JP2015115124A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015115124A
JP2015115124A JP2013254646A JP2013254646A JP2015115124A JP 2015115124 A JP2015115124 A JP 2015115124A JP 2013254646 A JP2013254646 A JP 2013254646A JP 2013254646 A JP2013254646 A JP 2013254646A JP 2015115124 A JP2015115124 A JP 2015115124A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode sheet
winding
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013254646A
Other languages
Japanese (ja)
Inventor
博史 犬飼
Hiroshi Inukai
博史 犬飼
高田 登志広
Toshihiro Takada
登志広 高田
明 木山
Akira Kiyama
明 木山
靖 土田
Yasushi Tsuchida
靖 土田
太貴 野中
Taiki Nonaka
太貴 野中
藤原 豊樹
Toyoki Fujiwara
豊樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Toyota Motor Corp
Original Assignee
Sanyo Electric Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Toyota Motor Corp filed Critical Sanyo Electric Co Ltd
Priority to JP2013254646A priority Critical patent/JP2015115124A/en
Publication of JP2015115124A publication Critical patent/JP2015115124A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for preventing an oxidation reduction reaction from being varied during charging/discharging.SOLUTION: In a nonaqueous electrolyte secondary battery, an outermost peripheral laminate in an arc-shaped part 10b to which winding ends 11a, 12b and 13b are connected, between arc-shaped parts 10a and 10b in both ends of an electrode body 10 includes a deactivation region 20 in which the activity of a cathode active material applied to a cathode sheet 12 is lost, at an another side in a width direction with respect to one side of an anode sheet 13 to which an anode collector part 5 is fixed, in the width direction. In the deactivation region 20, the oxidation reduction reaction does not occur during charging/discharging. Therefore, even if winding is loosened at the other side of the anode sheet 13 in the width direction in the arc-shaped part 10b, since the portion where winding is loosened is included in the deactivation region 20, there is no oxidation reduction reaction originally. Thus, even if winding is loosened at the other side of the anode sheet 13 in the width direction, the oxidation reduction reaction during charging/discharging is not affected, such that the oxidation reduction reaction during charging/discharging is prevented from being varied by loosening winding in the arc-shaped part 10b.

Description

本明細書が開示する技術は、セパレータを介在させて正極シートと負極シートを扁平形状に巻回した電極体を有する非水電解質二次電池に関する。   The technology disclosed in the present specification relates to a non-aqueous electrolyte secondary battery having an electrode body in which a positive electrode sheet and a negative electrode sheet are wound in a flat shape with a separator interposed therebetween.

セパレータを介在させた正極シートと負極シートの積層体を扁平形状に巻回した電極体を有する非水電解質二次電池が知られている、その技術の例として、下記特許文献1に開示される技術がある。扁平形状に巻回された電極体は、その巻回軸からみた両端には弧形状部が形成される(特許文献1;図1B)。電極体は、例えば、図5(A)に示すように、セパレータ110を挟んで、負極シート130、セパレータ110、正極シート120、…というように、正極シート120及び負極シート130が交互に積層されて巻回される。正極シート120は、正極板121とその両面に塗工された正極合剤層123により構成される。負極シート130は、負極板131とその両面に塗工された負極合剤層133により構成される。正極シート120と負極シート130は、図5(B)に示すように、それらの幅方向に所定幅ずらして積層される。この所定幅の範囲には、正極集電部や負極集電部を取り付け可能に、負極合剤又は正極合剤を塗工しない正極合剤未塗工部120aや負極合剤未塗工部130aが形成される。   A non-aqueous electrolyte secondary battery having an electrode body in which a laminate of a positive electrode sheet and a negative electrode sheet with a separator interposed therebetween is wound in a flat shape is known. An example of the technique is disclosed in Patent Document 1 below. There is technology. The electrode body wound in a flat shape has arc-shaped portions formed at both ends viewed from the winding axis (Patent Document 1; FIG. 1B). For example, as shown in FIG. 5A, the electrode body is formed by alternately stacking the positive electrode sheets 120 and the negative electrode sheets 130 such as the negative electrode sheet 130, the separator 110, the positive electrode sheet 120,. Is wound. The positive electrode sheet 120 includes a positive electrode plate 121 and a positive electrode mixture layer 123 applied on both surfaces thereof. The negative electrode sheet 130 includes a negative electrode plate 131 and a negative electrode mixture layer 133 applied on both surfaces thereof. As shown in FIG. 5B, the positive electrode sheet 120 and the negative electrode sheet 130 are stacked while being shifted by a predetermined width in their width direction. In the range of the predetermined width, a positive electrode current collector or a negative electrode current collector can be attached, and a negative electrode mixture or a positive electrode mixture uncoated part 120a or a negative electrode mixture uncoated part 130a where no negative electrode mixture or positive electrode mixture is applied. Is formed.

図6(A)及び(B)に示すように、電極体100では、セパレータ110等の巻き終わり(巻回端)において、正極集電部140が正極シート120の正極合剤未塗工部120aに溶接固定される(符号143)。また、負極集電部150が負極シート130の負極合剤未塗工部130aに溶接固定される(符号153)。正極集電部140は正極外部端子170に接続され、負極集電部150は負極外部端子180に接続される。正極集電部140及び負極集電部150は、セパレータ110とともに正極シート120及び負極シート130の巻回端が解けないようにこれらを固定している。   As shown in FIGS. 6A and 6B, in the electrode body 100, the positive electrode current collector 140 is a positive electrode mixture uncoated part 120 a of the positive electrode sheet 120 at the end of winding (winding end) of the separator 110 or the like. (Reference numeral 143). Further, the negative electrode current collector 150 is welded and fixed to the negative electrode mixture uncoated portion 130a of the negative electrode sheet 130 (reference numeral 153). The positive current collector 140 is connected to the positive external terminal 170, and the negative current collector 150 is connected to the negative external terminal 180. The positive electrode current collector 140 and the negative electrode current collector 150 are fixed so that the winding ends of the positive electrode sheet 120 and the negative electrode sheet 130 together with the separator 110 cannot be unwound.

特開2011−171250号公報JP 2011-171250 A

ここで、電極体100の巻回端において、負極シート130に着目すると、負極シート130の幅方向一方側は負極集電部150によって固定されても、負極シート130の幅方向他方側Kは何かに固定されているわけではない。そのため、負極シート130の幅方向他方側Kでは負極シート130に巻き緩みが生じる場合がある。例えば、充放電において電極体100は熱膨張と収縮を繰り返す。その場合、セパレータ110に緩みが生じて、セパレータ110とともに負極シート130の巻回も緩み得る。特に、扁平形状の両端に形成される弧形状部のうち、巻回端がつながる弧形状部の幅方向他方側Kにおいて、負極シート130が緩み易い(符号Xで示す一点鎖線範囲)。このような負極シート130の緩みは、負極シート130と正極シート120の間に隙間SPを形成し得る(図6(A)参照)。例えば、非水電解質二次電池がリチウムイオン電池である場合には、隙間SPに起因した充放電時の酸化還元反応のバラツキによりリチウムが析出することがある。本明細書は、充放電時の酸化還元反応のバラツキを抑制する技術を提供する。   Here, when attention is paid to the negative electrode sheet 130 at the winding end of the electrode body 100, even if one side in the width direction of the negative electrode sheet 130 is fixed by the negative electrode current collector 150, what is the other side K in the width direction of the negative electrode sheet 130? It is not fixed to crab. Therefore, the negative electrode sheet 130 may be loosened on the other side K in the width direction of the negative electrode sheet 130. For example, the electrode body 100 repeats thermal expansion and contraction during charging and discharging. In that case, the separator 110 is loosened, and the winding of the negative electrode sheet 130 can be loosened together with the separator 110. In particular, among the arc-shaped portions formed at both ends of the flat shape, the negative electrode sheet 130 is easy to loosen on the other side K in the width direction of the arc-shaped portion to which the winding ends are connected (a dashed-dotted line range indicated by the symbol X). Such loosening of the negative electrode sheet 130 can form a gap SP between the negative electrode sheet 130 and the positive electrode sheet 120 (see FIG. 6A). For example, when the nonaqueous electrolyte secondary battery is a lithium ion battery, lithium may be deposited due to variations in the oxidation-reduction reaction during charge / discharge due to the gap SP. This specification provides the technique which suppresses the dispersion | variation in the oxidation reduction reaction at the time of charging / discharging.

本明細書が開示する非水電解質二次電池は、セパレータを介在させた正極シートと負極シートの積層体を扁平形状に巻回した電極体を有する。電極体は、扁平形状の両端(巻回の軸線方向からみた両端)に弧形状部を有しており、電極体の両端の弧形状部のうち巻回端(巻き終わり)がつながる方の弧形状部における最外周の積層体が、負極集電部が固定される負極シートの幅方向一方側に対する幅方向他方側に、正極シートに塗工された正極活物質の活性を失わせる失活領域を備えている。失活領域の位置は、別言すれば、巻回端につながる弧形状部の積層体において、正極シートと負極シートとセパレータが重なっている領域の正極集電部側の端部である。正極シートと負極シートとセパレータが重なっている領域は、一般に塗工部とよばれ、正極シートと負極シートのこの領域に対応する部位に活物質が塗布される。   The nonaqueous electrolyte secondary battery disclosed in this specification has an electrode body in which a laminate of a positive electrode sheet and a negative electrode sheet with a separator interposed therebetween is wound in a flat shape. The electrode body has arc-shaped portions at both ends of the flat shape (both ends as viewed from the axial direction of the winding), and the arc that is connected to the winding ends (winding ends) of the arc-shaped portions at both ends of the electrode body. Deactivation region where the outermost laminate in the shape part loses the activity of the positive electrode active material applied to the positive electrode sheet on the other side in the width direction with respect to one side in the width direction of the negative electrode sheet to which the negative electrode current collector is fixed It has. In other words, the position of the deactivation region is the end portion on the positive electrode current collector portion side of the region where the positive electrode sheet, the negative electrode sheet, and the separator overlap in the stack of arc-shaped portions connected to the winding end. A region where the positive electrode sheet, the negative electrode sheet, and the separator overlap is generally referred to as a coating portion, and an active material is applied to a portion corresponding to this region of the positive electrode sheet and the negative electrode sheet.

上記した失活領域では充放電時に酸化還元反応が生じない。例えば、非水電解質二次電池がリチウムイオン電池の場合には、リチウムイオンの授受が阻止される。これにより、巻回端がつながる方の弧形状部において、負極集電部が固定されていない負極シートの幅方向他方側に巻き緩みが生じても、巻き緩みが生じた部分は失活領域であることから元より酸化還元反応がない。そのため、負極シートの幅方向他方側に巻き緩みが生じても、充放電時の酸化還元反応に影響がない。したがって、このような弧形状部の巻き緩みによる充放電時の酸化還元反応のバラツキを抑制する。なお、典型的には、積層体の負極シートは、正極シートよりも外側に巻回されている。また、電極体は、電極体の巻回軸に交差する方向の両端に扁平形状を有する。正極活物質の活性を失わせる構造の典型は、上記の範囲(正極シートと負極シートとセパレータが重なっている領域の正極集電部の側の端部)において、正極シートに活物質を塗布しないこと、あるいは、正極シートにイオンの移動を妨げる表面処理を施すこと、である。   In the deactivation region described above, no oxidation-reduction reaction occurs during charge / discharge. For example, when the nonaqueous electrolyte secondary battery is a lithium ion battery, transfer of lithium ions is blocked. As a result, in the arc-shaped portion where the winding end is connected, even if winding looseness occurs on the other side in the width direction of the negative electrode sheet where the negative electrode current collector portion is not fixed, the portion where the winding looseness occurs is an inactive region. There is no redox reaction from the beginning. Therefore, even if winding looseness occurs on the other side in the width direction of the negative electrode sheet, there is no influence on the oxidation-reduction reaction during charge / discharge. Therefore, the variation of the oxidation-reduction reaction at the time of charging / discharging due to such loosening of the arc-shaped portion is suppressed. In addition, typically, the negative electrode sheet of a laminated body is wound outside the positive electrode sheet. The electrode body has a flat shape at both ends in a direction intersecting the winding axis of the electrode body. The typical structure for losing the activity of the positive electrode active material is that the active material is not applied to the positive electrode sheet in the above range (the end on the positive electrode current collector side of the region where the positive electrode sheet, the negative electrode sheet, and the separator overlap). Alternatively, the positive electrode sheet is subjected to a surface treatment that prevents the movement of ions.

本明細書が開示する技術の詳細、及び、さらなる改良は、発明の実施の形態で説明する。   Details of the technology disclosed in this specification and further improvements will be described in the embodiments of the present invention.

本明細書は、非水電解質二次電池において充放電時の酸化還元反応のバラツキを抑制する技術を提供する。   The present specification provides a technique for suppressing variation in oxidation-reduction reaction during charge / discharge in a non-aqueous electrolyte secondary battery.

実施例の非水電解質二次電池の外観構成の例を示す斜視図である。It is a perspective view which shows the example of the external appearance structure of the nonaqueous electrolyte secondary battery of an Example. 非水電解質二次電池の内部構成の例を示す断面図である。図2(A)は、電極体の巻回軸に直交する方向における断面図であり、図2(B)は、図2(A)の2B−2B線における断面図である。It is sectional drawing which shows the example of an internal structure of a nonaqueous electrolyte secondary battery. 2A is a cross-sectional view in a direction orthogonal to the winding axis of the electrode body, and FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG. 2A. 電極体の構成概要を示す斜視図である。It is a perspective view which shows the structure outline | summary of an electrode body. 電極体の構成詳細を示す説明図である。図4(A)は電極体の側面図であり、図4(B)は、図4(A)にて破線領域4Bが示す部分の拡大図である。It is explanatory drawing which shows the structure details of an electrode body. 4A is a side view of the electrode body, and FIG. 4B is an enlarged view of a portion indicated by a broken line region 4B in FIG. 4A. 電極体の積層例を示す説明図である。It is explanatory drawing which shows the lamination example of an electrode body. 図6(A)は従来例の非水電解質二次電池の構成例を示す断面図、図6(B)は従来例の電極体の構成例を示す斜視図である。FIG. 6A is a cross-sectional view illustrating a configuration example of a conventional nonaqueous electrolyte secondary battery, and FIG. 6B is a perspective view illustrating a configuration example of a conventional electrode body.

図面を参照して実施例の非水電解質二次電池を説明する。まず、図1及び図2を参照して非水電解質二次電池1の構成概要を説明する。図1に、非水電解質二次電池1の外観構成の例を示す斜視図を示す。図2に、非水電解質二次電池1の内部構成の例を示す断面図を示す。   The nonaqueous electrolyte secondary battery of the embodiment will be described with reference to the drawings. First, with reference to FIG.1 and FIG.2, the structure outline | summary of the nonaqueous electrolyte secondary battery 1 is demonstrated. In FIG. 1, the perspective view which shows the example of the external appearance structure of the nonaqueous electrolyte secondary battery 1 is shown. FIG. 2 is a cross-sectional view showing an example of the internal configuration of the nonaqueous electrolyte secondary battery 1.

非水電解質二次電池1の外観は、主に、底の深い長細薄箱形状をなす電池ケース2と、電池ケース2の上方から突出する正極外部端子7及び負極外部端子8と、これらの端子7,8を支えるスリーブ9により構成されている。本実施例では、非水電解質二次電池1は、角形密閉式のリチウムイオン二次電池である。電池ケース2は、例えば、金属板を深絞り成形により有底の直方体形状に形成した収容部2aと、収容部2aの開口を密閉する金属製の蓋部2bと、によって構成されている。   The external appearance of the nonaqueous electrolyte secondary battery 1 is mainly composed of a battery case 2 having a deep and thin box shape with a deep bottom, a positive external terminal 7 and a negative external terminal 8 protruding from above the battery case 2, and The sleeve 9 is configured to support the terminals 7 and 8. In the present embodiment, the nonaqueous electrolyte secondary battery 1 is a square sealed lithium ion secondary battery. The battery case 2 includes, for example, a housing portion 2a formed of a metal plate in a bottomed rectangular parallelepiped shape by deep drawing and a metal lid portion 2b that seals the opening of the housing portion 2a.

図2に示すように、電池ケース2の内部には、電極体10等が収容されている。正極外部端子7及び負極外部端子8は、電極体10から電気エネルギを外部に取り出したり、外部から電極体10に電気エネルギを供給したりする際に用いられる丸棒形状の金属端子である。スリーブ9は、正極外部端子7及び負極外部端子8と電池ケース2との間に介在してこれらの端子7,8を機械的に支える円筒形状の保持体である。本実施例では、電池ケース2が金属製であるため、スリーブ9は電気的に絶縁可能な樹脂材料等により形成されている。なお、図2(A)は、図1に表す座標系において、YZ平面で、正極外部端子7と負極外部端子8のほぼ中間部分から電池ケース2を短手方向に切断したX方向矢視の断面図である。図2(B)は、図2(A)に示す2B−2B線に沿ってXZ平面で電池ケース2を長手方向に切断したY方向矢視の断面図である。   As shown in FIG. 2, the electrode body 10 and the like are accommodated inside the battery case 2. The positive electrode external terminal 7 and the negative electrode external terminal 8 are round bar-shaped metal terminals that are used when electric energy is taken out from the electrode body 10 or supplied to the electrode body 10 from the outside. The sleeve 9 is a cylindrical holding body that is interposed between the positive electrode external terminal 7 and the negative electrode external terminal 8 and the battery case 2 and mechanically supports the terminals 7 and 8. In this embodiment, since the battery case 2 is made of metal, the sleeve 9 is formed of a resin material that can be electrically insulated. 2A is a view in the direction of arrow X in which the battery case 2 is cut in the lateral direction from a substantially intermediate portion between the positive electrode external terminal 7 and the negative electrode external terminal 8 in the YZ plane in the coordinate system shown in FIG. It is sectional drawing. FIG. 2B is a cross-sectional view taken in the direction of the arrow Y in which the battery case 2 is cut in the longitudinal direction on the XZ plane along line 2B-2B shown in FIG.

電極体10は、セパレータ11を介在させた正極シート12と負極シート13の積層体を扁平形状に巻回した積層巻回体である。電極体10は、[背景技術]の欄で図5を参照して説明したように、セパレータ11を挟んで、負極シート13、セパレータ11、正極シート12、…というように、正極シート12及び負極シート13が交互に積層されて巻回されている。巻回の径方向外側から内側に向けて、セパレータ11、負極シート13、セパレータ11及び正極シート12の一組が積層体の最小単位である。   The electrode body 10 is a laminated wound body in which a laminated body of a positive electrode sheet 12 and a negative electrode sheet 13 with a separator 11 interposed therebetween is wound in a flat shape. As described with reference to FIG. 5 in the “Background Art” section, the electrode body 10 includes the negative electrode sheet 13, the separator 11, the positive electrode sheet 12,... Sheets 13 are alternately stacked and wound. One set of the separator 11, the negative electrode sheet 13, the separator 11, and the positive electrode sheet 12 is the smallest unit of the laminated body from the radially outer side to the inner side of the winding.

ここからは、図1及び図2に加えて図5も参照しながら説明する。なお、括弧内の数字は、図5に示す符号に対応する。正極シート12及び負極シート13は、図5(A)を参照して説明した正極シート120及び負極シート130と同様に構成されている。即ち、正極シート12(120)は、正極板(121)とその両面に塗工された正極合剤層(123)により、また負極シート13(130)は、負極板(131)とその両面に塗工された負極合剤層(133)により、それぞれ構成されている。また、図5(B)に示すように、正極シート12(120)及び負極シート13(130)は、それらの幅方向に所定幅ずらして積層されている。この所定幅の範囲には、負極合剤又は正極合剤を塗工しない未塗工部12a,13aが形成されている。未塗工部12a、13aは、セパレータ110と重なっていない。逆に言えば、正極シート120及び負極シート130は、セパレータ110と重なる領域に合剤(活物質)が塗工されている。合剤が塗工されている領域は塗工部と呼ばれる。   From here, it demonstrates, referring FIG. 5 in addition to FIG.1 and FIG.2. The numbers in parentheses correspond to the symbols shown in FIG. The positive electrode sheet 12 and the negative electrode sheet 13 are configured similarly to the positive electrode sheet 120 and the negative electrode sheet 130 described with reference to FIG. That is, the positive electrode sheet 12 (120) is composed of the positive electrode plate (121) and the positive electrode mixture layer (123) coated on both surfaces thereof, and the negative electrode sheet 13 (130) is composed of the negative electrode plate (131) and both surfaces thereof. Each of the coated negative electrode mixture layers (133) is constituted. Further, as shown in FIG. 5B, the positive electrode sheet 12 (120) and the negative electrode sheet 13 (130) are stacked while being shifted by a predetermined width in the width direction thereof. In the range of the predetermined width, uncoated portions 12a and 13a where no negative electrode mixture or positive electrode mixture is applied are formed. The uncoated portions 12 a and 13 a do not overlap with the separator 110. In other words, the positive electrode sheet 120 and the negative electrode sheet 130 are coated with a mixture (active material) in a region overlapping with the separator 110. The area where the mixture is applied is called the coating part.

このように電極体10は、巻回軸方向の一端側に正極合剤を塗工しない未塗工部12aを備えている。本実施例では、電極体10の平坦部10cに位置する未塗工部12aには、正極集電部4が溶接部4aにより溶接固定されており、正極シート12は正極集電部4を介して正極外部端子7に電気的に接続されている。他方、巻回軸方向の他端側には、負極合剤を塗工しない未塗工部13aが存在している。平坦部10cに位置する未塗工部13aには、負極集電部5が溶接部5aにより溶接固定されており、負極シート13は負極集電部5を介して負極外部端子8に電気的に接続されている。正極集電部4及び負極集電部5は、短冊状の金属板であり、逆L字形状に折り曲げられている(図2(A)参照)。これらの集電部4,5の形状は、電極体10の巻回厚さと正極外部端子7及び負極外部端子8の突出位置との関係により決定される。   Thus, the electrode body 10 is provided with the uncoated part 12a which does not apply a positive mix to the one end side of a winding axis direction. In the present embodiment, the positive electrode current collector 4 is welded and fixed to the uncoated part 12 a located at the flat part 10 c of the electrode body 10 by the weld part 4 a, and the positive electrode sheet 12 is interposed via the positive electrode current collector 4. Are electrically connected to the positive external terminal 7. On the other hand, an uncoated portion 13a where no negative electrode mixture is applied exists on the other end side in the winding axis direction. The negative electrode current collector 5 is welded and fixed to the uncoated part 13 a located in the flat part 10 c by a weld part 5 a, and the negative electrode sheet 13 is electrically connected to the negative electrode external terminal 8 via the negative electrode current collector 5. It is connected. The positive electrode current collector 4 and the negative electrode current collector 5 are strip-shaped metal plates and are bent in an inverted L shape (see FIG. 2A). The shapes of the current collectors 4 and 5 are determined by the relationship between the winding thickness of the electrode body 10 and the protruding positions of the positive electrode external terminal 7 and the negative electrode external terminal 8.

電極体10は、このように巻回される積層体内に非水電解液を含んでいる。例えば、EC(エチレンカーボネート)、DMC(ジメチルカーボネート)及びEMC(エチルメチルカーボネート)を混合した非水溶媒中に六フッ化リン酸リチウムを溶かした溶解液を非水電解液として用いる。また、正極シート12の正極合剤層に塗工される正極活物質は、例えばニッケル酸リチウムである。負極シート13の負極合剤層に塗工される負極活物質は、例えば黒鉛である。セパレータ11は、例えばポリプロピレンからなる多孔質シートである。   The electrode body 10 contains a non-aqueous electrolyte in the laminated body wound in this way. For example, a solution obtained by dissolving lithium hexafluorophosphate in a non-aqueous solvent in which EC (ethylene carbonate), DMC (dimethyl carbonate) and EMC (ethyl methyl carbonate) are mixed is used as the non-aqueous electrolyte. Moreover, the positive electrode active material applied to the positive electrode mixture layer of the positive electrode sheet 12 is, for example, lithium nickelate. The negative electrode active material applied to the negative electrode mixture layer of the negative electrode sheet 13 is, for example, graphite. The separator 11 is a porous sheet made of, for example, polypropylene.

扁平形状の電極体10は、巻回軸に交差する方向の両端に弧形状部10a,10bを備えており、その径方向の断面形状は長細の小判形状をなしている(図2(A)参照)。ところで、このように構成される電極体10は、積層体の巻き終わり、つまり巻回端において、セパレータ11が最も外側(最外周)に位置する。図3に、電極体10の構成概要を表す斜視図を示す。また、図4(A)に、電極体10の構成詳細を示す説明図、図4(B)に、図4(A)に表す破線領域4Bの拡大図、をそれぞれ示す。これらの図からわかるように、セパレータ11は、その巻回端11aが電極体10の一方の弧形状部10aまで延びているのに対して、正極シート12の巻回端12bや負極シート13の巻回端13bは、電極体10の平坦部10cまでで留まり、一方の弧形状部10aまでは延びていない。これは、前述したように、正極シート12においては、その巻回端12bを正極集電部4の溶接部4aにより固定し、また負極シート13においては、その巻回端13bを負極集電部5の溶接部5aにより固定するためである。なお、図3において、符号Jが指す一点鎖線は、電極体10の巻回軸を示す。   The flat electrode body 10 includes arc-shaped portions 10a and 10b at both ends in the direction intersecting the winding axis, and the cross-sectional shape in the radial direction is an elongated oval shape (FIG. 2A )reference). By the way, in the electrode body 10 configured in this manner, the separator 11 is positioned on the outermost side (outermost circumference) at the end of winding of the laminated body, that is, at the winding end. In FIG. 3, the perspective view showing the structure outline | summary of the electrode body 10 is shown. FIG. 4A is an explanatory diagram showing the configuration details of the electrode body 10, and FIG. 4B is an enlarged view of a broken line region 4B shown in FIG. 4A. As can be seen from these drawings, the separator 11 has a winding end 11 a extending to one arc-shaped portion 10 a of the electrode body 10, whereas the winding end 12 b of the positive electrode sheet 12 and the negative electrode sheet 13 The winding end 13b stays up to the flat portion 10c of the electrode body 10 and does not extend to the one arc-shaped portion 10a. As described above, in the positive electrode sheet 12, the winding end 12 b is fixed by the welding portion 4 a of the positive electrode current collector 4, and in the negative electrode sheet 13, the winding end 13 b is fixed in the negative electrode current collector. It is for fixing with the 5 weld parts 5a. In FIG. 3, the alternate long and short dash line indicated by the symbol J indicates the winding axis of the electrode body 10.

このように最外周に位置するセパレータ11は、その巻回端11aを負極シート13の巻回端13bを超えて弧形状部10aの方向に延ばすことによって、負極シート13の巻回が緩み難くなるように構成している。しかしながら、負極シート13の幅方向一方側は負極集電部5によって固定されてはいるものの、負極シート13の幅方向他方側Lは何かに固定されているわけではない。そのため、セパレータ11の幅方向他方側Lに位置する負極シート13は、セパレータ11に拘束されるだけであることから、巻回による密着はこのセパレータ11による拘束力に留まる。したがって、負極シート13の幅方向他方側Lでは負極シート13に巻き緩みが生じる場合があり、積層体の巻回端11a,12b,13bがつながる弧形状部10bの幅方向他方側Lが特に緩み易い(符号Yで示す一点鎖線範囲)。なお、幅方向他方側Lとは、別言すれば、正極シート12と負極シート13とセパレータ11が重なっている領域の正極集電部4の側の端部である。   Thus, the separator 11 located on the outermost periphery extends the winding end 11a beyond the winding end 13b of the negative electrode sheet 13 in the direction of the arc-shaped portion 10a, so that the winding of the negative electrode sheet 13 is difficult to loosen. It is configured as follows. However, although one side in the width direction of the negative electrode sheet 13 is fixed by the negative electrode current collector 5, the other side L in the width direction of the negative electrode sheet 13 is not fixed to anything. Therefore, since the negative electrode sheet 13 positioned on the other side L in the width direction of the separator 11 is only restrained by the separator 11, the close contact due to winding remains in the restraining force by the separator 11. Therefore, the negative electrode sheet 13 may be loosened on the other side L in the width direction of the negative electrode sheet 13, and the other side L in the width direction of the arc-shaped portion 10b to which the winding ends 11a, 12b, 13b of the laminate are connected is particularly loose. Easy (dotted line range indicated by symbol Y). In other words, the other side L in the width direction is an end portion on the side of the positive electrode current collector 4 in a region where the positive electrode sheet 12, the negative electrode sheet 13, and the separator 11 overlap.

例えば、非水電解質二次電池1の初期充電時において、電極体100が膨張と収縮を繰り返した場合には、幅方向他方側Lでセパレータ11に緩みが生じて、セパレータ11とともに負極シート13の巻回も緩み得る。このような負極シート13の緩みは、[発明が解決しようとする課題]で述べたように、負極シート13と正極シート12の間に形成される隙間SP(図6(A)参照)によって、充放電時の酸化還元反応のバラツキによるリチウムの析出を招く虞がある。なお、負極シート13の緩みは、例えば、最外周のセパレータ11及び負極シート13を余分にもう1周巻く(二重巻き)ことにより生じ難くし得る。しかしこのような二重巻きは、電極体10の厚さ、重量及びコストの増加を招く。   For example, when the electrode body 100 repeatedly expands and contracts during the initial charging of the nonaqueous electrolyte secondary battery 1, the separator 11 is loosened on the other side L in the width direction, and the anode 11 Winding can also loosen. As described in [Problems to be Solved by the Invention], the looseness of the negative electrode sheet 13 is caused by the gap SP (see FIG. 6A) formed between the negative electrode sheet 13 and the positive electrode sheet 12. There is a possibility of causing precipitation of lithium due to variation in the oxidation-reduction reaction during charging and discharging. The loosening of the negative electrode sheet 13 can be made difficult to occur by, for example, winding the outermost separator 11 and the negative electrode sheet 13 one more time (double winding). However, such double winding causes an increase in the thickness, weight and cost of the electrode body 10.

そこで、本実施例の電極体10では、電極体10の弧形状部10bにおいて、正極シート12に塗工された正極合剤(正極活物質)の活性を失わせる失活領域20を備える(図3及び図4に示すクロスハッチングの範囲)。これにより、失活領域20では、リチウムイオンの授受が阻止されるため、放電時における酸化反応や充電時における還元反応が生じない。そのため、弧形状部10bの幅方向他方側Lにおいて負極シート13に巻き緩みが生じても、充放電時の酸化還元反応に影響がないことから、弧形状部10bの巻き緩みによる充放電時の酸化還元反応のバラツキを抑制可能にする。   Therefore, in the electrode body 10 of the present embodiment, the arc-shaped portion 10b of the electrode body 10 includes a deactivation region 20 that loses the activity of the positive electrode mixture (positive electrode active material) applied to the positive electrode sheet 12 (FIG. 3 and the cross-hatching range shown in FIG. As a result, in the deactivated region 20, since the exchange of lithium ions is blocked, an oxidation reaction during discharge or a reduction reaction during charging does not occur. Therefore, even if loosening of the negative electrode sheet 13 occurs on the other side L in the width direction of the arc-shaped portion 10b, there is no effect on the oxidation-reduction reaction during charging / discharging. It is possible to suppress variation in the oxidation-reduction reaction.

失活領域20は、電極体10の両端の弧形状部10a,10bのうち巻回端11a,12b,13bがつながる方の弧形状部10bにおいて、電極体10の幅方向他方側Lに位置する。別言すれば、失活領域20は、巻回端11a,12b,13bにつながる弧形状部10bの積層体において、正極シート12と負極シート13とセパレータ11が重なっている領域の正極集電部4の側(正極の未塗工部12aの側)の端部である。例えば、最外周に位置する負極シート13に対向する正極シート12において、正極活物質の塗工部(図4(B)に示す点状塗りつぶし範囲)と未塗工部12aの境界線の一部と、弧形状部10bの曲面部最外側縁に沿う線の一部と、を辺にする三角形状の範囲を失活領域20に設定する。境界線の「一部」とは、例えば、弧形状部10bによる曲面の範囲に含まれる部分のことである。曲面部最外側縁に沿う線の「一部」とは、少なくともセパレータ11の幅方向他方側Lの範囲に含まれる部分のことである。なお、これらの辺を含む矩形状の範囲や、このような矩形状が内接する楕円形状の範囲等を失活領域20に設定してもよい。   The deactivation region 20 is located on the other side L in the width direction of the electrode body 10 in the arc-shaped part 10b connected to the winding ends 11a, 12b, and 13b among the arc-shaped parts 10a and 10b at both ends of the electrode body 10. . In other words, the deactivation region 20 is a positive electrode current collector in a region where the positive electrode sheet 12, the negative electrode sheet 13, and the separator 11 overlap in the laminate of the arc-shaped portions 10 b connected to the winding ends 11 a, 12 b, and 13 b. 4 is an end on the side of 4 (the side of the uncoated portion 12a of the positive electrode). For example, in the positive electrode sheet 12 facing the negative electrode sheet 13 located on the outermost periphery, a part of the boundary line between the coated part of the positive electrode active material (dotted painted range shown in FIG. 4B) and the uncoated part 12a Then, a triangular range having sides of a part along the outermost edge of the curved surface portion of the arc-shaped portion 10 b is set in the inactivated region 20. The “part” of the boundary line is, for example, a portion included in a curved surface range by the arc-shaped portion 10b. The “part” of the line along the outermost edge of the curved surface portion is a portion included in at least the range of the other side L in the width direction of the separator 11. Note that a rectangular range including these sides, an elliptical range in which such a rectangular shape is inscribed, or the like may be set in the deactivation region 20.

本実施例では、正極シート12に塗工された正極合剤(正極活物質)の活性を失わせる構成例として、例えば、未塗工部12aと同様に、失活領域20においても正極合剤(正極活物質)を塗工しない構成を採用する。これにより、失活領域20においては、リチウムイオンの授受に必要な正極活物質が存在しないことから、巻き緩みの有無にかかわらず、非水電解質二次電池1の充放電時に酸化還元反応が生じない。   In this example, as a structural example for losing the activity of the positive electrode mixture (positive electrode active material) applied to the positive electrode sheet 12, for example, the positive electrode mixture also in the deactivated region 20 as in the uncoated portion 12a. A configuration in which (the positive electrode active material) is not applied is adopted. As a result, in the deactivated region 20, there is no positive electrode active material necessary for the exchange of lithium ions, so that an oxidation-reduction reaction occurs during charging / discharging of the nonaqueous electrolyte secondary battery 1 regardless of the presence or absence of winding looseness. Absent.

また、正極シート12に塗工された正極合剤(正極活物質)の活性を失わせる他の構成例として、例えば、失活領域20においては、塗工された正極合剤(正極活物質)の表面を、リチウムイオンの移動を妨げる被膜、塗膜又はテープによって覆う構成を採用してもよい。これにより、失活領域20においては、リチウムイオンの授受に必要な正極活物質が存在しても表面を覆う被膜等によってリチウムイオンの授受が妨げられることから、巻き緩みの有無にかかわらず、非水電解質二次電池1の充放電時に酸化還元反応が生じない。   Further, as another configuration example for losing the activity of the positive electrode mixture (positive electrode active material) applied to the positive electrode sheet 12, for example, in the deactivated region 20, the applied positive electrode mixture (positive electrode active material). A structure may be employed in which the surface is covered with a coating, coating film or tape that prevents the movement of lithium ions. As a result, in the deactivated region 20, even if a positive electrode active material necessary for the exchange of lithium ions is present, the exchange of lithium ions is hindered by a coating covering the surface, etc. No oxidation-reduction reaction occurs during charging / discharging of the water electrolyte secondary battery 1.

これらの構成のうち、(1)失活領域20において正極合剤(正極活物質)を塗工しない構成と、(2)塗工された正極合剤(正極活物質)の表面を被膜等によって覆う構成と、について、リチウムの析出に関する効果検証試験を行ったところ、次のような結果を得た。試験では、周囲温度0℃の環境下において、SOC(State Of Charge;満充電(100%)に対する充電率)20%時の非水電解質二次電池に125A(アンペア)の定電流充電を30秒間加えるパルス充電を行った。その結果、上記(1)及び(2)のいずれの構成においても、電極体10の弧形状部10b、特に失活領域20にリチウムの析出は確認されなかった。これに対して、失活領域20を設けない従来の構成では、電極体10の弧形状部10bにリチウムの析出が確認された。   Among these configurations, (1) a configuration in which the positive electrode mixture (positive electrode active material) is not applied in the deactivated region 20, and (2) the surface of the coated positive electrode mixture (positive electrode active material) is coated with a film or the like. When the effect verification test regarding the precipitation of lithium was conducted for the covering structure, the following results were obtained. In the test, a constant current charge of 125 A (ampere) was applied to a non-aqueous electrolyte secondary battery at an SOC of 20% at an ambient temperature of 0 ° C. under a SOC (State Of Charge: 100% charge) for 30 seconds. Added pulse charge was performed. As a result, in any of the configurations (1) and (2), lithium deposition was not confirmed in the arc-shaped portion 10 b of the electrode body 10, particularly in the deactivated region 20. On the other hand, in the conventional configuration in which the deactivation region 20 is not provided, lithium deposition was confirmed in the arc-shaped portion 10 b of the electrode body 10.

以上説明したように、非水電解質二次電池1では、電極体10の両端の弧形状部10a,10bのうち巻回端11a,12b,13bがつながる方の弧形状部10bにおける最外周の積層体が、負極集電部5が固定される負極シート13の幅方向一方側に対する幅方向他方側に、正極シート12に塗工された正極合剤(正極活物質)の活性を失わせる失活領域20を備えている。このような失活領域20では充放電時に酸化還元反応が生じないため、弧形状部10bにおいて、負極集電部5が固定されていない負極シート13の幅方向他方側に巻き緩みが生じても、巻き緩みが生じた部分は失活領域20であることから元より酸化還元反応がない。そのため、負極シート13の幅方向他方側に巻き緩みが生じても、充放電時の酸化還元反応に影響がない。したがって、このような弧形状部10bの巻き緩みによる充放電時の酸化還元反応のバラツキを抑制する。   As described above, in the nonaqueous electrolyte secondary battery 1, the outermost peripheral lamination in the arc-shaped portion 10b to which the winding ends 11a, 12b, and 13b are connected among the arc-shaped portions 10a and 10b at both ends of the electrode body 10. Deactivation in which the body loses the activity of the positive electrode mixture (positive electrode active material) applied to the positive electrode sheet 12 on the other side in the width direction with respect to one side in the width direction of the negative electrode sheet 13 to which the negative electrode current collector 5 is fixed. A region 20 is provided. In such a deactivated region 20, no oxidation-reduction reaction occurs during charging / discharging. Therefore, even in the arc-shaped portion 10 b, even if winding is loosened on the other side in the width direction of the negative electrode sheet 13 to which the negative electrode current collector 5 is not fixed. The part where the loosening of the winding occurs is the deactivation region 20, and therefore there is no redox reaction. Therefore, even if loose winding occurs on the other side in the width direction of the negative electrode sheet 13, there is no influence on the oxidation-reduction reaction during charge / discharge. Therefore, the variation of the oxidation-reduction reaction at the time of charging / discharging due to such loosening of the arc-shaped portion 10b is suppressed.

実施例技術に関する留意点を述べる。弧形状部10bが「巻回端につながる方の弧形状部」の一例に相当する。   Points to be noted regarding the example technology will be described. The arc-shaped portion 10b corresponds to an example of “an arc-shaped portion connected to the winding end”.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書又は図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書又は図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. Further, the technical elements described in the present specification or drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Moreover, the technique illustrated in this specification or the drawings achieves a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

1:非水電解質二次電池
2:電池ケース
4:正極集電部
4a、5a:溶接部
5:負極集電部
7:正極外部端子
8:負極外部端子
9:スリーブ
10:電極体
10a、10b:弧形状部
10c:平坦部
11:セパレータ
11a:巻回端
12:正極シート
13:負極シート
12a、13a:未塗工部
12b、13b:巻回端
20:失活領域
1: Nonaqueous electrolyte secondary battery 2: Battery case 4: Positive electrode current collector 4a, 5a: Welded part 5: Negative electrode current collector 7: Positive electrode external terminal 8: Negative electrode external terminal 9: Sleeve 10: Electrode bodies 10a, 10b : Arc-shaped part 10c: Flat part 11: Separator 11a: Winding end 12: Positive electrode sheet 13: Negative electrode sheet 12a, 13a: Uncoated part 12b, 13b: Winding end 20: Deactivation region

Claims (1)

セパレータを介在させた正極シートと負極シートの積層体を扁平形状に巻回した電極体を有する非水電解質二次電池であり、
電極体は、扁平形状の両端に弧形状部を有しており、
電極体の両端の弧形状部のうち巻回端がつながる方の弧形状部における最外周の積層体が、負極集電部が固定される負極シートの幅方向一方側に対する幅方向他方側に、正極シートに塗工された正極活物質の活性を失わせる失活領域を備えていることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery having an electrode body obtained by winding a laminate of a positive electrode sheet and a negative electrode sheet with a separator interposed therebetween in a flat shape,
The electrode body has arc-shaped portions at both ends of the flat shape,
Of the arc-shaped portions at both ends of the electrode body, the outermost laminate in the arc-shaped portion to which the winding ends are connected is on the other side in the width direction with respect to one side in the width direction of the negative electrode sheet to which the negative electrode current collector is fixed. A non-aqueous electrolyte secondary battery comprising a deactivation region that loses the activity of a positive electrode active material applied to a positive electrode sheet.
JP2013254646A 2013-12-10 2013-12-10 Nonaqueous electrolyte secondary battery Pending JP2015115124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254646A JP2015115124A (en) 2013-12-10 2013-12-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254646A JP2015115124A (en) 2013-12-10 2013-12-10 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015115124A true JP2015115124A (en) 2015-06-22

Family

ID=53528764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254646A Pending JP2015115124A (en) 2013-12-10 2013-12-10 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015115124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193075A (en) * 2018-11-14 2020-05-22 精工电子有限公司 Electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193075A (en) * 2018-11-14 2020-05-22 精工电子有限公司 Electrochemical cell

Similar Documents

Publication Publication Date Title
JP4987252B2 (en) Electrode assembly and lithium ion secondary battery using the same
WO2015198526A1 (en) Rolled-type battery
CN104956516A (en) Sealed battery
JP2013161757A (en) Power storage device and vehicle
JP6486801B2 (en) Secondary battery
JP6626557B1 (en) Electrochemical cell
WO2018061381A1 (en) Non-aqueous electrolyte secondary battery
WO2017010046A1 (en) Wound type battery
JP6682758B2 (en) Storage element
JP6775170B2 (en) Revolving battery
JP2018166040A (en) Square secondary battery
JP2016105360A (en) Power storage device
JP2013026123A (en) Secondary battery and electrode plate
JP2006278013A (en) Battery and method of manufacturing the same
JP5811893B2 (en) Power storage device and vehicle
KR20200086932A (en) Electrode assembly and methode for maenufacture the electrode assembly and secondary battery therewith the electrode assembly
JP6670086B2 (en) Sealed battery
JP2006216461A (en) Secondary battery
JP2015115124A (en) Nonaqueous electrolyte secondary battery
JP5501270B2 (en) Battery using coated electrode group
JP6305065B2 (en) battery
CN108808011B (en) Secondary battery and current collecting terminal
JP2018055904A (en) Electrochemical cell and manufacturing method of the electrochemical cell
JP2017139085A (en) Sealed battery
KR20130052410A (en) Electrode assembly and secondary battery having the same