JP2015113659A - Continuous fiber-reinforced earth method - Google Patents

Continuous fiber-reinforced earth method Download PDF

Info

Publication number
JP2015113659A
JP2015113659A JP2013257738A JP2013257738A JP2015113659A JP 2015113659 A JP2015113659 A JP 2015113659A JP 2013257738 A JP2013257738 A JP 2013257738A JP 2013257738 A JP2013257738 A JP 2013257738A JP 2015113659 A JP2015113659 A JP 2015113659A
Authority
JP
Japan
Prior art keywords
continuous fiber
soil
additive
sandy soil
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013257738A
Other languages
Japanese (ja)
Inventor
垣 幸 整 石
Yukito Ishigaki
垣 幸 整 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoc Constructions Co Ltd
Original Assignee
Nittoc Constructions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoc Constructions Co Ltd filed Critical Nittoc Constructions Co Ltd
Priority to JP2013257738A priority Critical patent/JP2015113659A/en
Publication of JP2015113659A publication Critical patent/JP2015113659A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous fiber-reinforced earth method, capable of restraining an increase in soil hardness and a rise of pH to a necessary minimum limit, while improving strength of continuous fiber-reinforced earth, by mixing an additive such as cement with sandy soil.SOLUTION: The additive is added so that uniaxial compression strength of a mixture of the sandy soil and the additive becomes within a range of 30kN/m-150kN/m. Long fiber, for example, polyester fiber is used as continuous fiber. Normal Portland cement, highly-early -strengthening cement, a lime calcium-based solidification material, cement lime, gypsum and magnesium can be applied as the additive.

Description

本発明は、連続繊維(長繊維:例えば、ポリエステル繊維)を砂質土へ均等に混合した状態で各種壁面や法面等を補強する連続繊維補強土工法に関する。   The present invention relates to a continuous fiber reinforced earth method for reinforcing various wall surfaces and slopes in a state where continuous fibers (long fibers: for example, polyester fibers) are evenly mixed with sandy soil.

各種壁面や法面等を補強するため、連続繊維を砂質土へ均等に混合した連続繊維補強土を、補強するべき対象に吹き付けて補強する連続繊維補強土工法は、環境保全や補強箇所における安全性向上のため、広く用いられている。
係る連続繊維補強土工法において、連続繊維補強土の強度を向上するために、セメント等(普通セメント、早強セメント、石灰系の固結材、その他を含む)の添加材を混合することが考えられる。そしてセメント等を添加材として添加すれば、骨材である砂が侵食される可能性がある河川護岸についても、連続繊維補強土を使用することが出来る。
しかし、セメント等の添加材を連続繊維補強土に混合した場合には、土壌硬度が増加し、pHが上昇するという問題を有している。そして、吹き付けられる連続繊維補強土が植生基盤である場合には、土壌硬度の増加、pHの上昇は、植物の生育を阻害する要因となってしまう。
In order to reinforce various wall surfaces and slopes, continuous fiber reinforced soil construction method, in which continuous fiber reinforced soil, in which continuous fibers are evenly mixed with sandy soil, is sprayed onto the object to be reinforced, is used for environmental conservation and reinforcement. Widely used to improve safety.
In such a continuous fiber reinforced earth method, it is considered to add additives such as cement (including ordinary cement, early-strength cement, lime-based cement, etc.) in order to improve the strength of continuous fiber reinforced soil. It is done. If cement or the like is added as an additive, continuous fiber reinforced soil can be used for river revetments where the aggregate sand may be eroded.
However, when an additive such as cement is mixed with continuous fiber reinforced soil, there is a problem that soil hardness increases and pH increases. And when the continuous fiber reinforced soil sprayed is a vegetation base, the increase in soil hardness and the raise of pH will become a factor which inhibits the growth of a plant.

これに対して、長繊維と固化材(セメント)と土の混合物において、固化材の添加量を植生可能な範囲で増加して使用する従来技術(特許文献1参照)も提案されている。
しかし、係る従来技術(特許文献1)では、固化材であるセメントの添加量については、土の単位体積1mあたり30kgを上回るような量ではない旨が記載されている程度しか開示されていない。そして、固化材(セメント)を添加して連続繊維補強土の強度を向上しつつ、土壌硬度の増加とpHの上昇を必要最低限に抑制することが出来る技術については、開示してはいない。
On the other hand, the prior art (refer patent document 1) which increases and uses the addition amount of a solidification material in the range which can be vegetated in the mixture of a long fiber, a solidification material (cement), and soil is also proposed.
However, the related art (Patent Document 1) discloses only the extent to which it is described that the amount of cement as a solidifying material is not an amount exceeding 30 kg per 1 m 3 of soil volume. . And the technique which can suppress the increase in soil hardness and a raise of pH to the required minimum is not disclosed, adding the solidification material (cement) and improving the intensity | strength of continuous fiber reinforced soil.

特開2009−243225号公報JP 2009-243225 A

本発明は上述した従来技術の問題点に鑑みて提案されたものであり、砂質土にセメント等の添加材を混合して連続繊維補強土の強度を向上させつつ、土壌硬度の増加とpHの上昇を必要最低限に抑制することが出来る連続繊維補強土工法の提供を目的としている。   The present invention has been proposed in view of the above-mentioned problems of the prior art, and increases the soil hardness and pH while improving the strength of continuous fiber reinforced soil by mixing additives such as cement with sandy soil. The purpose is to provide a continuous fiber reinforced earth method that can suppress the increase in the minimum required.

本発明の連続繊維補強土工法は、砂質土と連続繊維を吹き付ける連続繊維補強土工法において、砂質土に添加材を混合する工程を有し、添加材は砂質土と添加材の混合物の一軸圧縮強度が30kN/m〜150kN/mの範囲内となるように添加されることを特徴としている。 The continuous fiber reinforced earth method of the present invention is a continuous fiber reinforced earth method in which sandy soil and continuous fibers are sprayed, and has a step of mixing an additive with sandy soil, and the additive is a mixture of sandy soil and additive. uniaxial compressive strength of is characterized in that it is added in an amount of within the range of 30kN / m 2 ~150kN / m 2 .

本発明の実施に際して、添加材としては、普通ポルトランドセメント、早強セメント、石灰、カルシウム系固化材(低アルカリカルシウム系固化材)、セメント石灰、石膏、マグネシウム等が適用可能である。
また、砂質土としては砂または砂に類似した物(例えば、山砂、川砂、海砂、マサ土、シラス土、砕砂等)を用いることが出来るが、それに限定される訳ではない。
In the practice of the present invention, normal Portland cement, early-strength cement, lime, calcium-based solidified material (low alkali calcium-based solidified material), cement lime, gypsum, magnesium and the like can be applied as the additive.
As sandy soil, sand or sand-like material (for example, mountain sand, river sand, sea sand, masa soil, shirasu soil, crushed sand, etc.) can be used, but is not limited thereto.

本発明の連続繊維補強土工法では、連続繊維補強土(砂質土と連続繊維と添加材の混合物)は植生基盤として(法面等に)吹き付けられる。ただし、連続繊維補強土を植生基盤以外の用途で用いる場合も包含する。   In the continuous fiber reinforced earth method of the present invention, continuous fiber reinforced soil (a mixture of sandy soil, continuous fiber, and additive) is sprayed as a vegetation base (on a slope or the like). However, it includes cases where continuous fiber reinforced soil is used for purposes other than vegetation.

本発明において、連続繊維補強土を吹き付けるのに用いられる吹付けホースの長さは60m以上であるのが好ましい。   In this invention, it is preferable that the length of the spray hose used for spraying continuous fiber reinforced soil is 60 m or more.

上述の構成を具備する本発明によれば、pHや土壌硬度が植物生育に悪影響を及ぼす程度まで上昇すること無く、連続繊維補強土の補強効果、せん断強度を増加させることが出来る。
そして本発明によれば、添加材が砂質土に混合されるため連続繊維が砂質土中から引き抜き難くなる。そのため、連続繊維の補強効果、せん断強度が増加するので、連続繊維補強土工法の信頼性を向上させることが出来る。
さらに本発明によれば、日本工業規格(JIS)で定められているため信頼性が高いパラメータである一軸圧縮強度により添加材の添加量が定義されるため、施工現場においても正確且つ客観的に砂質土と添加材とを調整、混合することが出来る。
According to the present invention having the above-described configuration, it is possible to increase the reinforcing effect and shear strength of the continuous fiber-reinforced soil without increasing the pH and soil hardness to an extent that adversely affects plant growth.
And according to this invention, since an additive is mixed with sandy soil, it becomes difficult to pull out continuous fiber from sandy soil. Therefore, since the reinforcing effect and shear strength of the continuous fiber are increased, the reliability of the continuous fiber reinforced earth method can be improved.
Furthermore, according to the present invention, since the amount of additive added is defined by the uniaxial compressive strength, which is a highly reliable parameter because it is defined by the Japanese Industrial Standard (JIS), it is accurate and objective even at the construction site. Sandy soil and additives can be adjusted and mixed.

本発明において、連続繊維補強土を吹き付けるに際して、吹付けホースの長さを60m以上にすれば、砂質土、連続繊維、添加材が均一に混合され、必要な一軸圧縮強度(30kN/m以上)を発現させることが出来る。 In the present invention, when the continuous fiber reinforced soil is sprayed, if the length of the spray hose is 60 m or more, the sandy soil, the continuous fiber, and the additive are uniformly mixed, and the necessary uniaxial compressive strength (30 kN / m 2). The above can be expressed.

連続繊維補強土工法を実施するためのシステムの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the system for enforcing the continuous fiber reinforcement earthwork method. 連続繊維を包含していない砂質土の一面せん断試験の試験結果を示す特性図である。It is a characteristic view which shows the test result of the one-side shear test of the sandy soil which does not include the continuous fiber. 連続繊維を包含する砂質土の一面せん断試験の試験結果を示す特性図である。It is a characteristic view which shows the test result of the single-sided shear test of the sandy soil containing a continuous fiber. 表3で示す供試体No.2〜No.14の一軸圧縮強度及び粘着力増加値をプロットした特性図である。Specimen No. shown in Table 3 2-No. 14 is a characteristic diagram in which 14 uniaxial compressive strengths and adhesive force increase values are plotted. FIG. 表4で示す供試体No.15〜No.31の一軸圧縮強度及び土壌硬度をプロットした特性図である。Specimen No. shown in Table 4 15-No. It is the characteristic view which plotted the uniaxial compressive strength of 31 and soil hardness. 連続繊維補強土の吹付けホース長さと一軸圧縮強度の特性を示す特性図である。It is a characteristic view which shows the characteristic of the spraying hose length and uniaxial compressive strength of continuous fiber reinforcement soil.

以下、添付図面を参照して、本発明の実施形態について説明する。
図1は、連続繊維補強土工法を実施するためのシステムの概要を例示している。
図1において、連続繊維補強土工法を実施するためのシステム100は、砂質土を施工領域に搬送する砂搬送機構8と、連続繊維供給機構20を有している。そして、砂搬送機構8から搬送される砂に連続繊維供給機構20(図1では一点鎖線で包囲された領域で示す)から供給される連続繊維を絡ませて(混合して)連続繊維補強土として施工している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 illustrates an overview of a system for carrying out a continuous fiber reinforced earth method.
In FIG. 1, a system 100 for carrying out a continuous fiber reinforced earth method has a sand transport mechanism 8 for transporting sandy soil to a construction area and a continuous fiber supply mechanism 20. Then, the continuous fiber supplied from the continuous fiber supply mechanism 20 (shown by a region surrounded by a one-dot chain line in FIG. 1) is entangled (mixed) with the sand conveyed from the sand conveyance mechanism 8 as continuous fiber reinforced soil. We are constructing.

砂搬送機構8は、ベルトコンベア9aを介してホッパー10に連結している計量器11と、ベルトコンベア9bを介して計量器11に連結する吹付機12を有している。図1において、符号13は砂搬送用のトラクターショベル、符号15は吹付機12に圧縮空気を供給するコンプレッサーである。吹付機12にはマテリアルホース33が接続されており、マテリアルホース33の先端に砂質土(添加材が混合されている砂質土)を噴射する噴射装置が設けられている。
図1では明示されていないが、ホッパー10に充填されている砂質土には添加材が混合されている。砂質土、添加材の詳細については後述する。
The sand transport mechanism 8 has a measuring instrument 11 connected to the hopper 10 via a belt conveyor 9a and a sprayer 12 connected to the measuring instrument 11 via a belt conveyor 9b. In FIG. 1, reference numeral 13 denotes a tractor excavator for sand conveyance, and reference numeral 15 denotes a compressor for supplying compressed air to the sprayer 12. A material hose 33 is connected to the sprayer 12, and an injection device for injecting sandy soil (sandy soil mixed with additive) to the tip of the material hose 33 is provided.
Although not clearly shown in FIG. 1, an additive is mixed in the sandy soil filled in the hopper 10. Details of the sandy soil and the additive will be described later.

連続繊維供給機構20は、連続繊維2を貯蔵する連続繊維供給装置35と、エジェクタ7とを備え、エジェクタ7は、連続繊維供給装置35からの連続繊維2を高圧水を利用して噴射ノズル6から噴射する様に構成されている。
連続繊維供給装置35は複数(図1では4台)のボビンケース21を有しており、ボビンケース21は、複数(例えば4台)の糸巻19からの連続繊維2を絡ませてガイドステー25を介して送り出す機能を有している。
ボビンケース21はロードセル34を有し、連続繊維2を計量している。
ここで、符号16は発電機、符号17は分電盤、符号18は計量装置である。
The continuous fiber supply mechanism 20 includes a continuous fiber supply device 35 that stores the continuous fiber 2 and an ejector 7. The ejector 7 uses the high-pressure water to spray the continuous fiber 2 from the continuous fiber supply device 35. It is comprised so that it may inject from.
The continuous fiber supply device 35 has a plurality of bobbin cases 21 (four in FIG. 1). The bobbin case 21 entangles the continuous fibers 2 from a plurality of (for example, four) bobbins 19 to guide the guide stay 25. It has the function to send out via.
The bobbin case 21 has a load cell 34 and measures the continuous fiber 2.
Here, reference numeral 16 denotes a generator, reference numeral 17 denotes a distribution board, and reference numeral 18 denotes a weighing device.

連続繊維供給装置35から繰り出される連続繊維2は、水タンク3から高圧ポンプ4を介して供給管5で送られる高圧水を利用して、噴射ノズル6から噴射される。
上述した様に、マテリアルホース33の先端からは、添加材が所定量添加された砂質土が、施工領域の施工面に吹き付けられる。そして噴射ノズル6からは連続繊維2が噴射される。その結果、添加材が所定量添加された砂質土と連続繊維2とは、施工領域で好適に混合されて積層される。
The continuous fiber 2 fed out from the continuous fiber supply device 35 is injected from the injection nozzle 6 using high-pressure water sent from the water tank 3 through the high-pressure pump 4 through the supply pipe 5.
As described above, from the tip of the material hose 33, sandy soil to which a predetermined amount of additive has been added is sprayed onto the construction surface in the construction area. The continuous fiber 2 is jetted from the jet nozzle 6. As a result, the sandy soil added with a predetermined amount of the additive and the continuous fiber 2 are suitably mixed and laminated in the construction area.

以下、実験例をも参照して、添加材が所定量添加された砂質土、あるいは図示の実施形態で用いられる連続繊維補強土について説明する。
図1で示すシステムで施工領域に吹き付けられるのは、砂質土と添加材の混合物と、連続繊維である。
連続繊維は、例えばポリエステル繊維等のマルチフィラメント無撚糸であり、施工領域において砂質土と添加材の混合物に均一に混合される。
Hereinafter, the sandy soil to which a predetermined amount of additive is added or the continuous fiber reinforced soil used in the illustrated embodiment will be described with reference to the experimental example.
In the system shown in FIG. 1, what is sprayed onto the construction area is a mixture of sandy soil and additive and continuous fibers.
The continuous fiber is, for example, a multifilament non-twisted yarn such as polyester fiber, and is uniformly mixed with the mixture of sandy soil and additive in the construction area.

発明者の実験によれば、連続繊維の種類はせん断強度には殆ど影響を与えない。また、連続繊維補強土におけるせん断強度について、連続繊維の混合率(或いは混合量)は殆ど影響を与えないことが確認されている。
特に、連続繊維の混入率が砂質土の0.15%〜0.25%においては、一面せん断試験で計測されたせん断強度は差が無いことが確認されている。
According to the inventors' experiments, the type of continuous fiber has little effect on the shear strength. Further, it has been confirmed that the mixing ratio (or mixing amount) of continuous fibers has little influence on the shear strength in continuous fiber reinforced soil.
In particular, it has been confirmed that there is no difference in the shear strength measured by the single-sided shear test when the mixing rate of continuous fibers is 0.15% to 0.25% of sandy soil.

連続繊維が均一に混合される砂質土は、砂または砂に類似した土である。砂質土以外の土、例えば粘性土は、連続繊維補強土工法には使用することが出来ない。
砂質土以外の土、例えば粘性土を混合した場合には、粘性が高いので、施工対象領域に吹き付けることが困難である。また、砂質土以外の土(例えば粘性土)を連続繊維補強土に混合した場合には、吹き付け後の排水性(透水性)が悪くなり、法面が不安定になる可能性がある。
Sandy soil in which continuous fibers are uniformly mixed is sand or soil similar to sand. Soil other than sandy soil, such as clay soil, cannot be used for the continuous fiber reinforced earth method.
When soil other than sandy soil, for example, viscous soil, is mixed, it is difficult to spray the construction target region because of its high viscosity. In addition, when soil other than sandy soil (for example, viscous soil) is mixed with continuous fiber reinforced soil, drainage (water permeability) after spraying may deteriorate and the slope may become unstable.

砂質土としては、下表1で示す範囲のものが該当する。換言すれば、表1で示す範囲の性質を有する土は、砂質土として、連続繊維補強土工法で使用することが可能である。
表1で示す範囲から外れた砂質土であっても、一面せん断試験を行い、粘着力(せん断強度)が設計値以上となる場合には、使用可能である。
使用可能な砂質土(砂または砂に類似した物)としては、例えば山砂、川砂、海砂、マサ土、シラス土、砕砂等がある。
表1

Figure 2015113659
As the sandy soil, those in the range shown in Table 1 below are applicable. In other words, the soil having the properties in the range shown in Table 1 can be used as a sandy soil by a continuous fiber reinforced earth method.
Even sandy soil deviating from the range shown in Table 1 can be used when a one-side shear test is conducted and the adhesive strength (shear strength) is greater than or equal to the design value.
Examples of usable sandy soil (sand or sand-like material) include mountain sand, river sand, sea sand, masa soil, shirasu soil, and crushed sand.
Table 1
Figure 2015113659

添加材としては、普通ポルトランドセメント、早強セメント、石灰、カルシウム系固化材(低アルカリカルシウム系固化材)、セメント石灰、石膏、マグネシウム等が適用可能である。
添加材は、添加後の砂質土の一軸圧縮強度が30kN/m〜150kN/mとなる量だけ、連続繊維補強土に添加される。この一軸圧縮強度は、日本工業規格(JIS)A1216に従った方法で計測する。
As the additive, ordinary Portland cement, early-strength cement, lime, calcium-based solidified material (low alkali calcium-based solidified material), cement lime, gypsum, magnesium and the like are applicable.
Additive is an amount uniaxial compressive strength of the sandy soil after the addition is 30kN / m 2 ~150kN / m 2 , is added to the continuous fibers reinforced soil. The uniaxial compressive strength is measured by a method according to Japanese Industrial Standard (JIS) A1216.

ここで添加材としては、上述のものに限定される訳ではない。添加後の砂質土のpHが11.0未満(弱アルカリ性)であり、一軸圧縮強度が30kN/m〜150kN/m以下となる添加材であれば、代替可能である。
なお、一軸圧縮強度30kN/m〜150kN/mは「28日経過」の時点で計測した数値を用いる。ただし、「28日経過」の時点で計測した一軸圧縮強度は、「最終的な」一軸圧縮強度と同義であると考えて差し支えない。
Here, the additive is not limited to those described above. Any additive can be used as long as the pH of the sandy soil after addition is less than 11.0 (weak alkaline) and the uniaxial compressive strength is 30 kN / m 2 to 150 kN / m 2 or less.
Incidentally, the uniaxial compression strength 30kN / m 2 ~150kN / m 2 is used measured values at the time of "28 days elapsed". However, the uniaxial compressive strength measured at the time of “elapsed 28 days” may be considered to be synonymous with the “final” uniaxial compressive strength.

図1で示す様なシステムで用いられる砂質土と添加材との混合物を連続繊維補強土に使用するメリットを、以下に説明する。
図2及び図3は、連続繊維を包含していない砂質土(図2)と、連続繊維を包含している砂質土(連続繊維補強土)(図3)について、一面せん断試験を行なった結果を示している。ここで一面せん断試験では、箱状の供試体の上下方向から垂直応力を加え、定まった一つの面で供試体をせん断せしめ、供試体のせん断強度(kN/m)を求めている。
The merit of using the mixture of sandy soil and additive used in the system as shown in FIG. 1 for the continuous fiber reinforced soil will be described below.
2 and 3 show a one-side shear test for sandy soil not containing continuous fibers (FIG. 2) and sandy soil containing continuous fibers (continuous fiber reinforced soil) (FIG. 3). The results are shown. Here, in the one-surface shear test, a vertical stress is applied from the up-down direction of the box-shaped specimen, the specimen is sheared on one fixed surface, and the shear strength (kN / m 2 ) of the specimen is obtained.

図2及び図3において、「○」のプロットは添加材を添加していない供試体の測定結果を示しており、「■」のプロットは添加材を添加した供試体の測定結果を示している。
図2、図3の一面せん断試験において、添加材及びその添加量は、添加後の供試体の一軸圧縮強度が50kN/mとなるものが選定された。そして図2については、添加後の供試体の一軸圧縮強度が50kN/mとなる添加材及び添加量であれば、一面せん断試験の結果に有意な差異はなかった。
In FIG. 2 and FIG. 3, the plot of “◯” indicates the measurement result of the specimen not added with the additive, and the plot of “■” indicates the measurement result of the specimen added with the additive. .
In the one-side shear test of FIGS. 2 and 3, the additive and the amount of the additive were selected such that the uniaxial compressive strength of the specimen after addition was 50 kN / m 2 . And about FIG. 2, there was no significant difference in the result of a one-sided shear test if it was an additive and addition amount with which the uniaxial compressive strength of the specimen after addition was 50 kN / m 2 .

図2から明らかなように、連続繊維を包含していない砂質土を供試体とする一面せん断試験では、添加材を添加した供試体のせん断強度(プロット「■」)と添加材を添加していない供試体のせん断強度(プロット「○」)は、大きな差異は認められない。すなわち、図2で示す一面せん断試験の結果として、連続繊維を包含していない砂質土では、添加材を添加してもせん断強度は顕著には増加しないことが明らかである。
それに対して、図3で示す一面せん断試験の結果、特に垂直応力が小さい領域(図3における左側の領域)では、添加材を添加した供試体のせん断強度(プロット「■」)は、添加材を添加していない供試体のせん断強度(プロット「○」)に比較して、向上することが分かった。
そして、図2、図3から、少なくとも添加後の供試体の一軸圧縮強度が50kN/mとなる様に添加材を添加すれば、連続繊維補強土のせん断強度が増加することが分かった。
As is clear from FIG. 2, in the one-sided shear test using sandy soil that does not include continuous fibers as the specimen, the shear strength (plot “■”) of the specimen added with the additive and the additive were added. There is no significant difference in the shear strength (plot “◯”) of the specimens that are not. That is, as a result of the single-sided shear test shown in FIG. 2, it is clear that in a sandy soil that does not include continuous fibers, the shear strength does not increase significantly even when an additive is added.
On the other hand, as a result of the one-sided shear test shown in FIG. 3, the shear strength (plot “■”) of the specimen to which the additive was added was particularly large in the region where the normal stress was small (the region on the left side in FIG. 3). It was found that the specimen was improved compared to the shear strength (plot “◯”) of the specimen not added.
2 and 3, it was found that the shear strength of the continuous fiber reinforced soil increases when the additive is added so that at least the uniaxial compressive strength after the addition becomes 50 kN / m 2 .

次に、連続繊維補強土のせん断強度を増加するために、添加材をどの程度添加するべきかを検討する。
発明者は、下表2で示す様に、砂質土に添加材を混合した供試体No.1〜No.14を作成した。ただし、供試体No.1は、添加材を添加していない。なお、供試体No.1〜No.14は連続繊維を包含していない。
そして、各供試体の一軸圧縮強度、粘着力、粘着力増加値、土壌硬度、pHを計測した。
表2

Figure 2015113659
Next, how much additive should be added to increase the shear strength of the continuous fiber reinforced soil is examined.
As shown in Table 2 below, the inventor obtained a specimen No. 1 in which an additive was mixed with sandy soil. 1-No. 14 was created. However, the specimen No. No. 1 added no additive. Specimen No. 1-No. 14 does not include continuous fibers.
And the uniaxial compressive strength of each test body, adhesive force, the adhesive force increase value, soil hardness, and pH were measured.
Table 2
Figure 2015113659

供試体No.1〜No.14の一軸圧縮強度、粘着力、粘着力増加値、土壌硬度、pHは、下表3の通りである。
本明細書において、「粘着力」という文言は、一面せん断試験において、垂直応力が0kN/mである場合のせん断強度を意味している。そして「粘着力増加値」とは、供試体No.2〜No.14の各々における「粘着力」が、供試体No.1における「粘着力」よりも増加した値(せん断強度)を示している。
表3

Figure 2015113659
Specimen No. 1-No. 14 uniaxial compressive strength, adhesive strength, increased adhesive strength, soil hardness, and pH are as shown in Table 3 below.
In the present specification, the term “adhesive strength” means the shear strength when the normal stress is 0 kN / m 2 in the one-side shear test. The “adhesive strength increase value” means the specimen No. 2-No. “Adhesive strength” in each of the specimens Nos. The value (shear strength) increased from the “adhesive strength” in FIG.
Table 3
Figure 2015113659

表3で示す計測値において、一軸圧縮強度を横軸、粘着力増加値を縦軸にした図表中に、供試体No.2〜No.14の一軸圧縮強度及び粘着力増加値をプロットしたのが、図4である。
添加材を加えていない供試体No.1に比較して、粘着力(一面せん断試験において、垂直応力が0kN/mである場合のせん断強度)が有意に増加している(粘着力増加値が大きい)のは、図4から明らかなように、一軸圧縮強度が30kN/m以上のプロットである。
換言すれば、図4で示す結果から、添加材を加えることによりせん断強度を有意に増加させるためには、一軸圧縮強度が30kN/m以上とするべきことが明らかになった。
In the measured values shown in Table 3, in the chart in which the uniaxial compressive strength is on the horizontal axis and the adhesive force increase value is on the vertical axis, the specimen No. 2-No. FIG. 4 is a plot of 14 uniaxial compressive strengths and adhesive strength increase values.
Specimen No. with no additive added. It is clear from FIG. 4 that the adhesive strength (shear strength when the normal stress is 0 kN / m 2 in the single-surface shear test) is significantly increased (the adhesive strength increase value is large) compared to 1. Thus, the uniaxial compressive strength is a plot of 30 kN / m 2 or more.
In other words, from the results shown in FIG. 4, it was revealed that the uniaxial compressive strength should be 30 kN / m 2 or more in order to increase the shear strength significantly by adding the additive.

次に、添加材の添加量の上限値について検討する。
発明者は、下表4で示す様に、砂質土に添加材を混合した供試体No.15〜No.31を作成した。供試体No.15〜No.31の添加材及びその添加量と製造方法については下表4の備考欄で示されている。ここで、供試体No.15〜No.31は連続繊維を包含していない。
そして、各供試体の一軸圧縮強度、土壌硬度を計測した。
ここで、土壌硬度(mm)は植物が生え易いか否かの指標であり、植物の根が土の中に入っていけるのか否かの指標である。下表4で示す実験では、土壌硬度は山中式土壌硬度計を用いて計測されている。
表4

Figure 2015113659
Next, the upper limit value of the additive amount will be examined.
As shown in Table 4 below, the inventor obtained a specimen No. 1 in which an additive was mixed with sandy soil. 15-No. 31 was created. Specimen No. 15-No. The 31 additive materials, the amount added and the production method are shown in the remarks column of Table 4 below. Here, specimen no. 15-No. 31 does not include continuous fibers.
And the uniaxial compressive strength and soil hardness of each specimen were measured.
Here, soil hardness (mm) is an index of whether or not plants are easy to grow, and is an index of whether or not the roots of plants can enter the soil. In the experiment shown in Table 4 below, the soil hardness is measured using a Yamanaka type soil hardness meter.
Table 4
Figure 2015113659

表4で示す計測値において、一軸圧縮強度を横軸、土壌硬度を縦軸にした図表中に、供試体No.15〜No.31の一軸圧縮強度及び土壌硬度をプロットしたのが、図5である。
砂質土において、土壌硬度が27mmよりも大きいと、植物の根の生育を阻害してしまう恐れがあることは、当業者によく知られている。
図5から明らかなように、土壌硬度が27mmに対応する一軸圧縮強度は150kN/mである。
換言すれば、図5で示す結果から、添加材を加えても植物の根の生育を阻害してしまう恐れがなく、植生基盤として適用可能であるのは、一軸圧縮強度が150kN/m以下となる添加材の配合量であることが明らかになった。
そして、表2〜表4、図4、図5を参照して上述した発明者の実験から、せん断強度を有意に増加させることが出来て、植物の根の生育を阻害してしまう恐れがなく植生基盤として適当であるのは、一軸圧縮強度が30kN/m〜150kN/mとなる添加材の配合量であることが明らかになった。
In the measured values shown in Table 4, in the chart with the uniaxial compressive strength on the horizontal axis and the soil hardness on the vertical axis, the specimen No. 15-No. FIG. 5 is a plot of 31 uniaxial compressive strength and soil hardness.
It is well known to those skilled in the art that in sandy soil, if the soil hardness is greater than 27 mm, plant root growth may be inhibited.
As is apparent from FIG. 5, the uniaxial compressive strength corresponding to a soil hardness of 27 mm is 150 kN / m 2 .
In other words, from the result shown in FIG. 5, even if an additive is added, there is no risk of inhibiting the growth of plant roots, and the uniaxial compressive strength is 150 kN / m 2 or less that can be applied as a vegetation base. It became clear that it was the compounding quantity of the additive material.
And from the experiments of the inventors described above with reference to Tables 2 to 4, FIG. 4 and FIG. 5, the shear strength can be significantly increased, and there is no possibility of inhibiting the growth of plant roots. is appropriate as vegetation foundation, uniaxial compressive strength was found to be a compounding amount of the additive material to be 30kN / m 2 ~150kN / m 2 .

実施形態に係る連続繊維補強土の土壌硬度及びpHについて、発明者は別の供試体でも実験を行った。
下表5で示す供試体について、一軸圧縮強度とpHを計測した。
なお、供試体No.として「N」が付加されている供試体は連続繊維を包含しておらず、「F」が付加されている供試体は連続繊維を包含している。
表5

Figure 2015113659
About the soil hardness and pH of the continuous fiber reinforced soil which concerns on embodiment, the inventor experimented also with another specimen.
The specimens shown in Table 5 below were measured for uniaxial compressive strength and pH.
Specimen No. The specimens with “N” added thereto do not include continuous fibers, and the specimens with “F” added include continuous fibers.
Table 5
Figure 2015113659

表5において、低アルカリ(pHが11未満)となったのは、供試体No.CN2(一軸圧縮強度が238.0kN/m)と供試体No.CF2(一軸圧縮強度が238.0kN/m)以外の供試体であった。
すなわち、一軸圧縮強度が30kN/m〜150kN/mの範囲内となる添加材の配合量であれば、連続繊維補強土のpHが低アルカリ(pHが11未満)となり、植物に与える影響を軽減できることが明らかとなった。
In Table 5, low alkali (pH is less than 11) is the specimen No. CN2 (uniaxial compressive strength is 238.0 kN / m 2 ) and specimen No. Specimens other than CF2 (uniaxial compressive strength was 238.0 kN / m 2 ).
That is, if the amount of additive material uniaxial compressive strength is in the range of 30kN / m 2 ~150kN / m 2 , pH of continuous fiber reinforced soil has on low alkali (pH less than 11), and the plants affected It became clear that can be reduced.

発明者の実験によれば、必要な一軸圧縮強度30kN/mを発現させるためには、吹付けホース長さが60m以上とする必要があることが分かった。
添加材としてカルシウム系固化材(低アルカリカルシウム系固化材)を砂質土に対して1%混合し、連続繊維は混合せず、そして砂質土とカルシウム系固化材の混合物を、長さが20m、40m、60m、80m、100mの吹付けホースにより移送し、その後、一軸圧縮強度を計測した。
その結果を下表6に示す。
表6

Figure 2015113659
According to the inventor's experiment, it was found that the blowing hose length needs to be 60 m or more in order to express the required uniaxial compressive strength of 30 kN / m 2 .
Add 1% of calcium-based solidified material (low alkali calcium-based solidified material) to sandy soil as additive, do not mix continuous fibers, and mix the length of sandy soil and calcium-based solidified material. It transferred with the spraying hose of 20m, 40m, 60m, 80m, and 100m, and measured the uniaxial compressive strength after that.
The results are shown in Table 6 below.
Table 6
Figure 2015113659

表6で示す結果を、縦軸が一軸圧縮強度、横軸が吹付けホース長さの図表にプロットして表現したのが図6である。
表6及び図6から、30kN/mの一軸圧縮強度を発現させるためには、吹付けホースの長さを60m以上にするべきことが明らかである。
なお、低アルカリカルシウム系固化材以外の添加材を砂質土に混入した場合においても、表6、図6で示す場合と同様に、30kN/mの一軸圧縮強度を発現させるためには、吹付けホースの長さが60m以上必要であった。
連続繊維補強土を吹き付けるに際して、砂質土、添加材は吹付機での撹拌に加えて、吹付けホース内を移送される際に攪拌される。そのため、砂質土と添加材を均一に混合するためには吹付けホース内で十分に攪拌する必要があり、吹付けホースの長さを60m以上とする必要がある。
FIG. 6 shows the results shown in Table 6 plotted in a chart in which the ordinate represents uniaxial compressive strength and the abscissa represents the blowing hose length.
From Table 6 and FIG. 6, it is clear that the length of the spray hose should be 60 m or more in order to develop the uniaxial compressive strength of 30 kN / m 2 .
In addition, even when an additive other than the low alkali calcium-based solidified material is mixed in the sandy soil, as in the case shown in Table 6 and FIG. 6, in order to express the uniaxial compressive strength of 30 kN / m 2 , The length of the spray hose was required to be 60 m or more.
When spraying the continuous fiber reinforced soil, the sandy soil and the additive are agitated in addition to being agitated by the spraying machine and being transported through the spraying hose. Therefore, in order to mix the sandy soil and the additive uniformly, it is necessary to sufficiently stir in the spray hose, and the length of the spray hose needs to be 60 m or more.

上述した発明者の実験結果から、実施形態で用いられる連続繊維補強土(砂質土、添加材、連続繊維の混合物)であれば、セメント等の添加材を添加してせん断強度が増加するが、植物の成育に悪影響がでる程度までは土壌硬度は増加しないことが明らかである。
従って、施工するべき領域に吹き付けられた連続繊維補強土は、せん断強度が高いため、各種壁面、法面等を補強することができる。それと共に、植生基盤として好適に吹き付けることが出来る。
図2、図3を参照して説明したように、図示の実施形態で用いられる連続繊維補強土は、砂質土自体のせん断強度が向上している訳ではなく、連続繊維の補強効果が増加している。
連続繊維を含有していない砂質土よりも、連続繊維を含有している連続繊維補強土の方が、せん断強度が増加するのは、砂質土と連続繊維の摩擦力に起因するものと推定される。そして実施形態で用いられた連続繊維補強土では、添加材を添加することにより砂質土と連続繊維の摩擦力が増加して、連続繊維を砂質土中から引き抜き難くなり、連続繊維の補強効果、せん断強度が増加したと考えられる。
From the above-described experiment results of the inventors, if the continuous fiber reinforced soil (sandy soil, additive, mixture of continuous fibers) used in the embodiment, the additive such as cement is added to increase the shear strength. It is clear that soil hardness does not increase to the extent that plant growth is adversely affected.
Therefore, since the continuous fiber reinforced soil sprayed to the area to be constructed has high shear strength, various wall surfaces, slopes, and the like can be reinforced. At the same time, it can be suitably sprayed as a vegetation base.
As described with reference to FIGS. 2 and 3, the continuous fiber reinforced soil used in the illustrated embodiment does not improve the shear strength of the sandy soil itself, but increases the reinforcing effect of the continuous fibers. doing.
The reason why the shear strength of continuous fiber reinforced soil containing continuous fibers is higher than that of sandy soil containing no continuous fibers is due to the frictional force between sandy soil and continuous fibers. Presumed. In the continuous fiber reinforced soil used in the embodiment, by adding an additive, the frictional force between the sandy soil and the continuous fiber increases, making it difficult to pull out the continuous fiber from the sandy soil. The effect and shear strength are thought to have increased.

上述した様に、連続繊維の補強効果はせん断強度の向上で表現される。
ここでせん断強度は、砂と繊維が固まる力が大きいと増加する。ここで、砂と繊維が固まる力は、一般的には一軸圧縮強度で示される場合が多い。一軸圧縮強度の計測は容易であり、且つ、日本工業規格(JIS)で定められているため信頼性が高いからである。
砂と繊維が固まる力を表示するパラメータとして、「連続繊維を引き抜く力」で表現することも考えられる。しかし、「連続繊維を引き抜く力」は計測が困難である。係る理由により、本発明において添加材の添加量を定義するのに一軸圧縮強度が用いられている。
As described above, the reinforcing effect of continuous fibers is expressed by an improvement in shear strength.
Here, the shear strength increases when the force for solidifying the sand and fiber is large. Here, in general, the force by which the sand and the fiber are solidified is often indicated by uniaxial compressive strength. This is because the measurement of the uniaxial compressive strength is easy and the reliability is high because it is defined by the Japanese Industrial Standard (JIS).
As a parameter for displaying the force with which sand and fibers harden, it may be expressed as “force to pull out continuous fibers”. However, it is difficult to measure the “force for pulling continuous fibers”. For this reason, uniaxial compressive strength is used in the present invention to define the amount of additive added.

図示の実施形態によれば、土壌硬度が植物生育に悪影響を及ぼす程度まで上昇すること無く、pHの上昇も抑制することができて、しかも連続繊維補強土の補強効果、せん断強度を増加することが出来る。
そして、図示の実施形態によれば、連続繊維を砂質土中から引き抜き難くなり、連続繊維の補強効果、せん断強度が増加するので、連続繊維補強土工法の信頼性を向上させることが出来る。
また、日本工業規格(JIS)で定められているため信頼性が高いパラメータである一軸圧縮強度により添加材の添加量が定義されるため、施工現場においても正確且つ客観的に連続繊維補強土を調整、混合することが出来る。
According to the illustrated embodiment, the increase in pH can be suppressed without increasing the soil hardness to an extent that adversely affects plant growth, and the reinforcing effect and shear strength of continuous fiber reinforced soil can be increased. I can do it.
And according to embodiment of illustration, since it becomes difficult to pull out a continuous fiber from sandy soil and the reinforcement effect and shear strength of a continuous fiber increase, the reliability of a continuous fiber reinforcement earthwork method can be improved.
In addition, since the amount of additive added is defined by the uniaxial compressive strength, which is a highly reliable parameter because it is defined by the Japanese Industrial Standards (JIS), continuous fiber reinforced soil can be accurately and objectively used at the construction site. Can be adjusted and mixed.

図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではないことを付記する。
例えば、図示の実施形態では連続繊維補強土を植生基盤として用いる場合について説明されているが、本発明の連続繊維補強土工法は、連続繊維補強土を植生基盤以外の用途に用いる場合についても適用可能である。
また、連続繊維補強土工法を施工するシステムも、図1で示すシステムに限定される訳ではない。
It should be noted that the illustrated embodiment is merely an example, and is not a description to limit the technical scope of the present invention.
For example, in the illustrated embodiment, the case where the continuous fiber reinforced soil is used as a vegetation base is described. Is possible.
Further, the system for applying the continuous fiber reinforced earth method is not limited to the system shown in FIG.

2・・・連続繊維
6・・・噴射ノズル
7・・・エジェクタ
8・・・砂搬送機構
10・・・ホッパー
11・・・計量器
12・・・吹付機
15・・・コンプレッサー
19・・・糸巻
20・・・連続繊維供給機構
21・・・ボビンケース
25・・・ガイドステー
33・・・マテリアルホース
35・・・連続繊維供給装置
DESCRIPTION OF SYMBOLS 2 ... Continuous fiber 6 ... Injection nozzle 7 ... Ejector 8 ... Sand conveyance mechanism 10 ... Hopper 11 ... Metering device 12 ... Spraying machine 15 ... Compressor 19 ... Bobbin 20 ... Continuous fiber supply mechanism 21 ... Bobbin case 25 ... Guide stay 33 ... Material hose 35 ... Continuous fiber supply device

Claims (1)

砂質土と連続繊維を吹き付ける連続繊維補強土工法において、砂質土に添加材を混合する工程を有し、添加材は砂質土と添加材の混合物の一軸圧縮強度が30kN/m〜150kN/mの範囲内となるように添加されることを特徴とする連続繊維補強土工法。 In the continuous fiber reinforced earth method in which sandy soil and continuous fibers are sprayed, the method includes a step of mixing an additive with the sandy soil, and the additive has a uniaxial compressive strength of 30 kN / m 2 to the mixture of the sandy soil and the additive. It is added so that it may become in the range of 150 kN / m < 2 >, The continuous fiber reinforcement earthwork method characterized by the above-mentioned.
JP2013257738A 2013-12-13 2013-12-13 Continuous fiber-reinforced earth method Pending JP2015113659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013257738A JP2015113659A (en) 2013-12-13 2013-12-13 Continuous fiber-reinforced earth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013257738A JP2015113659A (en) 2013-12-13 2013-12-13 Continuous fiber-reinforced earth method

Publications (1)

Publication Number Publication Date
JP2015113659A true JP2015113659A (en) 2015-06-22

Family

ID=53527724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013257738A Pending JP2015113659A (en) 2013-12-13 2013-12-13 Continuous fiber-reinforced earth method

Country Status (1)

Country Link
JP (1) JP2015113659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124105A (en) * 2017-01-31 2018-08-09 日特建設株式会社 Single shear testing device and method
CN109537565A (en) * 2018-11-30 2019-03-29 广州天蓝地绿科技发展有限公司 Inexpensive sandy soil remodeling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317444A (en) * 2001-04-23 2002-10-31 Nittoc Constr Co Ltd Mixture amount managing method for continuous fiber in soil reinforcing technique with continuous fiber
JP2004217870A (en) * 2003-01-17 2004-08-05 Mirai Kensetsu Kogyo Kk Soil-stabilized soil and method for producing the same
JP2005105266A (en) * 2003-09-10 2005-04-21 Raito Kogyo Co Ltd Material for soil-sand structure and method for surface protection of slope, lining face and, covered face of tunnel, and method for protecting slope face using the same
JP2010001583A (en) * 2008-06-19 2010-01-07 Kuraray Co Ltd Synthetic fiber bundle for reinforcing cement-mixed banking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317444A (en) * 2001-04-23 2002-10-31 Nittoc Constr Co Ltd Mixture amount managing method for continuous fiber in soil reinforcing technique with continuous fiber
JP2004217870A (en) * 2003-01-17 2004-08-05 Mirai Kensetsu Kogyo Kk Soil-stabilized soil and method for producing the same
JP2005105266A (en) * 2003-09-10 2005-04-21 Raito Kogyo Co Ltd Material for soil-sand structure and method for surface protection of slope, lining face and, covered face of tunnel, and method for protecting slope face using the same
JP2010001583A (en) * 2008-06-19 2010-01-07 Kuraray Co Ltd Synthetic fiber bundle for reinforcing cement-mixed banking

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124105A (en) * 2017-01-31 2018-08-09 日特建設株式会社 Single shear testing device and method
CN109537565A (en) * 2018-11-30 2019-03-29 广州天蓝地绿科技发展有限公司 Inexpensive sandy soil remodeling method
CN109537565B (en) * 2018-11-30 2021-02-26 广州天蓝地绿科技发展有限公司 Low-cost sandy soil transformation method

Similar Documents

Publication Publication Date Title
CN109798128A (en) A kind of diversion tunnel pole weak surrounding rock section constructing method
CN102918001A (en) Artificial stone and method for producing same
CN105969367B (en) A kind of premixing high strength cement soil
JP2015113659A (en) Continuous fiber-reinforced earth method
CN106747080A (en) The C20 concrete and pressing mold shotcrete technology of tunnel bracing members preliminary bracing
JP2009180078A (en) Ground reinforcing method and press fitting management method
KR101317364B1 (en) Surface and vulnerable depth reinforce deep cement mixing method and equipment
CN105908676A (en) Dike underwater concrete paving construction method
JP2005120349A (en) Material for earth and sand structure, surface protecting construction method for inclined face, lining face, and tunnel lining face using the same, and slope protecting construction method
CN102924030A (en) Novel underground spray coating material and preparation method thereof
JP2005105266A (en) Material for soil-sand structure and method for surface protection of slope, lining face and, covered face of tunnel, and method for protecting slope face using the same
JP2005105266A5 (en)
KR20160096753A (en) Method and System for spraying shotcrete
CN102635112A (en) Controlled construction process for compaction grouting piles
SK135494A3 (en) Method of creating of thin walls in ground
RU2546699C2 (en) Method to manufacture protective weighting concrete coating of pipeline
JP2001241288A (en) Composition for grout composition and auxiliary construction method of mountain tunnel construction method using grout composition
KR20070013182A (en) Marine sand drain construction and management method
JP2004027023A (en) Water glass grouting material and manufacturing method, grouting method and apparatus
JP2017172107A (en) Construction method of backfill structure, and mixed material
JP6106836B1 (en) Aging method for existing spray mortar slopes
JP2016169317A (en) Liquid admixture for ground stabilization, material for ground stabilization and construction method for ground stabilization using the same
JP2004217870A (en) Soil-stabilized soil and method for producing the same
JP2016113793A (en) Sediment stabilization method
JPWO2007018033A1 (en) Mixing device and method for solidifying soft soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180725