JP2015116106A - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP2015116106A
JP2015116106A JP2013258755A JP2013258755A JP2015116106A JP 2015116106 A JP2015116106 A JP 2015116106A JP 2013258755 A JP2013258755 A JP 2013258755A JP 2013258755 A JP2013258755 A JP 2013258755A JP 2015116106 A JP2015116106 A JP 2015116106A
Authority
JP
Japan
Prior art keywords
vehicle
energy
force source
traveling
kinetic energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013258755A
Other languages
Japanese (ja)
Inventor
渡邉雅弘
Masahiro Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013258755A priority Critical patent/JP2015116106A/en
Publication of JP2015116106A publication Critical patent/JP2015116106A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To achieve a hybrid vehicle that highly efficiently collects and accumulates kinetic energy of a vehicle during deceleration and effectively utilizes the kinetic energy for subsequent accelerated traveling.SOLUTION: A regenerative braking system includes a first drive force source and second drive force source. A motor 11 acting as the first drive force source drives a vehicle for accelerated traveling or constant speed traveling. The second drive force source includes, as a component, a compact and lightweight accumulator (for example, flywheel 14) capable of efficiently collecting or accumulating mechanical energy that is kinetic energy of the vehicle. During decelerated traveling, the kinetic energy of the vehicle is highly efficiently collected or accumulated as the mechanical energy. During accelerated traveling succeeding the decelerated traveling, the collected or accumulated mechanical energy is used as (part of) accelerated traveling drive energy.

Description

本願発明は、電気自動車、燃料電池車等車両駆動の主体がモーターの車両における減速時の運動エネルギーの回収・蓄積を効率的に行うことによってその省エネルギー性能をさらに向上させるハイブリッド車両に関する。 The present invention relates to a hybrid vehicle that further improves its energy saving performance by efficiently collecting and accumulating kinetic energy during deceleration of a motor vehicle by a vehicle driving entity such as an electric vehicle and a fuel cell vehicle.

車両の減速に際し、最も運動エネルギー利用効率の悪い走行方法は摩擦制動による走行であるのに対し、最も利用効率の良い走行方法は、特許文献3等に示されているごとく、惰性走行である。
しかし、運動エネルギーを最大限に生かした惰性走行では、通常の制動走行に比して減速走行距離が長大化してしまうという大きな問題がある。
この問題は、減速時車両の有している運動エネルギーを回収・蓄積して後の走行に生かす回生制動走行によって解決可能であるが、現状のHEV(ハイブリッド車両)、EV(電気自動車)あるいはFCV(燃料電池車)に採用されている「発電機と大容量二次電池の組み合わせ」を主体とした回生制動方法は、回生制動に際しての発電機から大容量二次電池への急速充電効率の悪さから、前記惰性走行に比べて運動エネルギー利用効率はまだ不十分であるといえる。
When the vehicle decelerates, the traveling method with the lowest kinetic energy utilization efficiency is traveling by friction braking, whereas the traveling method with the highest utilization efficiency is inertial traveling as disclosed in Patent Document 3 and the like.
However, in inertial traveling that makes the most of kinetic energy, there is a major problem that the deceleration traveling distance becomes longer than in normal braking traveling.
This problem can be solved by regenerative braking that collects and accumulates the kinetic energy of the vehicle during deceleration and uses it for subsequent driving. However, the current HEV (hybrid vehicle), EV (electric vehicle), or FCV The regenerative braking method mainly used in “Fuel cell vehicles”, which is a combination of a generator and a large capacity secondary battery, has a poor rapid charging efficiency from the generator to the large capacity secondary battery during regenerative braking. Therefore, it can be said that the kinetic energy utilization efficiency is still insufficient as compared with the inertia running.

上記問題を解決するため、大容量二次電池を用いた大容量・低回生効率の回生制動方法に代えて、蓄エネルギー装置に高回生(蓄エネルギー)効率のもの、例えば、特許文献2に示されるごとく、電気二重層キャパシターの活用も考えられているが、この場合、キャパシターの占有体積が大きくなり、また高価格になるという新たな問題が発生する。 In order to solve the above problem, instead of a large capacity and low regenerative efficiency regenerative braking method using a large capacity secondary battery, the energy storage device has a high regenerative (energy storage) efficiency. As described above, the use of an electric double layer capacitor is also considered, but in this case, a new problem arises that the occupied volume of the capacitor becomes large and the price becomes high.

またICV(エンジン車両)における運動エネルギーの回収・蓄積に、特許文献1あるいは非特許文献1、2に示されるごとく、「双方向CVTとフライホイールの組み合わせ」による機械エネルギーとしての蓄積・活用による方法も考えられているが、前記「発電機と大容量二次電池の組み合わせ」による電気エネルギー回収・蓄積方法に比べると高価格であること、蓄積したエネルギーの保持期間が短いこと、あるいは車両事故時の安全性に不安があること、等の問題があり、まだ広く普及するには至っていない。 In addition, as shown in Patent Document 1 or Non-Patent Documents 1 and 2, kinetic energy recovery and storage in an ICV (engine vehicle) is a method based on storage and utilization as mechanical energy by “a combination of bidirectional CVT and flywheel”. However, it is more expensive than the method of collecting and storing electric energy by the above “combination of generator and large capacity secondary battery”, the retention period of the stored energy is short, or when a vehicle accident occurs There are problems, such as being worried about the safety of the product, and it has not yet spread widely.

特開2011−038621JP2011-038621 特開2010−200551JP2010-200551 特願2011−046272Japanese Patent Application No. 2011-046272

2012年9月4日 日刊工業新聞記事 「蘭大、車向けフライホイールエンジン開発」September 4, 2012 Nikkan Kogyo Shimbun article "Randai, development of flywheel engine for cars" response.jp/article/2013/04/30/197134.html 「ボルボカーズ、フライホイールKERSを開発」response.jp/article/2013/04/30/197134.html "Volvo Cars develops flywheel KERS"

本願発明は、車両駆動の主体(第一の駆動力源)をモーターとするEVあるいはFCVにおいて、車両減速時の運動エネルギーの回収・蓄積効果を効率的に行うことができる回生制動装置を第二の駆動力源とし、主として車両の市街地走行時の走行可能距離の大幅拡大を可能にするハイブリッド車を提供しようとするものである。 The present invention provides a regenerative braking device that can efficiently collect and accumulate kinetic energy during vehicle deceleration in an EV or FCV that uses a motor as a vehicle driving main body (first driving force source). Therefore, a hybrid vehicle that can largely increase the travelable distance when the vehicle travels in an urban area is provided.

第一の駆動力源としてモーターを、第二の駆動力源として車両減速時の運動エネルギーを回収・蓄積して、減速・停止に継続する発進・加速に活用する回生制動装置を、有するハイブリッド車を想定する。
従来のHEVあるいはEVにおける第二の駆動力源としては、車両の有する運動エネルギーを、発電機を介して電気エネルギーに変換し、これを大容量二次電池に蓄積する回生制動方法が、第一の駆動力源との構成上の整合性から、主流となっている。
しかし、この回生制動方法においては前記のとおり、主として大容量二次電池の急速充電時の蓄電効率の悪さから、充分なエネルギー回生ができず、運動エネルギーの利用効率は低いことが大きな問題である。
A hybrid vehicle having a regenerative braking device that uses a motor as a first driving force source and collects and accumulates kinetic energy during vehicle deceleration as a second driving force source and uses it for starting and acceleration that continues to decelerate and stop Is assumed.
As a second driving force source in the conventional HEV or EV, a regenerative braking method in which kinetic energy of a vehicle is converted into electric energy via a generator and stored in a large capacity secondary battery is first. This is the mainstream because of its structural consistency with other driving force sources.
However, in this regenerative braking method, as described above, due to the poor power storage efficiency at the time of rapid charging of a large-capacity secondary battery, sufficient energy regeneration cannot be performed and kinetic energy utilization efficiency is low. .

上記問題を解決するため、即ち、発電機により電気エネルギーに変換された運動エネルギーの急速充電時の蓄電効率を高める手段として、電気二重層キャパシターの使用が考えられている。
しかし、電気二重層キャパシターは、大容量二次電池に比べてエネルギー密度が低くいことによる車両用蓄エネルギー装置としての占有体積の大きさ等の車両への適合性、およびその高価格、からまだ大容量二次電池に置き換わるところまでは至っていない。
In order to solve the above-mentioned problem, that is, as a means for increasing the power storage efficiency at the time of rapid charging of kinetic energy converted into electric energy by a generator, the use of an electric double layer capacitor is considered.
However, the electric double layer capacitor is still unsuitable for its adaptability to the vehicle such as the size of the occupied volume as a vehicle energy storage device due to its low energy density compared to the large capacity secondary battery and its high price. It has not yet been replaced by a large capacity secondary battery.

一方、第一の駆動力源としてエンジンを使用する場合においては、従来のHEVにおける発電機と大容量二次電池の組み合わせによる運動エネルギーを電気エネルギーに変換して蓄積する回生制動装置に代えて、車両の運動エネルギーを機械エネルギーのまま高効率で回収・蓄積する方法、例えば、「双方向CVTとフライホイールの組み合わせ」、あるいは「ポンプと油圧系の組み合わせ」による回生制動を行う方法が提案され、その一部は実用化されようとしている(非特許文献2)。 On the other hand, in the case of using an engine as the first driving force source, instead of a regenerative braking device that converts kinetic energy generated by a combination of a generator and a large-capacity secondary battery in a conventional HEV into electric energy and accumulates it, A method for recovering and accumulating kinetic energy of a vehicle with mechanical energy with high efficiency, for example, a method of performing regenerative braking by “combination of bidirectional CVT and flywheel” or “combination of pump and hydraulic system” is proposed, Some of them are about to be put into practical use (Non-Patent Document 2).

本願発明は、第一の駆動力源としてモーターを使用する車両、即ちEVあるいはFCVににおいて、「双方向CVTとフライホイールの組み合わせ」等、車両の有する運動エネルギーを機械エネルギーとして高効率に回収・蓄積・活用する回生制動装置を、第二の駆動力源とする、ハイブリッド車両を提供しようとするものである。
この方法は、第二の駆動力源として運動エネルギーを電気エネルギーに変換して回収・蓄積する従来方法に比べて、第一の駆動力源(モーター)とのハイブリッド車両構成上の整合性には劣るが、それに勝る(炭素繊維材利用による高速回転フライホイール等での)小型・軽量化、低価格化、(回生制動による大容量二次電池への急速充電を行わないことによる電池の)長寿命化、等の効果が期待できる。
In the present invention, in a vehicle that uses a motor as a first driving force source, that is, EV or FCV, the kinetic energy of the vehicle, such as “a combination of bidirectional CVT and flywheel”, is recovered with high efficiency as mechanical energy. The present invention intends to provide a hybrid vehicle using the regenerative braking device to be stored and utilized as a second driving force source.
Compared with the conventional method of converting and collecting kinetic energy into electric energy as the second driving force source, this method is more consistent with the hybrid vehicle configuration with the first driving force source (motor). Inferior, but superior to that (with high-speed rotating flywheel using carbon fiber material, etc.) Small size, light weight, low price, long battery (by not recharging large capacity secondary battery by regenerative braking) Effects such as life extension can be expected.

車両の市街地走行における減速は交差点赤信号での減速・停止がその殆どである。
また交差点間距離は平均1000m程度であるのに対し、減速開始時の車両の有する運動エネルギーを最大限惰性走行に活用した走行可能距離は500m程度であると想定される。
従って、前記惰性走行に活用される運動エネルギーを、例えば回生効率90%程度の高効率回生制動装置によって回生すれば、この回生制動による燃費向上効果は、概略45%(通常の摩擦制動による減速をする場合の交差点間走行に車両の消費する平均エネルギーは、上記回生制動による減速を行う場合の交差点間走行に車両が消費する平均エネルギーの約1.45倍)にもなると推測される。
現に、前記非特許文献2には、新欧州ドライビングサイクルで、市街地において45%の燃費向上効果があると記載されている。
Most of the vehicle deceleration in the urban area is the deceleration / stop at the intersection red light.
Further, while the average distance between intersections is about 1000 m, it is assumed that the travelable distance using the kinetic energy of the vehicle at the start of deceleration for maximum inertial travel is about 500 m.
Therefore, if the kinetic energy utilized for the inertial running is regenerated by a high-efficiency regenerative braking device having a regenerative efficiency of about 90%, for example, the fuel efficiency improvement effect by this regenerative braking is approximately 45% (deceleration by normal friction braking is reduced). It is estimated that the average energy consumed by the vehicle for traveling between the intersections when the vehicle is driven is approximately 1.45 times the average energy consumed by the vehicle for traveling between the intersections when performing deceleration by regenerative braking.
In fact, Non-Patent Document 2 describes that the new European driving cycle has a fuel efficiency improvement effect of 45% in urban areas.

但し、従来のEVにおいては低効率ながら(エネルギー回生効率は約30%といわれている)回生制動走行を行っていることから、従来のEVに比べての本願発明による走行可能距離伸長は約30%程度と推測される。
従って、同一容量の大容量二次電池を搭載したEVの市街地走行においては、上記回生制動走行を行うことによって通常の約1.3倍の距離走行が可能ということになる。
However, since the conventional EV performs regenerative braking while being low in efficiency (energy regeneration efficiency is said to be about 30%), the extension of the travelable distance according to the present invention compared to the conventional EV is about 30. It is estimated to be about%.
Therefore, in EV city driving with a large-capacity secondary battery of the same capacity, it is possible to travel about 1.3 times the normal distance by performing the regenerative braking traveling.

上記の如く本願発明によるモーターを車両駆動の主体とする、即ちモーターを第一の駆動力源とするハイブリッド車両においては、従来の発電機によって運動エネルギーを電気エネルギーに変換し、それを大容量二次電池に急速充電する運動エネルギー回生方法に代えて、運動エネルギーを機械エネルギーのまま機械エネルギー蓄積装置に高効率で回収・蓄積しそれを効果的に活用する方法によって、少なくとも市街地走行においては大容量二次電池容量を1.3倍にすると同等な走行可能距離を得ることができるといえる。
これは、EVにおいて、同一走行距離を得るために必要な大容量二次電池容量増大に必要な費用に比べても大幅な費用低減が期待できるということである。
さらに、大容量二次電池への回生制動による急速充電がなくなることから、大容量二次電池サイクル寿命の伸長にも貢献できる。
As described above, in a hybrid vehicle in which the motor according to the present invention is the main driving body, that is, the motor is the first driving force source, kinetic energy is converted into electric energy by a conventional generator, Instead of the kinetic energy regeneration method that quickly charges the secondary battery, the kinetic energy is recovered and stored in the mechanical energy storage device with high efficiency as it is mechanical energy. It can be said that an equivalent travelable distance can be obtained by increasing the secondary battery capacity by 1.3 times.
This means that, in EV, a significant cost reduction can be expected compared to the cost required to increase the capacity of the large capacity secondary battery required to obtain the same travel distance.
Furthermore, since rapid charging due to regenerative braking to the large capacity secondary battery is eliminated, it is possible to contribute to the extension of the cycle life of the large capacity secondary battery.

さらに車両減速時上記「双方向CVTとフライホイールの組み合わせ」等運動エネルギーを機械エネルギーのまま回収・蓄積し、その後の加速時にそれを加速エネルギーとして活用する回生制動装置は、電気エネルギーの急速充電が可能な電気二重層キャパシターを使用する回生制動装置に比べて大幅な小型・軽量化が可能である。
また、車両減速時に回収・蓄積したエネルギーは、減速に継続する加速に利用されることから、蓄エネルギー装置としてのエネルギー保持時間は長時間である必要もなく安全性の問題も軽減できる可能性が大きい。
Furthermore, a regenerative braking device that collects and accumulates kinetic energy as mechanical energy, such as the “combination of bidirectional CVT and flywheel” when the vehicle decelerates, and uses it as acceleration energy at the time of subsequent acceleration. Compared to a regenerative braking device that uses a possible electric double layer capacitor, it can be significantly smaller and lighter.
In addition, the energy collected and stored when the vehicle is decelerated is used for acceleration that continues to decelerate, so the energy retention time as an energy storage device does not need to be long and may reduce safety issues. large.

本願発明によるハイブリッド車両の構成例概念図、Conceptual diagram of a configuration example of a hybrid vehicle according to the present invention,

本願発明におけるハイブリッド車において第一の駆動力源(モーター)は、基本的には従来のEVにおけると同様な、走行全般における車両駆動を行う。一方第二の駆動力源(車両の運動エネルギーを機械エネルギーとして回収・蓄積する回生制動装置)は、減速走行開始時に車両の有する運動エネルギーからエネルギーを回収・蓄積し、前記回生制動走行に継続する発進・加速走行に際して、前記回収・蓄積したエネルギーを加速走行駆動エネルギー(の一部)として利用する、ことが基本となる。 In the hybrid vehicle according to the present invention, the first driving force source (motor) basically drives the vehicle in general traveling as in the conventional EV. On the other hand, the second driving force source (regenerative braking device that recovers and stores the kinetic energy of the vehicle as mechanical energy) recovers and stores energy from the kinetic energy of the vehicle at the start of deceleration traveling and continues the regenerative braking traveling. When starting and accelerating, it is fundamental to use the collected and accumulated energy as (part of) acceleration driving energy.

すなわち、第二の駆動力源回生制動装置におけるエネルギー回生及び利用動作は、基本的には連続する短時間の減速・停止・発進・加速(および定速)走行一サイクルにおいて完結する回生制動動作であるといえる。
従って、停止するための減速時だけではなく、走行途中の減速・加速の繰り返し時においても、減速時運動エネルギーの回収・蓄積したエネルギーによる加速走行によって、省エネルギー走行が可能となる。
ただし上記減速時に回収・蓄積したエネルギーが継続する加速走行に不足の場合は、第一の駆動力源から供給される。
また、減速走行開始時車両の有する運動エネルギーが上記第二の駆動力源による回収・蓄積に余る場合は、回生制動に先立っての惰性走行によってこれを活用する方法もある。
That is, the energy regeneration and utilization operation in the second driving force source regenerative braking device is basically a regenerative braking operation completed in one continuous short-time deceleration, stop, start, acceleration (and constant speed) traveling cycle. It can be said that there is.
Therefore, not only at the time of deceleration for stopping, but also at the time of repeated deceleration / acceleration in the middle of travel, energy-saving travel is possible by acceleration travel using the energy collected and accumulated during deceleration.
However, if the energy collected and stored during deceleration is insufficient for continued acceleration travel, the energy is supplied from the first driving force source.
Further, when the kinetic energy possessed by the vehicle at the start of deceleration traveling is excessively collected and accumulated by the second driving force source, there is a method of utilizing this by inertial traveling prior to regenerative braking.

図1に本願発明のハイブリッド車両において、第一の駆動力源をモーター、第二の駆動力源のエネルギー蓄積機能をフライホイール、とした場合の基本構成例を示す。
図1において、
11は、モーター、
12は、モーターを駆動する電気エネルギーを蓄積する大容量二次電池、
13は、前記モーター11と大容量二次電池12によって構成され、車両走行駆動の主体となる、第一の駆動力源、
14は、機械エネルギーを高効率で蓄積するフライホイール、
15は、車両減速時、車両の有する運動エネルギーを駆動輪18・駆動軸17経由フライホイール
14に供給し、車両加速時、フライホイール14に蓄積されたエネルギーを駆動軸17経由で駆動輪18に供給する双方向型無段変速機、
16は、前記フライホイール14と、双方向型無段変速機15によって構成される第二の駆動力源、
17は、駆動軸
18は、駆動輪、である。
FIG. 1 shows a basic configuration example in the case where the first driving force source is a motor and the energy storage function of the second driving force source is a flywheel in the hybrid vehicle of the present invention.
In FIG.
11 is a motor,
12 is a large-capacity secondary battery that stores electrical energy that drives the motor;
Reference numeral 13 denotes a first driving force source that is constituted by the motor 11 and the large-capacity secondary battery 12 and is a main body of vehicle driving.
14 is a flywheel that accumulates mechanical energy with high efficiency,
15, when the vehicle decelerates, the kinetic energy of the vehicle is supplied to the flywheel 14 via the drive wheel 18 and the drive shaft 17, and the energy accumulated in the flywheel 14 is supplied to the drive wheel 18 via the drive shaft 17 during vehicle acceleration. Bidirectional continuously variable transmission to supply,
16 is a second driving force source constituted by the flywheel 14 and the bidirectional continuously variable transmission 15;
Reference numeral 17 denotes a drive wheel.

上記高効率回生制動装置を従来のEV等モーターを主たる駆動力源とする車両に搭載することによって、高価格な大容量二次電池容量を増やすことなく、あるいは急速充放電は可能であるが低エネルギー密度の電気二重層キャパシターを使用することなく、従来の電気的に運動エネルギーを回生する場合に比べて、少なくとも市街地走行においては30%以上の走行可能距離伸長が可能となることから、EV車普及の最大の問題である一回の充電での走行可能距離問題を大幅に改善することができ、EV車普及に大きく貢献できる。   By mounting the above-described high-efficiency regenerative braking device on a vehicle that uses a conventional motor such as an EV as a main driving force source, high-capacity large-capacity secondary battery capacity can be increased or rapid charging / discharging is possible. EVs can be driven at least 30% longer in urban areas than in the case of electrically regenerating kinetic energy without using electric double layer capacitors of energy density. The problem of the distance that can be traveled with a single charge, which is the biggest problem of widespread use, can be greatly improved, and can greatly contribute to the spread of EV cars.

図1において、
11:モーター、
12:大容量二次電池、
13:前記モーター11と大容量二次電池によって構成される第一の駆動力源、
14:フライホイール、
15:双方向型無段変速機、
16:前記フライホイール14と、双方向型無段変速機15によって構成される第二の駆動力源、
17:駆動軸
18:駆動輪、
In FIG.
11: Motor,
12: Large capacity secondary battery,
13: a first driving force source constituted by the motor 11 and a large capacity secondary battery;
14: Flywheel,
15: Bidirectional continuously variable transmission,
16: a second driving force source configured by the flywheel 14 and the bidirectional continuously variable transmission 15;
17: Drive shaft 18: Drive wheel,

車両の市街地走行における減速は交差点赤信号での減速・停止がその殆どである。
また交差点間距離は平均1000m以下であるのに対し、減速開始時の車両の有する運動エネルギーを最大限惰性走行に活用した走行可能距離は500m程度であると想定される。
従って、前記惰性走行に活用される運動エネルギーを、例えば回生効率90%程度の高効率回生制動装置によって回生すれば、この回生制動による燃費向上効果は、概略45%(通常の摩擦制動による減速をする場合の交差点間走行に車両の消費する平均エネルギーは、上記回生制動による減速を行う場合の交差点間走行に車両が消費する平均エネルギーの約1.45倍)にもなると推測される。
但し、交差点で赤信号停止する確率が0.5であるとすると、平均停止間距離は2000mとなり、この場合の燃費向上効果は1.30倍となる。
現に、前記非特許文献2には、新欧州ドライビングサイクルでの公道テストの結果、市街地において25%の燃費向上効果があると記載されている。
Most of the vehicle deceleration in the urban area is the deceleration / stop at the intersection red light.
Further, while the average distance between intersections is 1000 m or less , it is assumed that the travelable distance using the kinetic energy of the vehicle at the start of deceleration for maximum inertial travel is about 500 m.
Therefore, if the kinetic energy utilized for the inertial running is regenerated by a high-efficiency regenerative braking device having a regenerative efficiency of about 90%, for example, the fuel efficiency improvement effect by this regenerative braking is approximately 45% (deceleration by normal friction braking is reduced). It is estimated that the average energy consumed by the vehicle for traveling between the intersections when the vehicle is driven is approximately 1.45 times the average energy consumed by the vehicle for traveling between the intersections when performing deceleration by regenerative braking.
However, if the probability of a red light stop at an intersection is 0.5, the average distance between stops is 2000 m, and the fuel efficiency improvement effect in this case is 1.30 times.
In fact, Non-Patent Document 2 describes that as a result of a public road test in the new European driving cycle, there is a 25% improvement in fuel efficiency in urban areas.

但し、従来のEVにおいては低効率ながら(エネルギー回生効率は約30%といわれている)回生制動走行を行っていることから、従来のEVに比べての本願発明による走行可能距離伸長は約20%程度と推測される。
従って、同一容量の大容量二次電池を搭載したEVの市街地走行においては、上記回生制動走行を行うことによって従来のEVに比べて約1.2倍の距離走行が可能、即ちエネルギー利用効率が向上することになる。
However, since the conventional EV performs regenerative braking while having low efficiency (energy regeneration efficiency is said to be about 30%), the extension of the travelable distance according to the present invention is about 20 compared to the conventional EV. It is estimated to be about%.
Therefore, in EV city driving with a large-capacity secondary battery of the same capacity, it is possible to travel about 1.2 times longer than conventional EV by performing the regenerative braking traveling, that is, energy utilization efficiency is improved. Will improve .

Claims (1)

第一の駆動力源と第二の駆動力源を有し、第一の駆動力源はモーターによって車両の走行駆動全般を行い、第二の駆動力源は車両の有する運動エネルギーを機械エネルギーとして蓄積するフライホイール等の機械エネルギー高効率蓄積装置を有し、車両減速時に車両の有する運動エネルギーを回収・蓄積して前記減速走行に継続する加速の駆動エネルギー(の一部)とする回生制動装置で構成される、ことを特徴とするハイブリッド車両。   The first driving force source has a first driving force source and a second driving force source. The first driving force source performs overall driving of the vehicle by a motor, and the second driving force source uses the kinetic energy of the vehicle as mechanical energy. A regenerative braking device having a mechanical energy high-efficiency accumulating device such as a flywheel for accumulating, and collecting (accumulating) the kinetic energy of the vehicle when the vehicle decelerates and using (a part of) the acceleration driving energy that continues in the deceleration traveling A hybrid vehicle comprising:
JP2013258755A 2013-12-15 2013-12-15 Hybrid vehicle Pending JP2015116106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013258755A JP2015116106A (en) 2013-12-15 2013-12-15 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258755A JP2015116106A (en) 2013-12-15 2013-12-15 Hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2015116106A true JP2015116106A (en) 2015-06-22

Family

ID=53529431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258755A Pending JP2015116106A (en) 2013-12-15 2013-12-15 Hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2015116106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108340790A (en) * 2017-01-24 2018-07-31 深圳市深空智能科技有限公司 The electric vehicle and its dynamical system of electrical energy drive with multiple wheels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108340790A (en) * 2017-01-24 2018-07-31 深圳市深空智能科技有限公司 The electric vehicle and its dynamical system of electrical energy drive with multiple wheels

Similar Documents

Publication Publication Date Title
Zou et al. Evaluation strategy of regenerative braking energy for supercapacitor vehicle
CN103802821A (en) Power control method based on hybrid power source for hybrid power
JP2002325311A (en) Vehicle equipped with super-capacitor for recovery of energy in braking
Kapoor et al. Comparative study on various KERS
CN103802767B (en) Hybrid power composite power source
CN108146253B (en) Control method of braking energy recovery device with hybrid energy storage
CN102398525A (en) Brake energy recovery system and method of electric vehicle
CN201021118Y (en) Series-parallel type hybrid power automobile
JP5301658B2 (en) Hybrid vehicle
CN103192721A (en) Braking system and braking method of double-shaft driven electric vehicle
WO2010133330A1 (en) Multi component propulsion systems for road vehicles
CN103552472B (en) Non-rice habitats stroke-increasing electric automobile regenerative braking method
CN206202005U (en) A kind of dynamical system for pure electric vehicle
CN205905800U (en) Electric motor car energy recuperation device, system and electric motor car
CN101698388A (en) Electric motor coach power control method
JP2015116106A (en) Hybrid vehicle
CN209738820U (en) New forms of energy electric automobile inertial power conversion electric energy compensation charging system
CN107303819A (en) The regenerative braking of vehicle
JP6080234B1 (en) Hybrid vehicle
CN206067518U (en) It is a kind of based on poly-lithium battery and the electric car power supply of super capacitor
CN114179632A (en) Vehicle power supply system, power supply method and vehicle
JP5345255B2 (en) Hybrid vehicle
CN102673414B (en) Energy-saving device and method for electric automobile
CN105291854A (en) System and method for recovery and utilization of kinetic energy of electric vehicle
CN204279129U (en) A kind of electric vehicle composite power source