JP2015116968A - Marine gear device - Google Patents

Marine gear device Download PDF

Info

Publication number
JP2015116968A
JP2015116968A JP2013262682A JP2013262682A JP2015116968A JP 2015116968 A JP2015116968 A JP 2015116968A JP 2013262682 A JP2013262682 A JP 2013262682A JP 2013262682 A JP2013262682 A JP 2013262682A JP 2015116968 A JP2015116968 A JP 2015116968A
Authority
JP
Japan
Prior art keywords
oil passage
pressure
hydraulic
oil
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262682A
Other languages
Japanese (ja)
Other versions
JP6151630B2 (en
Inventor
修 安田
Osamu Yasuda
修 安田
契成 島崎
Keisei Shimazaki
契成 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2013262682A priority Critical patent/JP6151630B2/en
Publication of JP2015116968A publication Critical patent/JP2015116968A/en
Application granted granted Critical
Publication of JP6151630B2 publication Critical patent/JP6151630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a marine gear device 11, in which a pressure reducing valve 65 is configured to have a high rigidity so that it can endure a high hydraulic fluid pressure during normal navigation so as to solve problems of increases in the weight and size of the pressure reducing valve 65, which may cause an increase in manufacturing costs.SOLUTION: A lubricant passage 42 for filling a forward/reverse selector mechanism 16 with lubricant is branched from a hydraulic fluid passage 24 that extends from a hydraulic fluid pump 21 to a forward/reverse selector mechanism 16 via a forward/reverse selector valve 26. A low pressure fluid passage 63 is branched from the lubricant passage 42. The low pressure fluid passage 63 is provided with a trolling device 64 for controlling a hydraulic fluid pressure flowing to the forward/reverse selector mechanism 16. In the hydraulic fluid passage 24, the outlet side of the low pressure fluid passage 63 is joined between a branch part 42a to the lubricant passage 42 and the forward/reverse selector valve 26. At the junction part between the hydraulic fluid passage 24 and the low pressure fluid passage 63, there is provided a junction selector valve 80 for selecting for the forward/reverse selector mechanism 16 either introducing a hydraulic fluid pressure via the hydraulic fluid passage 24 or introducing a hydraulic fluid pressure via the low pressure fluid passage 63.

Description

本願発明は、船舶に搭載した主機関の回転動力をプロペラに伝達するマリンギヤ装置に関するものである。   The present invention relates to a marine gear device that transmits rotational power of a main engine mounted on a ship to a propeller.

近年、プレジャーボートといった船舶ではエンジンが高回転化している。この種の船舶でトローリング等の微速航行をする際は低回転を必要とするが、高回転型エンジンを低回転で駆動させると、ハンチングやエンジンストールを引き起こすおそれがある。このため、エンジンとプロペラ回転用の推進軸との間に設けた油圧式クラッチをスリップ係合(半クラッチ係合)させることによって、エンジンを定回転に保持しながらプロペラを低回転させて微速航行を可能にしている。   In recent years, engines such as pleasure boats have been rotating at high speeds. When this type of ship sails at a low speed such as trolling, low speed is required, but if a high speed engine is driven at low speed, hunting or engine stall may occur. For this reason, the hydraulic clutch provided between the engine and the propeller propulsion shaft is slip-engaged (half-clutch engagement), so that the propeller is rotated at a low speed while maintaining the engine at a constant speed. Is possible.

油圧式クラッチをスリップ係合させる構造として例えば特許文献1では、油圧式クラッチに向かう作動油圧を調節するトローリング装置を設けている。トローリング装置は、作動油圧を減圧して油圧式クラッチに供給可能な減圧弁と、船舶に設けた微速走行手段(例えばトローリングレバーやトローリングダイヤル等)の操作量に応じて減圧弁の出力油圧を制御する比例電磁弁と、比例電磁弁への作動油供給をオンオフする直結電磁弁とを備えている。   As a structure for slip-engaging a hydraulic clutch, for example, in Patent Document 1, a trolling device that adjusts an operating hydraulic pressure toward the hydraulic clutch is provided. The trolling device controls the output hydraulic pressure of the pressure reducing valve according to the amount of operation of the pressure reducing valve that can reduce the hydraulic pressure and supply it to the hydraulic clutch, and the slow speed travel means (such as the trolling lever and trolling dial) provided on the ship. And a directly connected solenoid valve that turns on and off the supply of hydraulic oil to the proportional solenoid valve.

直結電磁弁によって比例電磁弁への作動油供給をオンにした場合は、微速走行手段の操作量に応じたパイロット圧を比例電磁弁によって減圧弁に付与し、パイロット圧に反比例した作動油圧を減圧弁から油圧式クラッチに付加する結果、油圧式クラッチが減圧弁からの作動油圧に応じてスリップ係合してプロペラが低回転になり、船舶が微速航行する。直結電磁弁によって比例電磁弁への作動油供給をオフにした場合は、減速弁が全開になって油圧式クラッチが完全係合状態となるから、エンジンの回転に連動してプロペラが高回転になり、船舶が通常航行する。微速航行の場合は減圧弁から低圧の作動油圧が油圧クラッチに付加され、通常航行の場合は減圧弁から高圧の作動油圧が油圧式クラッチに付加される。   When the hydraulic oil supply to the proportional solenoid valve is turned on by the direct solenoid valve, the pilot pressure corresponding to the operation amount of the slow speed travel means is applied to the pressure reducing valve by the proportional solenoid valve, and the hydraulic pressure inversely proportional to the pilot pressure is reduced. As a result of adding to the hydraulic clutch from the valve, the hydraulic clutch slip-engages in accordance with the hydraulic pressure from the pressure reducing valve, the propeller rotates at a low speed, and the ship sails at a slow speed. When the hydraulic oil supply to the proportional solenoid valve is turned off by the directly connected solenoid valve, the reduction valve is fully opened and the hydraulic clutch is fully engaged. The ship will normally navigate. In the case of slow speed navigation, a low pressure hydraulic pressure is added to the hydraulic clutch from the pressure reducing valve, and in the case of normal navigation, a high pressure hydraulic pressure is added to the hydraulic clutch from the pressure reducing valve.

実開平6−78637号公報Japanese Utility Model Publication No. 6-78637

ところで、微速航行時は減圧弁からの作動油圧が低圧であるにも拘らず、通常航行時は減圧弁からの作動油圧が高圧であるため、通常航行時の高圧の作動油圧に耐え得るように減圧弁を高剛性に構成する必要がある。しかし、減圧弁を高剛性に構成すると、減圧弁の重量増大や大型化、ひいては製造コストの上昇を招来するという問題があった。   By the way, because the hydraulic pressure from the pressure reducing valve is low during normal sailing, the hydraulic pressure from the pressure reducing valve is high during normal navigation, so that it can withstand the high hydraulic pressure during normal navigation. It is necessary to configure the pressure reducing valve with high rigidity. However, if the pressure reducing valve is configured with high rigidity, there is a problem in that the weight of the pressure reducing valve is increased, the size thereof is increased, and the manufacturing cost is increased.

さて、特許文献1では、作動油ポンプより前後進切換弁を介して油圧式クラッチに至る作動油路から、油圧式クラッチへの注油用の潤滑油路を分岐させ、潤滑油路に潤滑油クーラーを設けている。潤滑油クーラーによって作動油を冷却している。そして、作動油路において潤滑油路への分岐部分と前後進切換弁との間にトローリング装置を設けている。   In Patent Document 1, a lubricating oil path for lubricating the hydraulic clutch is branched from a hydraulic oil path from the hydraulic oil pump to the hydraulic clutch via a forward / reverse switching valve, and the lubricating oil cooler is branched into the lubricating oil path. Is provided. The hydraulic oil is cooled by a lubricating oil cooler. A trolling device is provided between the branching portion to the lubricating oil passage and the forward / reverse switching valve in the hydraulic oil passage.

しかし、特許文献1の構造では、微速航行時に、トローリング装置(減圧弁)に供給した作動油のうち余分なものをそのまま作動油タンクに戻す(ドレンさせる)から、潤滑油クーラーに十分な量の作動油を供給できない。このため、作動油温の上昇を引き起こし易く、ヒートバランスを維持し難いという問題もあった。   However, in the structure of Patent Document 1, during the slow speed navigation, excess hydraulic oil supplied to the trolling device (pressure reducing valve) is returned to the hydraulic oil tank as it is (drained), so that the lubricating oil cooler has a sufficient amount. Hydraulic fluid cannot be supplied. For this reason, there also existed a problem that it was easy to raise the operating oil temperature and it was difficult to maintain heat balance.

本願発明は、上記のような現状を検討して改善を施したマリンギヤ装置を提供することを技術的課題としている。   This invention makes it a technical subject to provide the marine gear apparatus which considered the above present conditions and improved.

請求項1の発明は、船舶に搭載した主機関の回転動力を前後進切換機構経由でプロペラに伝達するマリンギヤ装置であって、作動油ポンプより前後進切換弁を介して前記前後進切換機構に至る作動油路から、前記前後進切換機構への注油用の潤滑油路を分岐させ、前記潤滑油路からは低圧油路を分岐させ、前記低圧油路には、前記前後進切換機構に向かう作動油圧を調節するトローリング装置を設け、前記作動油路において前記潤滑油路への分岐部分と前記前後進切換弁との間に、前記低圧油路の出口側を合流させ、前記作動油路と前記低圧油路との合流部分に、前記前後進切換機構に向けて前記作動油路経由の作動油圧を導入するか前記低圧油路経由の作動油圧を導入するかを選択的に切り換える合流切換弁を設けているというものである。   The invention of claim 1 is a marine gear device that transmits the rotational power of a main engine mounted on a ship to a propeller via a forward / reverse switching mechanism, and is supplied to the forward / reverse switching mechanism from a hydraulic oil pump via a forward / reverse switching valve. A lubricating oil passage for oil injection to the forward / reverse switching mechanism is branched from the hydraulic oil passage reaching, a low-pressure oil passage is branched from the lubricating oil passage, and the low-pressure oil passage is directed to the forward / reverse switching mechanism. A trolling device for adjusting the operating oil pressure is provided, and an outlet side of the low-pressure oil passage is joined between the branch portion to the lubricating oil passage and the forward / reverse switching valve in the hydraulic oil passage; A merging switching valve that selectively switches whether to introduce the hydraulic pressure via the hydraulic oil passage or the hydraulic pressure via the low-pressure oil passage toward the forward / reverse switching mechanism at the junction with the low-pressure oil passage. Is that

請求項2の発明は、請求項1に記載のマリンギヤ装置において、前記潤滑油路に潤滑油クーラーを設け、前記潤滑油路において前記潤滑油クーラーの下流側に、前記低圧油路の入口側を分岐して接続しているというものである。   According to a second aspect of the present invention, in the marine gear device according to the first aspect, a lubricating oil cooler is provided in the lubricating oil passage, and an inlet side of the low-pressure oil passage is provided downstream of the lubricating oil cooler in the lubricating oil passage. It is branched and connected.

請求項3の発明は、請求項1に記載のマリンギヤ装置において、前記作動油路において前記作動油ポンプと前記潤滑油路への分岐部分との間に、潤滑油クーラーを設けているというものである。   According to a third aspect of the present invention, in the marine gear device according to the first aspect, a lubricating oil cooler is provided in the hydraulic oil path between the hydraulic oil pump and a branching portion to the lubricating oil path. is there.

請求項4の発明は、請求項1に記載のマリンギヤ装置において、作動油を循環させる冷却油路を前記作動油路とは別に備え、前記冷却油路に作動油ポンプと作動油クーラーとを設けているというものである。   According to a fourth aspect of the present invention, in the marine gear device according to the first aspect, a cooling oil passage for circulating the hydraulic oil is provided separately from the hydraulic oil passage, and a hydraulic oil pump and a hydraulic oil cooler are provided in the cooling oil passage. It is that.

請求項5の発明は、請求項1〜4のうちいずれかに記載のマリンギヤ装置において、前記トローリング装置からパイロット油路を介して導入されるパイロット圧を用いて、前記合流切換弁を選択的に切換作動させるように構成しているというものである。   According to a fifth aspect of the present invention, in the marine gear device according to any one of the first to fourth aspects, the merging switching valve is selectively used by using a pilot pressure introduced from the trolling device through a pilot oil passage. It is configured to be switched.

請求項1の発明によると、船舶に搭載した主機関の回転動力を前後進切換機構経由でプロペラに伝達するマリンギヤ装置であって、作動油ポンプより前後進切換弁を介して前記前後進切換機構に至る作動油路から、前記前後進切換機構への注油用の潤滑油路を分岐させ、前記潤滑油路からは低圧油路を分岐させ、前記低圧油路には、前記前後進切換機構に向かう作動油圧を調節するトローリング装置を設け、前記作動油路において前記潤滑油路への分岐部分と前記前後進切換弁との間に、前記低圧油路の出口側を合流させ、前記作動油路と前記低圧油路との合流部分に、前記前後進切換機構に向けて前記作動油路経由の作動油圧を導入するか前記低圧油路経由の作動油圧を導入するかを選択的に切り換える合流切換弁を設けているから、前記合流切換弁の存在によって、微速航行時には、前記低圧油路経由(前記トローリング装置を含む)の低圧の作動油圧を前記前後進切換機構に向けて導入できるし、通常航行時には、前記作動油路経由の高圧の作動油圧を前記前後進切換機構に向けて導入できる。すなわち、前記低圧油路側にある前記トローリング装置に高圧の作動油圧を導入することがない。従って、通常航行時の高圧の作動油圧に耐え得るように前記トローリング装置を高剛性に構成する必要がなく、前記トローリング装置を軽量且つコンパクトに構成でき、製造コストの抑制を図れる。また、前記トローリング装置の耐久性向上及び長寿命化にも寄与する。   According to the first aspect of the present invention, there is provided a marine gear device for transmitting the rotational power of a main engine mounted on a ship to a propeller via a forward / reverse switching mechanism, and the forward / reverse switching mechanism from a hydraulic oil pump via a forward / reverse switching valve. The lubricating oil passage for oil injection to the forward / reverse switching mechanism is branched from the hydraulic oil passage leading to, the low-pressure oil passage is branched from the lubricating oil passage, and the forward / reverse switching mechanism is connected to the low-pressure oil passage. A trolling device that adjusts the working hydraulic pressure toward the hydraulic oil passage, and an outlet side of the low-pressure oil passage is joined between the branch portion to the lubricating oil passage and the forward / reverse switching valve in the hydraulic oil passage; And a switching section for selectively switching whether to introduce the hydraulic pressure via the hydraulic oil path or the hydraulic pressure via the low-pressure oil path toward the forward / reverse switching mechanism at the merging portion between the hydraulic pressure path and the low-pressure oil path Since there is a valve, Due to the presence of the flow switching valve, low-pressure hydraulic pressure via the low-pressure oil passage (including the trolling device) can be introduced toward the forward / reverse switching mechanism during slow speed navigation, and via the hydraulic oil passage during normal navigation. Can be introduced toward the forward / reverse switching mechanism. That is, high working hydraulic pressure is not introduced into the trolling device on the low pressure oil passage side. Therefore, it is not necessary to configure the trolling device with high rigidity so that it can withstand the high hydraulic pressure during normal navigation, and the trolling device can be configured to be lightweight and compact, thereby reducing manufacturing costs. In addition, it contributes to the improvement of durability and long life of the trolling device.

請求項2〜4の発明によると、微速航行時であっても、作動油ポンプから吐出した作動油の全量が各クーラーを通過するから、作動油を効果的に冷却でき、ヒートバランスを維持し易い。特に、請求項3及び4の発明では、航行状態に拘らず油圧回路に供給される作動油の全量を確実に冷却でき、ヒートバランスをより一層良好に維持できる。   According to the second to fourth aspects of the invention, even when traveling at a slow speed, the entire amount of hydraulic oil discharged from the hydraulic oil pump passes through each cooler, so that the hydraulic oil can be effectively cooled and the heat balance is maintained. easy. In particular, in the inventions of claims 3 and 4, the entire amount of hydraulic oil supplied to the hydraulic circuit can be reliably cooled regardless of the navigation state, and the heat balance can be maintained even better.

請求項5の発明によると、前記トローリング装置からパイロット油路を介して導入されるパイロット圧を用いて、前記合流切換弁を選択的に切換作動させるように構成しているから、前記合流切換弁を油圧パイロット式に構成して、前記トローリング装置の状態に応じて前記合流切換弁を自動的に切換作動できる。このため、手動式の合流切換弁に対する煩わしい操作や、電磁式の合流切換弁に対する制御プログラムが不要になる。   According to the invention of claim 5, since the merging switching valve is selectively switched using the pilot pressure introduced from the trolling device through the pilot oil passage, the merging switching valve Can be automatically switched according to the state of the trolling device. For this reason, the troublesome operation with respect to the manual merging switching valve and the control program for the electromagnetic merging switching valve become unnecessary.

マリンギヤ装置を備えたプレジャーボートの概略側面図である。It is a schematic side view of a pleasure boat provided with a marine gear device. マリンギヤ装置の側面図である。It is a side view of a marine gear apparatus. マリンギヤ装置における第1実施形態の油圧回路の説明図である。It is explanatory drawing of the hydraulic circuit of 1st Embodiment in a marine gear apparatus. 微速航行時における油圧回路の要部拡大説明図である。It is a principal part expansion explanatory drawing of the hydraulic circuit at the time of slow speed navigation. 通常航行時における油圧回路の要部拡大説明図である。It is a principal part expansion explanatory drawing of the hydraulic circuit at the time of normal navigation. マリンギヤ装置における変形例の油圧回路の説明図である。It is explanatory drawing of the hydraulic circuit of the modification in a marine gear apparatus. マリンギヤ装置における第2実施形態の油圧回路の説明図である。It is explanatory drawing of the hydraulic circuit of 2nd Embodiment in a marine gear apparatus. マリンギヤ装置における第3実施形態の油圧回路の説明図である。It is explanatory drawing of the hydraulic circuit of 3rd Embodiment in a marine gear apparatus.

以下に、本願発明を具体化した実施形態を図面(図1〜図8)に基づき説明する。図1に示すように、船舶であるプレジャーボート1は、船体2と、船体の上面中央側に配置したキャビン3と、船体2の船底後尾側に設けた舵4と、船体2の船底後尾側のうち舵4の前方に配置したプロペラ5とを備えている。キャビン3内は操縦部になっている。キャビン3内には、操舵によって船体2の進行方向を左右に変更させる操舵ハンドル(図示省略)と、船体2の進行方向を前進と後進とに切り換える前後進レバー32(図3参照)と、船体2を微速航行させる微速航行手段としてのトローリングレバー(図示省略)とを設けている。船体2の船底後尾側に、プロペラ5を回転させる推進軸6を軸支している。推進軸6の突出端側にプロペラ5を取り付けている。なお、微速航行手段としてはレバー式のものに限らず、ダイヤル式のものでもよい。   DESCRIPTION OF EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings (FIGS. 1 to 8). As shown in FIG. 1, a pleasure boat 1 that is a ship includes a hull 2, a cabin 3 disposed on the center of the upper surface of the hull, a rudder 4 provided on the bottom tail side of the hull 2, and a bottom tail side of the hull 2. And a propeller 5 disposed in front of the rudder 4. The cabin 3 is a control section. Inside the cabin 3 are a steering handle (not shown) that changes the traveling direction of the hull 2 to the left and right by steering, a forward / reverse lever 32 (see FIG. 3) that switches the traveling direction of the hull 2 between forward and reverse, and the hull. 2 is provided with a trolling lever (not shown) as a slow speed navigation means for navigating at a low speed. A propulsion shaft 6 for rotating the propeller 5 is supported on the rear bottom side of the hull 2. A propeller 5 is attached to the protruding end side of the propulsion shaft 6. The slow speed navigation means is not limited to the lever type but may be a dial type.

船体2内には、プロペラ5の駆動源である主機関としてのエンジン10と、エンジン10の回転動力を推進軸6経由でプロペラ5に伝達するマリンギヤ装置11(減速逆転装置)とを設けている。エンジン10からマリンギヤ装置11を介して推進軸6に伝達された回転動力によって、プロペラ5は回転する。   In the hull 2, an engine 10 as a main engine that is a drive source of the propeller 5, and a marine gear device 11 (deceleration reverse rotation device) that transmits the rotational power of the engine 10 to the propeller 5 via the propulsion shaft 6 are provided. . The propeller 5 rotates by the rotational power transmitted from the engine 10 to the propulsion shaft 6 via the marine gear device 11.

図2に示すように、マリンギヤ装置11は、エンジン10のフライホイール(図示省略)にダンパー継手(図示省略)を介して連結される入力軸12と、推進軸6にカップリング(図示省略)を介して連結される出力軸13と、入力軸12から出力軸13に向かう正転(前進)方向の動力伝達を継断する前進クラッチ14(図3参照)と、入力軸12から出力軸13に向かう逆転(後進)方向の動力伝達を継断する後進クラッチ15(図3参照)とを備えている。前進クラッチ14と後進クラッチ15との組合せが前後進切換機構16を構成している。マリンギヤ装置11には、入力軸12の突出側と反対の側面部に、後述する油圧回路20を収容した油路ケース部17を設けている(図2参照)。   As shown in FIG. 2, the marine gear device 11 includes a coupling (not shown) on the input shaft 12 connected to the flywheel (not shown) of the engine 10 via a damper joint (not shown) and the propulsion shaft 6. An output shaft 13 connected through the forward shaft 14, a forward clutch 14 (see FIG. 3) that interrupts power transmission in the forward (forward) direction from the input shaft 12 toward the output shaft 13, and the input shaft 12 to the output shaft 13. The reverse clutch 15 (refer FIG. 3) which interrupts the power transmission of the reverse rotation (reverse) direction which goes is provided. A combination of the forward clutch 14 and the reverse clutch 15 constitutes a forward / reverse switching mechanism 16. The marine gear device 11 is provided with an oil passage case portion 17 in which a hydraulic circuit 20 described later is accommodated on a side surface opposite to the protruding side of the input shaft 12 (see FIG. 2).

前進クラッチ14及び後進クラッチ15は湿式多板型の油圧摩擦クラッチである。作動油圧で各クラッチ14,15の摩擦板を圧接させることによって、入力軸12と出力軸13とが動力伝達可能に連結される。すなわち、前進クラッチ14を接続し後進クラッチ15を遮断することによって、入力軸12の回転動力を正転(前進)方向の出力として出力軸13に伝達する前進状態になり、前進クラッチ14を遮断し後進クラッチ15を接続することによって、入力軸12の回転動力を逆転(後進)方向の出力として出力軸13に伝達する後進状態になり、前進クラッチ14及び後進クラッチ15を両方共遮断することによって、出力軸13に動力伝達しない中立状態になる。作動油圧で各クラッチ14,15の摩擦板の圧接程度を加減させてスリップ係合(半クラッチ係合)させれば、入力軸12の回転動力の一部がと出力軸13に伝達され、出力軸13ひいてはプロペラ5が低回転する微速走行の状態になる。   The forward clutch 14 and the reverse clutch 15 are wet multi-plate hydraulic friction clutches. By bringing the friction plates of the clutches 14 and 15 into pressure contact with the operating hydraulic pressure, the input shaft 12 and the output shaft 13 are connected so as to be able to transmit power. That is, when the forward clutch 14 is connected and the reverse clutch 15 is disconnected, the forward power is transmitted to the output shaft 13 as an output in the normal rotation (forward) direction, and the forward clutch 14 is disconnected. By connecting the reverse clutch 15, a reverse state is established in which the rotational power of the input shaft 12 is transmitted to the output shaft 13 as an output in the reverse (reverse) direction, and both the forward clutch 14 and the reverse clutch 15 are disconnected, A neutral state in which power is not transmitted to the output shaft 13 is established. If the pressure of the friction plates of the clutches 14 and 15 is increased or decreased by operating hydraulic pressure to cause slip engagement (half-clutch engagement), a part of the rotational power of the input shaft 12 is transmitted to the output shaft 13 for output. The shaft 13 and thus the propeller 5 are in a low speed running state where the rotation is low.

次に、図3を参照しながら、マリンギヤ装置11の油圧回路20構造を説明する。マリンギヤ装置11における第1実施形態の油圧回路20は、エンジン10の回転動力にて駆動する作動油ポンプ21を備えている。作動油ポンプ21は、前進クラッチ14及び後進クラッチ15に作動油を供給するものである。作動油ポンプ21の吸入側は、作動油こし器23を介して作動油タンク22に接続している。作動油ポンプ21の吐出側から延びる作動油路24は、後述する合流切換弁80及び前後進切換弁26を介して、前進クラッチ14と後進クラッチ15とに接続している。第1実施形態の作動油路24は、作動油ポンプ21から合流切換弁80までつなぐ作動元油路27と、合流切換弁80から前後進切換弁26までをつなぐ中間油路28と、前後進切換弁26から前進クラッチ14に延びる前進油路29と、前後進切換弁26から後進クラッチ15に延びる後進油路30とに分かれている。   Next, the structure of the hydraulic circuit 20 of the marine gear device 11 will be described with reference to FIG. The hydraulic circuit 20 of the first embodiment in the marine gear device 11 includes a hydraulic oil pump 21 that is driven by the rotational power of the engine 10. The hydraulic oil pump 21 supplies hydraulic oil to the forward clutch 14 and the reverse clutch 15. The suction side of the hydraulic oil pump 21 is connected to the hydraulic oil tank 22 via the hydraulic oil strainer 23. The hydraulic oil passage 24 extending from the discharge side of the hydraulic oil pump 21 is connected to the forward clutch 14 and the reverse clutch 15 via a merging switching valve 80 and a forward / reverse switching valve 26 which will be described later. The hydraulic oil passage 24 of the first embodiment includes an operating oil passage 27 that connects the hydraulic oil pump 21 to the merging switching valve 80, an intermediate oil passage 28 that connects the merging switching valve 80 to the forward / reverse switching valve 26, and forward / backward travel. The forward oil passage 29 extends from the switching valve 26 to the forward clutch 14, and the reverse oil passage 30 extends from the forward / reverse switching valve 26 to the reverse clutch 15.

前後進切換弁26は合計9個のポートを備えていて、前後進レバー32の切換操作によって、前進油路29に作動油を供給する前進位置と、後進油路30に作動油を供給する後進位置と、両者29,30への作動油の供給を停止する中立位置との3位置に切換可能に構成している。前後進切換弁26の9個のポートのうち2個は、前進油路29と後進油路30とに接続している。前進及び後進油路29,30と反対側にある1個のポートは、中間油路28に接続している。   The forward / reverse switching valve 26 has a total of nine ports. When the forward / reverse lever 32 is switched, the forward movement position for supplying hydraulic oil to the forward oil passage 29 and the reverse movement for supplying hydraulic oil to the reverse oil passage 30 are provided. It is configured to be switchable to three positions: a position and a neutral position where supply of hydraulic oil to both 29 and 30 is stopped. Two of the nine ports of the forward / reverse switching valve 26 are connected to the forward oil passage 29 and the reverse oil passage 30. One port on the opposite side of the forward and reverse oil passages 29 and 30 is connected to the intermediate oil passage 28.

残る6個のポートのうち前進及び後進油路29,30側にある3個のポートは、後述する緩嵌入弁51に至る背圧油路36と、後述する前進潤滑油路43につながる前進バイパス油路37と、後述する後進潤滑油路44につながる後進バイパス油路38とに接続している。中間油路28側にある3個のポートは、作動元油路27において作動油ポンプ21と合流切換弁80との間につながる分配油路39と、直接作動油タンク22に至るドレン油路40と、作動元油路27において作動油ポンプ21と分配油路39への分岐部分39aとの間から分岐した潤滑元油路42につながるバイパス油路41とに接続している。   Of the remaining six ports, three ports on the forward and reverse oil passages 29 and 30 side are a back pressure oil passage 36 leading to a later-described slow fitting valve 51 and a forward bypass connecting to a forward lubricating oil passage 43 described later. The oil passage 37 is connected to a reverse bypass oil passage 38 connected to a reverse lubricant oil passage 44 described later. Three ports on the side of the intermediate oil passage 28 include a distribution oil passage 39 connected between the hydraulic oil pump 21 and the merging switching valve 80 in the operation source oil passage 27, and a drain oil passage 40 directly leading to the hydraulic oil tank 22. And the bypass oil passage 41 connected to the lubrication source oil passage 42 branched from between the operation oil pump 21 and the branch portion 39a to the distribution oil passage 39 in the operation source oil passage 27.

潤滑元油路42は、前進及び後進クラッチ14,15に作動油を潤滑油として注油するためのものである。潤滑元油路42の入口側(上流側)、すなわち作動元油路27からの分岐部分42aは、前述の通り、作動元油路27において作動油ポンプ21と分配油路39への分岐部分39aとの間に接続している。潤滑元油路42の下流側は前進潤滑油路43と後進潤滑油路44とに分かれている。前進潤滑油路43を前進クラッチ14に接続し、後進潤滑油路44を後進クラッチ15に接続している。前進潤滑油路43及び後進潤滑油路44の中途部にはそれぞれ、絞り45,46を設けている。潤滑元油路42、バイパス油路41、前進及び後進バイパス油路37,38及び前進及び後進潤滑油路43,44の組合せが潤滑油路に相当する。   The lubrication source oil passage 42 is for injecting the working oil into the forward and reverse clutches 14 and 15 as lubricating oil. As described above, the branching portion 42a from the inlet side (upstream side) of the lubricating base oil passage 42, that is, the branching portion 42a from the working base oil passage 27 is a branching portion 39a from the working oil passage 27 to the hydraulic oil pump 21 and the distribution oil passage 39. Connected between. A downstream side of the lubricating base oil passage 42 is divided into a forward lubricating oil passage 43 and a reverse lubricating oil passage 44. The forward lubricating oil path 43 is connected to the forward clutch 14, and the reverse lubricating oil path 44 is connected to the reverse clutch 15. In the middle of the forward lubricant passage 43 and the reverse lubricant passage 44, throttles 45 and 46 are provided, respectively. A combination of the lubricating base oil passage 42, the bypass oil passage 41, the forward and reverse bypass oil passages 37 and 38, and the forward and reverse lubricant oil passages 43 and 44 corresponds to the lubricating oil passage.

潤滑元油路42には、上流側から順に、作動元油路27の油圧保持用のリリーフ弁である作動油圧調整弁49と、作動油(潤滑油)を冷却する潤滑油クーラー50と、潤滑油こし器51と、潤滑油圧調整弁52とを設けている。作動油圧調整弁49を通過した後の作動油は、潤滑油クーラー50及び潤滑油こし器51を通過し、潤滑油圧調整弁52で低圧にした状態で、前進クラッチ14及び後進クラッチ15に潤滑油として供給される。所定圧以上の不要な作動油は潤滑油圧調整弁52から作動油タンク22に戻される。   In the lubrication source oil passage 42, in order from the upstream side, an operation hydraulic pressure adjustment valve 49 that is a relief valve for holding the hydraulic pressure of the operation source oil passage 27, a lubricant cooler 50 that cools the operation oil (lubricating oil), and lubrication An oil strainer 51 and a lubricating oil pressure adjusting valve 52 are provided. After passing through the hydraulic pressure adjusting valve 49, the hydraulic oil passes through the lubricating oil cooler 50 and the lubricating oil strainer 51, and is supplied to the forward clutch 14 and the reverse clutch 15 in a state where the hydraulic pressure is reduced by the lubricating hydraulic pressure adjusting valve 52. Supplied as Unnecessary hydraulic oil of a predetermined pressure or higher is returned from the lubricating oil pressure adjustment valve 52 to the hydraulic oil tank 22.

作動油圧調整弁49には、これを用いて前進切換時又は後進切換時のクラッチ接続によるショックを緩和させる緩嵌入弁53を設けている。緩嵌入弁53は、中間油路28及び前後進切換弁26から背圧油路36を介して導入される背圧によって前進クラッチ14や後進クラッチ15への作動油圧を徐々に上昇させ、前進又は後進切換時のクラッチ接続によるショックを緩和させるものである。   The operating hydraulic pressure adjusting valve 49 is provided with a slow fitting valve 53 that uses this to relieve shock caused by clutch connection at the time of forward switching or reverse switching. The slow fitting valve 53 gradually increases the hydraulic pressure to the forward clutch 14 and the reverse clutch 15 by the back pressure introduced from the intermediate oil passage 28 and the forward / reverse switching valve 26 through the back pressure oil passage 36 to move forward or This is to reduce the shock caused by clutch connection during reverse switching.

緩嵌入弁53の作用をおおまかに説明する。作動油圧調整弁49は前後進切換弁26の中立時に潤滑元油路42を流通する作動油圧に応じて開弁している。前後進切換弁26を前進位置又は後進位置に切換駆動させると、背圧油路36を介して作動油が緩嵌入弁53に流入して作動油圧調整弁49を閉弁させる。作動油圧調整弁49と緩嵌入弁53との間にはリリーフばね54を介設している。リリーフばね54の圧縮によって、作動油圧調整弁49は緩嵌入弁53よりも緩慢に動作し徐々に閉弁状態に至る。このため、中間油路28から前進油路29への作動油量、又は中間油路28から後進油路30への作動油量が徐々に増大し、前進クラッチ14又は後進クラッチ15を徐々に接続状態(係合状態)にする。その結果、前進クラッチ14や後進クラッチ15接続時のショックが緩和されることになる。   The operation of the loose insertion valve 53 will be roughly described. The hydraulic pressure adjusting valve 49 is opened according to the hydraulic pressure flowing through the lubrication source oil passage 42 when the forward / reverse switching valve 26 is neutral. When the forward / reverse switching valve 26 is driven to switch to the forward position or the reverse position, the hydraulic oil flows into the loose fitting valve 53 via the back pressure oil passage 36 and the hydraulic pressure adjusting valve 49 is closed. A relief spring 54 is interposed between the hydraulic pressure adjusting valve 49 and the loosely fitted valve 53. The compression of the relief spring 54 causes the operating hydraulic pressure adjustment valve 49 to operate more slowly than the loose insertion valve 53 and gradually closes. For this reason, the hydraulic oil amount from the intermediate oil passage 28 to the forward oil passage 29 or the hydraulic oil amount from the intermediate oil passage 28 to the reverse oil passage 30 gradually increases, and the forward clutch 14 or the reverse clutch 15 is gradually connected. Set to the state (engaged state). As a result, the shock when the forward clutch 14 and the reverse clutch 15 are connected is alleviated.

なお、前後進切換弁26が前進位置の場合は、バイパス油路41、前進バイパス油路37及び前進潤滑油路43経由で、接続状態の前進クラッチ14に作動油を潤滑油として強制的に供給し、前進クラッチ14の潤滑油圧(作動油圧)が一時的に上昇する。遮断状態の後進クラッチ15には、絞り46及び後進潤滑油路44経由で作動油を潤滑油として供給する。前後進切換弁26が後進位置の場合は、バイパス油路41、後進バイパス油路38及び後進潤滑油路44経由で、接続状態の後進クラッチ15に作動油を潤滑油として強制的に供給し、後進クラッチ15の潤滑油圧(作動油圧)が一時的に上昇する。遮断状態の前進クラッチ14には、絞り45及び前進潤滑油路43経由で作動油を潤滑油として供給する。   When the forward / reverse switching valve 26 is in the forward position, the working oil is forcibly supplied as lubricant to the connected forward clutch 14 via the bypass oil passage 41, the forward bypass oil passage 37, and the forward lubricant oil passage 43. Then, the lubricating oil pressure (working oil pressure) of the forward clutch 14 temporarily rises. Hydraulic oil is supplied as lubricating oil to the reverse clutch 15 in the disconnected state via the throttle 46 and the reverse lubricating oil passage 44. When the forward / reverse switching valve 26 is in the reverse drive position, hydraulic oil is forcibly supplied as lubricant to the connected reverse clutch 15 via the bypass oil passage 41, the reverse bypass oil passage 38, and the reverse lubricant oil passage 44, The lubricating oil pressure (working oil pressure) of the reverse clutch 15 temporarily increases. Hydraulic fluid is supplied as lubricating oil to the forward clutch 14 in the disconnected state via the throttle 45 and the forward lubricating oil passage 43.

作動元油路27と潤滑元油路42とをつなぐ安全油路58には、潤滑元油路42の方向にのみ開く逆止弁59(安全弁)を設けている。潤滑元油路42には、作動油圧調整弁49を迂回する迂回油路60を接続している。迂回油路60中に絞り61を設けている。このため、作動油ポンプ21の駆動中は、作動油圧調整弁49の状態に拘らず、潤滑元油路42に作動油が常時導入される。   A check valve 59 (safety valve) that opens only in the direction of the lubrication source oil path 42 is provided in the safety oil path 58 that connects the operation source oil path 27 and the lubrication source oil path 42. A bypass oil passage 60 that bypasses the hydraulic pressure adjusting valve 49 is connected to the lubrication source oil passage 42. A throttle 61 is provided in the bypass oil passage 60. For this reason, while the hydraulic oil pump 21 is being driven, the hydraulic oil is always introduced into the lubrication source oil passage 42 regardless of the state of the hydraulic pressure adjusting valve 49.

図3に示すように、潤滑元油路42からは低圧油路63を分岐させている。低圧油路63の入口側63aは、潤滑元油路42において潤滑油クーラー50の下流側(潤滑油クーラー50と潤滑油こし器51との間)に接続している。低圧油路63の出口側は、作動元油路27において潤滑元油路42への分岐部分42aと前後進切換弁26との間に合流させている。作動元油路27と低圧油路63との合流部分には、前進クラッチ14又は後進クラッチ15に向けて作動元油路27経由の作動油圧を導入するか低圧油路63経由の作動油圧を導入するかを選択的に切り換える合流切換弁80を設けている。低圧油路63には、前進クラッチ14又は後進クラッチ15に向かう作動油圧を調節するトローリング装置64を設けている。すなわちトローリング装置64は、エンジン10回転数を低速域で一定に保持するように、前進クラッチ14又は後進クラッチ15への作動油圧を制限して、前進クラッチ14又は後進クラッチ15をスリップ係合させるものである。   As shown in FIG. 3, a low pressure oil passage 63 is branched from the lubrication source oil passage 42. The inlet side 63 a of the low-pressure oil passage 63 is connected to the downstream side of the lubricating oil cooler 50 (between the lubricating oil cooler 50 and the lubricating oil strainer 51) in the lubricating base oil passage 42. The outlet side of the low-pressure oil passage 63 is joined between the branch portion 42 a to the lubrication source oil passage 42 and the forward / reverse switching valve 26 in the operation source oil passage 27. At the joining portion of the operating source oil passage 27 and the low pressure oil passage 63, the operating oil pressure via the operating oil passage 27 or the operating oil pressure via the low pressure oil passage 63 is introduced toward the forward clutch 14 or the reverse clutch 15. A merging switching valve 80 is provided for selectively switching between the two. The low-pressure oil passage 63 is provided with a trolling device 64 that adjusts the hydraulic pressure toward the forward clutch 14 or the reverse clutch 15. That is, the trolling device 64 restricts the hydraulic pressure applied to the forward clutch 14 or the reverse clutch 15 so as to keep the engine 10 rotational speed constant in the low speed range, and causes the forward clutch 14 or the reverse clutch 15 to slip-engage. It is.

トローリング装置64を潤滑元油路42から分岐した低圧油路63に設けるため、トローリング装置64には、作動油ポンプ21から供給される高圧の作動油圧を導入するおそれがなく、比較的低圧の作動油圧(潤滑油として機能させる作動油)が導入されることになる。従って、高圧の作動油圧に耐え得るようにトローリング装置64を高剛性に構成する必要がなく、トローリング装置64を軽量且つコンパクトに構成でき、製造コストの抑制を図れる。また、トローリング装置64の耐久性向上及び長寿命化にも寄与する。   Since the trolling device 64 is provided in the low-pressure oil passage 63 branched from the lubrication source oil passage 42, the trolling device 64 has no fear of introducing the high-pressure hydraulic pressure supplied from the hydraulic oil pump 21, and operates at a relatively low pressure. Hydraulic pressure (operating oil that functions as lubricating oil) is introduced. Therefore, it is not necessary to configure the trolling device 64 with high rigidity so that it can withstand the high hydraulic pressure, and the trolling device 64 can be configured to be lightweight and compact, thereby reducing the manufacturing cost. Moreover, it contributes to improving the durability and extending the life of the trolling device 64.

第1実施形態のトローリング装置64は、作動油圧を減圧して前進クラッチ14又は後進クラッチ15に供給可能な減圧弁65と、トローリングレバーの操作量に応じて減圧弁65の出力油圧を制御する比例電磁弁66とを備えている。図3〜図5に示すように、減圧弁65は低圧油路63側に設けている。第1実施形態の低圧油路63は、減圧弁65を挟んで上流側の低圧上流油路67と、下流側の低圧下流油路68とに分かれている。減圧弁65の入力ポート65aは、低圧上流油路67を介して潤滑元油路42からの分岐部分である入口側63aに接続している。減圧弁65の出力ポート65bは、低圧下流油路68を介して合流切換弁80に接続している。減圧弁65のドレンポート65cは、直接作動油タンク22に至るドレン油路69に接続している。   The trolling device 64 according to the first embodiment is configured to reduce the operating hydraulic pressure and supply it to the forward clutch 14 or the reverse clutch 15, and to control the output hydraulic pressure of the pressure reducing valve 65 according to the operation amount of the trolling lever. And an electromagnetic valve 66. As shown in FIGS. 3 to 5, the pressure reducing valve 65 is provided on the low pressure oil passage 63 side. The low-pressure oil passage 63 of the first embodiment is divided into an upstream-side low-pressure upstream oil passage 67 and a downstream-side low-pressure downstream oil passage 68 with a pressure reducing valve 65 interposed therebetween. The input port 65 a of the pressure reducing valve 65 is connected to an inlet side 63 a that is a branching portion from the lubrication source oil passage 42 through a low pressure upstream oil passage 67. The output port 65 b of the pressure reducing valve 65 is connected to the merging switching valve 80 via the low pressure downstream oil passage 68. A drain port 65 c of the pressure reducing valve 65 is directly connected to a drain oil passage 69 that reaches the hydraulic oil tank 22.

減圧弁65は、内部にあるスプール70のスライド移動によって、入力ポート65aとドレンポート65cとを開閉し、開閉程度によって低圧上流油路67からの作動油圧を減圧し、両ポート65a,65cの間にある出力ポート65bから、減圧した作動油圧を低圧下流油路68経由で合流切換弁80に向けて送り出すように構成している。減圧した作動油圧は、合流切換弁80の切換作動によって、前進クラッチ14又は後進クラッチ15のいずれかに選択的に導入され、前進クラッチ14又は後進クラッチ15のいずれかをスリップ係合させる。なお、入力ポート65aとドレンポート65cとは、一方が開となれば他方が閉となるような関係に設定している。   The pressure reducing valve 65 opens and closes the input port 65a and the drain port 65c by the sliding movement of the spool 70 inside, and reduces the hydraulic pressure from the low pressure upstream oil passage 67 depending on the degree of opening and closing, and between the ports 65a and 65c. In this configuration, the reduced hydraulic pressure is sent out from the output port 65 b to the merging switching valve 80 via the low pressure downstream oil passage 68. The reduced hydraulic pressure is selectively introduced into either the forward clutch 14 or the reverse clutch 15 by the switching operation of the merge switching valve 80, and either the forward clutch 14 or the reverse clutch 15 is slip-engaged. The input port 65a and the drain port 65c are set in such a relationship that when one is opened, the other is closed.

減圧弁65には、内部のスプール70を挟んで一方に小径室71を、他方に大径室72を形成している。大径室72内には、スプール70の大径室72側の端面に当接するコイルばね73を収容している。減圧弁65内のスプール70は、その両端面の面積差分に付与される油圧と、スプール70の小径室71側の端面に付与される作動油圧との作用によって、コイルばね73の弾性付勢力に抗してスライド移動する。スプール70のスライド移動量に応じて、低圧上流油路67からの作動油圧が減圧され、低圧下流油路68に供給される(図4及び図5参照)。減圧弁65において作動油圧の減圧程度を調節することによって、前進クラッチ14又は後進クラッチ15の接続程度(係合程度)が変化し、出力軸13、推進軸6ひいてはプロペラ5の回転速度が増減する。   The pressure reducing valve 65 is formed with a small-diameter chamber 71 on one side and a large-diameter chamber 72 on the other side with an internal spool 70 interposed therebetween. A coil spring 73 that contacts the end surface of the spool 70 on the large diameter chamber 72 side is accommodated in the large diameter chamber 72. The spool 70 in the pressure reducing valve 65 is subjected to the elastic biasing force of the coil spring 73 by the action of the hydraulic pressure applied to the area difference between both end surfaces and the operating hydraulic pressure applied to the end surface of the spool 70 on the small diameter chamber 71 side. Move against the slide. The hydraulic pressure from the low pressure upstream oil passage 67 is reduced according to the amount of slide movement of the spool 70 and supplied to the low pressure downstream oil passage 68 (see FIGS. 4 and 5). By adjusting the degree of pressure reduction of the hydraulic pressure in the pressure reducing valve 65, the degree of engagement (degree of engagement) of the forward clutch 14 or the reverse clutch 15 changes, and the rotational speed of the output shaft 13, the propulsion shaft 6 and thus the propeller 5 increases or decreases. .

低圧上流油路67から加圧油路74を分岐させている。加圧油路74に比例電磁弁66を設けている。第1実施形態の加圧油路74は、比例電磁弁を挟んで上流側の加圧上流油路75と、下流側の加圧下流油路76とに分かれている。比例電磁弁66は、トローリングレバーの操作量に応じた電磁ソレノイド66aの励磁消磁によって、低圧上流油路67からの作動油圧を減圧弁65の小径室71に導入する減圧位置と、小径室71内の作動油を作動油タンク22に戻す直結位置との2位置に切換可能に構成している。比例電磁弁66はトローリングレバーの操作量に応じてデューティ制御される。   A pressurized oil passage 74 is branched from the low pressure upstream oil passage 67. A proportional solenoid valve 66 is provided in the pressurized oil passage 74. The pressurized oil passage 74 of the first embodiment is divided into an upstream pressurized upstream oil passage 75 and a downstream pressurized downstream oil passage 76 with a proportional solenoid valve interposed therebetween. The proportional solenoid valve 66 includes a pressure reducing position where the hydraulic pressure from the low pressure upstream oil passage 67 is introduced into the small diameter chamber 71 of the pressure reducing valve 65 by the excitation demagnetization of the electromagnetic solenoid 66 a according to the operation amount of the trolling lever, and the small diameter chamber 71. The hydraulic oil can be switched to two positions including a direct connection position where the hydraulic oil is returned to the hydraulic oil tank 22. The proportional solenoid valve 66 is duty-controlled according to the operation amount of the trolling lever.

比例電磁弁66には合計3個のポートを備えている。比例電磁弁66の3ポートのうち2個は、加圧上流油路75の出口側と直接作動油タンク22に至るドレン油路77とに接続している。加圧上流油路75の入口側は、低圧上流油路67(低圧油路63)の入口側63aと減圧弁65との間に接続している。加圧上流油路75及びドレン油路77と反対側にある1個のポートは、加圧下流油路76を介して減圧弁65の小径室71に接続している。   The proportional solenoid valve 66 has a total of three ports. Two of the three ports of the proportional solenoid valve 66 are connected to the outlet side of the pressurized upstream oil passage 75 and the drain oil passage 77 reaching the hydraulic oil tank 22 directly. The inlet side of the pressurized upstream oil passage 75 is connected between the inlet side 63 a of the low pressure upstream oil passage 67 (low pressure oil passage 63) and the pressure reducing valve 65. One port on the opposite side of the pressurized upstream oil passage 75 and the drain oil passage 77 is connected to the small diameter chamber 71 of the pressure reducing valve 65 via the pressurized downstream oil passage 76.

トローリングレバーの操作量に応じた電磁ソレノイド66aの励磁によって、比例電磁弁66が減圧位置に切換作動すると、低圧上流油路67からの作動油圧が減圧弁65の小径室71に導入されてスプール70の小径室71側の端面に付与され、コイルばね73の弾性付勢力に抗してスプール70をスライド移動させる。スプール70のスライド移動量に応じて低圧上流油路67からの作動油圧が減圧し、低圧下流油路68に供給される(図4参照)。低圧下流油路68に供給した作動油圧は、比例電磁弁66経由の作動油圧に反比例して減圧される。前進クラッチ14又は後進クラッチ15は、減圧弁65経由の作動油圧(減圧した作動油圧)に応じてスリップ係合し、出力軸13、推進軸6ひいてはプロペラ5の回転速度が増減する。従って、前進及び後進クラッチ14,15のスリップ量はトローリングレバーの操作量に応じて定まる。   When the proportional solenoid valve 66 is switched to the pressure reducing position by the excitation of the electromagnetic solenoid 66a according to the operation amount of the trolling lever, the operating oil pressure from the low pressure upstream oil passage 67 is introduced into the small diameter chamber 71 of the pressure reducing valve 65, and the spool 70 The spool 70 is slid and moved against the elastic biasing force of the coil spring 73. The operating oil pressure from the low pressure upstream oil passage 67 is reduced according to the slide movement amount of the spool 70 and supplied to the low pressure downstream oil passage 68 (see FIG. 4). The hydraulic pressure supplied to the low pressure downstream oil passage 68 is reduced in inverse proportion to the hydraulic pressure via the proportional solenoid valve 66. The forward clutch 14 or the reverse clutch 15 is slip-engaged in accordance with the operating oil pressure (reduced operating oil pressure) via the pressure reducing valve 65, and the rotational speed of the output shaft 13, the propulsion shaft 6, and thus the propeller 5 increases or decreases. Accordingly, the slip amounts of the forward and reverse clutches 14 and 15 are determined according to the operation amount of the trolling lever.

なお、電磁ソレノイド66aの消磁によって、比例電磁弁66が直結位置に切換作動すると、減圧弁65の小径室71内の作動油が直接作動油タンク22に戻される。この場合、減速弁65では、入力ポート65aが全開となりドレンポート65cが全閉となる(図5参照)。   When the proportional solenoid valve 66 is switched to the direct coupling position by demagnetization of the electromagnetic solenoid 66a, the hydraulic oil in the small diameter chamber 71 of the pressure reducing valve 65 is directly returned to the hydraulic oil tank 22. In this case, in the deceleration valve 65, the input port 65a is fully opened and the drain port 65c is fully closed (see FIG. 5).

前述の通り、作動元油路27と低圧油路63との合流部分に、合流切換弁80を設けている。合流切換弁80は、前進クラッチ14又は後進クラッチ15に向けて作動元油路27経由の作動油圧を導入する直結位置と、低圧油路63経由の作動油圧を導入する低速位置との2位置に選択的に切換可能に構成している。合流切換弁80は手動式のものでも電磁式のものでも差し支えないが、第1実施形態の合流切換弁80は油圧パイロット式に構成している。すなわち、トローリング装置64から合流切換弁80にパイロット圧を導入して、合流切換弁80を選択的に切換作動させるように構成している。この場合、加圧下流油路76にパイロット油路81を介して合流切換弁80を接続している。すなわち、比例電磁弁66の二次側圧力がパイロット圧として合流切換弁80に付加される。   As described above, the merging changeover valve 80 is provided at the merging portion between the operation source oil passage 27 and the low pressure oil passage 63. The merging switching valve 80 is in two positions: a direct connection position for introducing the hydraulic pressure via the operating oil passage 27 toward the forward clutch 14 or the reverse clutch 15 and a low speed position for introducing the hydraulic pressure via the low pressure oil path 63. It is configured to be selectively switchable. The merging switching valve 80 may be a manual type or an electromagnetic type, but the merging switching valve 80 of the first embodiment is configured as a hydraulic pilot type. That is, the pilot pressure is introduced from the trolling device 64 to the merging switching valve 80, and the merging switching valve 80 is selectively switched. In this case, a merging switching valve 80 is connected to the pressurized downstream oil passage 76 via a pilot oil passage 81. That is, the secondary pressure of the proportional solenoid valve 66 is added to the merging switching valve 80 as a pilot pressure.

トローリングレバーを操作した場合は、その操作量に応じた電磁ソレノイド66aの励磁によって、比例電磁弁66が減圧位置に切換作動する。そうすると、低圧上流油路67からの作動油圧が減圧弁65の小径室71に導入されると共に、パイロット油路81を介して合流切換弁80にパイロット圧が作用して合流切換弁80を低速位置に切換作動させる(図4参照)。その結果、減圧弁65から低圧下流油路68に供給した減圧後の作動油圧(低圧の作動油圧)が、合流切換弁80及び前後進切換弁26経由で前進クラッチ14又は後進クラッチ15に導入され、減圧後の作動油圧に応じてスリップ係合し、出力軸13、推進軸6ひいてはプロペラ5が低回転になり、船舶1が微速航行する。   When the trolling lever is operated, the proportional solenoid valve 66 is switched to the decompression position by excitation of the electromagnetic solenoid 66a corresponding to the operation amount. Then, the operating hydraulic pressure from the low pressure upstream oil passage 67 is introduced into the small diameter chamber 71 of the pressure reducing valve 65, and the pilot pressure is applied to the merging switching valve 80 via the pilot oil passage 81 so that the merging switching valve 80 is moved to the low speed position. (See FIG. 4). As a result, the reduced hydraulic pressure (low pressure hydraulic pressure) supplied from the pressure reducing valve 65 to the low pressure downstream oil passage 68 is introduced into the forward clutch 14 or the reverse clutch 15 via the merging switching valve 80 and the forward / reverse switching valve 26. The slip engagement is made according to the hydraulic pressure after decompression, the output shaft 13, the propulsion shaft 6 and thus the propeller 5 are rotated at a low speed, and the ship 1 travels at a slow speed.

トローリングレバーを操作しない場合は、電磁ソレノイド66aの消磁によって、比例電磁弁66が直結位置に切換作動する。そうすると、減圧弁65の小径室71内の作動油が直接作動油タンク22に戻されると共に、パイロット油路81を介して合流切換弁80にパイロット圧が作用しなくなって、合流切換弁80を直結位置に切換作動させる(図5参照)。その結果、作動油ポンプ21から作動元油路27を流れた高圧の作動油圧が合流切換弁80及び前後進切換弁26経由で前進クラッチ14又は後進クラッチ15に導入され、前進クラッチ14又は後進クラッチ15が完全係合状態となるから、エンジン10の回転に連動して出力軸13、推進軸6ひいてはプロペラ5が高回転になり、船舶1が通常航行する。   When the trolling lever is not operated, the proportional solenoid valve 66 is switched to the direct coupling position by demagnetizing the electromagnetic solenoid 66a. Then, the hydraulic oil in the small-diameter chamber 71 of the pressure reducing valve 65 is directly returned to the hydraulic oil tank 22, and the pilot pressure does not act on the merging switching valve 80 via the pilot oil passage 81, so that the merging switching valve 80 is directly connected. Switch to the position (see FIG. 5). As a result, the high operating hydraulic pressure that has flowed from the hydraulic oil pump 21 through the operating oil passage 27 is introduced into the forward clutch 14 or the reverse clutch 15 via the merging switching valve 80 and the forward / reverse switching valve 26, and the forward clutch 14 or the reverse clutch. Since 15 is in a completely engaged state, the output shaft 13, the propulsion shaft 6, and thus the propeller 5 are rotated at a high speed in conjunction with the rotation of the engine 10, and the ship 1 normally sails.

上記の記載並びに図3〜5から明らかなように、船舶1に搭載した主機関10の回転動力を前後進切換機構16経由でプロペラ5に伝達するマリンギヤ装置11であって、作動油ポンプ21より前後進切換弁26を介して前記前後進切換機構16に至る作動油路24から、前記前後進切換機構16への注油用の潤滑油路42を分岐させ、前記潤滑油路42からは低圧油路63を分岐させ、前記低圧油路63には、前記前後進切換機構16に向かう作動油圧を調節するトローリング装置64を設け、前記作動油路24において前記潤滑油路42への分岐部分42aと前記前後進切換弁26との間に、前記低圧油路63の出口側を合流させ、前記作動油路24と前記低圧油路63との合流部分に、前記前後進切換機構16に向けて前記作動油路24経由の作動油圧を導入するか前記低圧油路63経由の作動油圧を導入するかを選択的に切り換える合流切換弁80を設けているから、前記合流切換弁80の存在によって、微速航行時には、前記低圧油路63経由(前記トローリング装置64を含む)の低圧の作動油圧を前記前後進切換機構16に向けて導入できるし、通常航行時には、前記作動油路24経由の高圧の作動油圧を前記前後進切換機構16に向けて導入できる。すなわち、前記低圧油路63側にある前記トローリング装置64に高圧の作動油圧を導入することがない。従って、通常航行時の高圧の作動油圧に耐え得るように前記トローリング装置64を高剛性に構成する必要がなく、前記トローリング装置64を軽量且つコンパクトに構成でき、製造コストの抑制を図れる。また、前記トローリング装置64の耐久性向上及び長寿命化にも寄与する。   As apparent from the above description and FIGS. 3 to 5, the marine gear device 11 transmits the rotational power of the main engine 10 mounted on the ship 1 to the propeller 5 via the forward / reverse switching mechanism 16. A lubricating oil passage 42 for lubrication to the forward / reverse switching mechanism 16 is branched from the hydraulic oil passage 24 that reaches the forward / reverse switching mechanism 16 via the forward / reverse switching valve 26, and low pressure oil is supplied from the lubricating oil passage 42. A trolling device 64 that adjusts the hydraulic pressure toward the forward / reverse switching mechanism 16 is provided in the low-pressure oil path 63 so as to branch the path 63, and a branching portion 42 a to the lubricating oil path 42 in the hydraulic oil path 24. The outlet side of the low pressure oil passage 63 is joined to the forward / reverse switching valve 26, and the joining portion of the hydraulic oil passage 24 and the low pressure oil passage 63 is directed toward the forward / reverse switching mechanism 16. Hydraulic oil passage 2 Since there is provided a merging switching valve 80 that selectively switches whether to introduce the working hydraulic pressure via or the low pressure oil passage 63, the presence of the merging switching valve 80 causes the Low-pressure hydraulic pressure via the low-pressure oil passage 63 (including the trolling device 64) can be introduced toward the forward / reverse switching mechanism 16, and during normal navigation, the high-pressure hydraulic pressure via the hydraulic oil passage 24 can be It can be introduced toward the advance switching mechanism 16. That is, high working hydraulic pressure is not introduced into the trolling device 64 on the low pressure oil passage 63 side. Therefore, it is not necessary to configure the trolling device 64 with high rigidity so that it can withstand the high hydraulic pressure during normal navigation, and the trolling device 64 can be configured to be lightweight and compact, thereby reducing manufacturing costs. In addition, the trolling device 64 contributes to improved durability and longer life.

また、前記潤滑油路42に潤滑油クーラー50を設け、前記潤滑油路42において前記潤滑油クーラー50の下流側に、前記低圧油路63の入口側63aを分岐して接続しているから、微速航行時であっても、前記作動油ポンプ21から吐出した作動油の全量が前記潤滑油クーラー50を通過することになる。従って、作動油を効果的に冷却でき、ヒートバランスを維持し易い。   Further, the lubricating oil cooler 50 is provided in the lubricating oil passage 42, and the inlet side 63a of the low-pressure oil passage 63 is branched and connected to the downstream side of the lubricating oil cooler 50 in the lubricating oil passage 42. Even during low speed navigation, the entire amount of hydraulic oil discharged from the hydraulic oil pump 21 passes through the lubricating oil cooler 50. Therefore, the hydraulic oil can be effectively cooled and the heat balance can be easily maintained.

更に、前記トローリング装置64からパイロット油路81を介して導入されるパイロット圧を用いて、前記合流切換弁80を選択的に切換作動させるように構成しているから、前記合流切換弁80を油圧パイロット式に構成して、前記トローリング装置64の状態に応じて前記合流切換弁80を自動的に切換作動できる。このため、手動式の合流切換弁に対する煩わしい操作や、電磁式の合流切換弁に対する制御プログラムが不要になる。   Further, since the merging switching valve 80 is selectively switched using the pilot pressure introduced from the trolling device 64 through the pilot oil passage 81, the merging switching valve 80 is hydraulically operated. By configuring the pilot type, the merging switching valve 80 can be automatically switched according to the state of the trolling device 64. For this reason, the troublesome operation with respect to the manual merging switching valve and the control program for the electromagnetic merging switching valve become unnecessary.

図6はマリンギヤ装置11の油圧回路20構造の変形例を示している。当該変形例では、潤滑元油路42において安全油路58との合流部分と低圧油路63の入口側63aとの間に、複数の潤滑油クーラー50,82を設けている。この場合、上流側の潤滑油クーラー50はマリンギヤ装置11に搭載し、下流側の潤滑油クーラー82は船体2に設けている。両潤滑油クーラーは潤滑油元油路に対して直列に並べている。その他の構成は第1実施形態のものと同様である。このように構成すると、第1実施形態と同様の作用効果を得られるだけでなく、微速航行時であっても、前記作動油ポンプ21から吐出した作動油の全量が両方の潤滑油クーラー50,82を通過することになるから、作動油の冷却効果がより一層向上し、ヒートバランスの維持に効果が高いのである。   FIG. 6 shows a modification of the structure of the hydraulic circuit 20 of the marine gear device 11. In the modified example, a plurality of lubricating oil coolers 50 and 82 are provided between the joining portion of the lubricating oil passage 42 and the safety oil passage 58 and the inlet side 63 a of the low pressure oil passage 63. In this case, the upstream lubricating oil cooler 50 is mounted on the marine gear device 11, and the downstream lubricating oil cooler 82 is provided on the hull 2. Both lubricating oil coolers are arranged in series with respect to the lubricating oil base oil passage. Other configurations are the same as those of the first embodiment. If comprised in this way, not only the effect similar to 1st Embodiment can be obtained, but also at the time of slow speed navigation, the whole quantity of the hydraulic fluid discharged from the said hydraulic oil pump 21 is the both lubricating oil coolers 50, 82, the hydraulic oil cooling effect is further improved, and the effect of maintaining the heat balance is high.

図7はマリンギヤ装置11の油圧回路20構造の第2実施形態を示している。第2実施形態では、第1実施形態において潤滑元油路42に設けていた潤滑油クーラー50をなくし、作動油路24において作動油ポンプ21と潤滑元油路42への分岐部分42aとの間に、潤滑油クーラー83を設けた点で、第1実施形態と相違している。この場合、作動元油路27において作動油ポンプ21と安全回路58への分岐部分との間に、潤滑油クーラー83を設けている。その他の構成は、第1実施形態のものと同様である。このように構成すると、第1実施形態と同様の作用効果を得られるだけでなく、航行状態に拘らず油圧回路20に供給される作動油の全量を確実に冷却でき、ヒートバランスをより一層良好に維持できる。   FIG. 7 shows a second embodiment of the structure of the hydraulic circuit 20 of the marine gear device 11. In the second embodiment, the lubricating oil cooler 50 provided in the lubricating base oil passage 42 in the first embodiment is eliminated, and the hydraulic oil passage 24 is provided between the hydraulic oil pump 21 and the branching portion 42a leading to the lubricating base oil passage 42. Further, the present embodiment is different from the first embodiment in that a lubricating oil cooler 83 is provided. In this case, a lubricating oil cooler 83 is provided between the hydraulic oil pump 21 and the branch portion to the safety circuit 58 in the hydraulic oil passage 27. Other configurations are the same as those of the first embodiment. If comprised in this way, not only the effect similar to 1st Embodiment can be acquired, but the whole quantity of the hydraulic fluid supplied to the hydraulic circuit 20 can be cooled reliably irrespective of a navigation state, and a heat balance is further improved. Can be maintained.

図8はマリンギヤ装置11の油圧回路20構造の第3実施形態を示している。第3実施形態では、第1実施形態において潤滑元油路42に設けていた潤滑油クーラー50をなくし、作動油を循環させる冷却油路84を作動油路24とは別に備え、冷却油路84に作動油ポンプ85と作動油クーラー86とを設けた点で、第1実施形態と相違している。この場合、冷却油路84において作動油ポンプ85の吸入側は、作動油こし器87を介して作動油タンク22に接続している。作動油ポンプ85の吐出側には作動油クーラー86を設けている。その他の構成は第1実施形態と同様である。このように構成した場合も、第1実施形態と同様の作用効果を得られるだけでなく、航行状態に拘らず油圧回路20に供給される作動油の全量を確実に冷却でき、ヒートバランスをより一層良好に維持できる。   FIG. 8 shows a third embodiment of the hydraulic circuit 20 structure of the marine gear device 11. In the third embodiment, the lubricating oil cooler 50 provided in the lubricating oil passage 42 in the first embodiment is eliminated, and the cooling oil passage 84 for circulating the hydraulic oil is provided separately from the hydraulic oil passage 24. Is different from the first embodiment in that a hydraulic oil pump 85 and a hydraulic oil cooler 86 are provided. In this case, the suction side of the hydraulic oil pump 85 in the cooling oil passage 84 is connected to the hydraulic oil tank 22 via the hydraulic oil strainer 87. A hydraulic oil cooler 86 is provided on the discharge side of the hydraulic oil pump 85. Other configurations are the same as those of the first embodiment. Even when configured in this way, not only the same effects as the first embodiment can be obtained, but the entire amount of hydraulic fluid supplied to the hydraulic circuit 20 can be reliably cooled regardless of the navigation state, and the heat balance can be further improved. It can be maintained better.

なお、本願発明における各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。   In addition, the structure of each part in this invention is not limited to embodiment of illustration, A various change is possible in the range which does not deviate from the meaning of this invention.

1 プレジャーボート(船舶)
5 プロペラ
10 エンジン(主機関)
11 マリンギヤ装置
14 前進クラッチ
15 後進クラッチ
16 前後進切換機構
20 油圧回路
21 作動油ポンプ
24 作動油路
26 前後進切換弁
42 潤滑元油路
42a 分岐部分
50 潤滑油クーラー
63 低圧油路
63a 低圧油路の入口側
64 トローリング装置
65 減圧弁
66 比例電磁弁
74 加圧油路
80 合流切換弁
81 パイロット油路
1 Pleasure boat (ship)
5 Propeller 10 Engine (main engine)
DESCRIPTION OF SYMBOLS 11 Marine gear apparatus 14 Forward clutch 15 Reverse clutch 16 Forward / reverse switching mechanism 20 Hydraulic circuit 21 Hydraulic oil pump 24 Hydraulic oil path 26 Forward / backward switching valve 42 Lubricating original oil path 42a Branching part 50 Lubricating oil cooler 63 Low pressure oil path 63a Low pressure oil path Inlet side 64 Trolling device 65 Pressure reducing valve 66 Proportional solenoid valve 74 Pressurizing oil passage 80 Junction switching valve 81 Pilot oil passage

Claims (5)

船舶に搭載した主機関の回転動力を前後進切換機構経由でプロペラに伝達するマリンギヤ装置であって、
作動油ポンプより前後進切換弁を介して前記前後進切換機構に至る作動油路から、前記前後進切換機構への注油用の潤滑油路を分岐させ、
前記潤滑油路からは低圧油路を分岐させ、前記低圧油路には、前記前後進切換機構に向かう作動油圧を調節するトローリング装置を設け、前記作動油路において前記潤滑油路への分岐部分と前記前後進切換弁との間に、前記低圧油路の出口側を合流させ、
前記作動油路と前記低圧油路との合流部分に、前記前後進切換機構に向けて前記作動油路経由の作動油圧を導入するか前記低圧油路経由の作動油圧を導入するかを選択的に切り換える合流切換弁を設けている、
マリンギヤ装置。
A marine gear device that transmits the rotational power of a main engine mounted on a ship to a propeller via a forward / reverse switching mechanism,
Branching a lubricating oil passage from the hydraulic oil pump through the forward / reverse switching valve to the forward / reverse switching mechanism for lubricating oil to the forward / backward switching mechanism;
A low-pressure oil passage is branched from the lubricating oil passage, and a trolling device that adjusts an operating oil pressure toward the forward / reverse switching mechanism is provided in the low-pressure oil passage, and a branching portion to the lubricating oil passage in the hydraulic oil passage And the forward / reverse switching valve, join the outlet side of the low-pressure oil passage,
Select whether to introduce the hydraulic pressure via the hydraulic oil path or the hydraulic pressure via the low-pressure oil path toward the forward / reverse switching mechanism at the junction of the hydraulic oil path and the low-pressure oil path A merging switching valve is provided for switching to
Marine gear device.
前記潤滑油路に潤滑油クーラーを設け、前記潤滑油路において前記潤滑油クーラーの下流側に、前記低圧油路の入口側を分岐して接続している、
請求項1に記載のマリンギヤ装置。
A lubricating oil cooler is provided in the lubricating oil passage, and the inlet side of the low pressure oil passage is branched and connected to the downstream side of the lubricating oil cooler in the lubricating oil passage.
The marine gear device according to claim 1.
前記作動油路において前記作動油ポンプと前記潤滑油路への分岐部分との間に、潤滑油クーラーを設けている、
請求項1に記載のマリンギヤ装置。
A lubricating oil cooler is provided between the hydraulic oil pump and the branch to the lubricating oil path in the hydraulic oil path.
The marine gear device according to claim 1.
作動油を循環させる冷却油路を前記作動油路とは別に備え、前記冷却油路に作動油ポンプと作動油クーラーとを設けている、
請求項1に記載のマリンギヤ装置。
A cooling oil passage for circulating the hydraulic oil is provided separately from the hydraulic oil passage, and a hydraulic oil pump and a hydraulic oil cooler are provided in the cooling oil passage.
The marine gear device according to claim 1.
前記トローリング装置からパイロット油路を介して導入されるパイロット圧を用いて、前記合流切換弁を選択的に切換作動させるように構成している、
請求項1〜4のうちいずれかに記載のマリンギヤ装置。

Using the pilot pressure introduced from the trolling device through the pilot oil passage, the merging switching valve is configured to be selectively switched.
The marine gear device according to any one of claims 1 to 4.

JP2013262682A 2013-12-19 2013-12-19 Marine gear device Expired - Fee Related JP6151630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262682A JP6151630B2 (en) 2013-12-19 2013-12-19 Marine gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262682A JP6151630B2 (en) 2013-12-19 2013-12-19 Marine gear device

Publications (2)

Publication Number Publication Date
JP2015116968A true JP2015116968A (en) 2015-06-25
JP6151630B2 JP6151630B2 (en) 2017-06-21

Family

ID=53530086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262682A Expired - Fee Related JP6151630B2 (en) 2013-12-19 2013-12-19 Marine gear device

Country Status (1)

Country Link
JP (1) JP6151630B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024491A (en) * 2019-08-08 2021-02-22 株式会社 神崎高級工機製作所 Speed reduction and reverse gear

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107632U (en) * 1983-12-27 1985-07-22 新潟コンバ−タ−株式会社 Clutch hydraulic control circuit
JPS62185000A (en) * 1986-02-07 1987-08-13 Sanshin Ind Co Ltd Power transmission for small ship
JPH01167997U (en) * 1988-05-09 1989-11-27
JPH07116929B2 (en) * 1987-03-31 1995-12-18 本田技研工業株式会社 Engine lubricator
JPH10110742A (en) * 1996-10-08 1998-04-28 Kanzaki Kokyukoki Mfg Co Ltd Hydraulic control device for clutch for ship
JP2002087387A (en) * 2000-09-18 2002-03-27 Yanmar Diesel Engine Co Ltd Hydraulic control device for reduction and reverse machine of ship

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107632U (en) * 1983-12-27 1985-07-22 新潟コンバ−タ−株式会社 Clutch hydraulic control circuit
JPS62185000A (en) * 1986-02-07 1987-08-13 Sanshin Ind Co Ltd Power transmission for small ship
JPH07116929B2 (en) * 1987-03-31 1995-12-18 本田技研工業株式会社 Engine lubricator
JPH01167997U (en) * 1988-05-09 1989-11-27
JPH10110742A (en) * 1996-10-08 1998-04-28 Kanzaki Kokyukoki Mfg Co Ltd Hydraulic control device for clutch for ship
JP2002087387A (en) * 2000-09-18 2002-03-27 Yanmar Diesel Engine Co Ltd Hydraulic control device for reduction and reverse machine of ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024491A (en) * 2019-08-08 2021-02-22 株式会社 神崎高級工機製作所 Speed reduction and reverse gear
JP7359420B2 (en) 2019-08-08 2023-10-11 株式会社 神崎高級工機製作所 Reduction/reversing machine

Also Published As

Publication number Publication date
JP6151630B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
US8997958B2 (en) Hydraulic circuit, method for operating the same
JP4759676B2 (en) Hydraulic supply system used for a device for controlling a plurality of hydraulic shift cylinders and a twin clutch transmission device
JP5445045B2 (en) Hydraulic control device for automatic transmission
US8413437B2 (en) Transmission hydraulic control system having independently controlled stator cooling flow
US20080227594A1 (en) Hydraulic system for controlling a belt-driven conical-pulley transmission
JP6107930B2 (en) Vehicle hydraulic control device
EP1967448B1 (en) Hydraulic saildrive apparatus
JPWO2011001841A1 (en) Hydraulic control device for automatic transmission
JPWO2009041495A1 (en) Hydraulic supply device for industrial vehicles
JP6246327B2 (en) Control device for continuously variable transmission
JP6195315B2 (en) Clutch hydraulic control circuit
CN105793596A (en) Hydraulic arrangement for a dual clutch and method for actuating or cooling the dual clutch
JP2007177868A (en) Hydraulic device for multi-stage transmission
US20090029607A1 (en) Propeller power transmission device for 1-engine, 2-shaft vessel
JP5177026B2 (en) Hydraulic control device for automatic transmission
JPWO2014057531A1 (en) Vehicle hydraulic control device
JP6151630B2 (en) Marine gear device
US8172053B2 (en) Hydraulic circuit arrangement for operating a hydrodynamic torque converter
US10557547B2 (en) Hydraulic control device
JP2018203145A (en) Reduction reverse gear
JP2018197042A (en) Marine gear device
CN106122466A (en) Be there is the hydraulic control system of the automatic transmission giving tacit consent to gear applied by clutch hydraulic pressure discharge loop
JP7359420B2 (en) Reduction/reversing machine
JP2016216008A (en) Marine gear device
JP2008267444A (en) Transmission device equipped with hydraulic pressure control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170525

R150 Certificate of patent or registration of utility model

Ref document number: 6151630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees