JP2015117166A - Mortar composition - Google Patents

Mortar composition Download PDF

Info

Publication number
JP2015117166A
JP2015117166A JP2013262524A JP2013262524A JP2015117166A JP 2015117166 A JP2015117166 A JP 2015117166A JP 2013262524 A JP2013262524 A JP 2013262524A JP 2013262524 A JP2013262524 A JP 2013262524A JP 2015117166 A JP2015117166 A JP 2015117166A
Authority
JP
Japan
Prior art keywords
mass
mortar
parts
cement
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262524A
Other languages
Japanese (ja)
Other versions
JP6223813B2 (en
Inventor
長井 義徳
Yoshinori Nagai
義徳 長井
浜中 昭徳
Akinori Hamanaka
昭徳 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2013262524A priority Critical patent/JP6223813B2/en
Publication of JP2015117166A publication Critical patent/JP2015117166A/en
Application granted granted Critical
Publication of JP6223813B2 publication Critical patent/JP6223813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a mortar composition excellent in pump press-feedability, dimensional stability, integration with base concrete and plaster workability (trowel workability), to provide a mortar excellent in pump press-feedability, dimensional stability, integration with base concrete and plaster workability (trowel workability), and to provide a mortar coating method excellent in workability, durability and integration with a base.SOLUTION: Cement, a plurality of specified admixtures and a fine aggregate are incorporated in specified ratios, respectively. Further, a specified ratio of water is added thereto.

Description

本発明は、モルタル組成物に関する。詳しくは、施工性、耐久性及び下地との一体性に優れるモルタル組成物に関する。また、本発明は、モルタルに関する。詳しくは、施工性、耐久性及び下地との一体性に優れるモルタルに関する。また、本発明は、モルタル被覆方法に関する。詳しくは、施工性、耐久性及び下地との一体性に優れるモルタル被覆方法に関する。   The present invention relates to a mortar composition. In detail, it is related with the mortar composition excellent in workability, durability, and the integrity with the foundation | substrate. The present invention also relates to mortar. Specifically, the present invention relates to a mortar excellent in workability, durability, and integrity with the groundwork. The present invention also relates to a mortar coating method. In detail, it is related with the mortar coating method excellent in workability, durability, and the integrity with the foundation.

道路、鉄道、タンク、建物、ダム、上水道施設、下水道施設、水路、護岸等にコンクリートは広く使われている。コンクリートを保護する目的、劣化したコンクリートを補修する目的、美観を向上する目的等の種々の目的により、コンクリート構造物表面をモルタルで被覆することも広く行われている。広い面積(大面積)の壁や天井等をモルタルで被覆するには、吹付け工法によりコンクリート表面にモルタルを吹付けることが効率的である(例えば、特許文献1参照。)。吹付け工法に用いるためには、モルタルはポンプ圧送できる程度に軟らかい必要がある。しかし、軟らか過ぎると、壁や天井に被覆する場合に、垂れ落ちてしまう虞や硬化後の収縮が大きくそのためにひび割れが発生する虞がある。また、垂れ落ちが発生することを防ぐには、モルタルの粘性を増加させることが考えられるが、モルタルの粘性を増すと作業性、特に鏝作業性が悪くなる。また、モルタルの粘性を増すとポンプ圧送性が悪くなる。   Concrete is widely used for roads, railroads, tanks, buildings, dams, water supply facilities, sewerage facilities, waterways, revetments, etc. For the purpose of protecting concrete, the purpose of repairing deteriorated concrete, the purpose of improving aesthetics, and the like, the surface of concrete structures is also widely covered with mortar. In order to coat a large area (large area) wall or ceiling with mortar, it is efficient to spray the mortar on the concrete surface by a spraying method (for example, refer to Patent Document 1). In order to be used for the spraying method, the mortar needs to be soft enough to be pumped. However, if it is too soft, there is a risk of dripping down when covering a wall or ceiling, and there is a risk that cracks will occur due to large shrinkage after curing. In order to prevent dripping, it is conceivable to increase the viscosity of the mortar. However, if the viscosity of the mortar is increased, the workability, particularly the dredging workability is deteriorated. Further, when the viscosity of the mortar is increased, the pumpability is deteriorated.

特開2005−194158号公報JP 2005-194158 A

本発明は前記問題の解決、即ち、本発明は、ポンプ圧送性、寸法安定性、下地コンクリートとの一体性、左官作業性(鏝作業性)に優れるモルタル組成物及びモルタルを提供することを目的とする。また、本発明は、施工性、耐久性及び下地との一体性に優れるモルタル被覆方法を提供することを目的とする。   An object of the present invention is to provide a mortar composition and a mortar that are excellent in solving the above-mentioned problems, that is, in pumping performance, dimensional stability, integrity with the ground concrete, and plastering workability (dripping workability). And Moreover, an object of this invention is to provide the mortar coating method which is excellent in workability, durability, and the integrity with the foundation | substrate.

本発明者は、前記課題解決のため鋭意検討した結果、セメントと、複数の特定の混和材料と、細骨材とを各々特定割合で含有させることにより、上記課題を解決できることを見出し、本発明を完成させた。また、更に特定割合の水を添加することにより、本発明を完成させた。即ち、本発明は、以下の(1)又は(2)で表すモルタル組成物、(3)で表すモルタル、並びに、(4)で表すモルタル被覆方法である。
(1)(A)セメント100質量部に対して、(B)粘土鉱物由来の非晶質アルミノ珪酸塩粉末を1〜20質量部、(C)アクリル系樹脂のポリマーディスパージョン及び/又は再乳化形粉末樹脂を5〜20質量部、(D)フライアッシュを20〜100質量部、(E)膨張材を3〜20質量部、(F)硫酸塩を0.5〜5質量部、(G)減水剤を0.05〜2質量部、(H)増粘剤を0.05〜0.4質量部、(I)消泡剤を0.05〜0.5質量部、(J)有機繊維を0.2〜2質量部、(K)収縮低減剤を1〜3質量部、(L)細骨材を200〜400質量部を含有するモルタル組成物。
(2)上記成分(B)が、メタカオリン粉末である上記(1)のモルタル組成物。
(3)上記(1)又は(2)のモルタル組成物と、該モルタル組成物に含有するセメント100質量部に対して50〜100質量部の水とを含有するモルタル。
(4)(ア)コンクリート構造物表面を吸水調整する工程と、(イ)前記工程(ア)により吸水調整したコンクリート構造物表面に、上記(3)のモルタルを塗布する工程とを具備するモルタル被覆方法。
(1)セメントと、セメント100質量部に対し、上記(1)又は(2)の粉塵低減剤1〜3質量部、膨張性物質4〜15質量部、非晶質アルミノ珪酸鉱物粉末6〜20質量部、石膏類1.6〜20質量部を含有することを特徴とする初期膨張性セメント組成物。
(3)上記非晶質アルミノ珪酸鉱物粉末が、カオリン鉱物を加熱し非晶質化した非晶質アルミノ珪酸鉱物である上記(1)の初期膨張性セメント組成物。
(4)。
As a result of intensive studies for solving the above problems, the present inventor has found that the above problems can be solved by including cement, a plurality of specific admixtures, and fine aggregates in specific ratios, respectively. Was completed. Further, the present invention was completed by adding a specific proportion of water. That is, this invention is the mortar composition represented by the following (1) or (2), the mortar represented by (3), and the mortar coating method represented by (4).
(1) (A) 1 to 20 parts by mass of (B) clay mineral-derived amorphous aluminosilicate powder, and (C) acrylic resin polymer dispersion and / or re-emulsification with respect to 100 parts by mass of (A) cement. 5 to 20 parts by mass of a powdered resin, (D) 20 to 100 parts by mass of fly ash, (E) 3 to 20 parts by mass of an expanding material, (F) 0.5 to 5 parts by mass of sulfate, (G ) 0.05-2 parts by mass of water reducing agent, 0.05-0.4 parts by mass of (H) thickener, (I) 0.05-0.5 parts by mass of antifoaming agent, (J) organic A mortar composition containing 0.2 to 2 parts by mass of fiber, (K) 1 to 3 parts by mass of a shrinkage reducing agent, and (L) 200 to 400 parts by mass of fine aggregate.
(2) The mortar composition according to (1), wherein the component (B) is metakaolin powder.
(3) A mortar containing the mortar composition according to (1) or (2) above and 50 to 100 parts by mass of water with respect to 100 parts by mass of cement contained in the mortar composition.
(4) (a) A mortar comprising the step of adjusting the water absorption of the surface of the concrete structure, and (b) applying the mortar of (3) to the surface of the concrete structure subjected to the water absorption adjustment in the step (a). Coating method.
(1) 1 to 3 parts by mass of the dust reducing agent of (1) or (2), 4 to 15 parts by mass of an expansive substance, and 6 to 20 amorphous aluminosilicate mineral powder with respect to 100 parts by mass of cement and cement. An initial expansive cement composition containing 1 part by mass and 1.6 to 20 parts by mass of gypsum.
(3) The initial expansive cement composition according to (1), wherein the amorphous aluminosilicate mineral powder is an amorphous aluminosilicate mineral obtained by heating kaolin mineral to make it amorphous.
(4).

本発明によれば、ポンプ圧送性、寸法安定性、下地コンクリートとの一体性、左官作業性(鏝作業性)に優れるモルタル組成物及びモルタルが得られる。また、本発明によれば、施工性、耐久性及び下地との一体性に優れるモルタル被覆方法が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the mortar composition and mortar which are excellent in pumping property, dimensional stability, integrity with foundation | substrate concrete, and plastering workability | operativity (dripping workability) are obtained. Moreover, according to this invention, the mortar coating method excellent in workability, durability, and the integrity with the foundation | substrate is obtained.

本発明のモルタル組成物に用いるセメント(成分(A))は、水硬性セメントであればよく、例えば普通、早強、超早強、低熱及び中庸熱の各種ポルトランドセメント、エコセメント、並びにこれらのポルトランドセメント又はエコセメントに、フライアッシュ、高炉スラグ、シリカフューム又は石灰石微粉末等を混合した各種混合セメント、太平洋セメント社製「ジェットセメント」(商品名)や住友大阪セメント社製「ジェットセメント」(商品名)等の超速硬セメント、アルミナセメント、超微粒子セメント等が挙げられ、これらの一種又は二種以上を使用することができる。ワーカビリティを損ない難く可使時間が長く確保し易いことから、各種ポルトランドセメント、エコセメント及び各種混合セメントから選ばれる一種又は二種以上を使用することが好ましい。また、材齢1日の強度を高くし易いことから、普通ポルトランドセメント、早強ポルトランドセメント、アルミナセメント及びエコセメントから選ばれる一種又は二種以上を使用することが更に好ましい。また、本発明で用いるセメントとしては、上記セメントに石膏を添加したものでもよい。   The cement (component (A)) used in the mortar composition of the present invention may be a hydraulic cement, for example, various ordinary Portland cements, eco-cements, and those of ordinary, early strength, ultra-early strength, low heat and moderate heat. Portland cement or eco-cement mixed with fly ash, blast furnace slag, silica fume, fine powder of limestone, etc. Name) and the like can be used, and one or two or more of these can be used. It is preferable to use one or two or more kinds selected from various Portland cements, eco-cements, and various mixed cements because workability is not easily impaired and the pot life is easy to ensure. Moreover, since it is easy to make the intensity | strength of material age 1 day high, it is still more preferable to use 1 type, or 2 or more types chosen from normal Portland cement, early strong Portland cement, an alumina cement, and eco-cement. Moreover, as cement used by this invention, the thing which added gypsum to the said cement may be used.

本発明のモルタル組成物に用いる粘土鉱物由来の非晶質アルミノ珪酸塩粉末(成分(B))は、粘土鉱物に由来し、非晶質部分を含むアルミノ珪酸塩微粉末であれば特に限定されず、いずれも使用可能である。原料である粘土鉱物の例としては、(1)カオリン鉱物、(2)雲母粘土鉱物、(3)スメクタイト型鉱物、及びこれらが混合生成した混合層鉱物が挙げられる。本発明で用いる非晶質アルミノ珪酸塩粉末(成分(B))は、これらの結晶性アルミノ珪酸塩粘土鉱物を、例えば焼成・脱水して非晶質化することにより得られる。これらのうち、反応性及び経済性の観点から、カオリナイト、ハロサイト、ディッカイト等のカオリン鉱物由来のものが好ましく、特にカオリナイトを焼成して得られるメタカオリンが最も好適である。ここでいう非晶質とは、粉末X線回折装置による測定で、ピークが見られなくなることをいい、本発明に用いる非晶質アルミノ珪酸鉱物粉末は非晶質の割合が70質量%以上であればよく、好ましくは90質量%以上、より好ましくは100%即ち粉末X線回折装置による測定でピークが全く見られないものが最も好ましい。非晶質の割合が低いアルミノ珪酸鉱物粉末、即ち結晶質の割合が高いアルミノ珪酸鉱物粉末は、非晶質の割合が高いアルミノ珪酸鉱物粉末に比べて、同じ混和量における強度発現性が悪く、同じ強度を得るためにはより多くのアルミノ珪酸鉱物粉末(成分(B))を必要とする。また、本発明で用いる粘土鉱物由来の非晶質アルミノ珪酸塩粉末(成分(B))の大きさは、反応性及び分離抑制性がより高く垂れが生じ難く寸法安定性に優れることから、平均粒子径10μm以下、特に5μm以下が好ましい。ここで云う平均粒子径とは、レーザー回折・散乱法により求めたもの、即ち50%通過径とする。   The amorphous aluminosilicate powder derived from clay mineral (component (B)) used in the mortar composition of the present invention is particularly limited as long as it is an aluminosilicate fine powder derived from a clay mineral and containing an amorphous part. Neither can be used. Examples of the clay mineral as a raw material include (1) kaolin mineral, (2) mica clay mineral, (3) smectite type mineral, and mixed layer minerals produced by mixing these. The amorphous aluminosilicate powder (component (B)) used in the present invention can be obtained by making these crystalline aluminosilicate clay minerals amorphous by, for example, firing and dehydrating. Among these, from the viewpoint of reactivity and economy, those derived from kaolin minerals such as kaolinite, halosite, dickite and the like are preferable, and in particular, metakaolin obtained by calcining kaolinite is most preferable. The term “amorphous” as used herein means that no peak is observed in the measurement by a powder X-ray diffractometer. The amorphous aluminosilicate mineral powder used in the present invention has an amorphous ratio of 70% by mass or more. What is necessary is just 90 mass% or more, More preferably, it is 100%, More preferably, the thing by which a peak is not seen at all by the measurement by a powder X-ray diffractometer is most preferable. Aluminosilicate mineral powder with a low proportion of amorphous, that is, aluminosilicate mineral powder with a high proportion of crystalline, has poor strength development at the same mixing amount compared to aluminosilicate mineral powder with a high proportion of amorphous, More aluminosilicate mineral powder (component (B)) is required to obtain the same strength. In addition, the size of the clay mineral-derived amorphous aluminosilicate powder (component (B)) used in the present invention is higher in reactivity and separation inhibition and is less likely to sag and is excellent in dimensional stability. The particle size is preferably 10 μm or less, particularly preferably 5 μm or less. Here, the average particle diameter is determined by a laser diffraction / scattering method, that is, a 50% passage diameter.

本発明のモルタル組成物における非晶質アルミノ珪酸塩粉末(成分(B))の配合割合は、セメント(成分(A))100質量部に対し1〜20質量部とする。1質量部未満では寸法安定性が悪く、圧縮強度も悪い。また、20質量部を超えると、混練し難くなるため混練に用いる水量が増え、これにより乾燥収縮が悪くなる。即ち、寸法安定性が悪い。更に、本発明のモルタル組成物は、硫酸塩を含有するため、低温施工時に硬化後のモルタルの膨張量が大きくなり過ぎにより寸法安定性が悪い。本発明のモルタル組成物における非晶質アルミノ珪酸塩粉末(成分(B))の配合割合は、寸法安定性が良好で圧縮強度が高いことから、セメント(成分(A))100質量部に対し好ましくは3〜15質量部が好ましく、5〜15質量部がより好ましい。   The blending ratio of the amorphous aluminosilicate powder (component (B)) in the mortar composition of the present invention is 1 to 20 parts by mass with respect to 100 parts by mass of cement (component (A)). If it is less than 1 part by mass, the dimensional stability is poor and the compressive strength is also poor. Moreover, when it exceeds 20 mass parts, since it becomes difficult to knead | mix, the amount of water used for kneading | mixing increases, and, thereby, drying shrinkage worsens. That is, the dimensional stability is poor. Furthermore, since the mortar composition of the present invention contains a sulfate, the amount of expansion of the mortar after curing at the time of low-temperature construction becomes too large, resulting in poor dimensional stability. Since the blending ratio of the amorphous aluminosilicate powder (component (B)) in the mortar composition of the present invention is good in dimensional stability and high in compressive strength, it is based on 100 parts by mass of cement (component (A)). Preferably 3-15 mass parts is preferable, and 5-15 mass parts is more preferable.

本発明のモルタル組成物に用いるアクリル系樹脂(成分(C))は、ポリマーディスパージョンでもよく、再乳化形粉末樹脂でもよく、又ポリマーディスパージョンと再乳化形粉末樹脂を併用してもよい。本発明で用いるアクリル系樹脂(成分(C))としては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、ヒドロキシエチルアクリレート、N,N’−ジメチルアミノエチルアクリレート等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、ヒドロキシエチルメタクリレート、N,N'−ジメチルアミノエチルメタクリレート等のメタクリル酸エステル;(メタ)アクリルアミド等のアミド系アクリレート等の(メタ)アクリル酸又はその誘導体より選択されるモノマー(アクリル酸系モノマー)を構成要素とする重合体、共重合体が挙げられる。また、アクリル系樹脂(成分(C))として、例えばスチレン、酢酸ビニル、ベオバ(t−デカン酸ビニルの商品名)等のアクリル酸系モノマー以外の構成要素を用いた共重合体などの重合体でもよい。また、本発明で用いるアクリル系樹脂(成分(C))は、複数種類のアクリル系樹脂からなる混合物でもよい。作業性の観点から、ポリマーの水中への安定化が、樹脂粒子表面に分布する界面活性剤、或いは、樹脂本体のアニオン性官能基又はノニオン性官能基により成されるものが好ましい。   The acrylic resin (component (C)) used in the mortar composition of the present invention may be a polymer dispersion, a re-emulsified powder resin, or a combination of a polymer dispersion and a re-emulsified powder resin. Examples of the acrylic resin (component (C)) used in the present invention include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, hydroxyethyl acrylate and N, N′-dimethylaminoethyl acrylate; methacrylic acid Methacrylic acid esters such as methyl, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, N, N′-dimethylaminoethyl methacrylate; (meth) acryl such as amide acrylates such as (meth) acrylamide Examples thereof include polymers and copolymers having a monomer (acrylic acid monomer) selected from an acid or a derivative thereof as a constituent element. In addition, as an acrylic resin (component (C)), for example, a polymer such as a copolymer using a constituent element other than an acrylic acid monomer such as styrene, vinyl acetate, and beova (trade name of vinyl t-decanoate). But you can. The acrylic resin (component (C)) used in the present invention may be a mixture of a plurality of types of acrylic resins. From the viewpoint of workability, it is preferable that the polymer is stabilized in water by a surfactant distributed on the surface of the resin particles, or an anionic functional group or a nonionic functional group of the resin main body.

本発明のモルタル組成物におけるアクリル系樹脂(成分(C))の配合割合は、セメント(成分(A))100質量部に対し不揮発成分換算で5〜20質量部とする。5質量部未満では付着強度が悪く、成分(C)を含有させた効果が見られない。また、20質量部を超えると、粘性が高くなり過ぎるため、左官作業時に鏝作業性が悪く、吹付け施工時にポンプ圧送性が悪い。付着強度が高く、左官作業時に鏝作業性が良く、また吹付け施工時にポンプ圧送性がよいことから、アクリル系樹脂(成分(C))の配合割合は、セメント(成分(A))100質量部に対し不揮発成分換算で8〜15質量部とすることが好ましい。   The blending ratio of the acrylic resin (component (C)) in the mortar composition of the present invention is 5 to 20 parts by mass in terms of nonvolatile components with respect to 100 parts by mass of cement (component (A)). If it is less than 5 parts by mass, the adhesion strength is poor, and the effect of incorporating the component (C) is not observed. Moreover, when it exceeds 20 mass parts, since viscosity will become high too much, dredging workability | operativity will be bad at the time of plastering work, and pump pumpability will be bad at the time of spray construction. Since the adhesive strength is high, the dredging workability is good during plastering work, and the pumpability is good during spraying, the blending ratio of acrylic resin (component (C)) is 100 mass of cement (component (A)). It is preferable to set it as 8-15 mass parts in conversion of a non-volatile component with respect to a part.

本発明のモルタル組成物に用いるフライアッシュ(成分(D))は、特に限定されないが、規格(JIS A 6201「コンクリート用フライアッシュ」)に適合するものであれば、鏝伸び性、鏝切れ性、表面平滑性等の鏝作業性に安定して優れ、且つポンプ圧送性に安定して優れることから好ましい。本発明のモルタル組成物におけるフライアッシュ(成分(D))の配合割合は、セメント(成分(A))100質量部に対し20〜100質量部とする。20質量部未満では左官施工時の鏝作業性及び吹付け施工時のポンプ圧送性が悪く、成分(D)を含有させた効果が見られない。また、100質量部を超えると、コンシステンシーを得るための混練水量が増すために、乾燥収縮が大きくなり寸法安定性に問題が生じ易くなる。粘性が高くなり過ぎるため、左官施工時の鏝作業性がよく、吹付け施工時のポンプ圧送性がよいことから、本発明のモルタル組成物におけるフライアッシュ(成分(D))の配合割合は、セメント(成分(A))100質量部に対し40〜70質量部とすることが好ましい。   The fly ash (component (D)) used in the mortar composition of the present invention is not particularly limited, but if it conforms to the standard (JIS A 6201 “Fly ash for concrete”), the elongation property and the chopping property. It is preferable because it is stable and excellent in dredging workability such as surface smoothness and stable in pumping performance. The blending ratio of fly ash (component (D)) in the mortar composition of the present invention is 20 to 100 parts by mass with respect to 100 parts by mass of cement (component (A)). If it is less than 20 parts by mass, the dredging workability during plastering construction and the pumping ability during spraying construction are poor, and the effect of containing the component (D) is not seen. On the other hand, when the amount exceeds 100 parts by mass, the amount of water for kneading to obtain consistency increases, so that the drying shrinkage increases and a problem in dimensional stability tends to occur. Since the viscosity becomes too high, the dredging workability at the time of plastering is good and the pumpability at the time of spraying is good, so the blending ratio of fly ash (component (D)) in the mortar composition of the present invention is: It is preferable to set it as 40-70 mass parts with respect to 100 mass parts of cement (component (A)).

本発明のモルタル組成物に用いる膨張材(成分(E))は、水和生成物の結晶により膨張する膨張性物質を主成分とする材料を云い、例えば、エトリンガイトの結晶生成により膨張するエトリンガイト系コンクリート用膨張材,カルシウムサルホアルミネート粉末、並びに水酸化カルシウムの結晶生成により膨張する石灰系コンクリート用膨張材,硬焼生石灰等が挙げられる。本発明に用いる膨張性物質の粉末度は、JIS R 5201−1997に規定される比表面積試験による測定したブレーン比表面積の値が、2000〜5000cm/gの範囲のものが好ましい。2000cm/g未満では、脱型後に強度増進する割合が低くなる虞があり、5000cm/g以上では膨張性を得るためにより多い量の膨張性物質が必要となる。 The expansion material (component (E)) used in the mortar composition of the present invention refers to a material whose main component is an expandable substance that expands due to crystals of the hydrated product. For example, an ettringite system that expands due to crystal formation of ettringite Examples thereof include concrete expansion materials, calcium sulfoaluminate powders, expansion materials for lime-based concrete that expands by the formation of calcium hydroxide crystals, and hard calcined lime. The fineness of the expansive substance used in the present invention is preferably such that the value of the Blaine specific surface area measured by the specific surface area test specified in JIS R 5201-1997 is in the range of 2000 to 5000 cm 2 / g. If it is less than 2000 cm 2 / g, the rate of strength enhancement after demolding may be low, and if it is 5000 cm 2 / g or more, a larger amount of expansible material is required to obtain expansibility.

本発明のモルタル組成物における膨張材(成分(E))の配合割合は、セメント(成分(A))100質量部に対し3〜20質量部とする。3質量部未満では収縮低減効果が得られ難く寸法安定性が悪く、成分(E)を含有させた効果が見られない。また、20質量部を超えると、異常膨張を起こす虞があり、強度が低く膨張ひび割れを起こす虞がある。   The mixing ratio of the expansion material (component (E)) in the mortar composition of the present invention is 3 to 20 parts by mass with respect to 100 parts by mass of cement (component (A)). If the amount is less than 3 parts by mass, the shrinkage reduction effect is hardly obtained, the dimensional stability is poor, and the effect of containing the component (E) is not observed. Moreover, when it exceeds 20 mass parts, there exists a possibility of causing abnormal expansion, there exists a possibility that an intensity | strength may be low and an expansion crack may be caused.

本発明のモルタル組成物に用いる硫酸塩(成分(F))は、水中に硫酸イオン(硫酸根)を放出する塩であれば特に限定されないが、強度が高いことから、無水石膏、二水石膏又は半水石膏を主成分とする石膏、硫酸ナトリウムや硫酸カリウム等の硫酸アルカリ金属塩が好ましい。この硫酸塩(成分(F))は、非晶質アルミノ珪酸塩粉末(成分(B))と反応してカルシウムサルホアルミネート水和物等の結晶を生成し、硬化体の収縮を低減することで、寸法安定性に寄与する。本発明のモルタル組成物における硫酸塩(成分(F))の配合割合は、セメント(成分(A))100質量部に対し0.5〜5質量部とする。0.5質量部未満では寸法安定性が悪く、成分(F)を含有させた効果が見られない。また、5質量部を超えると、低温環境下で硬化初期を過ごすと異常膨張を起こすことがある。異常膨張が起こると、強度低下や膨張ひび割れが起こるため好ましくはない。寸法安定性に優れ、且つ異常膨張が起こり難いことから、本発明のモルタル組成物における硫酸塩(成分(F))の配合割合は、セメント(成分(A))100質量部に対し1〜3質量部とすることが好ましい。   The sulfate (component (F)) used in the mortar composition of the present invention is not particularly limited as long as it is a salt that releases sulfate ions (sulfate radicals) into water, but since it has high strength, anhydrous gypsum and dihydrate gypsum. Or the gypsum which has hemihydrate gypsum as a main component, and alkali metal sulfates, such as sodium sulfate and potassium sulfate, are preferable. This sulfate (component (F)) reacts with amorphous aluminosilicate powder (component (B)) to produce crystals such as calcium sulfoaluminate hydrate, and reduces shrinkage of the cured product. This contributes to dimensional stability. The blending ratio of the sulfate (component (F)) in the mortar composition of the present invention is 0.5 to 5 parts by mass with respect to 100 parts by mass of the cement (component (A)). If the amount is less than 0.5 part by mass, the dimensional stability is poor and the effect of containing the component (F) is not observed. On the other hand, when the amount exceeds 5 parts by mass, abnormal expansion may occur when the initial curing is performed in a low temperature environment. If abnormal expansion occurs, strength reduction and expansion cracking occur, which is not preferable. Since the dimensional stability is excellent and abnormal expansion hardly occurs, the blending ratio of the sulfate (component (F)) in the mortar composition of the present invention is 1 to 3 parts per 100 parts by mass of the cement (component (A)). It is preferable to make it a mass part.

本発明のモルタル組成物に用いる減水剤(成分(G))は、種類は限定されず、例えば、ポリカルボン酸塩系減水剤、ポリエーテル系減水剤、ナフタレンスルホン酸塩系減水剤、メラミンスルホン酸塩系減水剤及びリグニンスルホン酸塩系減水剤等の各種減水剤が挙げられ、これらの1種又は2種以上を用いることができる。減水剤として高性能減水剤又は高性能AE減水剤を用いると、モルタルの強度を高くし易いことから好ましい。本発明における減水剤とは、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤及び流動化剤等のセメント分散剤のことである。本発明のモルタル組成物における減水剤(成分(G))の配合割合は、セメント(成分(A))100質量部に対し0.05〜2質量部とする。0.05質量部未満では必要なコンシステンシーを得るために水量が多くなるため乾燥収縮が大きく寸法安定性が悪く、成分(G)を含有させた効果が見られない。また、2質量部を超えると流動性が得られ過ぎて壁や天井に塗り付けると垂れが生じ易い。減水剤としてポリカルボン酸塩系減水剤を用いる場合は、寸法安定性が優れ且つ垂れが生じ難いことから、セメント(成分(A))100質量部に対し0.05〜1質量部とすることが好ましく、0.07〜0.5質量部とすることが更に好ましい。また、減水剤としてポリカルボン酸塩系減水剤以外の減水剤、即ち、ナフタレンスルホン酸塩系減水剤、メラミンスルホン酸塩系減水剤及びリグニンスルホン酸塩系減水剤等を用いる場合は、同様に寸法安定性が優れ且つ垂れが生じ難いことから、セメント(成分(A))100質量部に対し0.1〜2質量部とすることが好ましく、0.3〜1質量部とすることが更に好ましい。   The type of water reducing agent (component (G)) used in the mortar composition of the present invention is not limited. For example, polycarboxylate-based water reducing agent, polyether-based water reducing agent, naphthalene sulfonate-based water reducing agent, melamine sulfone. Various water-reducing agents such as acid salt-based water reducing agents and lignin sulfonate-based water reducing agents can be used, and one or more of these can be used. It is preferable to use a high-performance water reducing agent or a high-performance AE water reducing agent as the water reducing agent because the strength of the mortar can be easily increased. The water reducing agent in the present invention is a cement dispersant such as a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a high performance AE water reducing agent and a fluidizing agent. The mixing ratio of the water reducing agent (component (G)) in the mortar composition of the present invention is 0.05 to 2 parts by mass with respect to 100 parts by mass of cement (component (A)). If it is less than 0.05 parts by mass, the amount of water increases to obtain the required consistency, so that the drying shrinkage is large and the dimensional stability is poor, and the effect of containing the component (G) is not seen. Moreover, when it exceeds 2 mass parts, fluidity | liquidity will be acquired too much and it will be easy to produce dripping if it applies to a wall or a ceiling. When a polycarboxylate-based water reducing agent is used as the water reducing agent, it is excellent in dimensional stability and hardly sags, so that it is 0.05 to 1 part by mass with respect to 100 parts by mass of cement (component (A)). Is preferable, and it is still more preferable to set it as 0.07-0.5 mass part. In addition, when using water reducing agents other than polycarboxylate water reducing agents as water reducing agents, that is, naphthalene sulfonate water reducing agents, melamine sulfonate water reducing agents, lignin sulfonate water reducing agents, etc. Since it is excellent in dimensional stability and hardly sags, it is preferably 0.1 to 2 parts by mass, more preferably 0.3 to 1 part by mass with respect to 100 parts by mass of cement (component (A)). preferable.

本発明のモルタル組成物に用いる増粘剤(成分(H))は、種類は限定されないが、例えばヒドロキシエチルメチルセルロース(HEMC)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシエチルエチルセルロース(HEEC)等のヒドロキシアルキルアルキルセルロース、ヒドロキシエチルセルロース(HEC)やヒドロキシプロピルセルロース(HPC)等のヒドロキシアルキルセルロース等の水溶性セルロース;アルギン酸、β−1,3グルカン、プルラン、ウェランガム等の多糖類;アクリル樹脂やポリビニルアルコール等のポリビニル化合物;メチルスターチ、エチルスターチ、プロピルスターチ、メチルプロピルスターチ等のアルキルスターチ、ヒドロキシエチルスターチ又はヒドロキシプロピルスターチ等のヒドロキシアルキルスターチ、或いは、ヒドロキシプロピルメチルスターチ等のヒドロキシアルキルアルキルスターチ等スターチエーテル等が好ましい例として挙げられ、これらの一種又は二種以上の使用が可能である。未硬化のモルタルがドライアウト、剥離、剥落、垂れ及び変形が起こり難いことから、水溶性セルロース及び/又はスターチエーテルが好ましい。本発明のモルタル組成物における増粘剤(成分(H))の配合割合は、セメント(成分(A))100質量部に対し0.05〜0.4質量部とする。0.05質量部未満ではドライアウトを起こし付着力が得られないことがある。また、0.4質量部を超えるとモルタルの粘性が高くなり、施工に必要なコンシステンシーを得るために水量が多く必要になるため、寸法安定性が悪い。高い付着力が得られ且つ寸法安定に優れることから、セメント(成分(A))100質量部に対し0.1〜0.2質量部とすることが好ましい。   The type of the thickener (component (H)) used in the mortar composition of the present invention is not limited. For example, hydroxyalkyl such as hydroxyethyl methylcellulose (HEMC), hydroxypropylmethylcellulose (HPMC), and hydroxyethylethylcellulose (HEEC). Water-soluble cellulose such as hydroxyalkyl cellulose such as alkyl cellulose, hydroxyethyl cellulose (HEC) and hydroxypropyl cellulose (HPC); polysaccharides such as alginic acid, β-1,3 glucan, pullulan and welan gum; acrylic resin and polyvinyl alcohol Polyvinyl compounds; alkyl starches such as methyl starch, ethyl starch, propyl starch, and methylpropyl starch; hydroxy such as hydroxyethyl starch and hydroxypropyl starch Alkyl starch, or hydroxyalkyl alkyl starch such as starch ethers such as hydroxypropyl starch and the like as a preferable example, it is possible to use alone or in combination. Water-soluble cellulose and / or starch ether is preferred because uncured mortar is unlikely to dry out, peel off, peel off, sag and deform. The blending ratio of the thickener (component (H)) in the mortar composition of the present invention is 0.05 to 0.4 parts by mass with respect to 100 parts by mass of cement (component (A)). If it is less than 0.05 part by mass, dryout may occur and adhesion may not be obtained. On the other hand, when the amount exceeds 0.4 parts by mass, the viscosity of the mortar becomes high, and a large amount of water is required to obtain the consistency required for construction, so that the dimensional stability is poor. Since high adhesive force is obtained and dimensional stability is excellent, the amount is preferably 0.1 to 0.2 parts by mass with respect to 100 parts by mass of cement (component (A)).

本発明のモルタル組成物に用いる消泡剤(成分(I))は、種類は限定されず、例えば、市販のセメント用消泡剤、市販のセメントモルタル用消泡剤又は市販のコンクリート用消泡剤の他、他用途の鉱物油系、エーテル系、シリコーン系等の消泡剤、トリブチルフォスフェート、ポリジメチルシロキサン又はポリオキシアルキレンアルキルエーテル系非イオン界面活性剤が好適な例として挙げられ、これらの1種又は2種以上を用いることができる。また、本発明に用いる消泡剤としては、液体のものでも粉末状のものでもよい。粉末状の消泡剤としては、液体消泡剤を、シリカ粉末等の無機質粉末に担持させて粉末状にしたものも用いることができる。本発明のモルタル組成物における消泡剤(成分(I))の配合割合は、セメント(成分(A))100質量部に対し0.05〜0.5質量部とする。0.05質量部未満では消泡効果がほとんど得られず単位容積質量が軽くなり強度低下を起こす虞があり、成分(I)を含有させた効果が見られない。また、0.5質量部を超えると硬化不良や強度低下を起こす場合があり、または、モルタル表面に浮き出てモルタルを塗り重ねる場合の付着不良を起こす場合がある。消泡効果が充分得られ強度が得られ、且つ硬化不良、強度低下及び付着不良が生じ難いことから、セメント(成分(A))100質量部に対し0.1〜0.3質量部とすることが好ましい。   The type of the antifoaming agent (component (I)) used in the mortar composition of the present invention is not limited. For example, a commercially available antifoaming agent for cement, a commercially available antifoaming agent for cement mortar, or a commercially available antifoaming agent for concrete. In addition to the agent, other applications include mineral oil-based, ether-based, silicone-based antifoaming agents, tributyl phosphate, polydimethylsiloxane or polyoxyalkylene alkyl ether-based nonionic surfactants. 1 type (s) or 2 or more types can be used. In addition, the antifoaming agent used in the present invention may be liquid or powdery. As the powdered antifoaming agent, a powdered antifoaming agent supported on an inorganic powder such as silica powder can be used. The mixing ratio of the antifoaming agent (component (I)) in the mortar composition of the present invention is 0.05 to 0.5 parts by mass with respect to 100 parts by mass of cement (component (A)). If the amount is less than 0.05 parts by mass, the defoaming effect is hardly obtained, the unit volume mass is lightened and the strength may be lowered, and the effect of containing the component (I) is not observed. Moreover, when it exceeds 0.5 mass part, a hardening defect and intensity | strength fall may be raise | generated, or the adhesion failure in the case where it floats on the mortar surface and coats mortar may be caused. A defoaming effect is sufficiently obtained, strength is obtained, and poor curing, reduced strength, and poor adhesion are unlikely to occur, so 0.1 to 0.3 parts by mass with respect to 100 parts by mass of cement (component (A)). It is preferable.

本発明のモルタル組成物に用いる有機繊維(成分(J))は、種類は限定されず、例えば、ビニロン繊維、アクリル繊維、ナイロン繊維、ポリプロピレン繊維、セルロース繊維、ポリエチレン繊維などが好適な例として挙げられ、これらの1種又は2種以上を用いることができる。本発明のモルタル組成物における有機繊維(成分(J))の配合割合は、セメント(成分(A))100質量部に対し0.2〜2質量部とする。0.2質量部未満ではひび割れが起こり易く、鏝作業性が悪い虞があり、成分(J)を含有させた効果が不充分である。また、2質量部を超えるとモルタルのコンシステンシーが低下し、下地への付着性が低下する。これは、モルタル中のペースト分を繊維が抱え込み、下地表面の微細な空隙(溝状の空間含む。)に充分にペーストが充填されない、つまり、下地への馴染みが悪くなり、下地への付着力が低下するものと考えられる。また、鏝によりモルタル表面を平滑にする際に、繊維が毛羽立ち、平滑な面が得られ難い。ひび割れが起こり難く、鏝作業性がよく、平滑なモルタル表面を得易いことから、セメント(成分(A))100質量部に対し0.5〜1質量部とすることが好ましい。   The type of the organic fiber (component (J)) used in the mortar composition of the present invention is not limited. For example, vinylon fiber, acrylic fiber, nylon fiber, polypropylene fiber, cellulose fiber, polyethylene fiber and the like are preferable examples. 1 type, or 2 or more types of these can be used. The compounding ratio of the organic fiber (component (J)) in the mortar composition of the present invention is 0.2 to 2 parts by mass with respect to 100 parts by mass of cement (component (A)). If the amount is less than 0.2 parts by mass, cracks are likely to occur, and the workability of dredging may be poor, and the effect of containing the component (J) is insufficient. On the other hand, if it exceeds 2 parts by mass, the consistency of the mortar is lowered and the adhesion to the ground is lowered. This is because the fiber contains the paste in the mortar, and the fine voids (including groove-like spaces) on the surface of the base are not sufficiently filled with the paste. In other words, the familiarity with the base becomes poor and the adhesion to the base becomes poor. Is considered to decrease. Further, when the surface of the mortar is smoothed with wrinkles, the fibers become fluffy and it is difficult to obtain a smooth surface. Since cracking is unlikely to occur, good workability is achieved, and a smooth mortar surface is easily obtained, the amount is preferably 0.5 to 1 part by mass with respect to 100 parts by mass of cement (component (A)).

本発明のモルタル組成物に用いる収縮低減剤(成分(K))は、モルタルの硬化体中の水分が蒸発する際に発生する応力を低下させる機能を有する物質であれば良く、種類は限定されず、例えば、ポリオキシアルキレン化合物、ポリエーテル系化合物あるいはアルキレンオキシド化合物等を用いることができる。具体的には、ポリオキシエチレン・アルキルアリルエーテル、ポリプロピレングリコール、低級アルコールアルキレンオキシド付加物、グリコールエーテル・アミノアルコール誘導体、ポリエーテル、ポリオキシアルキレングリコール、エチレンオキシドメタノール付加物、エチレンオキシド・プロピレンオキシド重合体、フェニル・エチレンオキシド重合体、シクロアルキレン・エチレンオキシド重合体あるいはジメチルアミン・エチレンオキシド重合体等が好適なものとして例示される。これらは一種または二種以上を併用することができる。市販のセメント用、モルタル用、石膏用又はコンクリート用の収縮低減剤を好適なものとして用いることができる。本発明のモルタル組成物における収縮低減剤(成分(K))の配合割合は、セメント(成分(A))100質量部に対し1〜3質量部とする。1質量部未満ではひび割れが起こり易く、成分(K)を含有させた効果が不充分である。また、3質量部を超えるとモルタルの強度が低下する虞がある。ひび割れが起こり難く、強度が高いことから、セメント(成分(A))100質量部に対し1.5〜2質量部とすることが好ましい。   The shrinkage reducing agent (component (K)) used in the mortar composition of the present invention may be any substance that has a function of reducing the stress generated when moisture in the cured mortar body evaporates. For example, a polyoxyalkylene compound, a polyether compound, an alkylene oxide compound, or the like can be used. Specifically, polyoxyethylene / alkyl allyl ether, polypropylene glycol, lower alcohol alkylene oxide adduct, glycol ether / amino alcohol derivative, polyether, polyoxyalkylene glycol, ethylene oxide methanol adduct, ethylene oxide / propylene oxide polymer, Preferred examples include phenyl / ethylene oxide polymers, cycloalkylene / ethylene oxide polymers, and dimethylamine / ethylene oxide polymers. These can be used alone or in combination of two or more. A commercially available shrinkage reducing agent for cement, mortar, gypsum, or concrete can be used as a suitable one. The mixing ratio of the shrinkage reducing agent (component (K)) in the mortar composition of the present invention is 1 to 3 parts by mass with respect to 100 parts by mass of cement (component (A)). If it is less than 1 part by mass, cracks are likely to occur, and the effect of containing the component (K) is insufficient. Moreover, when it exceeds 3 mass parts, there exists a possibility that the intensity | strength of mortar may fall. Since cracking hardly occurs and the strength is high, the amount is preferably 1.5 to 2 parts by mass with respect to 100 parts by mass of cement (component (A)).

本発明のモルタル組成物には、上記の構成要素(成分(A)〜成分(K))の他に、本発明の効果を損なわない範囲で他の成分を含有させることができる。そのような成分として、例えば、セメント用ポリマー、防水材、防錆剤、硬化促進剤、硬化遅延剤、保水剤、撥水剤、防錆剤、防凍剤、顔料、白華防止剤、急結剤(材)、急硬剤(材)、発泡剤、空気連行剤、表面硬化剤、砕石や陸砂利等の粗骨材等が挙げられる。但し、高炉スラグ粉末等の各種スラグ粉末やシリカフューム等のポゾラン物質を2質量以上含むことは、モルタル硬化体の収縮量が大きくなり、寸法安定性の点で好ましくない。また、本発明で使用される混和材料は、粉末状でも水溶液状でも使用可能である。   The mortar composition of the present invention can contain other components in addition to the above-described constituent elements (component (A) to component (K)) within a range not impairing the effects of the present invention. Examples of such components include cement polymers, waterproofing materials, rust preventives, curing accelerators, cure retarders, water retention agents, water repellents, rust preventives, antifreeze agents, pigments, antifade, Examples thereof include agents (materials), rapid hardening agents (materials), foaming agents, air entraining agents, surface hardeners, coarse aggregates such as crushed stones and land gravel. However, the inclusion of 2 masses or more of various slag powders such as blast furnace slag powder and pozzolanic substances such as silica fume is not preferable in terms of dimensional stability because the shrinkage of the mortar hardened body becomes large. The admixture used in the present invention can be used in the form of powder or aqueous solution.

本発明のモルタルは、上記モルタル組成物と、該モルタル組成物に含有するセメント100質量部に対して50〜100質量部の水とを含有してなる。50質量部未満では混練し難く、混練できても左官作業やモルタル吹付け作業は行い難い。また、100質量部を超えると、寸法安定性が悪くなり、ひび割れの発生の虞が高まる。更に、モルタルをコンクリート壁面に塗付けた場合に、初期に垂れ又は変形が起こり易い。混練し易く、左官作業及びモルタル吹付け作業が行い易く、壁面に塗付けても垂れ及び変形が起こり難いことから、モルタル組成物に含有するセメント100質量部に対して50〜90質量部の水とを含有することが好ましい。尚、本発明において使用する水の量は、水溶液やエマルション等の液状の混和材料に含まれる水量も考慮したものとする。   The mortar of this invention contains the said mortar composition and 50-100 mass parts water with respect to 100 mass parts of cement contained in this mortar composition. If it is less than 50 parts by mass, it is difficult to knead, and even if kneading is possible, it is difficult to perform plastering work or mortar spraying work. Moreover, when it exceeds 100 mass parts, dimensional stability will worsen and the possibility of generation | occurrence | production of a crack will increase. Furthermore, when mortar is applied to a concrete wall surface, it tends to sag or deform in the initial stage. Easy to knead, easy to perform plastering and mortar spraying work, and difficult to sag and deform even when applied to a wall surface. Therefore, 50 to 90 parts by mass of water with respect to 100 parts by mass of cement contained in the mortar composition It is preferable to contain. The amount of water used in the present invention also takes into account the amount of water contained in a liquid admixture such as an aqueous solution or emulsion.

本発明のモルタルは、モルタルミキサやコンクリートミキサ等のミキサで混練し製造することが好ましい。用いることのできるミキサとしては連続式ミキサでもバッチ式ミキサでも良く、例えばパン型コンクリートミキサ、パグミル型コンクリートミキサ、重力式コンクリートミキサ、グラウトミキサ、ハンドミキサ、左官ミキサ等が挙げられる。   The mortar of the present invention is preferably produced by kneading with a mixer such as a mortar mixer or a concrete mixer. The mixer that can be used may be a continuous mixer or a batch mixer, such as a pan concrete mixer, a pug mill concrete mixer, a gravity concrete mixer, a grout mixer, a hand mixer, and a plaster mixer.

本発明のモルタル被覆方法は、
(ア)コンクリート構造物表面を吸水調整する工程と、
(イ)前記工程(ア)により吸水調整したコンクリート構造物表面に、上記のモルタルを塗布する工程
とを具備する。
The mortar coating method of the present invention comprises:
(A) the process of adjusting the water absorption of the concrete structure surface;
(B) The step of applying the mortar to the surface of the concrete structure whose water absorption is adjusted in the step (a).

上記工程(ア)(吸水調整工程)は、コンクリート構造物表面に水又は吸水調整材を塗布することで、モルタルを塗布したときに、モルタル中の水分がコンクリートに吸われることを防ぎ又は低減し、モルタルの寸法安定性、下地コンクリートとの一体性を向上させる。ここで用いる吸水調整材としては、塗布したコンクリート表面に被膜又は吸水調整材層を形成するもの、或いは、塗布したコンクリート表面に含浸し、コンクリート表面付近におけるコンクリート中の微細な空隙を埋めることの出来るものであればよく、例えば、ポリウレタン系樹脂、ポリウレア系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、アクリルシリコン系樹脂、シリコーン系樹脂、エポキシ系樹脂、スチレン・ブタジエン系ゴム、フッ素樹脂等のポリマーディスパージョン、珪酸リチウム水溶液等の珪酸アルカリ水溶液、アルキルアルコキシシランやポリオルガノシロキサン等のシラン系化合物、溶剤系塗料、ポリマーセメントペースト、ポリマーセメントモルタル、パラフィンエマルション等の防水材、エポキシ系接着剤等の接着剤、コロイダルシリカ等が好適なものとして挙げられ、これらの2種以上を併用してもよい。   The above step (a) (water absorption adjusting step) prevents or reduces the moisture in the mortar from being absorbed by the concrete when the mortar is applied by applying water or a water absorption adjusting material to the concrete structure surface. Improves the dimensional stability of mortar and the integrity of the foundation concrete. As the water absorption adjusting material used here, a coating or a water absorption adjusting material layer is formed on the applied concrete surface, or the applied concrete surface is impregnated to fill a fine void in the concrete near the concrete surface. For example, a polyurethane resin, a polyurea resin, an acrylic resin, an acrylic urethane resin, an acrylic silicon resin, a silicone resin, an epoxy resin, a styrene / butadiene rubber, a fluorine resin, or the like. John, alkaline silicate aqueous solution such as lithium silicate aqueous solution, silane compounds such as alkylalkoxysilane and polyorganosiloxane, solvent-based paint, polymer cement paste, polymer cement mortar, paraffin emulsion and other waterproofing materials, epoxy adhesive, etc. Adhesive, colloidal silica and the like as preferred, may be used in combination of two or more of these.

工程(ア)(吸水調整工程)において、コンクリート構造物表面に水又は吸水調整材を塗布する方法としては、特に限定されず、例えば、刷毛、鏝、ローラー、スポンジ等を用い塗り付ける方法、噴霧器による噴霧、ジョウロ等を用い掛け流す方法、並びに、水又は吸水調整材を浸した布等をコンクリート表面に貼り付ける方法等が好適な方法として挙げられる。   In the step (a) (water absorption adjustment step), the method of applying water or a water absorption adjustment material to the concrete structure surface is not particularly limited. For example, a method of applying using a brush, scissors, roller, sponge, etc., by a sprayer Examples of suitable methods include a method of spraying using water, watering, and the like, and a method of attaching a cloth or the like soaked with water or a water absorption adjusting material to the concrete surface.

工程(イ)(モルタル塗布工程)において、吸水調整工程(工程(ア))により吸水調整したコンクリート構造物表面に、上記のモルタルを塗布する方法は、特に限定されず、常法により行うことができる。例えば、鏝による塗り付け等の左官工法、モルタル吹付け等の吹付け工法、並びに、左官工法と吹付け工法を併用した方法等が好適な例として挙げられる。   In the step (I) (mortar application step), the method of applying the mortar to the surface of the concrete structure that has been adjusted for water absorption in the water absorption adjustment step (step (A)) is not particularly limited. it can. Examples of suitable examples include plastering methods such as plastering, spraying methods such as mortar spraying, and methods using both plastering methods and spraying methods.

本発明のモルタル被覆方法には、上記工程(ア)(吸水調整工程)及び工程(イ)(モルタル塗布工程)の他に、
(ウ)コンクリート構造物表面における、劣化した又は余分なコンクリートを除去し健全なコンクリートを露出させる工程、
(エ)コンクリート構造物表面又は/及び上記モルタル表面に、劣化因子浸透防止材を塗布する工程、
(オ)コンクリート構造物表面、上記モルタル表面又は/及びコンクリート構造物表面に露出している鋼材に、防錆剤を塗布する工程、
から選ばれる1乃至3の工程を具備することが好ましい。工程(ウ)を具備するときは、他の工程よりも先に行うことが好ましい。また、工程(エ)又は工程(オ)を具備し且つコンクリート構造物表面に劣化因子浸透防止材又は防錆剤を塗布するときは、工程(ア)の前にこれらの工程を行うことが好ましい。但し、モルタル表面又は/及びコンクリート構造物表面に露出している鋼材に劣化因子浸透防止材又は防錆剤を塗布するときは、工程(ア)の後でもよい。また、工程(エ)及び工程(オ)は、1回の工程でなくともよく、複数回の工程に分けてもよい。
In the mortar coating method of the present invention, in addition to the above step (a) (water absorption adjusting step) and step (b) (mortar coating step),
(C) The process of removing the deteriorated or excess concrete on the surface of the concrete structure to expose healthy concrete,
(D) applying a deterioration factor penetration preventing material to the concrete structure surface or / and the mortar surface;
(E) a step of applying a rust preventive to the concrete structure surface, the mortar surface or / and the steel material exposed on the concrete structure surface;
It is preferable to comprise 1 to 3 processes selected from. When the step (c) is provided, it is preferably performed before the other steps. Further, when the step (e) or the step (e) is provided and the deterioration factor permeation preventing material or the rust preventive agent is applied to the surface of the concrete structure, it is preferable to perform these steps before the step (a). . However, when applying a deterioration factor penetration preventing material or a rust inhibitor to the steel material exposed on the mortar surface and / or the concrete structure surface, it may be after the step (a). Further, the step (d) and the step (e) may not be a single step, and may be divided into a plurality of steps.

工程(ウ)(コンクリート除去工程)において、劣化したコンクリートを除去する方法は、特に限定されない。好適な除去方法としては、ダイヤモンドカッターやワイヤーソーにより切断する方法、コンクリートハンマー等のコンクリートブレーカにより斫り取る方法、劣化したコンクリート面に設けた穴や溝に静的破砕剤等の破砕剤を充填し発生する圧力により破砕する方法、劣化したコンクリート面に設けた穴や溝にクサビ等を打ち込み破砕する方法、路面切削機や舗装路面切削整正機等により削り取る方法、サンドブラストのようにブラスト材を劣化したコンクリート面に衝突させ削り取る方法、ウォータージェットを用いて切断又は削り取る方法、或いはこれらの2種以上を併用する方法が挙げられる。   In the step (c) (concrete removal step), the method for removing the deteriorated concrete is not particularly limited. Suitable removal methods include cutting with a diamond cutter or wire saw, scraping with a concrete breaker such as a concrete hammer, filling holes or grooves in a deteriorated concrete surface with a crushing agent such as a static crushing agent. A method of crushing with generated pressure, a method of crushing wedges or the like into holes or grooves provided in deteriorated concrete surfaces, a method of scraping with a road surface cutting machine or a pavement surface cutting machine, a blasting material such as sand blasting Examples include a method of scraping and scraping against a deteriorated concrete surface, a method of cutting or scraping using a water jet, or a method of using two or more of these in combination.

露出したコンクリートが健全であるか確認する方法としては、例えば目視で確認する方法、ハンドハンマーやコンクリートブレーカ等による打音により確認する方法、シュミットハンマー等の試験機を用いる方法、フェノールフタレイン溶液等の試薬を塗布し露出したコンクリート中のイオン濃度を確認する方法、露出したコンクリートを一部取り化学的又は物理的に含まれるイオンの濃度を測定する方法等が挙げられ、これらの2種以上を併用して確認してもよい。   Examples of the method for confirming whether the exposed concrete is healthy include, for example, a method for visual confirmation, a method for confirming by hammering with a hand hammer or a concrete breaker, a method using a tester such as a Schmitt hammer, a phenolphthalein solution, etc. The method of confirming the ion concentration in the exposed concrete by applying the reagent of the above, the method of taking a part of the exposed concrete and measuring the concentration of ions that are chemically or physically contained, etc. You may confirm by using together.

工程(エ)(劣化因子浸透防止材塗布工程)に用いる劣化因子浸透防止材とは、例えば、ポリウレタン系樹脂、ポリウレア系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、アクリルシリコン系樹脂、シリコーン系樹脂、エポキシ系樹脂、スチレン・ブタジエン系ゴム、フッ素樹脂等のポリマーディスパージョン、珪酸リチウム水溶液等の珪酸アルカリ水溶液、アルキルアルコキシシランやポリオルガノシロキサン等のシラン系化合物、溶剤系塗料、ポリマーセメントペースト、ポリマーセメントモルタル、パラフィンエマルション等の防水材、エポキシ系接着剤等の接着剤、コロイダルシリカ等が好適なものとして挙げられ、これらの2種以上を併用してもよい。工程(エ)に用いる劣化因子浸透防止材には、第3級アミン等のアミン類、亜硝酸カルシウムや亜硝酸リチウム等の亜硝酸塩、リン酸塩、クロム酸塩、有機リン酸エステル、エステル塩、有機酸類、スルホン酸類、アルキルフェノール類、メルカプタン類、ニトロ化合物等の防錆剤が含有していてもよい。また、劣化因子浸透防止材をコンクリート構造物表面等に塗布する方法としては、特に限定されず、例えば、刷毛、鏝、ローラー、スポンジ等を用いる方法、噴霧器による噴霧、ジョウロ等を用い掛け流す方法、及び上記劣化因子浸透防止材を含有したセメントペースト、モルタルを塗布する方法等が好適な方法として挙げられる。尚、劣化因子とは、含浸又は付着すると、化学反応又は電気化学的反応により、コンクリート、モルタル又は鋼材が劣化する類のものを云い、例えば、炭酸ガスや亜硫酸ガス等の酸性ガス、塩化物イオン、硫酸イオン、ナトリウムイオン等が挙げられる。劣化因子浸透防止材をモルタル表面に塗布するときは、モルタルが硬化後に塗布することが好ましく、モルタル硬化後1ヶ月以内がより好ましい。   Examples of the deterioration factor penetration preventing material used in the step (d) (degradation factor penetration preventing material application step) include, for example, polyurethane resins, polyurea resins, acrylic resins, acrylic urethane resins, acrylic silicon resins, and silicone resins. , Epoxy resin, styrene / butadiene rubber, polymer dispersion such as fluororesin, alkali silicate aqueous solution such as lithium silicate aqueous solution, silane compound such as alkylalkoxysilane and polyorganosiloxane, solvent paint, polymer cement paste, polymer A waterproof material such as cement mortar and paraffin emulsion, an adhesive such as an epoxy-based adhesive, colloidal silica, and the like are preferable, and two or more of these may be used in combination. Degradation factor permeation preventive materials used in the process (d) include amines such as tertiary amines, nitrites such as calcium nitrite and lithium nitrite, phosphates, chromates, organophosphates, ester salts In addition, rust inhibitors such as organic acids, sulfonic acids, alkylphenols, mercaptans, and nitro compounds may be contained. In addition, the method for applying the deterioration factor permeation preventive material to the concrete structure surface or the like is not particularly limited. For example, a method using a brush, scissors, a roller, a sponge, etc., a spraying method using a sprayer, a method using a watering device, etc. And a cement paste containing the deterioration factor permeation preventive material, a method of applying mortar, and the like. The deterioration factor means a kind of material that deteriorates concrete, mortar, or steel material due to chemical reaction or electrochemical reaction when impregnated or adhered, for example, acidic gas such as carbon dioxide gas or sulfurous acid gas, chloride ion, etc. , Sulfate ion, sodium ion and the like. When applying the deterioration factor permeation preventive material to the mortar surface, the mortar is preferably applied after curing, and more preferably within one month after mortar curing.

工程(オ)(防錆剤塗布工程)に用いる防錆剤としては、例えば、第3級アミン等のアミン類、亜硝酸カルシウムや亜硝酸リチウム等の亜硝酸塩、リン酸塩、クロム酸塩、有機リン酸エステル、エステル塩、有機酸類、スルホン酸類、アルキルフェノール類、メルカプタン類、ニトロ化合物等が好適なものとして挙げられ、これらの2種以上を併用してもよい。また、コンクリート構造物表面、上記モルタル表面又は/及びコンクリート構造物表面に露出している鋼材(「コンクリート表面等」ということがある。)に、防錆剤を塗布する方法としては、特に限定されず、例えば、刷毛、鏝、ローラー、スポンジ等を用いる方法、噴霧器による噴霧、ジョウロ等を用い掛け流す方法、及び上記防錆剤を含有したセメントペースト、モルタルを塗布する方法、防錆剤を浸した布等をコンクリート表面等に貼り付ける方法等が好適な方法として挙げられる。防錆剤をモルタル表面に塗布するときは、モルタルが硬化後に塗布することが好ましい。   Examples of the rust inhibitor used in the step (e) (rust inhibitor application process) include amines such as tertiary amines, nitrites such as calcium nitrite and lithium nitrite, phosphates, chromates, Organic phosphoric acid esters, ester salts, organic acids, sulfonic acids, alkylphenols, mercaptans, nitro compounds and the like are preferred, and two or more of these may be used in combination. Further, the method for applying a rust inhibitor to the concrete structure surface, the steel material exposed on the mortar surface and / or the concrete structure surface (sometimes referred to as “concrete surface, etc.”) is not particularly limited. For example, a method using a brush, scissors, roller, sponge, etc., a spraying method using a sprayer, a method of pouring using a water fountain, etc., a method of applying a cement paste or mortar containing the above rust preventive, and a rust preventive A suitable method is a method of attaching a cloth or the like to a concrete surface or the like. When applying the rust inhibitor to the mortar surface, it is preferable to apply the mortar after curing.

[実施例1]
[モルタル組成物の製造]
表1〜表4に示す配合割合でミキサで乾式混合しプレミックスモルタル(モルタル組成物)(実施品1〜18及び比較品1〜24)を製造した。使用材料を以下に示した。
<使用材料>
(A) セメント:
A1:普通ポルトランドセメント(太平洋セメント社製)
A2:早強ポルトランドセメント(太平洋セメント社製)

(B) 非晶質アルミノ珪酸塩:
B1:MetaMax HRM(商品名、メタカオリン,平均粒子径2μm,Engelhard社製)
ここで、平均粒子径とは、

(C) アクリル酸系モノマーを構成要素として有するポリマーディスパージョン又は再乳化形粉末樹脂:
C1:ポリトロンA−1500(商品名、アクリル・スチレン共重合体系エマルション(不揮発成分45質量%),旭化成ケミカルズ社製)
C2:EROTEX WR8600(商品名、オールアクリル重合体系粉末,Akzonobel社製)
C3:Mowinyl-Powder LDM 7000P(商品名、オールアクリル重合体系粉末,ニチゴー・モビニール社製)

(D) フライアッシュ
D1:常盤火力産業社製

(E) 膨張材:

E1:太平洋エクスパン(商品名、太平洋マテリアル社製)
E2:太平洋ジプカル(商品名、太平洋マテリアル社製)

(F) 硫酸塩:
F1:硫酸ナトリウム(関東化学社製、試薬)

(G) 減水剤:
G1:マイティ100(商品名、ナフタリンスルホン酸ホルマリン縮重合体を有効成分とする分散剤,花王株式会社)

G2:コアフローNF−200(商品名、ポリカルボン酸系高性能減水剤,太平洋マテリアル社製)
G3:メルメントF10M(商品名、メラミン樹脂スルホン酸ホルマリン縮合物, SKW社製)

(H) 増粘剤:
H1:メトローズ90SH?4000(商品名、,信越化学工業株式会社製)
H2:Starvis SE25(商品名、変性スターチエーテル,BASFジャパン社製)

(I) 消泡剤:
I1:アデカネートB317F(商品名、非イオン界面活性剤,ADEKA社製)

(J) 有機繊維:
J1:RMS 182*6(商品名、ビニロン繊維,長さ6mm,クラレ社製)
J2:タフバインダー(商品名、ナイロン繊維,長さ5mm,東レ社製)
J3:アボセルPWC500(商品名、セルロース短繊維:レッテンマイヤー社製)

(K) 収縮低減剤:
K1:テトラガードPW(商品名、太平洋マテリアル社製)

(L) 細骨材:
L1:三河産珪砂(F.M.2.2に粒度調整)

(M) 水硬性組成物
M1:SF−CD(商品名、シリカフューム,巴工業社製)
M2:ファインセラメント10A(商品名、スラグ微粉末、ブレーン法による比表面積8000cm/g,ディ・シィ社製)
[Example 1]
[Production of mortar composition]
Premix mortars (mortar compositions) (Examples 1 to 18 and Comparative products 1 to 24) were produced by dry mixing with a mixer at the blending ratios shown in Tables 1 to 4. The materials used are shown below.
<Materials used>
(A) Cement:
A1: Ordinary Portland cement (manufactured by Taiheiyo Cement)
A2: Early strong Portland cement (manufactured by Taiheiyo Cement)

(B) Amorphous aluminosilicate:
B1: MetaMax HRM (trade name, metakaolin, average particle size 2 μm, manufactured by Engelhard)
Here, the average particle diameter is

(C) Polymer dispersion or re-emulsified powder resin having an acrylic monomer as a constituent element:
C1: Polytron A-1500 (trade name, acrylic / styrene copolymer emulsion (nonvolatile component 45% by mass), manufactured by Asahi Kasei Chemicals)
C2: EROTEX WR8600 (trade name, all-acrylic polymer powder, manufactured by Akzonobel)
C3: Mowinyl-Powder LDM 7000P (trade name, all-acrylic polymer powder, manufactured by Nichigo Movinyl)

(D) Fly ash D1: Tokiwa Thermal Power Company

(E) Expansion material:

E1: Pacific Expan (trade name, manufactured by Taiheiyo Materials Co., Ltd.)
E2: Taiheiyo Gypcal (trade name, manufactured by Taiheiyo Materials Co., Ltd.)

(F) Sulfate:
F1: Sodium sulfate (manufactured by Kanto Chemical Co., reagent)

(G) Water reducing agent:
G1: Mighty 100 (trade name, dispersant containing naphthalenesulfonic acid formalin condensation polymer as an active ingredient, Kao Corporation)

G2: Coreflow NF-200 (trade name, polycarboxylic acid-based high-performance water reducing agent, manufactured by Taiheiyo Materials Co., Ltd.)
G3: Melment F10M (trade name, melamine resin sulfonic acid formalin condensate, manufactured by SKW)

(H) Thickener:
H1: Metrozu 90SH? 4000 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
H2: Starvis SE25 (trade name, modified starch ether, manufactured by BASF Japan)

(I) Antifoam agent:
I1: Adecanate B317F (trade name, nonionic surfactant, manufactured by ADEKA)

(J) Organic fiber:
J1: RMS 182 * 6 (trade name, vinylon fiber, length 6 mm, manufactured by Kuraray Co., Ltd.)
J2: Tough binder (trade name, nylon fiber, length 5 mm, manufactured by Toray Industries, Inc.)
J3: Avocel PWC500 (trade name, short cellulose fiber: manufactured by Rettenmeier)

(K) Shrinkage reducing agent:
K1: Tetra Guard PW (trade name, manufactured by Taiheiyo Materials Co., Ltd.)

(L) Fine aggregate:
L1: Mikawa quartz sand (particle size adjustment to FM 2.2)

(M) Hydraulic composition M1: SF-CD (trade name, silica fume, manufactured by Sakai Kogyo Co., Ltd.)
M2: Fine Serament 10A (trade name, fine slag powder, specific surface area of 8000 cm 2 / g by brane method, manufactured by D.C.)

Figure 2015117166
Figure 2015117166

Figure 2015117166
Figure 2015117166

Figure 2015117166
Figure 2015117166

Figure 2015117166
Figure 2015117166

[モルタルの製造]
プレミックスモルタル(モルタル組成物)(実施品1〜18及び比較品1〜24)に、表1〜表4に示す配合割合で水(佐倉市上水)加え、ホバート社製ミキサ(型番:N−10)を用いて、JIS R 5201「セメントの物理試験方法」に準じて、3分間混練することでモルタルを製造した。作製したモルタルの品質試験として、以下に示す通り、膨張性試験、圧縮強度試験及びを行った。これらの結果を表5〜表8に示した。
<品質試験方法>
・単位容積質量試験
JIS A1171「ポリマーセメントモルタルの試験方法」の単位容積質量試験に準じて測定した。

・フロー試験
JIS R5201「セメントの物理試験方法」のフロー試験に準じて測定した。

・圧縮強度試験
JIS A 1171の圧縮強さ試験に準じて実施した。材齢28日の圧縮強度45N/mm以上を実用的な範囲(○)とし、45N/mm未満を圧縮強度不足(×)として評価した。

・付着強度試験
コンクリート歩道板(300×300×60mm)に厚さ10 mmでモルタルを塗り付け、20℃相対湿度60%で養生した。材齢28日で40×40mmの方形に、コンクリート歩道板表面に達するまでダイヤモンドカッターにて切込みを入れ、同サイズの鋼製アタッチメントをエポキシ接着剤にて貼り付け、硬化後、建研式接着力試験器にて施工面に対し垂直に引張り、付着強度を測定した。付着強度1.8N/mm以上を良好な範囲(○)とし、1.8N/mm未満を付着強度不足(×)として評価した。

・形状寸法安定性試験(その1)
温度20℃、湿度80%の恒温恒湿槽でモルタルを内径4×4×16cmの型枠に充填し、24時間養生した後脱型・基長し、その後材齢28日まで20℃相対湿度60%で養生し、JIS A1129−3「モルタル及びコンクリートの長さ変化試験方法」に準じて測定し、長さ変化率を算出した。長さ変化率が−0.06%以上であったもの(収縮率0.06%以下であったもの)を寸法安定性「良好(○)」と判断し、長さ変化率が−0.06%を下回った(収縮率が0.06%を超えた)ものを寸法安定性「不良(×)」と判断した。

・形状寸法安定性試験(その2)
温度5℃、湿度70%の恒温恒湿槽でモルタルを内径4×4×16cmの型枠に充填し、24時間養生した後脱型・基長し、その後材齢28日まで5℃で水中養生し、JIS A1129−3「モルタル及びコンクリートの長さ変化試験方法」に準じて測定し、長さ変化率を算出した。長さ変化率が+0.08%以下であったもの(膨張率が0.08%以下であったもの)を寸法安定性「良好(○)」と判断し、長さ変化率が+0.08%を超えたもの(膨張率が0.08%を超えたもの)を寸法安定性「不良(×)」と判断した。
[Mortar production]
To premix mortar (mortar composition) (implemented products 1 to 18 and comparative products 1 to 24), water (Sakura city water) was added at the blending ratio shown in Tables 1 to 4, and a mixer manufactured by Hobart (model number: N -10), mortar was produced by kneading for 3 minutes according to JIS R 5201 “Cement physical test method”. As a quality test of the produced mortar, as shown below, an expansibility test, a compressive strength test, and the like were performed. These results are shown in Tables 5 to 8.
<Quality test method>
-Unit volume mass test It measured according to the unit volume mass test of JIS A1171 "Test method of polymer cement mortar".

-Flow test It measured according to the flow test of JIS R5201 "physical test method of cement".

-Compressive strength test It implemented according to the compressive strength test of JISA1171. A compressive strength of 45 N / mm 2 or more at 28 days of age was evaluated as a practical range (◯), and less than 45 N / mm 2 was evaluated as insufficient compressive strength (×).

-Adhesion strength test Mortar was applied to a concrete sidewalk board (300 x 300 x 60 mm) with a thickness of 10 mm and cured at 20 ° C and a relative humidity of 60%. Cut into a 40 x 40 mm square at 28 days of age with a diamond cutter until it reaches the surface of the concrete sidewalk board, and attach the steel attachment of the same size with an epoxy adhesive. After curing, Kenken adhesive strength The test piece was pulled perpendicular to the construction surface and the adhesion strength was measured. An adhesion strength of 1.8 N / mm 2 or more was evaluated as a good range (◯), and an adhesion strength of less than 1.8 N / mm 2 was evaluated as insufficient adhesion strength (×).

・ Shape stability test (Part 1)
Mortar is filled into a 4 × 4 × 16 cm inner diameter mold in a constant temperature and humidity chamber at a temperature of 20 ° C. and a humidity of 80%, cured for 24 hours, then demolded and lengthened, and then at a relative humidity of 20 ° C. until the age of 28 days. It was cured at 60%, measured according to JIS A1129-3 “Testing method for length change of mortar and concrete”, and the length change rate was calculated. Those having a length change rate of −0.06% or more (those having a shrinkage rate of 0.06% or less) were judged as dimensional stability “good” (◯), and the length change rate was −0. What was less than 06% (shrinkage ratio exceeded 0.06%) was judged as dimensional stability “bad” (x).

・ Shape stability test (Part 2)
Mortar is filled into a 4 × 4 × 16 cm inner diameter mold in a constant temperature and humidity chamber with a temperature of 5 ° C. and a humidity of 70%, cured for 24 hours, then demolded and lengthened. It was cured and measured in accordance with JIS A1129-3 “Method for length change test of mortar and concrete” to calculate the length change rate. Those having a length change rate of + 0.08% or less (expansion rates of 0.08% or less) were judged as dimensional stability “good”, and the length change rate was +0.08. % (Expansion coefficient exceeding 0.08%) was determined to be dimensional stability “bad” (x).

Figure 2015117166
Figure 2015117166

Figure 2015117166
Figure 2015117166

Figure 2015117166
Figure 2015117166

Figure 2015117166
Figure 2015117166

本発明の実施例に当たる実施品1〜18は、何れも、付着強度試験結果は1.8N/mm以上の良好な付着力があり、乾燥収縮を評価する形状寸法安定性試験(その1)の試験結果は長さ変化率が−0.06%以上であり(即ち、収縮が小さく)、低温時の膨張の評価する形状寸法安定性試験(その2)の試験結果は、長さ変化率が+0.08%以下で、低温時の膨張爆裂が起きないことが確認された。よって、本発明の実施例に当たる実施品1〜18のモルタル組成物は、何れも、安定した付着力と優れた寸法安定性を兼ね備えるモルタルが得られるモルタル組成物である。 Examples 1 to 18 corresponding to the examples of the present invention have a good adhesion force of 1.8 N / mm 2 or more as a result of the adhesion strength test, and a shape dimension stability test for evaluating drying shrinkage (Part 1). The result of the test is that the length change rate is -0.06% or more (that is, the shrinkage is small), and the test result of the geometric dimension stability test (part 2) for evaluating the expansion at low temperature is the length change rate. Is + 0.08% or less, and it was confirmed that expansion explosion does not occur at low temperatures. Therefore, any of the mortar compositions of Examples 1 to 18 corresponding to the examples of the present invention is a mortar composition from which a mortar having stable adhesion and excellent dimensional stability is obtained.

[実施例2]
プレミックスモルタル(モルタル組成物)(実施品1〜18及び比較品1〜24)100kgに、表1〜表4に示す配合割合で水(佐倉市上水)加え、岡三機工社製ミキサ(商品名「ダマカットミキサーSTD−3.5」)を用いて3分間混練し、モルタルを製造した。作製したモルタルの品質試験として、以下に示す通り、ポンプ圧送性評価試験、垂れ抵抗性評価試験、左官施工性評価試験及びひび割れ抵抗性評価試験を行った。これらの結果を表5〜表8に、実施例1の結果と合わして示した。

・ポンプ圧送性評価試験
最大吐出圧力3.5MPaのモルタルポンプを用い、該ポンプの送気口に連結した長さ30m、内径1.5インチの耐圧ホース内をモルタルで満たした後、30分間静置し、モルタルポンプを起動した時に、ホースが内容物詰まりによって閉塞することなく、5分間以上連続圧送可能であったものをポンプ圧送性良好(○)と評価し、それ以外の状況(閉塞など)となったものをポンプ圧送性不良(×)と評価した。。

・垂れ抵抗性評価試験
コンクリート製擁壁の垂直平面に、リングガン(最大吐出圧力3.5MPaモルタルポンプ:スクイズ式 、エアーコンプレッサー:200V 3相 0.75kW、圧送ホース: 内径1.5インチの耐圧ホース長10mを使用)を用いて約1.0cmの厚さのモルタル施工物が得られるよう吹付け、10分経過後までに目視でモルタル施工物に垂れが観察されなかったものを垂れ発生無し(○)と評価し、それ以外の状況になったものを垂れ無発生ではない(×)と評価した。

・左官施工性評価試験
コンクリート製擁壁の垂直平面に金鏝でモルタルを約1m塗り付け、(1)鏝伸び性、(2)鏝切れ性及び(3)施工物の表面平滑性の3項目について次の方法で調べ、その結果を総合して左官施工性が良好であるか否かを評価した。(1)鏝伸び性;金鏝で塗り付けて、そのまま塗り斑なくモルタルを20cm以上広く伸ばすことができたものを鏝伸び性「良好(○)」と判定し、それ以外の状況となったものを鏝伸び性「不良(×)」と判定した。(2)鏝切れ性;塗付け後の金鏝に付着残存するモルタルが実質見られなかったものを鏝切れ性「良好(○)」と判定し、モルタルが付着残存していたものを鏝切れ性「不良(×)」と判定した。(3)施工物の表面平滑性;金鏝でモルタルを塗り付け、塗り付けたモルタルに数回金鏝を当てて整えることによって、概ね平滑な面が得られたものを、施工物の表面平滑性「良好(○)」と判定した。塗り付けたモルタルに数回金鏝を当てて整えようとしても概ね平滑な面が得られなかったものや金鏝での塗り付け自体が困難であったものは、施工物の表面平滑性「不良(×)」と判定した。尚、モルタルを塗り付ける前に、コンクリート製擁壁のモルタルを塗布する面に水湿し、即ち水を塗布し湿らした上で、モルタルを塗り付けた。

・ひび割れ抵抗性評価試験
コンクリート製擁壁の垂直平面に金鏝で約1m塗り付け、これを屋外で28日間暴露した。暴露後のモルタル施工物にひび割れが発生しているか否かを目視で観察し、ひび割れ抵抗性の有無を判断した。ひび割れが見られなかったものをひび割れ抵抗性「有(○)」とし、それ以外の状況であったものは全てひび割れ抵抗性「無(×)」とした。尚、モルタルを塗り付ける前に、コンクリート製擁壁のモルタルを塗布する面に吸水調整材を塗布し、吸水調整材を塗布した面が乾いた後にモルタルを塗り付けた。
[Example 2]
To 100 kg of premix mortar (mortar composition) (implemented products 1-18 and comparative products 1-24), water (Sakura City Water) was added in the proportions shown in Tables 1 to 4, and a mixer manufactured by Okasan Kiko Co., Ltd. A mortar was produced by kneading for 3 minutes using a trade name “Damacut Mixer STD-3.5”). As a quality test of the produced mortar, as shown below, a pumpability evaluation test, a sagging resistance evaluation test, a plastering workability evaluation test, and a crack resistance evaluation test were performed. These results are shown in Tables 5 to 8 together with the results of Example 1.

・ Pump pumpability evaluation test Using a mortar pump with a maximum discharge pressure of 3.5 MPa, the pressure hose with a length of 30 m and an inner diameter of 1.5 inches connected to the air supply port of the pump was filled with mortar, and then allowed to stand for 30 minutes. When the mortar pump was started and the hose was not blocked due to clogging of the contents, it was evaluated that the pumpability was good (○) if it could be continuously pumped for more than 5 minutes. ) Was evaluated as poor pumpability (×). .

・ Drip resistance evaluation test Ring gun (maximum discharge pressure 3.5MPa mortar pump: squeeze type, air compressor: 200V 3-phase 0.75kW, pumping hose: pressure resistance of 1.5 inches inside diameter on vertical plane of concrete retaining wall Sprayed to obtain a mortar construction with a thickness of about 1.0 cm using a hose length of 10 m), and no dripping occurred on the mortar construction where no dripping was observed by the end of 10 minutes (○) was evaluated, and those that were in other situations were evaluated as (x) not dripping.

· The plastering workability evaluation test concrete retaining wall vertical plane about 1 m 2 smeared mortar with gold iron, (1)鏝伸beauty properties, (2) iron cutoff property and (3) 3 of the surface smoothness of the construction material The items were examined by the following method, and the results were comprehensively evaluated to determine whether the plastering workability was good. (1) Wrinkle elongation: It was judged that the wrinkle elongation was “good (◯)” when the mortar was spread by 20 cm or more without being smeared as it was. The thing was determined to have a wrinkle elongation “bad (×)”. (2) Cutting ability: If the mortar remaining on the gold hammer after coating was not observed, the cutting ability was judged to be “good” (◯), and the mortar remaining attached It was determined to be “bad” (x). (3) Surface smoothness of the construction: The surface of the construction was smoothed by applying a mortar with a hammer and applying the hammer several times to the mortar. The quality was judged as “good (◯)”. Even if the surface of the mortar that had been applied was adjusted several times by applying a hammer, it was difficult to apply a hammer to the surface. (×) ”. Before applying the mortar, the surface of the concrete retaining wall to which the mortar was applied was wetted with water, that is, water was applied and moistened, and then the mortar was applied.

-Crack resistance evaluation test About 1 m 2 of a metal retaining wall was applied to a vertical plane of a concrete retaining wall and exposed outdoors for 28 days. It was visually observed whether or not cracks occurred in the mortar construction after the exposure, and the presence or absence of crack resistance was judged. Those where no cracks were observed were regarded as crack resistance “Yes” (O), and those other than that were regarded as crack resistance “None” (×). In addition, before applying mortar, the water absorption adjusting material was apply | coated to the surface which applies the mortar of a concrete retaining wall, and the mortar was applied after the surface which applied the water absorption adjusting material dried.

本発明の実施例に当たる実施品1〜18は、何れも、ポンプ圧送性評価試験では、耐圧ホース内をモルタルで満たした後、30分間静置し、次にモルタルポンプを起動した時に、ホースが内容物詰まりによって閉塞することなく、5分間以上連続圧送可能であり、垂れ抵抗性評価試験では、約1.0cmの厚さのモルタル施工物が得られるよう吹付け、10分経過後までに目視でモルタル施工物に垂れが観察されなかったものを垂れ発生しないことが確認され、ポンプを用いた吹付け施工が良好に行えることが確認できた。さらに左官施工性評価試験では、本発明の実施例に当たる実施品1〜18は、何れも、良好な鏝伸び性・鏝切れ性及び施工物の表面平滑性が確認され、優れた左官施工性が確認された。また施工後の不具合確認のひび割れ抵抗性評価試験では、モルタルを約1m2塗り付けた結果、ひび割れの発生は確認されず良好な結果が得られた。よって、本発明の実施例に当たる実施品1〜18は、何れも、吹付け施工、左官施工どちらも行え、ひび割れ抵抗性を有する優れたモルタルが得られるモルタル組成物である。   In the pump pumpability evaluation test, all of the products 1 to 18 corresponding to the examples of the present invention were filled with the mortar in the pressure hose, left still for 30 minutes, and then the mortar pump was started. Can be continuously pumped for more than 5 minutes without clogging with contents clogging. In the dripping resistance evaluation test, spraying is performed to obtain a mortar construction with a thickness of about 1.0 cm. It was confirmed that no sag was observed in the mortar construction, and it was confirmed that spraying using a pump could be performed satisfactorily. Furthermore, in the plastering workability evaluation test, all of the execution products 1 to 18 corresponding to the examples of the present invention have been confirmed to have good stretchability / cutting performance and surface smoothness of the construction, and have excellent plastering workability. confirmed. Further, in the crack resistance evaluation test for confirming defects after construction, as a result of applying about 1 m 2 of mortar, the occurrence of cracks was not confirmed, and good results were obtained. Therefore, any of the execution products 1-18 which correspond to the Example of this invention is a mortar composition which can perform both spray construction and plastering, and can obtain the outstanding mortar which has a crack resistance.

本発明によれば、ポンプ圧送性、寸法安定性、下地コンクリートとの一体性、左官作業性(鏝作業性)に優れるモルタル組成物及びモルタルが得られることから、本発明は、コンクリートの補修工事、コンクリートの仕上げ工事等に好適に用いることができる。   According to the present invention, since a mortar composition and a mortar excellent in pumpability, dimensional stability, integrity with the foundation concrete, and plastering workability (dripping workability) can be obtained, the present invention is a concrete repair work. It can be suitably used for concrete finishing work.

Claims (4)

(A) セメント100質量部に対して、
(B) 粘土鉱物由来の非晶質アルミノ珪酸塩粉末を1〜20質量部、
(C) アクリル系樹脂のポリマーディスパージョン及び/又は再乳化形粉末樹脂を5〜20質量部、
(D) フライアッシュを20〜100質量部、
(E) 膨張材を3〜20質量部、

(F) 硫酸塩を0.5〜5質量部、
(G) 減水剤を0.05〜2質量部、
(H) 増粘剤を0.05〜0.4質量部、
(I) 消泡剤を0.05〜0.5質量部、
(J) 有機繊維を0.2〜2質量部、
(K) 収縮低減剤を1〜3質量部、
(L) 細骨材を200〜400質量部、
を含有するモルタル組成物。
(A) For 100 parts by mass of cement,
(B) 1-20 parts by mass of clay mineral-derived amorphous aluminosilicate powder,
(C) 5-20 parts by mass of an acrylic resin polymer dispersion and / or a re-emulsifying powder resin,
(D) 20 to 100 parts by mass of fly ash,
(E) 3 to 20 parts by mass of an expanding material,

(F) 0.5-5 parts by mass of sulfate,
(G) 0.05-2 parts by mass of a water reducing agent,
(H) 0.05 to 0.4 parts by mass of a thickener,
(I) 0.05 to 0.5 parts by mass of an antifoaming agent,
(J) 0.2-2 parts by mass of organic fiber,
(K) 1-3 parts by mass of a shrinkage reducing agent,
(L) 200 to 400 parts by mass of fine aggregate,
A mortar composition containing
上記成分(B)が、メタカオリン粉末である請求項1記載のモルタル組成物。   The mortar composition according to claim 1, wherein the component (B) is a metakaolin powder. 請求項1又は2記載のモルタル組成物と、該モルタル組成物に含有するセメント100質量部に対して50〜100質量部の水とを含有するモルタル。   A mortar containing the mortar composition according to claim 1 or 2 and 50 to 100 parts by mass of water with respect to 100 parts by mass of cement contained in the mortar composition. (ア)コンクリート構造物表面を吸水調整する工程と、
(イ)前記工程(ア)により吸水調整したコンクリート構造物表面に、請求項3記載のモルタルを塗布する工程
とを具備するモルタル被覆方法。
(A) the process of adjusting the water absorption of the concrete structure surface;
(B) A mortar coating method comprising: applying the mortar according to claim 3 to the surface of the concrete structure whose water absorption is adjusted in the step (a).
JP2013262524A 2013-12-19 2013-12-19 Mortar composition Active JP6223813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262524A JP6223813B2 (en) 2013-12-19 2013-12-19 Mortar composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262524A JP6223813B2 (en) 2013-12-19 2013-12-19 Mortar composition

Publications (2)

Publication Number Publication Date
JP2015117166A true JP2015117166A (en) 2015-06-25
JP6223813B2 JP6223813B2 (en) 2017-11-01

Family

ID=53530239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262524A Active JP6223813B2 (en) 2013-12-19 2013-12-19 Mortar composition

Country Status (1)

Country Link
JP (1) JP6223813B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095613A (en) * 2015-11-25 2017-06-01 宇部興産株式会社 Surface impregnation material and structure
JP2017154941A (en) * 2016-03-03 2017-09-07 太平洋マテリアル株式会社 High-strength grout composition and high-strength grout material
JP2017179928A (en) * 2016-03-30 2017-10-05 太平洋マテリアル株式会社 Construction method for pavement concrete, and pavement concrete
JP2017186825A (en) * 2016-04-07 2017-10-12 積水化学工業株式会社 Repair material of concrete structure and repair method of concrete structure
JP2019210779A (en) * 2018-06-08 2019-12-12 清水建設株式会社 Method for joining concrete member, and joint concrete
JP2019218224A (en) * 2018-06-19 2019-12-26 太平洋マテリアル株式会社 Polymer cement mortar composition and polymer cement mortar
JP2020158371A (en) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Polymer cement mortar and repair method of reinforced concrete
CN113620666A (en) * 2021-09-07 2021-11-09 苏州东木轩装饰材料有限公司 Anti-cracking building material and preparation method thereof
CN115321922A (en) * 2022-09-13 2022-11-11 四川聚力建材科技有限公司 Green environment-friendly decorative mortar and preparation method thereof
KR102506548B1 (en) * 2022-04-07 2023-03-07 브사렐건설 주식회사 Expansion mortar with excellent initial and long-term expansion effect
KR102513974B1 (en) * 2023-01-10 2023-03-24 브사렐건설 주식회사 Block type retaining wall construction method
KR102513964B1 (en) * 2023-01-09 2023-03-27 브사렐건설 주식회사 Slope reinforcement method
KR102513969B1 (en) * 2023-01-10 2023-03-28 브사렐건설 주식회사 Panel type retaining wall construction method
JP7403342B2 (en) 2020-02-18 2023-12-22 太平洋マテリアル株式会社 Cement composition and its manufacturing method, and mortar
JP7461776B2 (en) 2020-03-31 2024-04-04 太平洋マテリアル株式会社 Polymer cement mortar composition and polymer cement mortar

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102037623B1 (en) * 2019-01-16 2019-11-27 김금자 Mortar composition of underwater inseparable type for repairing and reinforcing underwater concrete structures, and method of repairing and reinforcing underwater concrete structures using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306367A (en) * 2002-04-11 2003-10-28 Toagosei Co Ltd Composition for repairing reinforced concrete and repairing method using it
JP2006044960A (en) * 2004-07-30 2006-02-16 Ube Ind Ltd Hydraulic composition with improved wet adhesion
JP2006160589A (en) * 2004-12-10 2006-06-22 Showa Denko Kenzai Kk Admixture for plaster mortar and mortar composition containing the same
JP2007045650A (en) * 2005-08-09 2007-02-22 Sumitomo Osaka Cement Co Ltd Polymer cement grout material
JP2009132557A (en) * 2007-11-30 2009-06-18 Taiheiyo Material Kk Admixture for polymer cement grout
JP2013100202A (en) * 2011-11-09 2013-05-23 Denki Kagaku Kogyo Kk Mortar composition for repair

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306367A (en) * 2002-04-11 2003-10-28 Toagosei Co Ltd Composition for repairing reinforced concrete and repairing method using it
JP2006044960A (en) * 2004-07-30 2006-02-16 Ube Ind Ltd Hydraulic composition with improved wet adhesion
JP2006160589A (en) * 2004-12-10 2006-06-22 Showa Denko Kenzai Kk Admixture for plaster mortar and mortar composition containing the same
JP2007045650A (en) * 2005-08-09 2007-02-22 Sumitomo Osaka Cement Co Ltd Polymer cement grout material
JP2009132557A (en) * 2007-11-30 2009-06-18 Taiheiyo Material Kk Admixture for polymer cement grout
JP2013100202A (en) * 2011-11-09 2013-05-23 Denki Kagaku Kogyo Kk Mortar composition for repair

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095613A (en) * 2015-11-25 2017-06-01 宇部興産株式会社 Surface impregnation material and structure
JP2017154941A (en) * 2016-03-03 2017-09-07 太平洋マテリアル株式会社 High-strength grout composition and high-strength grout material
JP2017179928A (en) * 2016-03-30 2017-10-05 太平洋マテリアル株式会社 Construction method for pavement concrete, and pavement concrete
JP2017186825A (en) * 2016-04-07 2017-10-12 積水化学工業株式会社 Repair material of concrete structure and repair method of concrete structure
JP2019210779A (en) * 2018-06-08 2019-12-12 清水建設株式会社 Method for joining concrete member, and joint concrete
JP7045269B2 (en) 2018-06-19 2022-03-31 太平洋マテリアル株式会社 Polymer cement mortar composition and polymer cement mortar
JP7395633B2 (en) 2018-06-19 2023-12-11 太平洋マテリアル株式会社 polymer cement mortar
JP2019218224A (en) * 2018-06-19 2019-12-26 太平洋マテリアル株式会社 Polymer cement mortar composition and polymer cement mortar
JP2022069599A (en) * 2018-06-19 2022-05-11 太平洋マテリアル株式会社 Polymer cement mortar
JP7234001B2 (en) 2019-03-27 2023-03-07 太平洋マテリアル株式会社 Repair method for polymer cement mortar and reinforced concrete
JP2020158371A (en) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Polymer cement mortar and repair method of reinforced concrete
JP7403342B2 (en) 2020-02-18 2023-12-22 太平洋マテリアル株式会社 Cement composition and its manufacturing method, and mortar
JP7461776B2 (en) 2020-03-31 2024-04-04 太平洋マテリアル株式会社 Polymer cement mortar composition and polymer cement mortar
CN113620666A (en) * 2021-09-07 2021-11-09 苏州东木轩装饰材料有限公司 Anti-cracking building material and preparation method thereof
KR102506548B1 (en) * 2022-04-07 2023-03-07 브사렐건설 주식회사 Expansion mortar with excellent initial and long-term expansion effect
CN115321922A (en) * 2022-09-13 2022-11-11 四川聚力建材科技有限公司 Green environment-friendly decorative mortar and preparation method thereof
KR102513964B1 (en) * 2023-01-09 2023-03-27 브사렐건설 주식회사 Slope reinforcement method
KR102513969B1 (en) * 2023-01-10 2023-03-28 브사렐건설 주식회사 Panel type retaining wall construction method
KR102513974B1 (en) * 2023-01-10 2023-03-24 브사렐건설 주식회사 Block type retaining wall construction method

Also Published As

Publication number Publication date
JP6223813B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6223813B2 (en) Mortar composition
JP6647885B2 (en) Corrosion resistant mortar composition
KR101637987B1 (en) Patching repair material and repairing method of deteriorated reinforced concrete structures
JP5939776B2 (en) Repair mortar composition
KR102196634B1 (en) Mortar composition for repairing concrete structures with excellent chemical resistance and durability and seismic performance, and the method for repairing and reinforcing concrete structures using the same
JP2007320783A (en) Thick applying mortar
JP7234001B2 (en) Repair method for polymer cement mortar and reinforced concrete
JP2003306367A (en) Composition for repairing reinforced concrete and repairing method using it
KR102224215B1 (en) Non-shirinkage mortar composition with crack resistance and the concrete structure section restoration method using thereof
KR101674535B1 (en) Admixture composition for tile cement mortar and tile cement mortar composition having the admixture composition
JP2008120611A (en) Grout composition, grout mortar and grout construction method
JP6271249B2 (en) Spraying mortar
JP2009096657A (en) Cement mortar for plaster work
JP2013129570A (en) Heavy weight polymer cement mortar
CN111807793A (en) Cement-based compositions having fast developing tensile adhesion strength
JP5957944B2 (en) Repair method for concrete structures
JP2009084092A (en) Mortar-based restoring material
JP2003306369A (en) Spray material and spraying method using it
JP6796377B2 (en) Cement mortar spraying method
JP5792056B2 (en) Mortar
JP2019167273A (en) Mortar for plastering
JP5494049B2 (en) Premix powder of cement composition, hydraulic mortar and hardened mortar
JP7350425B2 (en) Highly durable grout composition
JP5801554B2 (en) Cement mortar coating material
JP2011207634A (en) Acid-proof cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171004

R150 Certificate of patent or registration of utility model

Ref document number: 6223813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250