ワニスと、それを用いたプリプレグ、積層板、配線板に関する。   The present invention relates to a thermosetting resin composition varnish having low thermal expansion and high resistance to desmear treatment, and a prepreg, a laminate and a wiring board using the same.

熱硬化性樹脂組成物は、架橋構造を有し、高い耐熱性や寸法安定性を発現するため、電子機器等の分野において広く使われている。特に、配線や回路パターンがプリントされたプリント配線板、またプリント配線板を多層化した銅張積層板を構成するプリプレグや、層間絶縁材料として用いられている。   Thermosetting resin compositions have a cross-linked structure and exhibit high heat resistance and dimensional stability, and are therefore widely used in the fields of electronic devices and the like. In particular, it is used as a printed wiring board on which wirings and circuit patterns are printed, a prepreg constituting a copper-clad laminate in which printed wiring boards are multilayered, and an interlayer insulating material.

近年、電子機器の小型化、軽量化、動作周波数の高速化が一段と進み、プリント配線及び回路パターンの高集積化が進んでいる。高集積化の方法として、プリント配線板に形成されるプリント配線及び回路パターンの微細化、回路パターンが形成された回路基板の多層化、或いはこれらの併用が提案されている。   In recent years, electronic devices have become smaller and lighter, and the operating frequency has been increased, and printed wiring and circuit patterns have been highly integrated. As high integration methods, proposals have been made for miniaturization of printed wiring and circuit patterns formed on a printed wiring board, multilayering of circuit boards on which circuit patterns are formed, or a combination thereof.

また、プリント配線の高集積化に伴い、プリント配線板に低熱膨張性が特に要求されている。特許文献1、2および3には、シアネート化合物と無機充填剤からなり、低熱膨張性を発現させる樹脂組成物が開示されているが、これらは低熱膨張性を発現させるため無機充填剤の配合量が多く、銅張積層板や層間絶縁材料として使用した場合、ドリル加工性や成形性が不足するなどの問題があった。加えて、ドリル加工などのときに生じるスミアを除去するデスミア処理に対する耐性が不足するなどの問題があった。   In addition, with the high integration of printed wiring, low thermal expansion is particularly required for printed wiring boards. Patent Documents 1, 2 and 3 disclose resin compositions comprising a cyanate compound and an inorganic filler and exhibiting a low thermal expansion property. However, since these exhibit a low thermal expansion property, the blending amount of the inorganic filler is disclosed. However, when used as a copper clad laminate or an interlayer insulating material, there are problems such as insufficient drillability and formability. In addition, there is a problem that resistance to desmear treatment for removing smear generated during drilling is insufficient.

特開2003−268136号公報JP 2003-268136 A 特開2003−73543号公報JP 2003-73543 A 特開2002−285015号公報JP 2002-285015 A

本発明の目的は、デスミア処理に対する耐性が高く、低熱膨張性を発現する熱硬化性樹脂組成物ワニスの製造方法と、それを用いたプリプレグ、及び該プリプレグを使用した積層板、配線板を提供するものである。   An object of the present invention is to provide a method for producing a thermosetting resin composition varnish having high resistance to desmear treatment and exhibiting low thermal expansion, a prepreg using the same, and a laminate and a wiring board using the prepreg To do.

本発明者らは上記の課題を解決すべく検討を進めた結果、1分子中に少なくとも2個以上のシアネート基を有する化合物(a)をトリアジン環化反応させた熱硬化性樹脂(b)と、1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)を有する樹脂組成物で、該1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率が40〜70mol%である熱硬化性樹脂(b)であって、前記熱硬化性樹脂の反応率の比率が目標の最終反応率の20〜80%のときに、1分子中に少なくとも2個以上のエポキシ基を有する化合物を配合して作製されたワニスを用いることでデスミア処理に対する耐性が高くなることを見出した。
本発明は、かかる知見に基づいて完成したものである。
As a result of investigations to solve the above-mentioned problems, the present inventors have obtained a thermosetting resin (b) obtained by subjecting a compound (a) having at least two cyanate groups in one molecule to a triazine cyclization reaction, and In the resin composition having the compound (c) having at least two epoxy groups in one molecule, the reaction rate of the compound having at least two cyanate groups in one molecule is 40 to 70 mol%. Thermosetting resin (b), a compound having at least two epoxy groups in one molecule when the reaction rate ratio of the thermosetting resin is 20 to 80% of the target final reaction rate It discovered that the tolerance with respect to a desmear process became high by using the varnish produced by mix | blending.
The present invention has been completed based on such findings.

本発明は、以下の内容を含む。
(1)1分子中に少なくとも2個以上のシアネート基を有する化合物(a)を有機溶媒中で40〜70mol%トリアジン環化反応させた熱硬化性樹脂(b)であって、前記熱硬化性樹脂の反応率の比率が最終反応率の20〜80%のときに1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)を配合することを特徴とする熱硬化性樹脂組成物ワニスの製造方法。
(2)1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)が、芳香環を有することを特徴とする上記(1)に記載の熱硬化性樹脂組成物ワニスの製造方法。
(3)1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)が、多環式化合物を有することを特徴とする上記(1)に記載の熱硬化性樹脂組成物ワニスの製造方法。
(4)1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)が、ビフェニル構造を有することを特徴とする上記(1)に記載の熱硬化性樹脂組成物ワニスの製造方法。
(5)1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)が、ナフタレン構造を有することを特徴とする上記(1)に記載の熱硬化性樹脂組成物ワニスの製造方法。
(6)前記(1)〜(5)のいずれかに記載の熱硬化性樹脂組成物ワニスを基材に含浸し乾燥して、得られるプリプレグ。
(7)前記(6)に記載のプリプレグを成形して得られる積層板。
(8)前記(7)に記載の積層板に配線形成して得られる配線板。
The present invention includes the following contents.
(1) A thermosetting resin (b) obtained by subjecting a compound (a) having at least two cyanate groups in one molecule to a 40 to 70 mol% triazine cyclization reaction in an organic solvent, the thermosetting resin A thermosetting resin composition varnish characterized by blending a compound (c) having at least two epoxy groups in one molecule when the resin reaction rate ratio is 20 to 80% of the final reaction rate Manufacturing method.
(2) The method for producing a thermosetting resin composition varnish according to the above (1), wherein the compound (c) having at least two epoxy groups in one molecule has an aromatic ring.
(3) The method for producing a thermosetting resin composition varnish according to the above (1), wherein the compound (c) having at least two epoxy groups in one molecule has a polycyclic compound. .
(4) The method for producing a thermosetting resin composition varnish according to the above (1), wherein the compound (c) having at least two epoxy groups in one molecule has a biphenyl structure.
(5) The method for producing a thermosetting resin composition varnish as described in (1) above, wherein the compound (c) having at least two epoxy groups in one molecule has a naphthalene structure.
(6) A prepreg obtained by impregnating the substrate with the thermosetting resin composition varnish according to any one of (1) to (5) and drying it.
(7) A laminate obtained by molding the prepreg according to (6).
(8) A wiring board obtained by forming wiring on the laminated board according to (7).

本発明によれば、デスミア処理に対する耐性の高い低熱膨張率のプリプレグ、積層板及び配線板を提供することができる。   According to the present invention, it is possible to provide a prepreg, a laminated board, and a wiring board having a low thermal expansion coefficient and high resistance to desmear treatment.

以下、本発明の実施形態について詳細に説明する。
[熱硬化性樹脂組成物]
((a)と(c)の配合)
本発明の熱硬化性樹脂組成物ワニスは、1分子中に少なくとも2個以上のシアネート基を有する化合物が有機溶媒中でトリアジン環化反応して得られた熱硬化性樹脂(b)と、1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)を配合したものである。該1分子中に少なくとも2個以上のシアネート基を有する化合物の最終反応率は40〜70mol%が必要であり、その中でも反応率45〜65mol%で終了することが好ましい。前記反応率が40mol%未満であると得られるプリプレグの流動性が大きくなりすぎ、70mol%を超えると得られるプリプレグの流動性が低下する。前記反応率の比率が最終反応率の20〜80%の時、好ましくは最終反応率の30〜70%の時に、1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)を配合する。たとえば、最終反応率50mol%の場合、反応率が10〜40mol%(50×20/100〜50×80/100)の間に1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)を配合する。反応率の比率が最終反応率の20%未満の反応率のときに1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)を加えた場合、デスミア処理に対する耐性が改善されず、反応率の比率が最終反応率の80%を超える場合、1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)と1分子中に少なくとも2個以上のシアネート基を有する化合物の反応物との相溶性が低下するので好ましくない。
Hereinafter, embodiments of the present invention will be described in detail.
[Thermosetting resin composition]
(Composition of (a) and (c))
The thermosetting resin composition varnish of the present invention comprises a thermosetting resin (b) obtained by subjecting a compound having at least two cyanate groups in one molecule to a triazine cyclization reaction in an organic solvent, and 1 A compound (c) having at least two epoxy groups in the molecule is blended. The final reaction rate of the compound having at least two cyanate groups in one molecule needs to be 40 to 70 mol%, and among them, the reaction rate is preferably terminated at 45 to 65 mol%. When the reaction rate is less than 40 mol%, the fluidity of the obtained prepreg becomes too large, and when it exceeds 70 mol%, the fluidity of the obtained prepreg is lowered. When the reaction rate ratio is 20 to 80% of the final reaction rate, preferably 30 to 70% of the final reaction rate, the compound (c) having at least two epoxy groups in one molecule is blended. . For example, when the final reaction rate is 50 mol%, the compound (c) having at least two epoxy groups in one molecule when the reaction rate is 10 to 40 mol% (50 × 20/100 to 50 × 80/100) Is blended. When the compound (c) having at least two epoxy groups in one molecule is added when the reaction rate ratio is less than 20% of the final reaction rate, the resistance to desmear treatment is not improved, and the reaction When the rate ratio exceeds 80% of the final reaction rate, a compound (c) having at least two epoxy groups in one molecule and a reactant of a compound having at least two cyanate groups in one molecule; This is not preferable because the compatibility is reduced.

(有機溶媒)
前記1分子中に少なくとも2個以上のシアネート基を有する化合物のトリアジン環化反応に用いる有機溶媒は、特に限定しないが、トルエン、メシチレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどが挙げられ、特にトルエン、メシチレンが1分子中に少なくとも2個以上のシアネート基を有する化合物(a)の溶解性が高く好ましい。
(Organic solvent)
The organic solvent used for the triazine cyclization reaction of the compound having at least two cyanate groups in one molecule is not particularly limited, and examples thereof include toluene, mesitylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like. Mesitylene is preferable because of high solubility of the compound (a) having at least two cyanate groups in one molecule.

(触媒)
1分子中に少なくとも2個以上のシアネート基を有する化合物(a)を有機溶媒中で40〜70mol%トリアジン環化反応させてシアネート樹脂(熱硬化性樹脂(b))を得るには、触媒を用いることが好ましい。触媒としては、金属系触媒を配合することが好ましい。金属系触媒は、(a)成分の自己重合反応を促進する機能を有するものであり、例えば、遷移金属若しくは12属金属の金属塩及びキレート錯体が挙げられる。金属としては、例えば銅、コバルト、マンガン、鉄、ニッケル、亜鉛等が挙げられ、これらの塩としては、例えばカルボン酸塩(好ましくは2−エチルヘキサン酸塩、ナフテン酸塩)等の金属塩が挙げられ、キレート錯体としては、例えばアセチルアセトン錯体が挙げられる。これらの金属系触媒は、単独でも、2種以上を組み合わせて用いてもよい。
金属系触媒の量は、(a)成分に対して、重量で、1〜300ppmとすることが好ましく、より好ましくは1〜200ppmであり、特に好ましくは2〜150ppmである。この範囲で、金属系触媒を配合すると、反応性が十分であり、金属系触媒の添加は、一度にまとめてでも、複数回にわけて行ってもよい。
(catalyst)
In order to obtain a cyanate resin (thermosetting resin (b)) by subjecting compound (a) having at least two cyanate groups in one molecule to a 40 to 70 mol% triazine cyclization reaction in an organic solvent, a catalyst is used. It is preferable to use it. As a catalyst, it is preferable to mix a metal catalyst. The metal-based catalyst has a function of accelerating the self-polymerization reaction of the component (a), and examples thereof include metal salts of transition metals or group 12 metals and chelate complexes. Examples of the metal include copper, cobalt, manganese, iron, nickel, and zinc. Examples of these salts include metal salts such as carboxylates (preferably 2-ethylhexanoate and naphthenate). Examples of the chelate complex include an acetylacetone complex. These metal catalysts may be used alone or in combination of two or more.
The amount of the metal-based catalyst is preferably 1 to 300 ppm, more preferably 1 to 200 ppm, and particularly preferably 2 to 150 ppm by weight with respect to the component (a). In this range, when a metal catalyst is blended, the reactivity is sufficient, and the addition of the metal catalyst may be performed all at once or in a plurality of times.

(1分子中に少なくとも2個以上のシアネート基を有する化合物(a))
1分子中に少なくとも2個以上のシアネート基を有する化合物(a)としては、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、ビスフェノールF型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等が挙げられ、これらのうち1種又は2種以上を混合して使用することができる。これらの中で、誘電特性、耐熱性、難燃性、低熱膨張性、及び安価である点から、ビスフェノールA型シアネート樹脂、又はノボラック型シアネート樹脂が好ましい。ノボラック型シアネート樹脂の平均繰り返し数は、特に限定されないが、1〜30が好ましく、1〜25がより好ましい。1未満では結晶化しやすくなり取り扱いが困難となる場合がある。また、30を超えて多いと硬化物が脆くなる場合がある。
1分子中に少なくとも2個以上のシアネート基を有する化合物(a)として使用可能なビスフェノールA型シアネート樹脂の市販品としては、ロンザジャパン株式会社製、商品名Arocy B−10が挙げられる。また、ノボラック型シアネート樹脂の市販品としては、ロンザジャパン株式会社製、商品名プリマセットPT−30(重量平均分子量500〜1,000)、商品名プリマセットPT−60(重量平均分子量2,000〜3,000)等が挙げられる。
(Compound (a) having at least two cyanate groups in one molecule)
Examples of the compound (a) having at least two cyanate groups in one molecule include novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, bisphenol F type cyanate resin, and tetramethylbisphenol F type. Cyanate resin etc. are mentioned, Among these, 1 type or 2 or more types can be mixed and used. Among these, bisphenol A type cyanate resin or novolac type cyanate resin is preferable from the viewpoints of dielectric properties, heat resistance, flame retardancy, low thermal expansion, and low cost. Although the average repeating number of novolak-type cyanate resin is not specifically limited, 1-30 are preferable and 1-25 are more preferable. If it is less than 1, it may be easily crystallized and may be difficult to handle. On the other hand, if it exceeds 30, the cured product may become brittle.
As a commercial product of the bisphenol A type cyanate resin that can be used as the compound (a) having at least two cyanate groups in one molecule, Lonza Japan Co., Ltd., trade name Arocy B-10 can be mentioned. Moreover, as a commercial item of a novolak-type cyanate resin, Lonza Japan Co., Ltd. make, brand name Primaset PT-30 (weight average molecular weight 500-1,000), brand name Primaset PT-60 (weight average molecular weight 2,000) ~ 3,000).

1分子中に少なくとも2個以上のシアネート基を有する化合物(a)の反応率が40mol%未満であると、塗工して得られるプリプレグの流動性が大きくなりすぎる場合がある。また、1分子中に少なくとも2個以上のシアネート基を有する化合物(a)の反応率が、70mol%を超えると、塗工して得られるプリプレグの流動性が低下する場合がある。
なお、1分子中に少なくとも2個以上のシアネート基を有する化合物(a)の反応率は、GPC測定の測定結果から求められる。具体的に、1分子中に少なくとも2個以上のシアネート基を有する化合物(a)が配合された反応前の溶液と、この溶液を反応させた後の溶液とで、所定の保持時間付近に出現するシアネート樹脂のピークの面積を比較する。反応前の溶液のピーク面積に対する反応後の溶液のピーク面積の消失率が反応率(mol%)に相当する。
If the reaction rate of the compound (a) having at least two cyanate groups in one molecule is less than 40 mol%, the fluidity of the prepreg obtained by coating may become too high. Moreover, when the reaction rate of the compound (a) which has at least 2 or more cyanate group in 1 molecule exceeds 70 mol%, the fluidity | liquidity of the prepreg obtained by coating may fall.
In addition, the reaction rate of the compound (a) which has at least 2 or more cyanate groups in 1 molecule is calculated | required from the measurement result of GPC measurement. Specifically, a pre-reaction solution in which a compound (a) having at least two cyanate groups in one molecule is blended and a solution after reacting this solution appear near a predetermined retention time. Compare the peak areas of the cyanate resin. The disappearance rate of the peak area of the solution after the reaction relative to the peak area of the solution before the reaction corresponds to the reaction rate (mol%).

(1分子中に少なくとも2個以上のエポキシ基を有する化合物(c))
本発明で用いる1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)は、1分子内に2個以上のエポキシ基をもつ化合物であればどのようなものでもよく、例えば、芳香環を有する化合物(c)として、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などが挙げられる。
また、多環式化合物として、ナフタレン型エポキシ樹脂、ナフタレンノボラック型エポキシ樹脂、アントラセン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂などが挙げられる。
特にナフタレンノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などナフタレン構造、ビフェニル構造を有することが好ましい。これらの化合物の分子量はどのようなものでもよく、何種類かを併用することもできる。1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)の配合量は、1分子中に少なくとも2個以上のシアネート基を有する化合物(a)100質量部に対し、10〜100質量部、好ましくは10〜80質量部、特に好ましくは15〜50質量部である。10質量部未満では銅箔との接着強度に乏しく、100質量部を超えると低熱膨張性が発現しなくなる。
(Compound (c) having at least two epoxy groups in one molecule)
The compound (c) having at least two epoxy groups in one molecule used in the present invention may be any compound as long as it has two or more epoxy groups in one molecule. Examples of the compound (c) having biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl aralkyl type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, etc. Can be mentioned.
Examples of the polycyclic compound include naphthalene type epoxy resins, naphthalene novolac type epoxy resins, anthracene type epoxy resins, dihydroanthracene type epoxy resins, and the like.
In particular, it is preferable to have a naphthalene structure or a biphenyl structure such as a naphthalene novolac type epoxy resin or a biphenyl aralkyl type epoxy resin. These compounds may have any molecular weight, and several types may be used in combination. The compounding amount of the compound (c) having at least two or more epoxy groups in one molecule is 10 to 100 parts by mass with respect to 100 parts by mass of the compound (a) having at least two or more cyanate groups in one molecule. The amount is preferably 10 to 80 parts by mass, particularly preferably 15 to 50 parts by mass. If it is less than 10 parts by mass, the adhesive strength with the copper foil is poor, and if it exceeds 100 parts by mass, the low thermal expansibility does not appear.

(無機充填剤)
本発明の熱硬化性樹脂組成物においては、無機充填剤を配合してもよく、例えば、破砕シリカ、溶融シリカ、マイカ、タルク、ガラス短繊維又は微粉末及び中空ガラス、炭酸カルシウム、石英粉末、金属水和物等が挙げられる。配合量は固形分換算で、熱硬化性樹脂組成物100質量部に対し、10〜300質量部とすることが好ましく、100〜250質量部とすることがより好ましく、150〜250質量部とすることが特に好ましい。10〜300質量部であれば、十分な、基材の剛性、耐湿耐熱性、難燃性、めっき溶液による浸食に対する耐性などが得られる。充填剤は、カップリング剤など市販の表面処理剤、三本ロール、ビーズミル、ナノマイザー等の分散機での処理を行って無機充填剤の分散性を改善してよい。
(Inorganic filler)
In the thermosetting resin composition of the present invention, an inorganic filler may be blended, for example, crushed silica, fused silica, mica, talc, short glass fiber or fine powder and hollow glass, calcium carbonate, quartz powder, Examples thereof include metal hydrates. The blending amount is preferably 10 to 300 parts by mass, more preferably 100 to 250 parts by mass, and 150 to 250 parts by mass in terms of solid content with respect to 100 parts by mass of the thermosetting resin composition. It is particularly preferred. If it is 10-300 mass parts, sufficient rigidity of a base material, moisture heat resistance, a flame retardance, the tolerance with respect to the erosion by a plating solution, etc. will be obtained. The filler may be treated with a commercially available surface treatment agent such as a coupling agent, a three-roller, a bead mill, a nanomizer, or the like to improve the dispersibility of the inorganic filler.

(その他の成分)
本発明の熱硬化性樹脂組成物には、耐熱性や難燃性、銅箔接着性等の向上化のため、硬化促進剤を用いることが望ましい。硬化促進剤の例としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸錫、オクチル酸コバルト等の有機金属塩、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩等が挙げられる。
また、任意に公知の熱可塑性樹脂、エラストマー、難燃剤、有機充填剤等の併用ができる。
本発明の熱硬化性樹脂組成物に配合可能な熱可塑性樹脂の例としては、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、石油樹脂及びシリコーン樹脂等が挙げられる。
本発明の熱硬化性樹脂組成物に配合可能なエラストマーの例としては、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリル等が挙げられる。
本発明の熱硬化性樹脂組成物に配合可能な有機充填剤の例としては、シリコーンパウダー、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、並びにポリフェニレンエーテル等の有機物粉末等が挙げられる。
本発明の熱硬化性樹脂組成物に配合可能な難燃剤の例としては、トリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、リン酸エステル系化合物、ホスファゼン、赤リン等のリン系難燃剤、三酸化アンチモン、モリブデン酸亜鉛等の無機難燃助剤等が挙げられる。
また、本発明の熱硬化性樹脂組成物は、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び密着性向上剤等の配合剤が適宜配合されていてもよい。
本発明の熱硬化性樹脂組成物に配合可能な配合剤の例としては、ベンゾトリアゾール系等の紫外線吸収剤、ヒンダードフェノール系やスチレン化フェノール等の酸化防止剤、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤、スチルベン誘導体等の蛍光増白剤、尿素シラン等の尿素化合物やシランカップリング剤等の密着性向上剤等が挙げられる。
(Other ingredients)
In the thermosetting resin composition of the present invention, it is desirable to use a curing accelerator in order to improve heat resistance, flame retardancy, copper foil adhesion, and the like. Examples of curing accelerators include organometallic salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, imidazoles and their derivatives, tertiary amines and quaternary ammonium salts. .
In addition, known thermoplastic resins, elastomers, flame retardants, organic fillers and the like can be used in combination.
Examples of the thermoplastic resin that can be blended in the thermosetting resin composition of the present invention include polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, and polyimide resin. , Xylene resin, petroleum resin and silicone resin.
Examples of elastomers that can be blended in the thermosetting resin composition of the present invention include polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified acrylonitrile.
Examples of organic fillers that can be blended in the thermosetting resin composition of the present invention include organic powders such as silicone powder, polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, and polyphenylene ether.
Examples of flame retardants that can be blended in the thermosetting resin composition of the present invention include triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphate ester compounds, phosphazenes, red phosphorus, and other phosphorus flame retardants And inorganic flame retardant aids such as antimony trioxide and zinc molybdate.
In addition, the thermosetting resin composition of the present invention may appropriately contain compounding agents such as an ultraviolet absorber, an antioxidant, a photopolymerization initiator, a fluorescent whitening agent, and an adhesion improver.
Examples of compounding agents that can be incorporated into the thermosetting resin composition of the present invention include ultraviolet absorbers such as benzotriazoles, antioxidants such as hindered phenols and styrenated phenols, benzophenones, benzyl ketals, Examples thereof include photopolymerization initiators such as thioxanthone, fluorescent brighteners such as stilbene derivatives, urea compounds such as urea silane, and adhesion improvers such as silane coupling agents.

(プリプレグ)
本発明のプリプレグは、上記の熱硬化性樹脂組成物ワニスを、シート状補強基材に含浸又は塗工し、乾燥して、Bステージ化して得られるものである。プリプレグのシート状補強基材として、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維、ポリイミド、ポリエステル及びポリテトラフルオロエチレン等の有機繊維、並びにそれらの混合物等が挙げられる。これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。
シート状補強基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。該基材に対する樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で、20〜90質量%となるように、基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させて、本発明のプリプレグを得ることができる。
(Prepreg)
The prepreg of the present invention is obtained by impregnating or coating the above-mentioned thermosetting resin composition varnish on a sheet-like reinforcing base material, drying, and forming a B-stage. The well-known thing used for the laminated board for various electrical insulation materials can be used as a sheet-like reinforcement base material of a prepreg. Examples of the material include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and polytetrafluoroethylene, and mixtures thereof. These base materials have, for example, shapes such as woven fabric, non-woven fabric, robink, chopped strand mat, and surfacing mat, but the material and shape are selected depending on the intended use and performance of the molded product, and if necessary, A single material or two or more materials and shapes can be combined.
The thickness of the sheet-like reinforcing base material is not particularly limited, and for example, about 0.03 to 0.5 mm can be used, and the surface treatment with a silane coupling agent or the like or mechanical fiber opening treatment is performed. What was given is suitable from the surface of heat resistance, moisture resistance, and workability. After impregnating or coating the base material so that the amount of the resin composition attached to the base material is 20 to 90% by mass in terms of the resin content of the prepreg after drying, the temperature is usually 100 to 200 ° C. Can be heated and dried for 1 to 30 minutes and semi-cured (B-stage) to obtain the prepreg of the present invention.

(積層板及び配線板)
本発明の積層板は、プリプレグを用いて形成されたものである。例えば、プリプレグを1〜20枚重ね、その片面又は両面に銅及びアルミニウム等の金属箔を配置した構成で積層成形することにより製造することができる。金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。
成形条件は、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の範囲で成形することができる。
また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、多層板を製造することもできる。
本発明に係る配線板は、前記積層板の表面に回路を形成して製造される。すなわち、本発明に係る積層板の導体層を通常のエッチング法によって配線加工したり、前述のプリプレグを介して配線加工した積層板を複数積層し、加熱プレス加工することによって一括して多層化する。その後、ドリル加工又はレーザ加工によるスルーホール又はブラインドビアホールの形成と、メッキ又は導電性ペーストによる層間配線の形成を経て多層プリント配線板を製造することができる。
(Laminated board and wiring board)
The laminate of the present invention is formed using a prepreg. For example, it can be manufactured by stacking 1 to 20 prepregs and laminate-molding them with a configuration in which a metal foil such as copper and aluminum is disposed on one or both sides thereof. The metal foil is not particularly limited as long as it is used for electrical insulating material applications.
The molding conditions can be applied to a laminate for an electrical insulating material and a multilayer board, for example, using a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc., at a temperature of 100 to 250 ° C., a pressure of 0.2 to It can be molded in a range of 10 MPa and a heating time of 0.1 to 5 hours.
Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a multilayer board.
The wiring board according to the present invention is manufactured by forming a circuit on the surface of the laminated board. That is, the conductor layer of the laminated board according to the present invention is processed by wiring by a normal etching method, or a plurality of laminated boards processed by wiring through the above-described prepreg are stacked and subjected to hot press processing to be multilayered at once. . Then, a multilayer printed wiring board can be manufactured through formation of a through hole or blind via hole by drilling or laser processing and formation of an interlayer wiring by plating or conductive paste.

実施例により本発明を更に具体的に説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。   The present invention will be described more specifically with reference to examples, but these examples do not limit the present invention in any way.

製造例1:相溶化樹脂(1−1)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、1分子中に少なくとも2個以上のシアネート基を有する化合物(a)としてビスフェノールA型シアネート樹脂(ロンザジャパン株式会社製;商品名Primaset BADCy):800.0gと、トルエン:1000.0gを投入した。次いで、攪拌しながら還流温度(約116℃)に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で2時間反応を行った。その後、室温(25℃)に冷却し相溶化樹脂(1−1)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン、カラム:東ソー株式会社製HZ2000、HZ3000)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、減少している比率を1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率(mol%)として算出した。前記に従い算出した反応率は25mol%であった。また、約10.9分付近、及び8.0〜10.0付近に出現する熱硬化性樹脂の生成物のピークが確認された。次いで、1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)としてビフェニル型エポキシ樹脂(ジャパンエポキシレジン株式会社製;商品名YX−4000、エポキシ当量;186):200.0g加え、約110℃で2時間反応を行った。その後GPC測定を行い、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率が50mol%であることを確認し反応を終了とし室温まで冷却した。エポキシ化合物投入前の反応率が25mol%、エポキシ化合物投入後の反応率が50mol%であることから、最終反応率に対する反応率の比率が50%である。上記の手法により、反応率の比率:50%の熱硬化性樹脂組成物ワニスを作製した。
Production Example 1: Production of compatibilized resin (1-1) At least two cyanate groups in one molecule in a reaction vessel having a volume of 3 liters which can be heated and cooled with a thermometer, a stirrer and a reflux condenser. Bisphenol A type cyanate resin (manufactured by Lonza Japan Co., Ltd .; trade name Primaset BADCy): 800.0 g and toluene: 1000.0 g were added as the compound (a) having the following. Next, the temperature was raised to the reflux temperature (about 116 ° C.) while stirring, and after confirming that the resin solid content was dissolved into a uniform solution, 0.01 g of an 8% by mass mineral spirit solution of zinc naphthenate was added. The mixture was added and reacted at about 110 ° C. for 2 hours. Then, it cooled to room temperature (25 degreeC) and the solution of the compatibilizing resin (1-1) was obtained. A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran, column: HZ2000, HZ3000 manufactured by Tosoh Corporation), and a bisphenol A, a synthetic raw material, whose elution time appears around 12.4 minutes. The ratio of the peak area of the type cyanate resin compared to the peak area of the bisphenol A type cyanate resin at the start of the reaction is reduced by the reaction rate (mol%) of a compound having at least two cyanate groups in one molecule. ). The reaction rate calculated according to the above was 25 mol%. Moreover, the peak of the product of the thermosetting resin which appears at about 10.9 minutes vicinity and 8.0-10.0 vicinity was confirmed. Next, as a compound (c) having at least two epoxy groups in one molecule, a biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd .; trade name YX-4000, epoxy equivalent; 186): 200.0 g is added, and about Reaction was performed at 110 degreeC for 2 hours. Thereafter, GPC measurement was performed, and it was confirmed that the reaction rate of the compound having at least two cyanate groups in one molecule was 50 mol%, and the reaction was terminated and cooled to room temperature. Since the reaction rate before introducing the epoxy compound is 25 mol% and the reaction rate after introducing the epoxy compound is 50 mol%, the ratio of the reaction rate to the final reaction rate is 50%. By the above method, a thermosetting resin composition varnish having a reaction rate ratio of 50% was prepared.

製造例2:相溶化樹脂(1−2)の製造
エポキシ樹脂を投入する前の反応時間を1時間、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を13mol%、エポキシ化合物投入後の反応時間を3時間、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を50mol%にした以外は、製造例1と同様にしてエポキシ化合物を投入したときの反応率の比率:26%の熱硬化性樹脂組成物ワニスを作製した。
Production Example 2: Production of compatibilized resin (1-2) The reaction time before introducing the epoxy resin is 1 hour, the reaction rate of the compound having at least two cyanate groups in one molecule is 13 mol%, and the epoxy compound The reaction rate when the epoxy compound was added in the same manner as in Production Example 1 except that the reaction time after addition was 3 hours and the reaction rate of the compound having at least two cyanate groups in one molecule was 50 mol%. Ratio: 26% thermosetting resin composition varnish was produced.

製造例3:相溶化樹脂(1−3)の製造
エポキシ樹脂を投入する前の反応時間を3時間、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を38mol%、エポキシ化合物投入後の反応時間を1時間、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を50mol%にした以外は、製造例1と同様にしてエポキシ化合物を投入したときの反応率の比率:76%の熱硬化性樹脂組成物ワニスを作製した。
Production Example 3: Production of compatibilizing resin (1-3) The reaction time before introducing the epoxy resin is 3 hours, the reaction rate of the compound having at least two cyanate groups in one molecule is 38 mol%, and the epoxy compound The reaction rate when the epoxy compound was added in the same manner as in Production Example 1 except that the reaction time after the addition was 1 hour, and the reaction rate of the compound having at least two cyanate groups in one molecule was 50 mol%. Ratio: 76% of a thermosetting resin composition varnish was produced.

製造例4:相溶化樹脂(1−4)の製造
エポキシ樹脂投入後の反応時間を3時間とし、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を63mol%にした以外は、製造例1と同様にしてエポキシ化合物を投入したときの反応率の比率:40%の熱硬化性樹脂組成物ワニスを作製した。
Production Example 4: Production of compatibilized resin (1-4) The reaction time after adding the epoxy resin was 3 hours, and the reaction rate of the compound having at least two cyanate groups in one molecule was 63 mol%. In the same manner as in Production Example 1, a thermosetting resin composition varnish having a reaction rate ratio of 40% when an epoxy compound was added was prepared.

比較製造例1:比較相溶化樹脂(2−1)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、1分子中に少なくとも2個以上のシアネート基を有する化合物としてビスフェノールA型シアネート樹脂(ロンザジャパン株式会社製;商品名Primaset BADCy):800.0gと、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン株式会社製;商品名YX−4000、エポキシ当量;186):200.0g加え、トルエン:1000.0gを投入した。次いで、攪拌しながら還流温度(約116℃)に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(2−1)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率(反応率)が50mol%であった。また、約10.9分付近、及び8.0〜10.0付近に出現する熱硬化性樹脂の生成物のピークが確認され、比較相溶化樹脂(2−1)ワニスを作製した。
Comparative Production Example 1: Production of Comparative Compatibilized Resin (2-1) In a reaction vessel having a volume of 3 liters that can be heated and cooled with a thermometer, a stirrer, and a reflux condenser, at least two or more in one molecule As a compound having a cyanate group, bisphenol A type cyanate resin (Lonza Japan Co., Ltd .; trade name Primaset BADCy): 800.0 g and biphenyl type epoxy resin (Japan Epoxy Resin Co., Ltd .; trade name YX-4000, epoxy equivalent); 186): 200.0 g was added, and toluene: 1000.0 g was added. Next, the temperature was raised to the reflux temperature (about 116 ° C.) while stirring, and after confirming that the resin solid content was dissolved into a uniform solution, 0.01 g of an 8% by mass mineral spirit solution of zinc naphthenate was added. The reaction was carried out at about 110 ° C. for 4 hours. Then, it cooled to room temperature and obtained the solution of compatibilizing resin (2-1). A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran). As a result, the peak area of the bisphenol A type cyanate resin, which is a synthetic raw material and the elution time appears around 12.4 minutes, is the start of the reaction. Compared with the peak area of the bisphenol A type cyanate resin at the time, the disappearance rate (reaction rate) of the peak area was 50 mol%. Moreover, the peak of the product of the thermosetting resin which appears at about 10.9 minutes vicinity and 8.0-10.0 vicinity was confirmed, and the comparative compatible resin (2-1) varnish was produced.

比較製造例2:比較相溶化樹脂(2−2)の製造
反応時間を5時間、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を63mol%にした以外は、比較製造例1と同様にして比較相溶化樹脂(2−2)ワニスを作製した。
Comparative Production Example 2: Production of Comparative Compatibilized Resin (2-2) Comparative Production Example, except that the reaction time was 5 hours and the reaction rate of the compound having at least two cyanate groups in one molecule was 63 mol%. Comparative Compatibilized Resin (2-2) Varnish was prepared in the same manner as in Example 1.

比較製造例3:比較相溶化樹脂(2−3)の製造
エポキシ樹脂を投入する前の反応時間を0.5時間、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を8mol%、エポキシ化合物投入後の反応時間を3.5時間、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を50mol%にした以外は、比較製造例1と同様にしてエポキシ化合物を投入したときの反応率の比率:16%の相溶化樹脂(2−3)ワニスを作製した。
Comparative Production Example 3: Production of Comparative Compatibilized Resin (2-3) The reaction time before introducing the epoxy resin is 0.5 hours, and the reaction rate of the compound having at least two cyanate groups in one molecule is 8 mol. Epoxy compound in the same manner as Comparative Production Example 1 except that the reaction time after addition of the epoxy compound was 3.5 hours, and the reaction rate of the compound having at least two cyanate groups in one molecule was 50 mol%. The ratio of the reaction rate when charging was added: A compatibilized resin (2-3) varnish with 16% was prepared.

比較製造例4:比較相溶化樹脂(2−4)の製造
エポキシ樹脂を投入する前の反応時間を3.5時間、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を44mol%、エポキシ化合物投入後の反応時間を0.5時間、1分子中に少なくとも2個以上のシアネート基を有する化合物の反応率を50mol%にした以外は、比較製造例1と同様にしてエポキシ化合物を投入したときの反応率の比率:88%の比較相溶化樹脂(2−4)ワニスを作製したが、相溶化せず分離した。
Comparative Production Example 4: Production of Comparative Compatibilized Resin (2-4) The reaction time before introducing the epoxy resin is 3.5 hours, and the reaction rate of the compound having at least two cyanate groups in one molecule is 44 mol. %, The reaction time after addition of the epoxy compound was 0.5 hours, and the reaction rate of the compound having at least two cyanate groups in one molecule was 50 mol%. The ratio of the reaction rate when sucrose was added: A comparatively compatibilizing resin (2-4) varnish with 88% was produced, but it was not compatibilized and separated.

内層用ワニスの製造
シリカ:SO−G1(商品名、アドマテックス株式会社製)700gを、7gのKMB−903(商品名、信越化学工業株式会社製、3−アミノプロピルトリエトキシシラン)を加えた300gのメチルイソブチルケトン溶液に攪拌しながら加え、シリカのメチルイソブチル分散溶液を作製した。シリカのメチルイソブチル分散溶液の中に比較相溶化樹脂(2−1)762g加え、2時間攪拌してワニス(2−5)を作製した。
Manufacture of varnish for inner layer Silica: 700 g of SO-G1 (trade name, manufactured by Admatex Co., Ltd.) and 7 g of KMB-903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., 3-aminopropyltriethoxysilane) were added. The mixture was added to 300 g of methyl isobutyl ketone solution with stirring to prepare a methyl isobutyl dispersion of silica. 762 g of a comparative compatibilizing resin (2-1) was added to a methyl isobutyl dispersion solution of silica, and stirred for 2 hours to prepare a varnish (2-5).

内層用ワニスの製造で得られたワニス(2−5)を厚さ0.1mmのEガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量55質量%のプリプレグを得た。次に、このプリプレグを4枚重ね、厚さ18μmの電解銅箔を上下に配置し、圧力25kg/cm、温度185℃で90分間プレスを行った。得られた銅張り積層板の銅箔をエッチングで除去し、エッチング基板を作製した。 The varnish (2-5) obtained in the production of the varnish for the inner layer is impregnated on an E glass cloth having a thickness of 0.1 mm and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 55% by mass. It was. Next, four sheets of this prepreg were stacked, and an electrolytic copper foil having a thickness of 18 μm was placed on top and bottom, and pressed at a pressure of 25 kg / cm 2 and a temperature of 185 ° C. for 90 minutes. The copper foil of the obtained copper-clad laminate was removed by etching to produce an etched substrate.

製造例1〜4、及び比較製造例1〜3で得られた熱硬化性樹脂組成物ワニスをそれぞれ厚さ0.1mmのEガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量55質量%のプリプレグを得た。次に、上記で作製したエッチング基板の両面に作製したプリプレグを1枚重ね、18μmの電解銅箔を上下に配置し、圧力25kg/cm、温度185℃で90分間プレスを行って、実施例1〜4、比較例1〜3の銅張積層板を得た。このようにして得られた銅張積層板を用いて、デスミア処理に対する耐性をデスミア重量減少量として評価した。表1に実施例を、表2に比較例を示した。 The thermosetting resin composition varnishes obtained in Production Examples 1 to 4 and Comparative Production Examples 1 to 3 were each impregnated and applied to E glass cloth having a thickness of 0.1 mm and dried at 160 ° C. for 10 minutes. A prepreg having a resin content of 55% by mass was obtained. Next, one prepreg prepared on both sides of the etching substrate prepared above was stacked, 18 μm electrolytic copper foil was placed up and down, and pressed at a pressure of 25 kg / cm 2 and a temperature of 185 ° C. for 90 minutes. 1-4 and the copper clad laminated board of Comparative Examples 1-3 were obtained. Using the copper-clad laminate thus obtained, resistance to desmear treatment was evaluated as a desmear weight reduction amount. Table 1 shows examples and Table 2 shows comparative examples.

<デスミア重量減少量の測定>
作製した実施例1〜4、比較例1〜3の銅張積層板をエッチングして50×50mmのサイズに切り出し、下記に示す条件でデスミア処理を行い、デスミア処理前後の重量変化から重量減少量を算出した。
ローム&ハース社製処理液(アルカリ性過マンガン酸塩)
膨潤(MLB−4125) :80℃/5分
粗化(MLB−213) :80℃/5分
中和(MLB−216−2):40℃/5分
<Measurement of desmear weight loss>
The produced copper clad laminates of Examples 1 to 4 and Comparative Examples 1 to 3 were etched and cut to a size of 50 × 50 mm, desmeared under the conditions shown below, and the weight loss from the weight change before and after desmearing. Was calculated.
Treatment solution (alkaline permanganate) manufactured by Rohm & Haas
Swelling (MLB-4125): 80 ° C / 5 minutes Roughening (MLB-213): 80 ° C / 5 minutes Neutralization (MLB-216-2): 40 ° C / 5 minutes

Figure 2015117300
Figure 2015117300

Figure 2015117300
Figure 2015117300

1分子中に少なくとも2個以上のシアネート基を有する化合物(a)の最終反応率が50mol%でエポキシ基を有する化合物(c)を配合するときの反応率について表1の実施例1〜3と表2の比較例1の比較から、反応率が20〜80%であるとデスミア重量減少量が少ないことが確認でき、デスミア処理に対する耐性が向上していることが分かる。同様に、(a)の最終反応率が63mol%で(c)を配合するときの反応率について表1の実施例4と表2の比較例2の比較から、同様にデスミア処理に対する耐性が向上していることが分かる。一方、表2の比較例3から、反応率が20〜80%より反応率の比率が16%と低い場合、デスミア処理に対する耐性向上に効果がないことが分かる。また、表2の比較例4から、反応率が20〜80%より反応率の比率が高い88%の場合、相溶性が悪くワニスにすることができなくなる。したがって、本発明の20〜80%の反応率にすることがデスミア処理に対する耐性向上に有効であることが分かる。   Examples 1 to 3 in Table 1 regarding the reaction rate when the compound (c) having an epoxy group with a final reaction rate of 50 mol% of the compound (a) having at least two cyanate groups in one molecule is blended From the comparison of Comparative Example 1 in Table 2, it can be confirmed that the desmear weight reduction amount is small when the reaction rate is 20 to 80%, and the resistance to desmear treatment is improved. Similarly, from the comparison of Example 4 in Table 1 and Comparative Example 2 in Table 2 with respect to the reaction rate when (c) is blended when the final reaction rate of (a) is 63 mol%, the resistance to desmear treatment is similarly improved. You can see that On the other hand, it can be seen from Comparative Example 3 in Table 2 that when the reaction rate is as low as 16% from 20 to 80%, there is no effect in improving resistance to desmear treatment. Further, from Comparative Example 4 in Table 2, when the reaction rate is 88%, which is higher than 20 to 80%, the compatibility is poor and the varnish cannot be formed. Therefore, it turns out that it is effective for the tolerance improvement with respect to a desmear process to make it 20 to 80% of reaction rate of this invention.

本発明の反応率に調整して熱硬化性樹脂組成物ワニスを製造することで、デスミア処理に対する耐性に優れた銅張積層板を提供することができ、電子機器用のプリント配線板の製造に有用である。   By adjusting the reaction rate of the present invention and producing a thermosetting resin composition varnish, it is possible to provide a copper-clad laminate having excellent resistance to desmear treatment, and for producing printed wiring boards for electronic devices. Useful.

Claims (8)

1分子中に少なくとも2個以上のシアネート基を有する化合物(a)を有機溶媒中で40〜70mol%トリアジン環化反応させた熱硬化性樹脂(b)であって、前記熱硬化性樹脂の反応率の比率が最終反応率の20〜80%のときに1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)を配合することを特徴とする熱硬化性樹脂組成物ワニスの製造方法。   A thermosetting resin (b) obtained by subjecting a compound (a) having at least two cyanate groups in one molecule to a 40 to 70 mol% triazine cyclization reaction in an organic solvent, the reaction of the thermosetting resin A method for producing a thermosetting resin composition varnish comprising blending a compound (c) having at least two epoxy groups in one molecule when the rate ratio is 20 to 80% of the final reaction rate . 1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)が、芳香環を有することを特徴とする請求項1に記載の熱硬化性樹脂組成物ワニスの製造方法。   The method for producing a thermosetting resin composition varnish according to claim 1, wherein the compound (c) having at least two epoxy groups in one molecule has an aromatic ring. 1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)が、多環式化合物を有することを特徴とする請求項1に記載の熱硬化性樹脂組成物ワニスの製造方法。   The method for producing a thermosetting resin composition varnish according to claim 1, wherein the compound (c) having at least two epoxy groups in one molecule has a polycyclic compound. 1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)が、ビフェニル構造を有することを特徴とする請求項1に記載の熱硬化性樹脂組成物ワニスの製造方法。   The method for producing a thermosetting resin composition varnish according to claim 1, wherein the compound (c) having at least two epoxy groups in one molecule has a biphenyl structure. 1分子中に少なくとも2個以上のエポキシ基を有する化合物(c)が、ナフタレン構造を有することを特徴とする請求項1に記載の熱硬化性樹脂組成物ワニスの製造方法。   The method for producing a thermosetting resin composition varnish according to claim 1, wherein the compound (c) having at least two epoxy groups in one molecule has a naphthalene structure. 前記請求項1〜5のいずれかに記載の熱硬化性樹脂組成物ワニスを基材に含浸し乾燥して、得られるプリプレグ。   A prepreg obtained by impregnating a base material with the thermosetting resin composition varnish according to claim 1 and drying it. 前記請求項6に記載のプリプレグを成形して得られる積層板。   A laminate obtained by molding the prepreg according to claim 6. 前記請求項7に記載の積層板に配線形成して得られる配線板。   A wiring board obtained by forming wiring on the laminated board according to claim 7.
JP2013261144A 2013-12-18 2013-12-18 Method for producing thermosetting resin composition varnish, and prepreg, laminate and wiring board using the same Active JP6233637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261144A JP6233637B2 (en) 2013-12-18 2013-12-18 Method for producing thermosetting resin composition varnish, and prepreg, laminate and wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261144A JP6233637B2 (en) 2013-12-18 2013-12-18 Method for producing thermosetting resin composition varnish, and prepreg, laminate and wiring board using the same

Publications (2)

Publication Number Publication Date
JP2015117300A true JP2015117300A (en) 2015-06-25
JP6233637B2 JP6233637B2 (en) 2017-11-22

Family

ID=53530344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261144A Active JP6233637B2 (en) 2013-12-18 2013-12-18 Method for producing thermosetting resin composition varnish, and prepreg, laminate and wiring board using the same

Country Status (1)

Country Link
JP (1) JP6233637B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543130A (en) * 1978-09-19 1980-03-26 Mitsubishi Electric Corp Thermosetting resin composition
JPS5610524A (en) * 1979-07-09 1981-02-03 Mitsubishi Gas Chem Co Inc Liquid curable resin composition
JPH1017646A (en) * 1996-07-08 1998-01-20 Dainippon Ink & Chem Inc Production of polymer compound, new polymer compound, and resin composition
JPH10139858A (en) * 1996-11-14 1998-05-26 Sumitomo Bakelite Co Ltd Die-attaching paste
JPH10509999A (en) * 1994-11-30 1998-09-29 アライドシグナル・インコーポレーテッド Blends of polyfunctional cyanate ester and epoxy
JP2000319509A (en) * 1999-05-14 2000-11-21 Hitachi Chem Co Ltd Production of fire retardant resin composition and laminated sheet
JP2003138133A (en) * 2001-10-31 2003-05-14 Hitachi Chem Co Ltd Modified cyanate ester resin composition, resin film, multilayered printed wiring board and method for producing the same
JP2003277531A (en) * 2002-03-27 2003-10-02 Sumitomo Bakelite Co Ltd Prepreg and laminated plate using the same
JP2007254746A (en) * 2007-03-27 2007-10-04 Sumitomo Bakelite Co Ltd Heat resistant resin composition, prepreg and laminated board made by using it
JP2013216881A (en) * 2012-03-14 2013-10-24 Hitachi Chemical Co Ltd Method for producing compatibilizing resin, thermosetting resin composition, prepreg and laminate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543130A (en) * 1978-09-19 1980-03-26 Mitsubishi Electric Corp Thermosetting resin composition
JPS5610524A (en) * 1979-07-09 1981-02-03 Mitsubishi Gas Chem Co Inc Liquid curable resin composition
JPH10509999A (en) * 1994-11-30 1998-09-29 アライドシグナル・インコーポレーテッド Blends of polyfunctional cyanate ester and epoxy
JPH1017646A (en) * 1996-07-08 1998-01-20 Dainippon Ink & Chem Inc Production of polymer compound, new polymer compound, and resin composition
JPH10139858A (en) * 1996-11-14 1998-05-26 Sumitomo Bakelite Co Ltd Die-attaching paste
JP2000319509A (en) * 1999-05-14 2000-11-21 Hitachi Chem Co Ltd Production of fire retardant resin composition and laminated sheet
JP2003138133A (en) * 2001-10-31 2003-05-14 Hitachi Chem Co Ltd Modified cyanate ester resin composition, resin film, multilayered printed wiring board and method for producing the same
JP2003277531A (en) * 2002-03-27 2003-10-02 Sumitomo Bakelite Co Ltd Prepreg and laminated plate using the same
JP2007254746A (en) * 2007-03-27 2007-10-04 Sumitomo Bakelite Co Ltd Heat resistant resin composition, prepreg and laminated board made by using it
JP2013216881A (en) * 2012-03-14 2013-10-24 Hitachi Chemical Co Ltd Method for producing compatibilizing resin, thermosetting resin composition, prepreg and laminate

Also Published As

Publication number Publication date
JP6233637B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP5857514B2 (en) Thermosetting resin composition, and prepreg and laminate using the same
KR101144566B1 (en) Epoxy resin composition, prepreg using the epoxy resin composition, metal-clad laminate, and printed wiring board
JP5264133B2 (en) Epoxy resin composition, prepreg and metal-clad laminate using the epoxy resin composition
CN102850726A (en) Composite material, high frequency circuit substrate produced by using composite material, and production method of high frequency circuit substrate
WO2013115069A1 (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using same
TWI532776B (en) Aromatic tetrafunctional vinyl benzyl resin composition and its application
JP2014122339A (en) Thermosetting resin composition, prepreg, laminate, print circuit board, mounting substrate, and method for producing thermosetting resin composition
JP4915549B2 (en) Resin composition for printed wiring board, prepreg and laminate using the same
JP2003231762A (en) Prepreg and laminated sheet
JP2015229763A (en) Resin composition, prepreg, metal-clad laminate sheet, printed wiring board
JP6106931B2 (en) Compatibilizing resin, and thermosetting resin composition, prepreg, and laminate using the same
JP6323706B2 (en) Method for producing thermosetting resin composition varnish, and method for producing prepreg, laminate and wiring board using the same
JP6233637B2 (en) Method for producing thermosetting resin composition varnish, and prepreg, laminate and wiring board using the same
JP6384707B2 (en) Method for producing thermosetting resin composition varnish, and method for producing prepreg, laminate and wiring board using the same
JP5793640B2 (en) Epoxy resin composition for printed wiring board, prepreg for printed wiring board using the epoxy resin composition for printed wiring board, and metal-clad laminate for printed wiring board
JP6221203B2 (en) Resin composition, prepreg and laminate using the same
JP5880921B2 (en) Curable resin composition, cured product thereof, printed wiring board
JP2013108067A (en) Method for producing compatibilized resin, compatibilized resin, thermosetting resin composition, prepreg and laminated plate
JP5919576B2 (en) Epoxy resin composition for printed wiring board, prepreg for printed wiring board using the epoxy resin composition for printed wiring board, and metal-clad laminate for printed wiring board
JP6408752B2 (en) Compatibilized resin, and prepreg and laminate using the same
JP2013035931A (en) Method for producing compatibilizing resin, thermosetting resin composition, prepreg and laminate
JP2016199644A (en) Manufacturing method of modified cyanate ester varnish, and prepreg, laminate sheet and wiring board using the same
JP2014012762A (en) Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg
JP6183081B2 (en) Compatibilizing resin production method, thermosetting resin composition, prepreg, laminate, and printed wiring board
JP2014012761A (en) Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171011

R151 Written notification of patent or utility model registration

Ref document number: 6233637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371