JP2015116085A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2015116085A
JP2015116085A JP2013258098A JP2013258098A JP2015116085A JP 2015116085 A JP2015116085 A JP 2015116085A JP 2013258098 A JP2013258098 A JP 2013258098A JP 2013258098 A JP2013258098 A JP 2013258098A JP 2015116085 A JP2015116085 A JP 2015116085A
Authority
JP
Japan
Prior art keywords
deceleration
vehicle
vehicle speed
target
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013258098A
Other languages
Japanese (ja)
Other versions
JP5880533B2 (en
Inventor
亨裕 宮下
Michihiro Miyashita
亨裕 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013258098A priority Critical patent/JP5880533B2/en
Priority to PCT/JP2014/006048 priority patent/WO2015087516A2/en
Publication of JP2015116085A publication Critical patent/JP2015116085A/en
Application granted granted Critical
Publication of JP5880533B2 publication Critical patent/JP5880533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such the problem that a driver tends to feel discomfort with the slowdown due to power generation by an alternator during inertia travelling.SOLUTION: A vehicle control device includes: a step S100 of deciding a target value of deceleration by the alternator during inertia travelling of a vehicle based on a velocity of the vehicle; and step S200 to S400 for bringing the deceleration by the alternator closer to the decided target value after the step S100.

Description

本発明は、車両の制御に関する。   The present invention relates to vehicle control.

自動車は、通常、発電をするオルタネータを搭載する。オルタネータの発電は、エンジントルクや自動車の惰性を利用して実行される。燃費の改善のためには、自動車の惰性(運動エネルギー)を利用した発電を適切に実行し、車両の惰性を電力として回生することが有効である。このように、惰性を用いて発電を実行すると、車両が減速する。   Automobiles usually have an alternator that generates electricity. Alternator power generation is performed using engine torque and vehicle inertia. In order to improve fuel efficiency, it is effective to appropriately perform power generation using the inertia (kinetic energy) of the automobile and regenerate the inertia of the vehicle as electric power. Thus, when power generation is performed using inertia, the vehicle decelerates.

自動車の惰性を用いる発電において、現在の減速度と目標減速度との差分に対応する負トルクが発生するようにオルタネータを制御する手法が知られている。目標減速度の算出は、現在の減速度、スロットルの開度などに基づき実行される(例えば特許文献1)。   In power generation using the inertia of an automobile, a method of controlling an alternator so as to generate a negative torque corresponding to a difference between a current deceleration and a target deceleration is known. The calculation of the target deceleration is executed based on the current deceleration, the throttle opening, etc. (for example, Patent Document 1).

特開2010−288343号公報JP 2010-288343 A

上記の先行技術が有する課題は、運転者が惰性走行時に違和感を覚えやすいことである。惰性走行とは、アクセルペダルもブレーキペダルも踏み込まれていない状態における走行のことである。運転者は、惰性走行の際に減速が強すぎると違和感を覚えて、アクセルペダルを踏むことがある。アクセルペダルが踏まれると、惰性走行の場合に比べて燃費が悪化する。一方、惰性走行の際に減速が弱すぎると、運転者が空走感を覚えることがある。この他、装置の小型化や、低コスト化、省資源化、製造の容易化、使い勝手の向上等が望まれていた。   The problem of the above prior art is that the driver tends to feel uncomfortable during inertial driving. Inertia travel refers to travel in a state where neither the accelerator pedal nor the brake pedal is depressed. The driver may feel uncomfortable if the deceleration is too strong during inertial driving and may step on the accelerator pedal. When the accelerator pedal is stepped on, the fuel consumption is worse than in the case of coasting. On the other hand, if the deceleration is too weak during coasting, the driver may feel idle. In addition, downsizing of the apparatus, cost reduction, resource saving, ease of manufacture, improvement in usability, and the like have been desired.

本発明は、上述の課題の少なくとも一部を解決するためのものであり、以下の形態として実現できる。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、車両制御装置が提供される。この車両制御装置は、車両の走行に伴うエネルギーを電力として回生する回生装置と;前記車両が惰性走行している場合の減速度の目標値を、前記車両の速度である車速に応じて決定する目標減速度決定部と;前記車両が惰性走行している際、前記回生装置を制御することによって、前記減速度を前記決定された目標値に近づける減速度制御を実行する減速度制御部とを備える。この形態によれば、惰性走行時における減速が引き起こす違和感が軽減される。この違和感は、車速に応じて変化すると考えられる。よって、減速度を車速に基づき制御することによって、違和感を軽減することが可能になる。 (1) According to one aspect of the present invention, a vehicle control device is provided. The vehicle control device determines a target value for deceleration when the vehicle is coasting according to a vehicle speed that is the speed of the vehicle. A target deceleration determination unit; and a deceleration control unit that executes deceleration control to bring the deceleration closer to the determined target value by controlling the regeneration device when the vehicle is coasting. Prepare. According to this aspect, the uncomfortable feeling caused by deceleration during inertial running is reduced. This uncomfortable feeling is considered to change depending on the vehicle speed. Therefore, it is possible to reduce the uncomfortable feeling by controlling the deceleration based on the vehicle speed.

(2)上記形態において、前記車両に設けられたアクセルペダルとブレーキペダルとの両方共が踏み込まれていない場合に、前記車両が惰性走行していると判断してもよい。この形態によれば、惰性走行であるかの判断が容易に実行できる。 (2) In the above aspect, it may be determined that the vehicle is coasting when both an accelerator pedal and a brake pedal provided on the vehicle are not depressed. According to this form, it can be easily determined whether the vehicle is coasting.

(3)上記形態において、前記目標減速度決定部は、許容減速度と前記車速とについて予め定められた関係を参照することによって前記車速に応じた前記許容減速度を取得し、前記取得した許容減速度を前記目標減速度として決定してもよい。この形態によれば、算出等を都度しなくても、違和感が軽減されるような目標減速度を決定できる。許容減速度とは、運転者が違和感を覚えにくい範囲内で定められた減速度の値のことである。 (3) In the above aspect, the target deceleration determining unit acquires the allowable deceleration according to the vehicle speed by referring to a predetermined relationship between the allowable deceleration and the vehicle speed, and the acquired allowable A deceleration may be determined as the target deceleration. According to this aspect, it is possible to determine a target deceleration that can reduce the sense of incongruity without performing calculation or the like each time. The allowable deceleration is a deceleration value determined within a range in which the driver does not feel uncomfortable.

(4)上記形態において、前記回生装置は、オルタネータであり、前記車両に搭載されたエンジンの回転軸に連結されてもよい。この形態によれば、既存のハードウエア構成を用いて、上記の制御を実現できる。 (4) In the above aspect, the regenerative device is an alternator, and may be connected to a rotating shaft of an engine mounted on the vehicle. According to this aspect, the above control can be realized by using an existing hardware configuration.

(5)上記形態において、前記減速度制御部は;前記オルタネータの回生によって発生する負トルクの目標値を、前記車両に搭載されたエンジンの回転数と、前記車両の車重と、前記車速との少なくとも何れか1つを考慮して決定する目標負トルク決定部と;前記回生装置の制御として、前記負トルクを前記決定された目標値に近づけるオルタネータ制御部とを備えてもよい。この形態によれば、オルタネータを用いた減速度制御が適切に実行できる。 (5) In the above aspect, the deceleration control unit; sets a target value of a negative torque generated by regeneration of the alternator, a rotational speed of an engine mounted on the vehicle, a vehicle weight of the vehicle, and the vehicle speed. A target negative torque determination unit that determines in consideration of at least one of the above; and an alternator control unit that brings the negative torque closer to the determined target value as control of the regenerative device. According to this aspect, the deceleration control using the alternator can be appropriately executed.

(6)上記形態において、前記オルタネータ制御部は、前記オルタネータに流れる励磁電流を、前記負トルクの目標値に基づき制御することによって、前記負トルクを前記決定された目標値に近づけてもよい。この形態によれば、オルタネータの負トルクの制御を、オルタネータの特性に応じて適切に実行できる。 (6) In the above aspect, the alternator control unit may bring the negative torque closer to the determined target value by controlling the excitation current flowing through the alternator based on the target value of the negative torque. According to this aspect, the negative torque of the alternator can be appropriately controlled according to the characteristics of the alternator.

(7)上記形態において、前記オルタネータ制御部は、前記励磁電流の制御として、前記励磁電流の上限値を設定してもよい。この形態によれば、違和感が生じるような大きな減速度が生じることを回避しつつ、オルタネータの特性に適した制御ができる。 (7) In the above aspect, the alternator control unit may set an upper limit value of the excitation current as the excitation current control. According to this aspect, it is possible to perform control suitable for the characteristics of the alternator while avoiding the occurrence of a large deceleration that causes a sense of incongruity.

(8)上記形態において、前記目標減速度決定部は、前記車速の少なくとも一部の範囲において、前記車速の増大に対して単調増加するように前記目標値を決定してもよい。この形態によれば、車両の制動がより適切になる。少なくとも一部の速度範囲において、速度が速い場合に、より大きな減速度で減速するからである。 (8) In the above aspect, the target deceleration determination unit may determine the target value so as to monotonously increase with respect to the increase in the vehicle speed in at least a partial range of the vehicle speed. According to this aspect, braking of the vehicle becomes more appropriate. This is because at least in some speed ranges, when the speed is high, the vehicle decelerates with a larger deceleration.

(9)上記形態において、前記減速度制御部は、前記車速の少なくとも一部の範囲において、前記減速度を減少させる場合には、前記減速度を増大させる場合に比べて、時間に対して前記減速度が変化する割合の絶対値が大きくなるように前記減速度制御を実行してもよい。この形態によれば、減速度を減少させる場合に、減速度を目標値に近づけやすくなる。減速度の目標値は、少なくとも一部の速度範囲において速度の増大に対して単調増加するので、減速に連れて小さくなる。よって、減速度を減少させる場合は、増大させる場合よりも減速度が変化する割合の絶対値を大きくする方が、目標値に近づきやすくなる。 (9) In the above aspect, the deceleration control unit may reduce the deceleration with respect to time when the deceleration is decreased in at least a portion of the vehicle speed. The deceleration control may be executed so that the absolute value of the rate at which the deceleration changes increases. According to this aspect, when the deceleration is decreased, the deceleration is easily brought close to the target value. The target value for deceleration increases monotonically with increase in speed in at least a part of the speed range, and therefore decreases with deceleration. Therefore, when the deceleration is decreased, it becomes easier to approach the target value by increasing the absolute value of the rate at which the deceleration changes than when increasing the deceleration.

(10)上記形態において、前記目標減速度決定部は、前記車速の少なくとも一部の範囲において、前記車速に対する前記減速度の変化率が、前記車速の増大に対して単調減少するように前記目標値を決定してもよい。この形態によれば、違和感がより軽減される。目標値の変化率が速度の増大に対して単調減少すれば、目標値が急激に変化することが避けられるので、上記効果を得ることができる。 (10) In the above aspect, the target deceleration determination unit is configured so that the change rate of the deceleration with respect to the vehicle speed monotonously decreases with respect to the increase in the vehicle speed in at least a part of the vehicle speed. The value may be determined. According to this embodiment, the uncomfortable feeling is further reduced. If the rate of change of the target value decreases monotonously with increase in speed, the target value can be avoided from changing suddenly, so that the above effect can be obtained.

(11)上記形態において、前記減速度制御部は、前記減速度の時間に対する変化率を前記車速に応じて決定し、前記決定した変化率に基づき前記減速度制御を実行してもよい。この形態によれば、違和感が更に軽減されるような減速度制御が実現しやすくなる。 (11) In the above aspect, the deceleration control unit may determine a rate of change of the deceleration with respect to time according to the vehicle speed, and execute the deceleration control based on the determined rate of change. According to this aspect, it becomes easy to realize the deceleration control that further reduces the uncomfortable feeling.

本発明は、上記以外の種々の形態でも実現できる。例えば、減速制御方法や、この制御方法を実現するためのプログラム、このプログラムを記憶した一時的でない記憶媒体等の形態で実現できる。   The present invention can be realized in various forms other than the above. For example, the present invention can be realized in the form of a deceleration control method, a program for realizing the control method, a non-temporary storage medium storing the program, and the like.

減速制御処理に関係する構成部品を示すブロック図。The block diagram which shows the component related to the deceleration control process. 減速制御処理を示すフローチャート。The flowchart which shows deceleration control processing. 全体許容減速度および許容減速度並びに車速の関係を例示するグラフ。The graph which illustrates the relationship between the whole allowable deceleration, the allowable deceleration, and the vehicle speed. アクセルオフの場合における実減速度と時間との関係を例示するグラフ。The graph which illustrates the relationship between the actual deceleration and time in the case of accelerator-off. ブレーキオフの場合における実減速度と時間との関係を例示するグラフ。The graph which illustrates the relationship between the actual deceleration and time in the case of brake-off. 許容減速度と車速との関係を例示するグラフ(変形例1,2)。The graph which illustrates the relationship between permissible deceleration and vehicle speed (modifications 1 and 2). 車速に対する実減速度の変化率と車速との関係を例示するグラフ(変形例3)。The graph which illustrates the relationship between the change rate of the actual deceleration with respect to a vehicle speed, and a vehicle speed (modification 3). 車速に対する実減速度の変化率と車速との関係を例示するグラフ(変形例4)。The graph which illustrates the relationship between the change rate of the actual deceleration with respect to a vehicle speed, and a vehicle speed (modification 4). 車速に対する実減速度の変化率と車速との関係を例示するグラフ(変形例5)。The graph which illustrates the relationship between the change rate of the actual deceleration with respect to a vehicle speed, and a vehicle speed (modification 5).

図1は、4輪自動車の構成部品のうち、後述する減速制御処理に関係するものを示すブロック図である。図1は、エンジンECU30と、オルタネータ40と、ベルト45と、バッテリ50と、エンジン60と、トランスミッション70と、ドライブシャフト75、駆動輪80と、センサ群90とを示す。センサ群90は、アクセルストロークセンサ91と、ブレーキストロークセンサ92と、スロットルセンサ93と、車輪速センサ94と、車速センサ95と、バッテリセンサ96とを含む。   FIG. 1 is a block diagram showing components related to a deceleration control process to be described later among the components of a four-wheeled vehicle. FIG. 1 shows an engine ECU 30, an alternator 40, a belt 45, a battery 50, an engine 60, a transmission 70, a drive shaft 75, drive wheels 80, and a sensor group 90. Sensor group 90 includes an accelerator stroke sensor 91, a brake stroke sensor 92, a throttle sensor 93, a wheel speed sensor 94, a vehicle speed sensor 95, and a battery sensor 96.

エンジンECU30は、アクセルペダル(図示しない)のストローク量(踏み込み量)などに応じて、エンジン60に制御信号を入力する。エンジン60は、周知の内燃機関であり、エンジンECU30から入力される制御信号に従ってトルクを発生する。エンジン60によって発生したトルクは、トランスミッション70及びドライブシャフト75を介して、駆動輪80に伝えられる。エンジンECU30は、エンジン60の回転数やトルクを示す値をエンジン60から取得する。   The engine ECU 30 inputs a control signal to the engine 60 according to the stroke amount (depression amount) of an accelerator pedal (not shown). Engine 60 is a well-known internal combustion engine, and generates torque in accordance with a control signal input from engine ECU 30. Torque generated by the engine 60 is transmitted to the drive wheels 80 via the transmission 70 and the drive shaft 75. The engine ECU 30 acquires values indicating the rotation speed and torque of the engine 60 from the engine 60.

エンジン60によって発生したトルクは、ベルト45を介して、オルタネータ40の回転子(図示しない)を回転させる。オルタネータ40は、回転子の回転によって発電する。オルタネータ40の回転子は、発電中、負トルクを発生させる。このようにオルタネータ40による発電は、エンジン60に負荷を掛けるので、トランスミッション70を介して駆動輪80の回転数を低下させ、車速の減少を引き起こす。オルタネータ40によって発電された電力は、バッテリ50に蓄電される。バッテリ50に蓄電された電力は、自動車に搭載された電子機器などに供給される。   Torque generated by the engine 60 rotates a rotor (not shown) of the alternator 40 via the belt 45. The alternator 40 generates power by the rotation of the rotor. The rotor of the alternator 40 generates negative torque during power generation. Thus, since the power generation by the alternator 40 places a load on the engine 60, the rotational speed of the drive wheels 80 is reduced via the transmission 70, causing a reduction in the vehicle speed. The electric power generated by the alternator 40 is stored in the battery 50. The electric power stored in the battery 50 is supplied to an electronic device or the like mounted on the automobile.

オルタネータ40の発電は、エンジンECU30の制御に従って実行される。具体的には、エンジンECU30は、エンジン60の回転数やバッテリ50の残容量等に基づき、発電電圧と励磁電流の制限値とを決定して、オルタネータ40に指示する。オルタネータ40は、指示された発電電圧による発電を実行する。この際、オルタネータ40は、実際に流れる励磁電流が、指示された制限値を超えないように、制御を実行する。この制御は、オルタネータ40に組み込まれた制御回路によって実現される。オルタネータ40は、実際の励磁電流と発電電圧との値を、エンジンECU30に入力する。   The power generation of the alternator 40 is executed according to the control of the engine ECU 30. Specifically, the engine ECU 30 determines the generated voltage and the limit value of the excitation current based on the rotational speed of the engine 60, the remaining capacity of the battery 50, and the like, and instructs the alternator 40. The alternator 40 performs power generation using the instructed power generation voltage. At this time, the alternator 40 performs control so that the exciting current that actually flows does not exceed the instructed limit value. This control is realized by a control circuit incorporated in the alternator 40. Alternator 40 inputs the values of the actual excitation current and generated voltage to engine ECU 30.

アクセルストロークセンサ91は、アクセルペダルのストローク量を測定する。ブレーキストロークセンサ92は、ブレーキペダル(図示しない)のストローク量を測定する。スロットルセンサ93は、エンジン60の吸気を調整するためのバルブ(図示しない)の開度を測定する。車輪速センサ94は、駆動輪80の回転周期を示すパルス信号を取得し、駆動輪80の回転速度を測定する。   The accelerator stroke sensor 91 measures the stroke amount of the accelerator pedal. The brake stroke sensor 92 measures the stroke amount of a brake pedal (not shown). The throttle sensor 93 measures the opening of a valve (not shown) for adjusting the intake air of the engine 60. The wheel speed sensor 94 acquires a pulse signal indicating the rotation period of the drive wheel 80 and measures the rotation speed of the drive wheel 80.

車速センサ95は、車輪速センサ94による測定結果や、GPSによる位置情報などに基づき、自動車の走行速度を測定する。バッテリセンサ96は、バッテリ50から取得する端子電圧の値に基づき、バッテリ50の残容量を推定する。以上に述べたセンサ群90による測定結果は、エンジンECU30に入力される。   The vehicle speed sensor 95 measures the traveling speed of the vehicle based on the measurement result by the wheel speed sensor 94, the position information by GPS, and the like. The battery sensor 96 estimates the remaining capacity of the battery 50 based on the terminal voltage value acquired from the battery 50. The measurement results obtained by the sensor group 90 described above are input to the engine ECU 30.

図2は、減速制御処理を示すフローチャートである。減速制御処理は、エンジンECUによって実行される処理であり、アクセルペダルとブレーキペダルとの両方のストローク量がゼロになった(惰性走行に移行した)ことを契機に開始される。なお、エンジンECU30は、減速制御処理の開始後にアクセルペダルとブレーキペダルとの少なくとも何れか一方のストローク量がゼロよりも大きくなったことを検出した場合、減速制御処理を直ちに終了して通常の制御に移行する。   FIG. 2 is a flowchart showing the deceleration control process. The deceleration control process is a process executed by the engine ECU, and is started when the stroke amounts of both the accelerator pedal and the brake pedal become zero (shift to inertial running). If the engine ECU 30 detects that the stroke amount of at least one of the accelerator pedal and the brake pedal is greater than zero after the start of the deceleration control process, the engine ECU 30 immediately ends the deceleration control process and performs normal control. Migrate to

初めに、目標減速度を決定する(ステップS100)。目標減速度とは、オルタネータ40の負トルクを原因とした減速度の目標値のことである。減速度とは、車速を微分して得られる値(m/s2)であり、減速している場合に正の値を取る。目標減速度は、車速に対して予め定められており、その関係はエンジンECU30に記憶されている。 First, a target deceleration is determined (step S100). The target deceleration is a target value for deceleration caused by the negative torque of the alternator 40. The deceleration is a value (m / s 2 ) obtained by differentiating the vehicle speed, and takes a positive value when the vehicle is decelerating. The target deceleration is predetermined with respect to the vehicle speed, and the relationship is stored in the engine ECU 30.

図3は、全体許容減速度および許容減速度、並びに車速の関係を例示するグラフである。全体許容減速度とは、運転者が違和感を覚えない減速度の最大値であり、官能試験によって決定される。運転者は、惰性走行への移行後、減速度が大きすぎると違和感を覚える。本実施形態における全体許容減速度は、車速が大きくなるに連れて大きくなるという知見に基づき、車速の関数として決定した。   FIG. 3 is a graph illustrating the relationship between the overall allowable deceleration, the allowable deceleration, and the vehicle speed. The total allowable deceleration is the maximum value of deceleration at which the driver does not feel uncomfortable and is determined by a sensory test. The driver feels uncomfortable if the deceleration is too large after the shift to coasting. The overall allowable deceleration in the present embodiment is determined as a function of the vehicle speed based on the knowledge that it increases as the vehicle speed increases.

図3に示されるように、本実施形態における全体許容減速度を示す曲線Tは、対数的に変化する。つまり、曲線Tは、単調増加かつ上に凸の曲線であり、曲線Tの変化率は、車速が増大するに連れて小さくなる。   As shown in FIG. 3, the curve T indicating the overall allowable deceleration in the present embodiment changes logarithmically. That is, the curve T is a monotonically increasing and upwardly convex curve, and the rate of change of the curve T decreases as the vehicle speed increases.

図3における曲線Aは、オルタネータ40による許容減速度を示す。許容減速度とは、オルタネータ40による減速度に割り当てることができる最大値のことである。減速制御処理が実行されるのは、先述したように惰性走行の間である。惰性走行の際は、できるだけオルタネータ40の負トルクを増大させて、発電量を増大させることが好ましい。但し、惰性走行の間に減速の原因となるのは、オルタネータ40の負トルク以外にも、エンジン60の負トルクや駆動輪80の路面抵抗などがある。そこで、全体許容減速度からオルタネータ40以外を原因とする減速度を引いた値を、オルタネータ40による許容減速度として定める。   A curve A in FIG. 3 shows an allowable deceleration by the alternator 40. The allowable deceleration is the maximum value that can be assigned to the deceleration by the alternator 40. The deceleration control process is executed during inertial running as described above. During coasting, it is preferable to increase the power generation amount by increasing the negative torque of the alternator 40 as much as possible. However, in addition to the negative torque of the alternator 40, the negative torque of the engine 60 and the road surface resistance of the drive wheels 80 cause the deceleration during inertial running. Therefore, a value obtained by subtracting the deceleration caused by other than the alternator 40 from the overall allowable deceleration is determined as the allowable deceleration by the alternator 40.

図3に示されるように、車速がVm以下の場合、許容減速度はゼロに設定される。車速がVm以下の場合にオルタネータ40による負トルクが発生すると、エンジンストールを引き起こす可能性が高くなるからである。   As shown in FIG. 3, when the vehicle speed is Vm or less, the allowable deceleration is set to zero. This is because when the negative torque is generated by the alternator 40 when the vehicle speed is Vm or less, the possibility of causing an engine stall increases.

ステップS100において設定される目標減速度は、現在の車速と、図3に示された関係とから定まる許容減速度の値である。   The target deceleration set in step S100 is an allowable deceleration value determined from the current vehicle speed and the relationship shown in FIG.

続いて、目標負トルクを決定する(ステップS200)。目標負トルクとは、許容減速度を実現するためのオルタネータ40による負トルクの値のことである。オルタネータ40による減速度Dは、次の式(1)によって表される。
D=(Ta×NE)/(W×V)…式(1)
Taはオルタネータ40による負トルク(Nm)、NEはエンジン回転数(r/s)、Wは車重(kg)、Vは車速(m/s)を示す。よって、オルタネータ40による負トルクは、次の式(2)によって表される。
Ta=(D×W×V)/NE…式(2)
Subsequently, a target negative torque is determined (step S200). The target negative torque is a negative torque value by the alternator 40 for realizing the allowable deceleration. The deceleration D by the alternator 40 is expressed by the following equation (1).
D = (Ta × NE) / (W × V) (1)
Ta is the negative torque (Nm) by the alternator 40, NE is the engine speed (r / s), W is the vehicle weight (kg), and V is the vehicle speed (m / s). Therefore, the negative torque by the alternator 40 is expressed by the following formula (2).
Ta = (D × W × V) / NE (2)

式(2)の車速Vに車速センサ95から取得した車速の値を、減速度Dに目標減速度を、車重Wに固定値を、エンジン回転数NEにエンジン60から取得した値をそれぞれ代入することによって、目標負トルクTaが算出される。車重Wの固定値は、エンジンECU30に記憶されている。   The vehicle speed value obtained from the vehicle speed sensor 95, the target deceleration value is substituted for the deceleration D, the fixed value is set for the vehicle weight W, and the value obtained from the engine 60 is substituted for the engine speed NE. By doing so, the target negative torque Ta is calculated. The fixed value of the vehicle weight W is stored in the engine ECU 30.

次に、励磁電流の目標制限値を決定する(ステップS300)。励磁電流の目標制限値については、後述するステップS400において用いられる値である。この決定は、予め記憶しているマップに、ステップS200において算出した目標負トルクと、指示している発電電圧と、現在のエンジン回転数とを入力することによって実行される。   Next, a target limit value of the excitation current is determined (step S300). The excitation current target limit value is a value used in step S400 described later. This determination is executed by inputting the target negative torque calculated in step S200, the instructed power generation voltage, and the current engine speed into a map stored in advance.

続いて、励磁電流の制限値として実際に指示する値(以下「指示値」という)を、ステップS300において決定した目標制限値に近づける(ステップS400)。ステップS400は、指示値が現在の値から滑らかに変化するように、所定時間に渡って実行される。   Subsequently, the value actually instructed as the excitation current limit value (hereinafter referred to as “instruction value”) is brought close to the target limit value determined in step S300 (step S400). Step S400 is executed over a predetermined time so that the indicated value changes smoothly from the current value.

図4は、オルタネータ40による実際の減速度(以下「実減速度」という)と時間との関係を例示するグラフであり、アクセルペダルのストローク量がゼロになったこと(以下「アクセルオフ」という)を契機に減速制御処理が開始された場合を示す。   FIG. 4 is a graph illustrating the relationship between the actual deceleration by the alternator 40 (hereinafter referred to as “actual deceleration”) and time, and the stroke amount of the accelerator pedal has become zero (hereinafter referred to as “accelerator off”). ) When the deceleration control process is started.

時刻Ta1は、ステップS400が開始された時刻である。目標減速度Da1は、時刻Ta1に対応する目標減速度である。通常、アクセルオフの場合は、図4に示されるように、時刻Ta1における実減速度Dta1は、目標減速度Da1よりも小さい。但し、アクセルオフの場合に、必ずこのような関係になる訳ではない。本実施形態における目標減速度は、車速に応じて決定されるものであって、ペダル操作に応じて決定されるものではないからである。後述するブレーキ操作の場合についても同様である。   Time Ta1 is the time when step S400 was started. The target deceleration Da1 is a target deceleration corresponding to the time Ta1. Usually, when the accelerator is off, as shown in FIG. 4, the actual deceleration Dta1 at time Ta1 is smaller than the target deceleration Da1. However, this relationship is not always true when the accelerator is off. This is because the target deceleration in the present embodiment is determined according to the vehicle speed and is not determined according to the pedal operation. The same applies to the brake operation described later.

図4に例示された関係の場合、実減速度を目標減速度に近づけるために、ステップS400において指示値を増大させる。この際、急激に実減速度が大きくならないように、所定時間に渡って指示値を増大させる。この結果として、実減速度は、図4に示されるように、所定の変化率で直線的に増大する。   In the case of the relationship illustrated in FIG. 4, the instruction value is increased in step S400 in order to bring the actual deceleration closer to the target deceleration. At this time, the indicated value is increased over a predetermined time so that the actual deceleration does not suddenly increase. As a result, the actual deceleration increases linearly at a predetermined rate of change, as shown in FIG.

次に、実減速度が目標に収束したかを判定する(ステップS500)。具体的には、実減速度が目標減速度に対して所定の誤差内(例えば±10%)であるかを判定する。実減速度が目標に収束した場合(ステップS500、YES)、減速制御処理を終える。実減速度が目標に収束していない場合(ステップS500、NO)、ステップS100〜S400を繰り返す。   Next, it is determined whether the actual deceleration has converged to the target (step S500). Specifically, it is determined whether the actual deceleration is within a predetermined error (for example, ± 10%) with respect to the target deceleration. If the actual deceleration has converged to the target (step S500, YES), the deceleration control process ends. If the actual deceleration has not converged to the target (step S500, NO), steps S100 to S400 are repeated.

図4における時刻Ta2は、2回目のステップS400が開始された時刻である。時刻Ta2における実減速度Dta2は、前回のステップS400によって、実減速度Dta1よりも大きくなったものの、依然、時刻Ta2における目標減速度Da2よりは小さい。よって、引き続き実減速度が大きくなるように、ステップS400において指示値を大きくする。なお、目標減速度Da2は、時刻Ta1から時刻Ta2の間に車速が減少するので、図3に示された関係に基づき、目標減速度Da1よりも小さな値になる。   The time Ta2 in FIG. 4 is the time when the second step S400 is started. Although the actual deceleration Dta2 at the time Ta2 has become larger than the actual deceleration Dta1 by the previous step S400, it is still smaller than the target deceleration Da2 at the time Ta2. Therefore, the instruction value is increased in step S400 so that the actual deceleration continues to increase. The target deceleration Da2 has a value smaller than the target deceleration Da1 based on the relationship shown in FIG. 3 because the vehicle speed decreases between time Ta1 and time Ta2.

時刻Ta3においても、時刻Ta2と同様に、実減速度が大きくなる。時刻Ta4において実減速度は、目標減速度Da4とほぼ同じ値になり、目標に収束する。よって、エンジンECU30は、減速制御処理を終了し、以後は通常の制御によって、オルタネータ40を制御する。   Also at time Ta3, the actual deceleration increases similarly to time Ta2. At the time Ta4, the actual deceleration becomes substantially the same value as the target deceleration Da4 and converges to the target. Therefore, the engine ECU 30 ends the deceleration control process, and thereafter controls the alternator 40 by normal control.

図5は、ブレーキペダルのストローク量がゼロになったこと(以下「ブレーキオフ」という)を契機に減速制御処理が開始された場合における実減速度と時間との関係を例示するグラフである。   FIG. 5 is a graph illustrating the relationship between actual deceleration and time when the deceleration control process is started when the stroke amount of the brake pedal becomes zero (hereinafter referred to as “brake off”).

時刻Tb1は、1回目のステップS400が実行された時刻である。時刻Tb1において実減速度Dtb1は、目標減速度Db1よりも大きい。よって、エンジンECU30は、実減速度が減少するように指示値を滑らかに小さくする。   The time Tb1 is the time when the first step S400 is executed. At time Tb1, the actual deceleration Dtb1 is larger than the target deceleration Db1. Therefore, the engine ECU 30 smoothly reduces the instruction value so that the actual deceleration decreases.

実減速度を減少させる制御を実行する場合、時間の経過と共に実減速度が小さくなる一方で、目標減速度も時間の経過と共に小さくなる。そこで、実減速度を目標減速度に収束させるために、実減速度を増大させる場合よりも大きな絶対値の傾きによって実減速度を減少させる。   When the control for decreasing the actual deceleration is executed, the actual deceleration decreases with the passage of time, while the target deceleration also decreases with the passage of time. Therefore, in order to converge the actual deceleration to the target deceleration, the actual deceleration is reduced with a larger absolute value gradient than when the actual deceleration is increased.

図5に示されるように、実減速度は、時刻Tb2,Tb3においても時刻Tb1と同様に減少し、時刻Tb4において収束する。エンジンECU30は、時刻Tb4以後、通常の制御に移行する。   As shown in FIG. 5, the actual deceleration decreases at time Tb2 and Tb3 in the same manner as at time Tb1, and converges at time Tb4. The engine ECU 30 shifts to normal control after time Tb4.

以上に説明した実施形態によれば、運転者が覚える違和感を軽減することができる。本実施形態においては、目標減速度を車速に応じて変化させ、且つ、実減速度を目標減速度に対して滑らかに近づけるからである。このような手法によれば、例えば、アクセルオフ時に減速度が大き過ぎたり、ブレーキオフ時に減速度が小さすぎたりすることが回避される。さらに、惰性走行を開始後、実減速度が時間の経過に伴って大きくなり過ぎて、運転者が違和感を覚えるといったことが回避される。   According to the embodiment described above, the uncomfortable feeling that the driver learns can be reduced. This is because, in the present embodiment, the target deceleration is changed according to the vehicle speed, and the actual deceleration is made closer to the target deceleration smoothly. According to such a method, for example, it is avoided that the deceleration is too large when the accelerator is off or the deceleration is too small when the brake is off. Furthermore, it is avoided that the actual deceleration becomes too large with the passage of time after the start of inertial running and the driver feels uncomfortable.

加えて、目標減速度を車速に対して対数的に決定しているので、運転者の違和感がより軽減される。一般に人間は、物理量を対数的に知覚するので、このよう対数的な変化には、あまり違和感を覚えないからである。   In addition, since the target deceleration is determined logarithmically with respect to the vehicle speed, the driver's uncomfortable feeling is further reduced. This is because, in general, humans perceive physical quantities logarithmically, and such logarithmic changes do not give a sense of incongruity.

本発明は、本明細書の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現できる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、先述の課題の一部又は全部を解決するために、あるいは、先述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことができる。その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除できる。例えば、以下のものが例示される。   The present invention is not limited to the embodiments, examples, and modifications of the present specification, and can be implemented with various configurations without departing from the spirit of the present invention. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in the embodiments described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the effects described above, replacement or combination can be performed as appropriate. If the technical feature is not described as essential in this specification, it can be deleted as appropriate. For example, the following are exemplified.

オルタネータによる許容減速度は、どのように規定されてもよい。例えば、車速の関数として、実施形態とは異なる関数によって規定されてもよい。図6は、変形例における許容減速度と車速との関係(以下「減速度−車速関係」という)を例示するグラフである。図6に示されるように変形例1は、減速度−車速関係が直線によって規定されている。変形例2は、減速度−車速関係が単調増加する3次関数によって規定されている。この他、減速度−車速関係は、単調増加でない曲線(例えば単調減少する曲線)で規定されてもよいし、下に凸の曲線によって規定されてもよいし、その他の曲線によって規定されてもよい。   The allowable deceleration by the alternator may be defined in any way. For example, the vehicle speed function may be defined by a function different from the embodiment. FIG. 6 is a graph illustrating the relationship between the allowable deceleration and the vehicle speed (hereinafter referred to as “deceleration-vehicle speed relationship”) in the modified example. As shown in FIG. 6, in Modification 1, the deceleration-vehicle speed relationship is defined by a straight line. In the second modification, the deceleration-vehicle speed relationship is defined by a cubic function that monotonously increases. In addition, the deceleration-vehicle speed relationship may be defined by a curve that is not monotonically increasing (for example, a curve that monotonously decreases), may be defined by a downwardly convex curve, or may be defined by another curve. Good.

車速に対する実減速度の変化率(以下、単に「変化率」という)は、実施形態とは異なり一定でなくてもよい。図7,図8及び図9は、変化率と車速との関係を例示するグラフであり、図7は変形例3,図8は変形例4,図9は変形例5の場合を示す。変化率の次元は、(m/s2)/(m/s)=s-1である。図7,図8及び図9に示されるように、実施形態の場合は既に説明したように、変化率は、正の場合と負の場合とで、それぞれ一定の値を取る。 Unlike the embodiment, the rate of change of the actual deceleration relative to the vehicle speed (hereinafter simply referred to as “change rate”) may not be constant. 7, 8, and 9 are graphs illustrating the relationship between the change rate and the vehicle speed. FIG. 7 shows a modification example 3, FIG. 8 shows a modification example 4, and FIG. The dimension of the rate of change is (m / s 2 ) / (m / s) = s −1 . As shown in FIGS. 7, 8, and 9, in the case of the embodiment, as described above, the change rate takes a constant value in each of the positive case and the negative case.

図7,図8及び図9に示されるように、変形例3,4,5における変化率は、車速が速度Vmのときにゼロであること、値が正の場合は車速の増大に対して単調増加すること、及び値が負の場合は車速の増大に対して単調減少することは共通である。変形例3の場合、変化率は線形に変化する。変形例4の場合、3次曲線によって変化する。変形例5の場合、対数的に変化する。   As shown in FIGS. 7, 8, and 9, the rate of change in the modification examples 3, 4, and 5 is zero when the vehicle speed is the speed Vm, and when the value is positive, the change rate is It is common to increase monotonically and to decrease monotonically with increasing vehicle speed when the value is negative. In the case of the modification example 3, the change rate changes linearly. In the case of the modification 4, it changes with a cubic curve. In the case of the modification 5, it changes logarithmically.

この他、変化率は、車速に対して、どのように変化してもよい。車速がVmの場合における変化率はゼロでなくてもよいし、車速の増大に伴って変化率の絶対値が減少してもよい。   In addition, the rate of change may change in any manner with respect to the vehicle speed. When the vehicle speed is Vm, the rate of change may not be zero, or the absolute value of the rate of change may decrease as the vehicle speed increases.

変化率は、車速以外の関数でもよい。例えば、減速制御処理を開始してからの経過時間の関数でもよい。或いは、PID制御などによって変化率を決定してもよい。
減速制御処理は、目標に収束した後も、続行してもよい。例えば、惰性走行が終了するまで続行してもよい。
回生装置としては、オルタネータでなくても、例えば、アシストモータでもよい。アシストモータとは、駆動輪や補機類(コンプレッサ等)などに供給するトルクの発生が可能なモータである。
目標減速度の決定を、ペダル操作に基づき実行してもよい。例えば、アクセルオフの場合とブレーキオフとの場合とで、異なるテーブルを参照してもよい。これらのテーブルは、許容減速度と車速との関係について異なる特性を有していてもよい。
以上に説明した減速制御を、自動車以外の輸送用機器、例えば、二輪車や電車などに適用してもよい。
The rate of change may be a function other than the vehicle speed. For example, it may be a function of the elapsed time since the start of the deceleration control process. Alternatively, the rate of change may be determined by PID control or the like.
The deceleration control process may be continued even after convergence to the target. For example, you may continue until inertial running is complete | finished.
The regeneration device may not be an alternator but may be an assist motor, for example. An assist motor is a motor capable of generating torque to be supplied to drive wheels, auxiliary machines (compressor, etc.), and the like.
The target deceleration may be determined based on pedal operation. For example, different tables may be referred to when the accelerator is off and when the brake is off. These tables may have different characteristics regarding the relationship between the allowable deceleration and the vehicle speed.
The deceleration control described above may be applied to transportation equipment other than automobiles, such as motorcycles and trains.

30…エンジンECU
40…オルタネータ
45…ベルト
50…バッテリ
60…エンジン
70…トランスミッション
75…ドライブシャフト
80…駆動輪
90…センサ群
91…アクセルストロークセンサ
92…ブレーキストロークセンサ
93…スロットルセンサ
94…車輪速センサ
95…車速センサ
96…バッテリセンサ
30 ... Engine ECU
DESCRIPTION OF SYMBOLS 40 ... Alternator 45 ... Belt 50 ... Battery 60 ... Engine 70 ... Transmission 75 ... Drive shaft 80 ... Drive wheel 90 ... Sensor group 91 ... Accelerator stroke sensor 92 ... Brake stroke sensor 93 ... Throttle sensor 94 ... Wheel speed sensor 95 ... Vehicle speed sensor 96 ... Battery sensor

Claims (11)

車両の走行に伴うエネルギーを電力として回生する回生装置と、
前記車両が惰性走行している場合の減速度の目標値を、前記車両の速度である車速に応じて決定する目標減速度決定部と、
前記車両が惰性走行している際、前記回生装置を制御することによって、前記減速度を前記決定された目標値に近づける減速度制御を実行する減速度制御部と
を備える車両制御装置。
A regenerative device that regenerates energy associated with traveling of the vehicle as electric power;
A target deceleration determining unit that determines a target value of deceleration when the vehicle is coasting according to a vehicle speed that is the speed of the vehicle;
A vehicle control device comprising: a deceleration control unit that executes deceleration control for controlling the regeneration device to cause the deceleration to approach the determined target value when the vehicle is coasting.
前記車両に設けられたアクセルペダルとブレーキペダルとの両方共が踏み込まれていない場合に、前記車両が惰性走行していると判断する
請求項1に記載の車両制御装置。
The vehicle control device according to claim 1, wherein the vehicle is determined to be coasting when both an accelerator pedal and a brake pedal provided on the vehicle are not depressed.
前記目標減速度決定部は、許容減速度と前記車速とについて予め定められた関係を参照することによって前記車速に応じた前記許容減速度を取得し、前記取得した許容減速度を前記目標減速度として決定する
請求項1又は請求項2に記載の車両制御装置。
The target deceleration determination unit acquires the allowable deceleration according to the vehicle speed by referring to a predetermined relationship between the allowable deceleration and the vehicle speed, and the acquired allowable deceleration is used as the target deceleration. The vehicle control device according to claim 1, wherein the vehicle control device is determined as follows.
前記回生装置は、オルタネータであり、前記車両に搭載されたエンジンの回転軸に連結される
請求項1から請求項3までの何れか一項に記載の車両制御装置。
The vehicle control device according to any one of claims 1 to 3, wherein the regenerative device is an alternator and is connected to a rotation shaft of an engine mounted on the vehicle.
請求項4に記載の車両制御装置であって、
前記減速度制御部は、
前記オルタネータの回生によって発生する負トルクの目標値を、前記車両に搭載されたエンジンの回転数と、前記車両の車重と、前記車速との少なくとも何れか1つを考慮して決定する目標負トルク決定部と、
前記回生装置の制御として、前記負トルクを前記決定された目標値に近づけるオルタネータ制御部とを備える
車両制御装置。
The vehicle control device according to claim 4,
The deceleration control unit
A target negative value determined by taking into account at least one of the rotational speed of an engine mounted on the vehicle, the vehicle weight of the vehicle, and the vehicle speed, as a target value of negative torque generated by regeneration of the alternator. A torque determining unit;
An alternator control unit that brings the negative torque close to the determined target value as control of the regenerative device. A vehicle control device.
前記オルタネータ制御部は、前記オルタネータに流れる励磁電流を、前記負トルクの目標値に基づき制御することによって、前記負トルクを前記決定された目標値に近づける
請求項5に記載の車両制御装置。
The vehicle control device according to claim 5, wherein the alternator control unit controls the excitation current flowing through the alternator based on a target value of the negative torque, thereby bringing the negative torque closer to the determined target value.
前記オルタネータ制御部は、前記励磁電流の制御として、前記励磁電流の上限値を設定する
請求項6に記載の車両制御装置。
The vehicle control device according to claim 6, wherein the alternator control unit sets an upper limit value of the excitation current as control of the excitation current.
前記目標減速度決定部は、前記車速の少なくとも一部の範囲において、前記車速の増大に対して単調増加するように前記目標値を決定する
請求項1から請求項7までの何れか一項に記載の車両制御装置。
The target deceleration determination unit determines the target value so as to monotonically increase with respect to the increase in the vehicle speed in at least a part of the range of the vehicle speed. The vehicle control device described.
前記減速度制御部は、前記車速の少なくとも一部の範囲において、前記減速度を減少させる場合には、前記減速度を増大させる場合に比べて、時間に対して前記減速度が変化する割合の絶対値が大きくなるように前記減速度制御を実行する
請求項8に記載の車両制御装置。
The deceleration control unit is configured to reduce a rate of change of the deceleration with respect to time when the deceleration is decreased in at least a part of the range of the vehicle speed as compared with a case where the deceleration is increased. The vehicle control device according to claim 8, wherein the deceleration control is executed so that an absolute value becomes large.
前記目標減速度決定部は、前記車速の少なくとも一部の範囲において、前記車速に対する前記減速度の変化率が、前記車速の増大に対して単調減少するように前記目標値を決定する
請求項1から請求項9までの何れか一項に記載の車両制御装置。
The target deceleration determining unit determines the target value so that a rate of change of the deceleration with respect to the vehicle speed monotonously decreases with an increase in the vehicle speed in at least a part of the range of the vehicle speed. The vehicle control device according to any one of claims 9 to 9.
前記減速度制御部は、前記減速度の時間に対する変化率を前記車速に応じて決定し、前記決定した変化率に基づき前記減速度制御を実行する
請求項1から請求項10までの何れか一項に記載の車両制御装置。
The deceleration control unit determines a rate of change of the deceleration with respect to time according to the vehicle speed, and executes the deceleration control based on the determined rate of change. The vehicle control device according to item.
JP2013258098A 2013-12-13 2013-12-13 Vehicle control device Expired - Fee Related JP5880533B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013258098A JP5880533B2 (en) 2013-12-13 2013-12-13 Vehicle control device
PCT/JP2014/006048 WO2015087516A2 (en) 2013-12-13 2014-12-03 Vehicle control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258098A JP5880533B2 (en) 2013-12-13 2013-12-13 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2015116085A true JP2015116085A (en) 2015-06-22
JP5880533B2 JP5880533B2 (en) 2016-03-09

Family

ID=52293102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258098A Expired - Fee Related JP5880533B2 (en) 2013-12-13 2013-12-13 Vehicle control device

Country Status (2)

Country Link
JP (1) JP5880533B2 (en)
WO (1) WO2015087516A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127211A (en) * 2018-01-26 2019-08-01 株式会社Subaru Vehicular control device
JP2020175701A (en) * 2019-04-15 2020-10-29 トヨタ自動車株式会社 Brake force control device
JP2020180603A (en) * 2019-04-26 2020-11-05 トヨタ自動車株式会社 Brake force control apparatus
KR102455915B1 (en) * 2021-04-12 2022-10-19 주식회사 현대케피코 Start Stop Coasting and Coast Regeneration Control method and device of Mild Hybrid system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9896105B2 (en) * 2015-07-08 2018-02-20 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for controlling a vehicle's deceleration level by controlling the alternator output
CN108058615B (en) * 2016-11-09 2022-02-25 华为技术有限公司 Method and device for recovering braking energy of vehicle
KR102507010B1 (en) * 2017-12-27 2023-03-06 현대자동차주식회사 the Guiding Apparatus for inertia driving and the Method the same
CN111661056A (en) * 2019-12-11 2020-09-15 摩登汽车有限公司 Method and system for calculating coasting energy recovery torque

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280053A (en) * 1994-04-11 1995-10-27 Nissan Motor Co Ltd Control device of continuously variable transmission
WO2011108081A1 (en) * 2010-03-02 2011-09-09 トヨタ自動車株式会社 Vehicle regenerative control system
JP2011240850A (en) * 2010-05-19 2011-12-01 Toyota Motor Corp Brake control system
WO2012063572A1 (en) * 2010-11-08 2012-05-18 日産自動車株式会社 Electric vehicle brake control device
WO2012090924A1 (en) * 2010-12-28 2012-07-05 日産自動車株式会社 Vehicle regeneration control device
JP2012154386A (en) * 2011-01-25 2012-08-16 Daihatsu Motor Co Ltd Vehicle control device
JP2013128344A (en) * 2011-12-16 2013-06-27 Toyota Motor Corp Control apparatus and control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247000B2 (en) * 2005-12-21 2013-07-24 日産自動車株式会社 Coastal deceleration control device for vehicle
JP2010288343A (en) 2009-06-10 2010-12-24 Fuji Heavy Ind Ltd Regenerative braking controller
AU2011355952A1 (en) * 2011-01-20 2013-05-09 Hino Motors, Ltd. Regenerative control device, hybrid automobile, regenerative control method, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280053A (en) * 1994-04-11 1995-10-27 Nissan Motor Co Ltd Control device of continuously variable transmission
WO2011108081A1 (en) * 2010-03-02 2011-09-09 トヨタ自動車株式会社 Vehicle regenerative control system
JP2011240850A (en) * 2010-05-19 2011-12-01 Toyota Motor Corp Brake control system
WO2012063572A1 (en) * 2010-11-08 2012-05-18 日産自動車株式会社 Electric vehicle brake control device
WO2012090924A1 (en) * 2010-12-28 2012-07-05 日産自動車株式会社 Vehicle regeneration control device
JP2012154386A (en) * 2011-01-25 2012-08-16 Daihatsu Motor Co Ltd Vehicle control device
JP2013128344A (en) * 2011-12-16 2013-06-27 Toyota Motor Corp Control apparatus and control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127211A (en) * 2018-01-26 2019-08-01 株式会社Subaru Vehicular control device
US11465509B2 (en) 2018-01-26 2022-10-11 Subaru Corporation Vehicle control apparatus
JP2020175701A (en) * 2019-04-15 2020-10-29 トヨタ自動車株式会社 Brake force control device
JP7120137B2 (en) 2019-04-15 2022-08-17 トヨタ自動車株式会社 Braking force controller
JP2020180603A (en) * 2019-04-26 2020-11-05 トヨタ自動車株式会社 Brake force control apparatus
JP7251298B2 (en) 2019-04-26 2023-04-04 トヨタ自動車株式会社 Braking force controller
KR102455915B1 (en) * 2021-04-12 2022-10-19 주식회사 현대케피코 Start Stop Coasting and Coast Regeneration Control method and device of Mild Hybrid system

Also Published As

Publication number Publication date
WO2015087516A3 (en) 2015-08-06
JP5880533B2 (en) 2016-03-09
WO2015087516A2 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP5880533B2 (en) Vehicle control device
RU2723661C1 (en) Method and device for electric vehicle electric motor control
JP5596756B2 (en) Electric vehicle
WO2012104903A1 (en) Regenerative control device, regenerative control method, and hybrid vehicle
JP6565699B2 (en) Vehicle control device
JP6265180B2 (en) Vehicle driving force control device
JP6342747B2 (en) Control device for rotating electrical machine
WO2007000872A1 (en) Traction control device for vehicle
JP2002369578A (en) Controller of electric motor and controller of hybrid vehicle
JP5165812B2 (en) Regenerative control device, hybrid vehicle, regenerative control method, and program
JP4100104B2 (en) Idle stop vehicle control device
JPWO2018139375A1 (en) Electric vehicle control method and electric vehicle control apparatus
JP6102862B2 (en) Rotating electrical machine control device
JP5686721B2 (en) Control device for electric vehicle
JP2021093875A (en) Control device for vehicle
JP3594010B2 (en) Vehicle driving force control method and its control device
JP3891130B2 (en) Vehicle deceleration control device
JP3951649B2 (en) Electric vehicle motor control device
JP2015000675A (en) Control method for hybrid vehicle during cost drive and hybrid
JP3924540B2 (en) Drive control apparatus for hybrid vehicle
JP7545323B2 (en) Vehicle control program and vehicle control device
JP4419290B2 (en) Rollback suppression device for electric vehicle
JP2017114206A (en) Regeneration control apparatus
JP2004034844A (en) Device and method for controlling torque for vehicle
JP3966214B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5880533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees