JP2004027023A - Water glass grouting material and manufacturing method, grouting method and apparatus - Google Patents

Water glass grouting material and manufacturing method, grouting method and apparatus Download PDF

Info

Publication number
JP2004027023A
JP2004027023A JP2002185512A JP2002185512A JP2004027023A JP 2004027023 A JP2004027023 A JP 2004027023A JP 2002185512 A JP2002185512 A JP 2002185512A JP 2002185512 A JP2002185512 A JP 2002185512A JP 2004027023 A JP2004027023 A JP 2004027023A
Authority
JP
Japan
Prior art keywords
water
hydrochloric acid
injection material
water glass
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185512A
Other languages
Japanese (ja)
Inventor
Motomu Miwa
三輪 求
Takako Wada
和田 貴子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2002185512A priority Critical patent/JP2004027023A/en
Publication of JP2004027023A publication Critical patent/JP2004027023A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water glass grouting material for consolidating the ground by injection into the ground, a grouting method, and a grouting apparatus which particularly prevent formation of an insoluble salt in the earth, excel in permeability, and simultaneously excel in workability and are applied to the prevention of liquefaction of the ground. <P>SOLUTION: The water glass grouting material comprises a water glass aqueous solution and a hydrochloric acid solution as the effective components and 0.2-10 wt.% silica (SiO<SB>2</SB>) and 1-6.0 wt.% hydrogen chloride. Further, the grouting method comprises injecting a primary grouting material, and then the above grouting material as a secondary grouting material. Furthermore, the grouting apparatus comprises (A) a line of transporting the water glass aqueous solution and the hydrochloric acid solution, (B) a line of mixing the water glass aqueous solution with the hydrochloric acid, and (C) a line of injecting the obtained grouting material into the ground 17 through an injection tube 18 in the ground 17. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は地盤中に注入して該地盤を固結する水ガラス系地盤注入材ならびに製造方法、および地盤注入工法ならびに装置に係り、特に地盤に浸透中、不溶性塩の形成を防止して浸透性に優れ、かつ、刺激臭がなくて作業性にも優れ、さらに、セメント懸濁液との併用性にも優れ、しかも、地中のセメント固結物や金属類に悪影響を与えることがなく、かつ硬化物の耐久性に優れ、広範囲にわたって長時間、連続注入が可能であり、特に地盤の液状化防止に適している水ガラス系地盤注入材、製造方法、および地盤注入工法ならびに装置に関する。
【0002】
【従来の技術】
ゲル化時間が長く、かつ耐久性に優れた水ガラス系の地盤注入材として、従来、水ガラス水溶液と硫酸を主成分とする非アルカリ性の地盤注入材が知られている。
【0003】
この非アルカリ性の地盤注入材は地盤中に注入すると、ゲル化が急激に進行する。
【0004】
一般に、液状化防止工法等、広い範囲を経済的に改良するためには、地盤注入材は地盤中に注入しても長いゲル化時間を保持することが必要である。
【0005】
そこで、この種の注入材として、水ガラス水溶液と、硫酸、リン酸等を主成分とするゲル化時間の長い非アルカリ性注入材が提案され、さらに、リン酸化合物や金属イオン封鎖剤を添加して地盤中におけるゲル化時間を長くした注入材も提案されている。
【0006】
【発明が解決すべき課題】
上述のゲル化時間の長い注入材は注入材そのものは数時間〜十数時間という長いゲル化時間を有するものの、これを地盤中に注入するとゲル化時間は急激に短縮してしまう。この現象は従来では、PH値が中性に移向するためと考えられていた。本発明者の研究によれば、これらの注入材はいずれも水ガラスの硬化剤として硫酸やリン酸を用いるため、これが地盤中への浸透の過程で地盤中のカルシウムと反応して硫酸カルシウムやリン酸カルシウム等の不溶性塩を形成し、この不溶性塩が土粒子間の目詰まりを起こして注入材の浸透性を阻害してしまうことがわかった。
【0007】
そこで、本発明者は種々研究の結果、水ガラスの硬化剤として硫酸に代えて塩酸を用いることにより、ゲル化時間の短縮を大幅に低減しつつ、広範囲な地盤に浸透し得ることを見出し、本発明を完成するに至った。
【0008】
すなわち、液状化防止工法等において、一般に、土中には貝殻等、カルシウム成分を含有する。このカルシウム成分は硬化剤としての硫酸やリン酸と反応して不溶性化合物である石膏やリン酸カルシウムを形成し、これが地盤への浸透過程で土粒子間に目詰まりを起こし、浸透性を阻害してしまう。
【0009】
これに対して、本発明者は水ガラスの硬化剤として塩酸を用いれば、塩酸はこれらカルシウムと反応してもCaCl2 のような水溶性塩を生じるのみで、不溶性化合物を形成せず、このため注入液は土粒子間の目詰まりを起こすことなく、広範囲に浸透することを見出した。
【0010】
水ガラスと塩酸の反応生成物はシリカ(SiO2 )分以外はNaClのみであって、環境保全上からも、また、水質保全上からも問題を起こさない。さらに、シリカゲルの存在では、NaClはコンクリート構造物や、併用するセメント懸濁液や、その固結物に何ら実質的悪影響を与えることがない。
【0011】
しかし、塩酸は刺激性が強くて作業性に劣るのみならず、注入材調製槽、注入ポンプ等、注入材の製造や注入に用いられる種々の器具、装置等を腐食させるため、従来では塩酸の使用は行われていなかった。
【0012】
そこで、本発明の目的は水ガラスの硬化剤として塩酸を用いて注入中における不溶性塩の形成を防止し、浸透性に優れ、かつ、作業性にも優れることはもちろんのこと腐食も生じにくく、またセメント構造物や金属類に悪影響を与えず、公知技術に存する欠点を改良した水ガラス系地盤注入材ならびに製造方法、および地盤注入工法ならびに装置を提供することにある。
【0013】
【課題を解決するための手段】
上述の目的を達成するため、本発明の水ガラス系地盤注入材によれば、水ガラス水溶液と、塩酸液とを有効成分とし、シリカ(SiO2 )分が0.2〜10重量パーセントおよび塩化水素純分が0.1〜6.0重量パーセントであることを特徴とする。得られる注入材中の塩化水素分は水ガラス水溶液と反応してその一部あるいは全部が中和される。
【0014】
さらに、上述の目的を達成するため、本発明の水ガラス系地盤注入材の製造方法によれば、水ガラス水溶液と、塩酸液とを密閉状態で混合してシリカ(SiO2 )が0.2〜10重量パーセントおよび塩化水素純分が0.1〜6.0重量パーセントの注入材を得ることを特徴とする。このときの塩酸液は好ましくは、塩化水素純分11(重量)パーセントの安定化塩酸である。
【0015】
さらに、上述の目的を達成するため、本発明の地盤注入工法によれば、地盤中に注入材を注入して該地盤を固結する地盤注入工法において、セメント系グラウトまたは瞬結グラウトによる粗詰注入、および水ガラス水溶液と、塩酸液とを有効成分とし、シリカ(SiO2 )分が0.2〜10重量パーセントおよび塩化水素純分が0.1〜6.0重量パーセントの水ガラス系地盤注入材による土粒子間注入を併用することを特徴とする。
【0016】
さらにまた、上述の目的を達成するため、本発明の地盤注入装置によれば、水ガラス水溶液および塩酸液をそれぞれ別々に輸送する輸送系統と、前記輸送系統からそれぞれ別々に導入された水ガラス水溶液および塩酸液を混合する混合系統と、混合によって得られた水ガラス系地盤注入材を地盤中に設置された注入管を通して地盤中に注入する注入系統とからなり、前記得られた水ガラス系地盤注入材がシリカ(SiO2 )0.2〜10重量パーセントおよび塩化水素純分0.1〜6.0重量パーセントであることを特徴とする。
【0017】
【発明の実施の態様】
以下、本発明を具体的に詳述する。
【0018】
水ガラス系地盤注入材
本発明にかかる水ガラス系地盤注入材は水ガラス水溶液と、硬化剤としての塩酸液とを有効成分として含有する。
【0019】
上述の水ガラスは通常、工業用として製造されるモル比SiO2 /Na2 O=2〜6のものであり、例えば表1に示される「水ガラス1」(比重1.31(20℃)、SiO2 25.7%、Na2 O7.11%、モル比3.73)、「水ガラス2」(比重1.40(20℃)、SiO2 29%、Na2 O9.5%、モル比3.11)が挙げられる。特に、液状化防止に使用する場合には、モル比の大きな水ガラスが好ましい。
【0020】
また、塩酸液は工業用塩酸あるいは副生塩酸等、塩化水素濃度5〜36(重量)%の塩酸を用い、これに必要に応じて水を添加し、あるいはゲル化調整剤を添加し、さらには燐酸系化合物や金属イオン封鎖剤を添加して塩化水素濃度11.0(重量)%以下に調整されたものである。このような塩酸液は塩酸独特の刺激臭が大幅に低減され、安定化されて、作業性が向上する。また、このような塩酸液を用い、水ガラス水溶液と混合して本発明にかかる地盤注入液を製造する際、作業性が改良され、得られた注入材は浸透性に優れ、かつ水質保全性にも優れ、かつ地盤中の構造物に悪影響を与えない。この種の塩酸液を以下、「安定化塩酸」と称する。なお、アルカリ剤を添加する以前の全塩化水素(純分)に対する、アルカリ剤によって中和された後の残存塩化水素量(有効塩化水素量)は50%以上であることが必要である。このような安定化塩酸は注入現場から離れた工場等で、あるいは注入現場で注入時に製造することもできるが、注入作業にかかわる作業員への影響を考慮すると、注入現場に搬入する前に製造することが好ましい。
【0021】
ここで使用されるゲル化調整剤としては、アルカリ(土)金属化合物、例えばカルシウム、マグネシウム等の水酸化物、アルカリ(土)金属(重)炭酸塩、例えば、炭酸カルシウム等の炭酸塩、水ガラス、カ性アルカリ等が挙げられる。このときのアルカリ剤の使用量は塩酸(10重量%換算)100重量部に対して0.01〜6.0重量部を標準とし、塩酸濃度が高い場合にはアルカリ剤の使用量を多くし、また低い場合には少なくする等、使用量を任意に変化させる。
【0022】
本発明にかかる水ガラス系地盤注入材は上述の水ガラス水溶液をA液とし、硬化剤としての安定化塩酸をB液とし、これらA、B液を例えば工場内で密閉状態で、あるいは注入現場で密閉状態で混合し、シリカ(SiO2 )分0.2〜10重量%および塩化水素濃度0.1〜6.0重量%の注入材として製造される。ここで用いられる安定化塩酸は塩化水素濃度が11重量%以下であり、このため、刺激臭が低下して作業性が向上するのみならず、シリカの部分ゲルが起こりにくい。A、B混合液のシリカ濃度が0.2〜8重量%の範囲では、得られる注入材は特に液状化防止に適しており、また、シリカ濃度が4〜8重量%では、掘削地盤の安定化に適しており、さらに、シリカ濃度が8〜10重量%では、地盤の補強に適している。
【0023】
さらに、シリカと塩化水素純分との配合比率は配合液中、シリカを0.2〜10重量%および塩化水素純分を0.1〜6.0重量%に維持し、かつ目的とする所望のゲル化時間や固結強度を得る比率であって具体的にはモル比でHCl/SiO2 =0.4〜1.5である。シリカ濃度が高い場合には、この範囲以上では配合液に刺激性が生じて作業性が悪くなり、かつシリカの部分ゲルが生じやすい。また、0.4以下では、反応が不充分で固結物の耐久性が得られない。
【0024】
得られた本発明にかかる水ガラス系地盤注入材はPH0.5〜9の酸性ないし弱アルカリ性に調整される。この注入材はPH0.5〜4.0の範囲で長いゲル化時間を呈するので、この場合、一液式で広範囲の注入目的に適している。また、ゲル化時間を短くする場合には、まず、このPH値の注入材、すなわち、水ガラス酸性化液を得、次いで、この水ガラス酸性化液に各種アルカリ剤、水ガラスあるいは各種塩類を添加してPH2.5〜9に調整する。注入に際してA液として水ガラス水溶液を、B液として塩化水素濃度が10重量%以内の安定化塩酸を用い、これらA、B液を混合し、または注入管上端または二重管の先端で合流して注入する。
【0025】
さらに、本発明にかかる水ガラス系地盤注入材は燐酸系化合物または金属イオン封鎖剤を含有することもできる。この場合、燐酸系化合物または金属イオン封鎖剤は好ましくは塩酸稀釈液中に含有される。ここで用いられるリン酸系化合物としては、リン酸、リン酸二ナトリウムのほかに(重)縮合リン酸塩が好ましく、具体的には、例えば、ピロリン酸、トリリン酸、トリメタリン酸、テトラメタリン酸等のポリリン酸の塩、具体的には、ピロリン酸ナトリウム、酸性ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、酸性ヘキサメタリン酸ナトリウム、またはこれらのカリウム塩等が挙げられる。また、金属イオン封鎖剤としては土中におけるコンクリートや鉄等の表面に被覆膜を形成するのに効果のある物質であって、具体的には、脂肪族オキシカルボン酸、例えば、クエン酸、酒石酸、グルコン酸等、このほかにエチレンジアミン四酢酸、ニトリロトリ酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸、プロピレンジアミン四酢酸、ビス(2−ヒドロキシフエニル酢酸)エチレンジアミン、およびこれらの塩類等も挙げられるが、経済性、実用性等を考慮すると、特に、クエン酸と縮合リン酸塩が最も好ましい。これらの金属イオン封鎖剤はいずれか一種類または任意の複数種を組み合わせて使用される。これらの燐酸系化合物や金属イオン封鎖剤は土中に浸透する酸性雨や、海水や、温泉水から、地中構造物の表面に防護被覆を形成し、有害物からの悪影響を遮断する。また、注入材の反応生成物であるNaClがたとえ濃くなっても、その影響を遮断する。これらの被覆はキレート効果によるが、シリカと金属イオンを含む不溶性被覆によって効果を生じる。
【0026】
燐酸系化合物を併用する場合には、燐酸系化合物の配合量は塩化水素純分:リン酸純分=99〜70:1〜30(重量比)の範囲内であることが好ましい。また、金属イオン封鎖剤を併用する場合には、塩化水素純分100重量部に対し、金属イオン封鎖剤0.05〜5.0重量部であることが好ましい。これらの化合物は塩酸液に混合しておいても、水ガラス水溶液と、塩酸液とともに混合して一液注入材をつくってもよい。
【0027】
さらに、本発明にかかる地盤注入材は水ガラス水溶液中にアルカリ土金属化合物を含有することもできる。アルカリ土金属化合物は難溶性のアルカリ剤であり、これを水ガラス水溶液に添加しておくと、塩化水素と混合の後、地盤中でPHが中性側に移動してゲル化時間が短縮する。このため、注入時点では酸性であることによる長いゲル化時間を得て、広く浸透しながら時間とともに中性に移向し、地盤を中性に保つことができる。
【0028】
さらにまた、本発明にかかる地盤注入材はコロイダルシリカを含有することもできる。これにより、得られる地盤注入材はシリカ濃度を20重量%まで高められ、基礎の補強等に利用して浸透性に優れた高強度地盤改良を可能にする。また、液状化防止用の注入材のように、シリカ濃度の低い場合にも、ゲル化時間を殆ど短くすることなく、水ガラスに由来するシリカを例えば、2倍以上とすることができる。
【0029】
さらに、本発明では、水ガラス水溶液と安定化塩酸とを混合して、PH値が好ましくは3以下の水ガラス酸性化液をつくり、これとセメント懸濁液やセメント・スラグ懸濁液とを混合し、ゲル化時間調整剤として炭酸ソーダや重炭酸ソーダを懸濁液100l当たり0.5〜3kg用いてゲル化時間が数秒から数分程度の水ガラス酸性化液−セメント系注入材を得ることもできる。炭酸ソーダや重炭酸ソーダの量を増加すると、ゲル化時間はさらに延長する。このときに用いられるセメント懸濁液中のセメント量は特に限定されないが、好ましくはセメント懸濁液100l当たり10〜60kgである。このセメント量のうち、10%以上の量はスラグに置き換えることができる。また、セメントやスラグとして比表面積5000cm2 /g以上の微粒子のものを用いることにより反応性ならびに浸透性を改善することができる。
【0030】
このような注入材を地盤中に注入して改良された地盤は固結強度が大きい。このときの固結地盤は酸性液を使用するにもかかわらず中性付近となる。注入液の固結強度(ホモゲル)は0.5〜3.0MN/m2 程度であって、酸として硫酸を用いた酸性シリカゾル−セメント系注入材の固結強度と比較すると、本発明注入材の方が強度が大きい。
【0031】
水ガラス系地盤注入材の製造方法
上述の水ガラス水溶液と、上述の塩酸液とを密閉状態、例えば、図2に示される循環型密閉式混合装置7または図3に示される噴射型密閉式混合装置8を用いて密閉状態で混合して、本発明にかかる水ガラス系地盤注入材を製造する。図2の循環型密閉式混合装置7は貯留槽2からの水ガラス水溶液と、貯留槽5からの塩酸液を密閉状態で合流し、合流液を循環して混合する混合装置であり、また、図3の噴射型密閉式混合装置8は貯留槽2からの水ガラス水溶液と、貯留槽5からの塩酸液を密閉状態で、図示しない噴射ノズルから噴射し、互いにぶっつけ合って混合する混合装置である。なお、図3の混合装置8は前述の両液を内部で合流して混合する合流型混合装置、あるいは両者の一方の液を混合装置中に満たした後、この液に他方の液を攪拌しながら所定量導入混合するバッチ型混合装置として使用することもできる。得られる注入材はシリカ(SiO2 )が0.2〜10重量%および塩化水素純分が0.1〜6.0重量%である。混合方法および装置については図面を用いて詳細に後述する。
【0032】
水ガラス系地盤注入工法
本発明にかかる水ガラス系地盤注入工法は上述の水ガラス系地盤注入材を地盤中に注入して該地盤を固結する地盤注入工法であって、セメント系グラウトまたは瞬結グラウトによる粗詰注入、および水ガラス水溶液と、塩酸液を有効成分とし、シリカ(SiO2 )が0.2〜10重量%および塩化水素純分が0.1〜6.0重量%である水ガラス系地盤注入材による土粒子間注入とを併用することにより地盤注入を行う。
【0033】
具体的には、例えば、水ガラス系地盤注入材を地盤中に注入するに先立って、まず、一次注入材としてセメント系グラウトまたは瞬結グラウトを地盤中に注入して地盤の粗詰注入を行っておき、次いでこの地盤に二次注入材として前記注入材を注入する。
【0034】
上述工法に用いられる二次注入材は既述の本発明にかかる水ガラス系地盤注入材である。すなわち、これは水ガラス水溶液と、塩酸液を有効成分とし、シリカ(SiO2 )が0.2〜10重量%および塩化水素純分が0.1〜6.0重量%含む水ガラス系地盤注入材であって、シリカを所望量に定めることにより液状化防止に適用される。この注入工法は例えば後述の注入装置を用いて実施される。詳細は添付図面を用いて後述する。
【0035】
地盤注入装置
図1は本発明にかかる地盤注入装置の一具体例のフローシートであり、図2は図1の混合系統の一具体例であって、循環型密閉式混合装置の略図であり、図3は図1の混合系統の他の具体例であって、噴射型密閉式混合装置の略図である。
【0036】
図1に示されるように、本発明にかかる地盤注入装置は輸送系統Aと、混合系統Bと、注入系統Cとから基本的に構成される。
【0037】
輸送系統Aは輸送ポンプ1を配設し、一端3aが水ガラス水溶液の貯留槽2に、他端3bが混合系統Bにそれぞれ接続する導管3と、輸送ポンプ4を配設し、一端6aが塩酸液の貯留槽5に、他端6bが混合系統Bにそれぞれ接続する導管6とを備え、輸送ポンプ1の作動により導管3を通して水ガラス水溶液を水ガラス貯留槽2から混合系統Bに、さらに、輸送ポンプ4の作動により導管6を通して塩酸液を塩酸貯留槽5から混合系統Bにそれぞれ別々に輸送する。ここで、水ガラス貯留槽2の水ガラス水溶液として、例えば、上述のものが用いられ、また塩酸貯留槽5の塩酸液として、例えば上述の安定化塩酸が用いられる。塩酸液を塩酸貯留槽5に導入する場合、飛沫あるいはガスの発生を抑制するために、貯留槽5に設けられた図示しない注入口から貯留槽5に塩酸液を満たすか、少量の水またはアルカリ水を噴霧しながら貯留槽5に塩酸液を注入することによって、刺激をより少なくすることができる。
【0038】
混合系統Bは図2に示される循環型密閉式混合装置7または図3に示される噴射型(または合流型、またはバッチ型)密閉式混合装置8を備えて構成される。バッチ型密閉式混合装置は前述のとおり、一方の液を所定量装置中に貯留しておき、これに攪拌しながら他方の液を混合する装置であり、また合流型密閉式混合装置は前述のとおり、両方の液を同時に合流、混合する装置である。
【0039】
図2に示される循環型密閉式混合装置7は輸送系統Aの水ガラス貯留槽2および塩酸貯留槽5から別々に輸送された水ガラス水溶液および塩酸液をそれぞれバルブ9、10を介し、例えば1:1の液比(容量)で導入して任意の方向、例えば矢印方向に循環し、密閉状態で混合して本発明にかかる注入材を得る。
【0040】
得られた注入材は直接後述の注入系統Cに送液することもできるが、通常はいったん注入液貯留槽12に貯留される。この注入材は上述と同様、シリカ(SiO2 )を0.2〜10重量%および塩化水素を0.1〜6.0重量%を含有する。
【0041】
図3に示される噴射型密閉式混合装置8は図2と同様に水ガラス水溶液および塩酸液を導入して混合するが、水ガラス水溶液および塩酸液を装置8中に噴射衝突して混合する点、図2のものと異なる。この混合に際して、装置8中に設置された攪拌機13を回転し、攪拌して混合することにより、混合が充分に行われる。得られた注入材は装置8の底部14からパルブ11を介して注入材貯留槽12に貯留される。噴射型密閉式混合装置8において、噴射は両液を噴射ノズルで噴射させて行うが、一方の液のみを噴射させて行うこともできる。
【0042】
注入系統Cは図1に示されるように、注入ポンプ16が配設され、一端15aが混合系統Bに、他端15bが地盤17の注入管18に接続された導管15を備えて構成される。
【0043】
そして、混合系統Bにおける混合によって得られた水ガラス系地盤注入材は注入現場において図2の混合装置7、8から直接、あるいは工場等で製造された注入材貯留槽12中の注入材を注入現場に搬送し、注入材貯留槽12から、注入ポンプ16の作動により、地盤17中に埋設された注入管18を通して地盤17中に注入される。注入管18としては例えば二重管ロッドを用い、両液を合流して注入する。あるいはゲル化時間の短い二液を合流してのち、ゲル化時間の長い他の両液を合流注入あるいは一液注入する。また、二重管ダブルパッカー注入方式でセメント−ベントナイトを一次注入した後、一ショットでゲル化時間の長い注入材を二次注入することもできる。
【0044】
【発明の実施例】
以下、本発明を実施例によりさらに詳述する。
【0045】

Figure 2004027023
【0046】
【表1】
Figure 2004027023
【0047】
2.試験方法
(1)土中への浸透試験
a)4mのプラスチック製モールド(直径5.2cm)に豊浦標準砂(12.81)kgを充填した(相対密度=60%)。炭酸カルシウムの0.1%懸濁液で飽和させた後、注入材を0.05MPaの注入圧で注入した。注入終了後、浸透距離を測定し、室内養生した後、さらに所定日数養生して固結し、固結体の圧縮強度を測定した。
【0048】
b)a)の豊浦標準砂に代えて海砂を使用した。海砂中のカルシウム含有率は3(重量)%である。
【0049】
(2)圧縮強度の測定
上記実験で得られた固結体の下端から5cm切断し、その後10cm間隔で切断した。注入口に近い方からNo.1、No.2、No.3・・・とした。固結体をモールドから脱型し、所定日数養生した後、一軸圧縮強度を測定した。
【0050】
(3)繰り返しねじり試験
本発明にかかる注入材の固結体について、液状化強度をみるために、拘束圧を49kPaとして非排水繰り返しねじりを実施した。その他の条件は従来法に従った。
【0051】
(4)腐食試験
安定化塩酸および注入材について、金属の腐食試験を行った。使用した金属試験片はSUS316の約1mm厚の板状物であり、浸漬方法は200mlフタ付きポリビンに液200mlを入れ、金属試験片を浸漬し、所定日数後の金属の色、重量変化を測定した。
【0052】
(5)刺激臭確認試験
250mlポリビンに所定の注入液を入れ、密封一日後、フタを取り、直ちに臭いをかぎ、鼻に刺激臭を感じた場合を刺激ありとした。検者は3人とした。
【0053】
3.実験1
36%濃度の塩酸を水で稀釈して10%塩酸液とし、この10%塩酸液100gに表2に示す炭酸カルシウムおよび他の各種アルカリ剤を所定量添加して安定化塩酸を調製した。さらに、表3に示すように、10%塩酸液100gに燐酸や金属イオン封鎖剤を所定量添加して安定化塩酸(硬化剤)を調製した。なお、比較のために、硫酸を用いた硬化剤も調製した。
【0054】
【表2】
Figure 2004027023
【0055】
【表3】
Figure 2004027023
【0056】
4.実験2
表4に示される各種水ガラス水溶液を調製し、A液とした。水ガラスは表1の「水ガラス1」および「水ガラス2」を使用した。次いで、これら各A液と表4に示す各種安定化塩酸(B液)とを混合してPH0.5〜4の範囲の各種水ガラス酸性化液を調製し、C液とした。
【0057】
【表4】
Figure 2004027023
【0058】
表4において、C液のシリカ濃度が0.2%以上の場合(試料NO.27)には、均一なゲルが生成されるのに対し、0.2より少ないシリカ濃度(比較13)では、水ガラス水溶液(A液)と硬化剤液(B液)を混合した場合に、沈殿状のシリカが浮遊し、全体がゲル化しないことから、本発明の配合液ではシリカ濃度の下限を0.2%とした。
【0059】
C液のシリカ濃度が高い(5〜10%)場合には、塩化水素純分で1.2〜4.3%が好ましく、また、シリカ濃度の低い(5〜0.2%)場合であって、シリカ濃度が0.2〜5.0%では、塩化水素濃度が0.3〜2.2%が好ましい。
また、C液のHCl/SiO2 のモル比は、シリカ濃度が5〜10%の場合には0.35〜0.65、シリカ濃度が5.0〜0.2%の場合には、0.40〜2.20が好ましい。
【0060】
シリカ濃度が2%程度であって、液状化防止に使用される場合には、金属イオン封鎖剤を添加しなくても、注入装置や地中構造物等の金属の腐食がなく、金属イオン封鎖剤を添加することにより、コンクリート表面に被膜が形成される。
【0061】
実施例1〜13
表5に示される水ガラス水溶液(A液)および安定化塩酸(B液)を容量比1:1で充分に混合し、本発明にかかる実施例No.1〜9の水ガラス系地盤注入材を調製した。これら注入材のPH値およびゲル化時間を表5に示す。なお、参考のため、他の硬化剤の例も表5に示した。
【0062】
さらに、表5に示される水ガラス水溶液(A液)および水ガラス酸性化液(C液)を容量比1:2で充分に混合し、本発明にかかる実施例No.10 〜13の水ガラス系地盤注入材を調製した。これら注入材のPH値およびゲル化時間を表5に示す。
【0063】
【表5】
Figure 2004027023
【0064】
表5において、実施例No.1〜9の混合液はA液(水ガラス水溶液)とB液(安定化塩酸)を1:1の容量比で混合して得た本発明にかかる水ガラス系地盤注入材であり、実施例No.10 〜13の混合液はA液(水ガラス水溶液)とC液(水ガラス酸性化液)を1:2の容量比で混合して得た本発明にかかる水ガラス系地盤注入液である。これらはいずれもシリカ分0.2〜10重量%、塩化水素純分0.1〜6.0重量%、PH2.5〜9の範囲の注入材である。
【0065】
表5の実施例No.1で得られた混合液について浸透試験を行った。試験は上述の「土中への浸透試験a」に従って行った。混合液の使用量は3.65lであり、浸透長は400cmであった。また、比較のため、表5の参1にかかる注入材、すなわち、A液(水ガラス水溶液)と硬化剤(75%硫酸)からなる混合液についても上述の「土中への浸透試験a」に従って行った。混合液の使用量は3.65lであって、浸透長は280cmであり、塩酸液を用いた本発明にかかる注入材の方が硫酸を用いたものよりも優れていることがわかる。
【0066】
上述試料(表5の実施例No.1および参1)の固結体について強度試験を行った。試験は注入口側から1mの範囲の固結体について28日養生し、上述の「圧縮強度の測定」に従って行った。測定結果を表6に示す。
【0067】
【表6】
Figure 2004027023
【0068】
表6から、塩酸液を用いた本発明にかかる表5の実施例No.1の注入材は硫酸を用いた参1の注入材よりも固結体の強度が大きいことがわかる。
【0069】
さらに、本発明注入材について腐食試験を行った。試験は上述の「腐食試験」に従って行った。試験に供した浸漬液は表7のとおりであり、浸漬期間は7日間である。試験結果を表7に示す。
【0070】
【表7】
Figure 2004027023
【0071】
表7から、「表2の比較5」(35%塩酸)の浸漬液は重量変化が1.30%であって、相当に大きく、色変化も大きいが、その他の浸漬液については色の変化も、重量変化もほとんどないことがわかる。
【0072】
実施例14〜16
上述の「土中への浸透試験a」において、「豊浦標準砂」を「千葉県海砂」に代え、その他は上述と同様にして注入圧力0.04Mpaで浸透試験を行った(「土中への浸透試験b」)。3号水ガラスを用いてシリカ濃度6%、PH3の配合液を調製し、「土中への浸透試験b」の方法により注入圧力0.04Mpaで注入し、浸透長を測定した。測定結果を表8に示す。
【0073】
試験に供した試料は水ガラス水溶液(A液)として表1の「水ガラス1」70mlを130mlの水で稀釈した水ガラス液と、B液として表8に示す各種安定化塩酸とを、A:B=1:1(容量)の比率で混合して得られた表8に示される実施例No.14 〜16である。これらの試料はシリカ濃度約6%、PH3の注入材である。表8の参考例試料についても同様の試験を行った。結果を表8に示す。
【0074】
【表8】
Figure 2004027023
【0075】
表8から明白なように、B液として塩酸液および炭酸カルシウムを含む実施例No.14 、B液として塩酸液およびリン酸を含む実施例No.15 、およびB液として塩酸液およびヘキサメタリン酸ソーダを含む実施例No.16 はいずれもB液として塩酸液を主体とするものであり、これら実施例No.14 〜16はいずれも浸透距離が長く、浸透性に優れている。これに対して、B液として塩酸液の代わりに硫酸を主体として含む参考例No.7〜9はいずれも浸透距離が短く、浸透性に劣っていることがわかる。
【0076】
実施例17
上述の「土中への浸透試験b」に従って浸透試験を行った。試験に供した試料は水ガラス水溶液にアルカリ剤として炭酸カルシウムを添加したものをA液とし、塩酸液をB液とし、これらA、B液を混合して得られた表9に示される実施例No.17である。なお、比較の硬化剤として表2の比較2に示される10%硫酸を用い、参考10として実施例 No.17と比較した。結果を表9に示す。
【0077】
【表9】
Figure 2004027023
【0078】
表9から、A液にアルカリ剤を添加し、かつ硬化剤として塩酸液を使用した実施例No.17 は硬化剤として硫酸を用い、しかもA液にアルカリ剤を添加しない参考10と比較して注入範囲が著しく広いことがわかる。また、実施例No.17 では、注入によって塩化カルシウムが生成されるが、これは水溶性であるため、浸透性に影響を及ぼさないのに対し、硫酸を用いた参考10では、ほとんど水に不溶の硫酸カルシウムが生成され、このため、浸透範囲が狭くなることもわかる。
【0079】
実施例18
上述の「繰り返しねじり試験」に従って繰り返しねじり試験を行った。試験に供した試料は表10の実施例No.18 である。比較のため、表10の参考11に示される水ガラス−硫酸系、および参考12に示される未改良体についても同様の試験を行った。7.5%せん断ひずみ両振幅における繰り返し数は20回である。結果を表10に示す。
【0080】
【表10】
Figure 2004027023
【0081】
表10から、本発明にかかる実施例No.18 の固結体は硬化剤として10%硫酸を用いた参考11および未処理の不改良体と比較して繰り返し応力比(液状化強度R201)が非常に良好であることがわかる。
【0082】
実施例19〜20
表4の試料No.27 で得られた水ガラス酸性化液(PH1.8、ゲル化時間1週間以上)に表11に示すように、コロイダルシリカを添加しない配合液および添加した配合液を作成し、それぞれ実施例No.19 、20とした。これら配合液について上述と同様の測定試験方法を用いて浸透距離および強度を測定した。測定結果を表11に示す。
【0083】
【表11】
Figure 2004027023
【0084】
表11から、シリカ濃度が低く、ゲル化時間の長い実施例No.19 は浸透性が良好であって、液状化防止用注入液として適しており、さらに、これにコロイダルシリカを添加した実施例No.20 は固結体の強度が上昇していることがわかる。
【0085】
5.実験3
表12に示す各種配合液について刺激臭確認試験を行った。結果を表12に示す。表12中、◎印は刺激臭なし、○印は刺激臭多少あり、△印は刺激臭あり、×印は刺激臭相当ありを意味する。
【0086】
【表12】
Figure 2004027023
【0087】
表12から、安定化塩酸や10%塩酸の各試料No.28 〜34については刺激臭は起こらず、これに対して、75%硫酸、10%硫酸あるいは15%塩酸液についてはそれぞれ刺激臭が発生していることがわかる。
【0088】
6.実験4
モルタル供試体(5φ×10cm)を以下の配合液に浸漬してコンクリート表面の被膜形成をみた。配合液1−リン酸1%を含有する10%塩酸と水ガラス1とを混合してシリカ濃度0.20%、PH3.0の酸性液を調製した。配合液2−ヘキサメタリン酸ソーダ0.5%を含有する10%塩酸と水ガラス1を混合してシリカ濃度0.2%、PH3.0の酸性液を調製した。配合液3−10%塩酸と水ガラス1を混合してシリカ濃度0.15%、PHが3.0の酸性液を調製した。
【0089】
ポリ容器内に配合液を200ml入れ、その中にモルタル供試体を浸漬し、1年間放置した。配合液1および2ではモルタル表面に白色の被膜が形成された。これに対し、配合液3ではモルタル表面に被膜が形成されなかった。放置1年後、モルタル供試体を取りだし、軽く水で洗って、200mlの水に浸漬した。1日後、この養生水のPHは配合液1では4.5、配合液2では4.8であったが、配合液3では11.0 となった。3ケ月経過後には、この養生水のPHは配合液1では5.1、配合液2では5.3であったが、配合液3では11.9となった。6ケ月経過後には、この養生水のPHは配合液1では5.8、配合液2では5.9であったが、配合液3では12.1となった。
【0090】
なお、モルタル表面に形成された被膜は何ら損傷されず、形成されたままであった。また、配合液に浸漬しないモルタルを水に浸漬した場合には、1日でPHが12以上となった。さらに、配合液1、2において、シリカ濃度0.15%の場合は、配合液3とほぼ同様の結果を示した。
【0091】
PHがほぼ9.0以下の中性を保つということは、白色被膜がモルタル供試体からのアルカリの溶出を押さえる膜ができたことを意味し、中性化を防止し、かつ、外部からの好ましくないイオンの侵入を防止することを意味する。そして、このような膜はシリカ濃度が0.2%以上必要であることも意味する。
【0092】
実施例21〜28
表13に示す実施例No.21 〜28の各配合液について、AB合流液のSiO2 濃度、塩化水素純分、モル比HCl/SiO2 を測定するとともに、刺激臭の有無、部分ゲルの有無についても観察し、結果を表13に示した。
【0093】
【表13】
Figure 2004027023
【0094】
表13から、明白なように、実施例No.21 〜28はいずれも、SiO2 濃度、塩化水素純分、HCl/SiO2 モル比について本発明の特定範囲内であり、かつ刺激臭もなく、部分ゲルも生じなかった。一方、参考11については、刺激臭も、部分ゲルも生じないが、SiO2 濃度0.10%、塩化水素純分0.06%であり、本発明の範囲外である。
【0095】
実施例29〜31
表14に示す実施例No.29 〜31の水ガラス酸性化液について、これらの刺激臭を測定し、作業性を判断した。同時に、参考として35%塩酸(参13) 、15%塩酸(参14) を用いた水ガラス酸性化液についても測定した。結果を表14に示す。
【0096】
【表14】
Figure 2004027023
【0097】
表14から、AB合流液の水ガラス酸性化液はいずれも刺激性がなく、作業性に優れていることがわかる。一方、35%塩酸を用いた参考13、および15%塩酸を用いた参考14はいずれも刺激性が相当にあり、作業性に劣ることもわかる。
【0098】
実施例32
図1の注入装置を用いて二重管ダブルパッカー工法で本発明にかかる注入材の地盤注入を行った。この注入に先立って、まず、一次注入材としてセメント系グラウトを処理すべき地盤17中に注入して地盤の粗詰注入を行った。
【0099】
次いで、図1の輸送系統Aの水ガラス貯留槽2に表5に示される実施例1のA液(水ガラス水溶液)を貯留し、かつ塩酸貯留槽5に、同じく実施例1のB液(安定化塩酸水溶液)を貯留し、輸送ポンプ1、4をそれぞれ作動して導管3、6を通してA液(水ガラス水溶液)およびB液(安定化塩酸水溶液)を別々に混合系統Bに輸送した。
【0100】
混合系統Bとして、図2の循環型密閉式混合装置7を使用した。図2のバルブ9、10を開いてそれぞれ、等量のA液およびB液を混合装置7に導入し、循環させながらA液およびB液を充分に混合し、得られた混合液を注入材貯留槽12に貯留し、本発明にかかる注入材を調製した。
【0101】
注入材貯留槽12に貯留された注入材を図1に示されるように、注入ポンプ16の作動により導管15を介し、一液式として地盤17中の注入管18を経て地盤17中に注入した。
【0102】
注入の結果、注入材は地盤17中で不溶性塩を生成せず、土粒子間の目詰まりを起こさずに充分に浸透され、かつ強固に固結され、地盤の液状化防止に最適であった。
【0103】
実施例33
実施例32の一次注入材としてセメント系グラウトの代わりに瞬結グラウト(ゲル化時間30秒)を用いたこと、および図1の混合系統Bとして図2の循環型密閉式混合装置7に代えて、図3の噴射型密閉式混合装置8を用いたことを除いて、実施例32と同様にして地盤注入を行った。すなわち、図3のバルブ9、10を開いてそれぞれ等量のA液およびB液を混合装置8に導入し、噴射させながらA液およびB液を充分に混合し、得られた混合液を底部14から注入材貯留槽12に貯留し、本発明にかかる注入材を調製した。
【0104】
注入に際し、注入管18として二重管を用い、一方の管路から、水ガラス酸性化液を送液し、他方の管路から水ガラス水溶液を送液し、これらを先端で合流して瞬結グラウトとし、次いで、長結グラウトとして前記水ガラス酸性化液を注入し、これを繰り返した。
【0105】
注入の結果、注入材は実施例32と同様、地盤17中で不溶性塩を生成せず、土粒子間の目詰まりを起こさずに充分に浸透され、かつ強固に固結され、地盤の液状化防止に最適であった。
【0106】
【発明の効果】
1.塩酸液を使用するにもかかわらず、刺激臭が少ないのみならず、人体への影響も少なく、取り扱い性に優れている。
【0107】
2.ゲルタイムの調整が容易で、地盤改良を確実にすることができる。
【0108】
3.注入材硬化物であるゲルの収縮が少ないため、改良地盤の止水性低下が極めて少ない。
【0109】
4.水ガラス酸性化液を容易に調製することができる。
【0110】
5.液状化防止に適用した場合、浸透性がよいために1個所からの注入による改良範囲を広くすることができる。
【0111】
6.コロイダルシリカを併用することにより、高強度に地盤を改良したり、耐久性に優れた地盤とすることができる。
【図面の簡単な説明】
【図1】本発明にかかる地盤注入装置の一具体例のフローシートである。
【図2】混合系統の一具体例である循環型密閉式混合装置の略図である。
【図3】混合系統の他の一具体例である噴射型密閉式混合装置の略図である。
【符号の説明】
A  輸送系統
B  混合系統
C  注入系統
1  輸送ポンプ
2  水ガラス貯留槽
3  導管
3a 一端
3b 他端
4  輸送ポンプ
5  塩酸貯留槽
6  導管
6a 一端
6b 他端
7  循環型密閉式混合装置
8  噴射型密閉式混合装置
9  バルブ
10  バルブ
11  バルブ
12  注入液貯留槽
13  攪拌機
14  底部
15  導管
15a 一端
16  注入ポンプ
16a 他端
17  地盤[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water glass-based ground injection material and a manufacturing method, which are injected into the ground to solidify the ground, and a ground injection method and apparatus. It is excellent in workability without irritating odor, and also excellent in combination with cement suspension, and does not adversely affect cement cement and metals in the ground, The present invention also relates to a water glass-based ground injection material, a manufacturing method, and a ground injection method and apparatus which are excellent in durability of a cured product, can be continuously injected for a long time over a wide range, and are particularly suitable for preventing liquefaction of the ground.
[0002]
[Prior art]
As a water glass-based ground injection material having a long gelation time and excellent durability, a non-alkali ground injection material mainly composed of a water glass aqueous solution and sulfuric acid is conventionally known.
[0003]
When this non-alkali ground injection material is injected into the ground, the gelation proceeds rapidly.
[0004]
Generally, in order to economically improve a wide range, such as a liquefaction prevention method, it is necessary that a ground injection material maintain a long gelation time even when injected into the ground.
[0005]
Therefore, as this type of injection material, a water glass aqueous solution and a non-alkaline injection material having a long gelation time mainly containing sulfuric acid, phosphoric acid, etc. have been proposed, and further, a phosphate compound and a sequestering agent are added. Injectable materials having a longer gelation time in the ground have also been proposed.
[0006]
[Problems to be solved by the invention]
Although the injection material having a long gelation time has a long gelation time of several hours to several tens of hours, when the injection material is injected into the ground, the gelation time is sharply reduced. This phenomenon was conventionally considered to be due to the PH value shifting to neutral. According to the study of the present inventor, since all of these injection materials use sulfuric acid or phosphoric acid as a hardening agent for water glass, this reacts with calcium in the ground during the process of infiltration into the ground and causes calcium sulfate or It has been found that an insoluble salt such as calcium phosphate is formed, and this insoluble salt causes clogging between soil particles and impairs the permeability of the injection material.
[0007]
Therefore, as a result of various studies, the present inventor has found that by using hydrochloric acid instead of sulfuric acid as a hardening agent for water glass, it is possible to significantly reduce the gelation time and to penetrate a wide range of ground, The present invention has been completed.
[0008]
That is, in the liquefaction prevention method or the like, generally, the soil contains calcium components such as shells. This calcium component reacts with sulfuric acid or phosphoric acid as a hardener to form gypsum or calcium phosphate, which are insoluble compounds, which causes clogging between soil particles in the process of infiltration into the ground and impairs permeability. .
[0009]
On the other hand, the present inventor has proposed that if hydrochloric acid is used as a hardening agent for water glass, CaCl2It has been found that only an insoluble compound is formed without producing a water-soluble salt as described above, and thus the injection liquid permeates a wide area without causing clogging between soil particles.
[0010]
The reaction product of water glass and hydrochloric acid is silica (SiO2), Except for NaCl, which does not cause any problem from the viewpoint of environmental protection and water quality. Furthermore, in the presence of silica gel, NaCl does not have any substantial adverse effect on concrete structures, the combined cement suspension or its consolidation.
[0011]
However, hydrochloric acid is not only highly irritating and inferior in workability, but also corrodes various instruments and devices used for manufacturing and injecting the injection material, such as an injection material preparation tank and an injection pump. No use was made.
[0012]
Therefore, an object of the present invention is to prevent the formation of insoluble salts during injection using hydrochloric acid as a hardening agent for water glass, to have excellent permeability, and, of course, to be excellent in workability and not to cause corrosion, Another object of the present invention is to provide a water-glass-based ground injection material, a manufacturing method, and a ground injection method and apparatus which do not adversely affect cement structures and metals and have improved disadvantages of the known art.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the water glass-based ground injection material of the present invention, a water glass aqueous solution and a hydrochloric acid solution are used as active ingredients, and silica (SiO2) Min from 0.2 to 10 weight percent and a pure hydrogen chloride content from 0.1 to 6.0 weight percent. The hydrogen chloride component in the obtained injection material reacts with the aqueous solution of water glass to partially or entirely neutralize the aqueous solution.
[0014]
Furthermore, in order to achieve the above-mentioned object, according to the method for producing a water glass-based ground injection material of the present invention, a water glass aqueous solution and a hydrochloric acid solution are mixed in a hermetically sealed state to form silica (SiO 2).2) Is 0.2 to 10% by weight and the pure hydrogen chloride content is 0.1 to 6.0% by weight. The hydrochloric acid solution at this time is preferably a stabilized hydrochloric acid having a pure hydrogen chloride content of 11 (weight) percent.
[0015]
Furthermore, in order to achieve the above-mentioned object, according to the ground injection method of the present invention, in the ground injection method of injecting an injection material into the ground and consolidating the ground, coarse filling with cement grout or instantaneous grout is performed. Injection, a water glass aqueous solution and a hydrochloric acid solution as active ingredients, silica (SiO2) Is 0.2 to 10% by weight and pure hydrogen chloride is 0.1 to 6.0% by weight.
[0016]
Still further, in order to achieve the above-mentioned object, according to the ground injection device of the present invention, a transport system for separately transporting a water glass aqueous solution and a hydrochloric acid solution, and a water glass aqueous solution separately introduced from the transport system, respectively. And a mixing system for mixing the hydrochloric acid solution, and an injection system for injecting the water glass-based ground injection material obtained by mixing into the ground through an injection pipe installed in the ground, wherein the obtained water glass-based ground The injection material is silica (SiO2) 0.2 to 10 weight percent and 0.1 to 6.0 weight percent pure hydrogen chloride.
[0017]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, the present invention will be described in detail.
[0018]
Water glass-based ground injection material
The water glass-based ground injection material according to the present invention contains a water glass aqueous solution and a hydrochloric acid solution as a curing agent as active ingredients.
[0019]
The above-mentioned water glass is usually manufactured in a molar ratio of SiO 2 for industrial use.2/ Na2O = 2 to 6, for example, “water glass 1” (specific gravity 1.31 (20 ° C.), SiO 2225.7%, Na2O 7.11%, molar ratio 3.73), “water glass 2” (specific gravity 1.40 (20 ° C.), SiO 2229%, Na2O9.5%, molar ratio 3.11). In particular, when used for preventing liquefaction, water glass having a large molar ratio is preferred.
[0020]
As the hydrochloric acid solution, hydrochloric acid having a hydrogen chloride concentration of 5 to 36 (by weight) such as industrial hydrochloric acid or by-product hydrochloric acid is used, and if necessary, water is added, or a gelling agent is added. Is prepared by adding a phosphoric acid compound or a sequestering agent to a hydrogen chloride concentration of 11.0 (weight)% or less. In such a hydrochloric acid solution, the irritating odor peculiar to hydrochloric acid is greatly reduced, stabilized, and workability is improved. Further, when such a hydrochloric acid solution is used and mixed with a water glass aqueous solution to produce a ground injection liquid according to the present invention, workability is improved, and the obtained injection material has excellent permeability and water quality conservation. And does not adversely affect structures in the ground. Such a hydrochloric acid solution is hereinafter referred to as "stabilized hydrochloric acid". It is necessary that the amount of residual hydrogen chloride (effective hydrogen chloride) after neutralization by the alkali agent is 50% or more of the total hydrogen chloride (pure content) before the addition of the alkali agent. Such stabilized hydrochloric acid can be manufactured at the time of injection at a factory etc. away from the injection site or at the injection site.However, considering the impact on workers involved in the injection work, it is necessary to manufacture the stabilized hydrochloric acid before transporting to the injection site. Is preferred.
[0021]
Examples of the gelling modifier used herein include alkali (earth) metal compounds such as hydroxides such as calcium and magnesium, alkali (earth) metal (bi) carbonates such as carbonates such as calcium carbonate, and water. Examples include glass and caustic alkali. At this time, the amount of the alkali agent used is normally 0.01 to 6.0 parts by weight with respect to 100 parts by weight of hydrochloric acid (in terms of 10% by weight). When the concentration of hydrochloric acid is high, the amount of the alkali agent used is increased. The amount used is arbitrarily changed, such as reducing the amount when the amount is low.
[0022]
The water glass-based ground injection material according to the present invention uses the above-mentioned water glass aqueous solution as the liquid A and the stabilized hydrochloric acid as a hardening agent as the liquid B, and these A and B liquids are sealed in a factory, for example, or at the injection site. And mixed in a sealed state with silica (SiO2It is manufactured as an injectable material with a content of 0.2 to 10% by weight and a hydrogen chloride concentration of 0.1 to 6.0% by weight. The stabilized hydrochloric acid used here has a hydrogen chloride concentration of 11% by weight or less, so that not only the irritating odor is reduced and the workability is improved, but also a partial gel of silica is hardly generated. When the silica concentration of the mixture A and B is in the range of 0.2 to 8% by weight, the obtained injection material is particularly suitable for preventing liquefaction, and when the silica concentration is 4 to 8% by weight, the stability of the excavated ground is stable. When the silica concentration is 8 to 10% by weight, it is suitable for ground reinforcement.
[0023]
Further, the mixing ratio of silica to pure hydrogen chloride is maintained at 0.2 to 10% by weight of silica and 0.1 to 6.0% by weight of pure hydrogen chloride in the mixed liquid, and the desired ratio is maintained. Is a ratio to obtain the gelation time and the consolidation strength of the concrete, specifically, HCl / SiO in a molar ratio.2= 0.4 to 1.5. When the silica concentration is high, if the concentration is higher than this range, the mixed solution is irritating and the workability is deteriorated, and a partial gel of silica is easily generated. On the other hand, if the ratio is 0.4 or less, the reaction is insufficient and the durability of the consolidated product cannot be obtained.
[0024]
The obtained water glass-based ground injection material according to the present invention is adjusted to an acidic or weakly alkaline pH of 0.5 to 9. Since this injection material exhibits a long gelation time in the range of pH 0.5 to 4.0, in this case, it is a one-pack type and is suitable for a wide range of injection purposes. When shortening the gelation time, first, an injecting material having this PH value, that is, a water glass acidifying solution is obtained, and then, various alkali agents, water glass or various salts are added to the water glass acidifying solution. Adjust to pH 2.5-9 by addition. At the time of injection, a water glass aqueous solution is used as the liquid A, and stabilized hydrochloric acid having a hydrogen chloride concentration of 10% by weight or less is used as the liquid B. The liquids A and B are mixed or merged at the upper end of the injection pipe or the end of the double pipe. And inject.
[0025]
Further, the water glass-based ground injection material according to the present invention can also contain a phosphate compound or a sequestering agent. In this case, the phosphoric acid compound or the sequestering agent is preferably contained in a hydrochloric acid diluted solution. As the phosphoric acid-based compound used here, (poly) condensed phosphate is preferable in addition to phosphoric acid and disodium phosphate, and specifically, for example, pyrophosphoric acid, triphosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid And the like. Specific examples thereof include sodium pyrophosphate, sodium pyrophosphate, sodium acid pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium hexametaphosphate, sodium acid hexametaphosphate, and potassium salts thereof. Further, the sequestering agent is a substance that is effective in forming a coating film on the surface of concrete or iron in soil, specifically, an aliphatic oxycarboxylic acid, for example, citric acid, Tartaric acid, gluconic acid, etc., in addition thereto, ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, propylenediaminetetraacetic acid, bis (2-hydroxyphenylacetic acid) ethylenediamine, and salts thereof, etc. However, in consideration of economy, practicality, and the like, citric acid and condensed phosphate are particularly preferred. These sequestering agents are used alone or in combination of two or more. These phosphate compounds and sequestering agents form a protective coating on the surface of the underground structure from acid rain, seawater, or hot spring water penetrating into the soil, and block the adverse effects from harmful substances. Further, even if NaCl, which is a reaction product of the injection material, becomes thick, the effect is blocked. These coatings rely on the chelating effect, but are effected by insoluble coatings containing silica and metal ions.
[0026]
When a phosphoric acid compound is used in combination, the amount of the phosphoric acid compound is preferably in the range of pure hydrogen chloride: pure phosphoric acid = 99 to 70: 1 to 30 (weight ratio). When a sequestering agent is used in combination, the sequestering agent is preferably used in an amount of 0.05 to 5.0 parts by weight based on 100 parts by weight of the pure hydrogen chloride. These compounds may be mixed in a hydrochloric acid solution or mixed with a water glass aqueous solution and a hydrochloric acid solution to form a one-pack injection material.
[0027]
Furthermore, the ground injection material according to the present invention can also contain an alkaline earth metal compound in an aqueous solution of water glass. The alkaline earth metal compound is a hardly soluble alkali agent, and if it is added to a water glass aqueous solution, after mixing with hydrogen chloride, PH moves to the neutral side in the ground to shorten the gelation time. . For this reason, at the time of injection, a long gelation time due to being acidic is obtained, and the soil is shifted to neutral with time while widely penetrating, and the ground can be kept neutral.
[0028]
Furthermore, the ground injection material according to the present invention can also contain colloidal silica. As a result, the obtained soil injection material can increase the silica concentration to 20% by weight, and can be used for reinforcement of a foundation or the like to enable high strength ground improvement with excellent permeability. Further, even when the silica concentration is low, as in the case of an injection material for preventing liquefaction, the amount of silica derived from water glass can be increased, for example, twice or more without substantially shortening the gelation time.
[0029]
Further, in the present invention, an aqueous solution of water glass and stabilized hydrochloric acid are mixed to prepare an acidified solution of water glass having a pH value of preferably 3 or less, and this is mixed with a cement suspension or a cement slag suspension. By mixing and using 0.5 to 3 kg of sodium carbonate or sodium bicarbonate per 100 l of suspension as a gelling time adjuster, a water glass acidified liquid-cement-based injection material having a gelling time of about several seconds to several minutes can be obtained. it can. Increasing the amount of sodium carbonate or bicarbonate further extends the gel time. The amount of cement in the cement suspension used at this time is not particularly limited, but is preferably 10 to 60 kg per 100 l of the cement suspension. Of this cement amount, an amount of 10% or more can be replaced with slag. In addition, specific surface area 5000cm as cement or slag2The reactivity and the permeability can be improved by using fine particles having a particle size of / g or more.
[0030]
The ground improved by injecting such an injection material into the ground has a high consolidation strength. The consolidated ground at this time is near neutrality even though the acidic liquid is used. The consolidation strength (homogel) of the injection solution is 0.5 to 3.0 MN / m2When compared with the solidification strength of an acidic silica sol-cement-based injection material using sulfuric acid as an acid, the injection material of the present invention has a higher strength.
[0031]
Method for producing water glass-based ground injection material
The above-mentioned aqueous solution of water glass and the above-mentioned hydrochloric acid solution are mixed in a closed state, for example, in a closed state using a circulation-type closed-type mixing apparatus 7 shown in FIG. 2 or a jet-type closed-type mixing apparatus 8 shown in FIG. Then, the water glass-based ground injection material according to the present invention is manufactured. The circulation-type closed mixing device 7 in FIG. 2 is a mixing device in which the aqueous solution of water glass from the storage tank 2 and the hydrochloric acid solution from the storage tank 5 are joined in a closed state, and the combined liquid is circulated and mixed. 3 is a mixing device that injects a water glass aqueous solution from the storage tank 2 and a hydrochloric acid solution from the storage tank 5 in a sealed state from an injection nozzle (not shown), and collides and mixes with each other. is there. The mixing device 8 shown in FIG. 3 is a combined type mixing device in which the two liquids are combined and mixed therein, or one of the two liquids is filled in the mixing device, and then the other liquid is stirred into this liquid. It can also be used as a batch type mixing device for introducing and mixing a predetermined amount. The resulting injection material is silica (SiO2) Is 0.2 to 10% by weight and the pure hydrogen chloride content is 0.1 to 6.0% by weight. The mixing method and apparatus will be described later in detail with reference to the drawings.
[0032]
Water glass ground injection method
The water glass-based ground injection method according to the present invention is a ground injection method in which the above-described water glass-based ground injection material is injected into the ground to consolidate the ground, and is roughly filled with cement-based grout or instantaneously set grout. , And an aqueous solution of water glass and a hydrochloric acid solution as active ingredients, and silica (SiO 2)2) Is 0.2 to 10% by weight and the pure hydrogen chloride content is 0.1 to 6.0% by weight.
[0033]
Specifically, for example, prior to injecting the water glass-based ground injection material into the ground, first, cement-based grout or flash cement is injected into the ground as a primary injection material, and the ground is roughly filled. Then, the above-mentioned injection material is injected into the ground as a secondary injection material.
[0034]
The secondary injection material used in the above-mentioned construction method is the above-mentioned water glass-based ground injection material according to the present invention. In other words, it comprises a water glass aqueous solution and a hydrochloric acid solution as active ingredients, and silica (SiO 2)2) Is 0.2 to 10% by weight and a pure hydrogen chloride component is 0.1 to 6.0% by weight. . This injection method is carried out using, for example, an injection device described later. Details will be described later with reference to the accompanying drawings.
[0035]
Ground injection device
FIG. 1 is a flow sheet of a specific example of the ground injection device according to the present invention, FIG. 2 is a specific example of the mixing system of FIG. 1, and is a schematic diagram of a circulation-type closed mixing device, and FIG. 2 is a schematic view of another specific example of the mixing system of FIG. 1, which is an injection-type closed mixing device.
[0036]
As shown in FIG. 1, the soil injection device according to the present invention basically includes a transportation system A, a mixing system B, and an injection system C.
[0037]
The transport system A is provided with a transport pump 1, one end 3a is provided in a storage tank 2 of a water glass aqueous solution, and the other end 3b is provided with a conduit 3 connected to the mixing system B, and a transport pump 4 is provided. The storage tank 5 for the hydrochloric acid solution is provided with a conduit 6 having the other end 6b connected to the mixing system B, and the aqueous glass solution is passed from the water glass storage tank 2 to the mixing system B through the conduit 3 by the operation of the transport pump 1. The hydrochloric acid solution is separately transported from the hydrochloric acid storage tank 5 to the mixing system B through the conduit 6 by the operation of the transport pump 4. Here, as the aqueous solution of water glass in the water glass storage tank 2, for example, the above-mentioned one is used, and as the hydrochloric acid solution of the hydrochloric acid storage tank 5, for example, the above-mentioned stabilized hydrochloric acid is used. When the hydrochloric acid solution is introduced into the hydrochloric acid storage tank 5, the storage tank 5 is filled with the hydrochloric acid liquid from a not-shown inlet provided in the storage tank 5 or a small amount of By injecting the hydrochloric acid solution into the storage tank 5 while spraying water, the stimulation can be further reduced.
[0038]
The mixing system B is provided with the circulation type closed mixing device 7 shown in FIG. 2 or the injection type (or combined type or batch type) closed type mixing device 8 shown in FIG. As described above, the batch-type closed mixer is a device in which one liquid is stored in a predetermined amount in the device, and the other liquid is mixed while stirring the liquid. As described above, it is a device that combines and mixes both liquids at the same time.
[0039]
The circulation-type closed mixing apparatus 7 shown in FIG. 2 receives the aqueous solution of water glass and the hydrochloric acid solution separately transported from the water glass storage tank 2 and the hydrochloric acid storage tank 5 of the transport system A via valves 9 and 10, The mixture is introduced at a liquid ratio (volume) of 1: 1, circulated in an arbitrary direction, for example, in the direction of the arrow, and mixed in a closed state to obtain the injection material according to the present invention.
[0040]
The obtained injection material can be directly sent to the injection system C described later, but is usually once stored in the injection solution storage tank 12 once. This injection material is made of silica (SiO 2) as described above.2) And 0.1 to 6.0% by weight of hydrogen chloride.
[0041]
The injection-type hermetic mixing apparatus 8 shown in FIG. 3 introduces and mixes an aqueous solution of water glass and a hydrochloric acid solution as in FIG. , Is different from that of FIG. At the time of this mixing, the mixing is sufficiently performed by rotating the stirrer 13 installed in the apparatus 8 and stirring and mixing. The obtained injection material is stored in the injection material storage tank 12 from the bottom portion 14 of the device 8 via the pulp 11. In the injection-type hermetic mixing device 8, the injection is performed by injecting both liquids with the injection nozzle, but the injection may be performed by injecting only one liquid.
[0042]
As shown in FIG. 1, the injection system C is provided with an injection pump 16, and is provided with a conduit 15 having one end 15 a connected to the mixing system B and the other end 15 b connected to an injection pipe 18 of the ground 17. .
[0043]
Then, the water-glass-based ground injection material obtained by mixing in the mixing system B is injected directly from the mixing devices 7 and 8 in FIG. 2 at the injection site or into the injection material storage tank 12 manufactured at a factory or the like. It is conveyed to the site, and is injected into the ground 17 from the injected material storage tank 12 through the injection pipe 18 buried in the ground 17 by the operation of the injection pump 16. For example, a double tube rod is used as the injection tube 18, and the two solutions are combined and injected. Alternatively, after the two solutions having a short gelation time are combined, the other two solutions having a long gelation time are combined and injected, or one solution is injected. In addition, after the cement-bentonite is first injected by the double pipe double packer injection method, an injection material having a long gelation time can be injected secondarily by one shot.
[0044]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0045]
Figure 2004027023
[0046]
[Table 1]
Figure 2004027023
[0047]
2. Test method
(1) Soil penetration test
a) A 4 m plastic mold (5.2 cm in diameter) was filled with Toyoura standard sand (12.81) kg (relative density = 60%). After saturation with a 0.1% suspension of calcium carbonate, the injection material was injected at an injection pressure of 0.05 MPa. After the completion of the injection, the penetration distance was measured, and after curing in a room, the mixture was further cured for a predetermined number of days and consolidated, and the compressive strength of the consolidated body was measured.
[0048]
b) Sea sand was used in place of Toyoura standard sand in a). The calcium content in the sea sand is 3% by weight.
[0049]
(2) Measurement of compressive strength
5 cm was cut from the lower end of the consolidated body obtained in the above experiment, and then cut at 10 cm intervals. No. from the one near the inlet. 1, No. 2, No. 3 ... After the compact was removed from the mold and cured for a predetermined number of days, the uniaxial compressive strength was measured.
[0050]
(3) Repeated torsion test
For the consolidated body of the injection material according to the present invention, in order to check the liquefaction strength, undrained repetitive torsion was performed with the constraint pressure set to 49 kPa. Other conditions followed the conventional method.
[0051]
(4) Corrosion test
For the stabilized hydrochloric acid and the injection material, a metal corrosion test was performed. The metal test piece used was a SUS316 plate with a thickness of about 1 mm. The immersion method was as follows: 200 ml of the liquid was placed in a 200 ml poly bottle with a lid, the metal test piece was immersed, and the color and weight change of the metal after a predetermined number of days were measured. did.
[0052]
(5) Irritation odor confirmation test
A predetermined infusion solution was placed in 250 ml of polyvin, one day after sealing, the lid was removed, and the odor was immediately smelled. There were three examiners.
[0053]
3.Experiment 1
Hydrochloric acid having a concentration of 36% was diluted with water to obtain a 10% hydrochloric acid solution, and a predetermined amount of calcium carbonate and other various alkali agents shown in Table 2 was added to 100 g of the 10% hydrochloric acid solution to prepare stabilized hydrochloric acid. Further, as shown in Table 3, a predetermined amount of phosphoric acid or a sequestering agent was added to 100 g of a 10% hydrochloric acid solution to prepare stabilized hydrochloric acid (curing agent). For comparison, a curing agent using sulfuric acid was also prepared.
[0054]
[Table 2]
Figure 2004027023
[0055]
[Table 3]
Figure 2004027023
[0056]
4.Experiment 2
Various water glass aqueous solutions shown in Table 4 were prepared and used as solution A. As the water glass, "water glass 1" and "water glass 2" in Table 1 were used. Next, each of the solutions A and various kinds of stabilized hydrochloric acid (solution B) shown in Table 4 were mixed to prepare various water glass acidifying solutions having a pH of 0.5 to 4 to obtain a solution C.
[0057]
[Table 4]
Figure 2004027023
[0058]
In Table 4, when the silica concentration of the solution C is 0.2% or more (Sample No. 27), a uniform gel is produced, whereas when the silica concentration is less than 0.2 (Comparative 13), When a water glass aqueous solution (Solution A) and a hardener solution (Solution B) are mixed, precipitated silica floats and the whole does not gel, so that the lower limit of the silica concentration is 0.1 in the compounded solution of the present invention. 2%.
[0059]
When the silica concentration of the solution C is high (5 to 10%), the pure hydrogen chloride content is preferably 1.2 to 4.3%, and when the silica concentration is low (5 to 0.2%). Thus, when the silica concentration is 0.2 to 5.0%, the hydrogen chloride concentration is preferably 0.3 to 2.2%.
Further, HCl / SiO of liquid C is used.2Is preferably 0.35 to 0.65 when the silica concentration is 5 to 10%, and 0.40 to 2.20 when the silica concentration is 5.0 to 0.2%.
[0060]
When the silica concentration is about 2% and used for preventing liquefaction, there is no corrosion of metals such as injection equipment and underground structures without adding a metal ion sequestering agent, and metal ion sequestration A coating is formed on the concrete surface by adding the agent.
[0061]
Examples 1 to 13
The aqueous water glass solution (solution A) and the stabilized hydrochloric acid (solution B) shown in Table 5 were thoroughly mixed at a volume ratio of 1: 1. 1 to 9 water glass-based ground injection materials were prepared. Table 5 shows the PH value and gel time of these injection materials. Table 5 also shows examples of other curing agents for reference.
[0062]
Further, a water glass aqueous solution (solution A) and a water glass acidifying solution (solution C) shown in Table 5 were sufficiently mixed at a volume ratio of 1: 2. Water-glass-based ground injection materials of 10 to 13 were prepared. Table 5 shows the PH value and gel time of these injection materials.
[0063]
[Table 5]
Figure 2004027023
[0064]
In Table 5, Example No. The mixed liquids Nos. 1 to 9 are the water glass-based ground injection materials according to the present invention obtained by mixing the liquid A (water glass aqueous solution) and the liquid B (stabilized hydrochloric acid) at a volume ratio of 1: 1. No. The mixed solution of 10 ° to 13 is the water glass ground injection liquid according to the present invention obtained by mixing the liquid A (water glass aqueous solution) and the liquid C (water glass acidified liquid) at a volume ratio of 1: 2. All of these are injection materials having a silica content of 0.2 to 10% by weight, a pure hydrogen chloride content of 0.1 to 6.0% by weight, and a PH of 2.5 to 9.
[0065]
Example No. 5 in Table 5. A permeation test was performed on the mixture obtained in 1. The test was performed in accordance with the above-mentioned "penetration test into soil a". The amount of the mixture used was 3.65 l, and the permeation length was 400 cm. For comparison, the above-mentioned “penetration test into soil a” also applies to the injection material according to Reference 1 in Table 5, that is, the mixed solution composed of the liquid A (water glass aqueous solution) and the curing agent (75% sulfuric acid). Was performed according to The used amount of the mixed solution was 3.65 l, and the permeation length was 280 cm. It can be seen that the injection material according to the present invention using a hydrochloric acid solution was superior to that using sulfuric acid.
[0066]
A strength test was performed on the consolidated body of the above-described sample (Example No. 1 and Reference 1 in Table 5). The test was carried out for 28 days with respect to the compacted body within 1 m from the injection port side and according to the above-mentioned "measurement of compressive strength". Table 6 shows the measurement results.
[0067]
[Table 6]
Figure 2004027023
[0068]
From Table 6, it can be seen that Example No. 5 of Table 5 according to the present invention using a hydrochloric acid solution. It can be seen that the injection material of No. 1 has a larger strength of the consolidated body than the injection material of Reference No. 1 using sulfuric acid.
[0069]
Further, a corrosion test was performed on the injection material of the present invention. The test was performed according to the above-mentioned "corrosion test". The immersion liquid subjected to the test is as shown in Table 7, and the immersion period is 7 days. Table 7 shows the test results.
[0070]
[Table 7]
Figure 2004027023
[0071]
From Table 7, it can be seen that the immersion liquid of “Comparative 5 of Table 2” (35% hydrochloric acid) has a weight change of 1.30%, which is considerably large, and the color change is large. Also, it can be seen that there is almost no change in weight.
[0072]
Examples 14 to 16
In the above-mentioned "penetration test into the soil a", the penetration test was carried out at an injection pressure of 0.04 Mpa in the same manner as described above except that "Toyoura standard sand" was replaced with "Chiba sea sand". Penetration test b)). A mixed solution of silica concentration of 6% and PH3 was prepared using No. 3 water glass, and injected at an injection pressure of 0.04 Mpa by the method of "penetration test into soil b" to measure the permeation length. Table 8 shows the measurement results.
[0073]
The samples subjected to the test were a water glass aqueous solution (solution A), a water glass solution obtained by diluting 70 ml of “water glass 1” in Table 1 with 130 ml of water, and a liquid B as various stabilized hydrochloric acid shown in Table 8; : B = 1: 1 (volume) and mixed in a ratio of Example No. 14 ° to 16 °. These samples are injection materials with a silica concentration of about 6% and PH3. The same test was performed for the reference example samples in Table 8. Table 8 shows the results.
[0074]
[Table 8]
Figure 2004027023
[0075]
As is clear from Table 8, Example No. B containing a hydrochloric acid solution and calcium carbonate as the B solution. Example No. 14 containing hydrochloric acid solution and phosphoric acid as solution B Example No. 15 containing hydrochloric acid solution and sodium hexametaphosphate as solution B and solution B. No. 16 is mainly composed of a hydrochloric acid solution as the B solution. 14 to 16 have a long permeation distance and are excellent in permeability. On the other hand, in Reference Example No. B which mainly contains sulfuric acid instead of hydrochloric acid as B liquid. 7 to 9 all have a short permeation distance and are inferior in permeability.
[0076]
Example 17
A permeation test was performed according to the above-mentioned "penetration test into soil b". The sample subjected to the test was prepared by adding a calcium carbonate as an alkaline agent to a water glass aqueous solution as a liquid A, and a hydrochloric acid liquid as a liquid B. The examples shown in Table 9 were obtained by mixing these liquids A and B. No. Seventeen. As a comparative curing agent, 10% sulfuric acid shown in Comparative Example 2 in Table 2 was used. 17 was compared. Table 9 shows the results.
[0077]
[Table 9]
Figure 2004027023
[0078]
From Table 9, it can be seen that in Example No. 1 in which an alkali agent was added to solution A and hydrochloric acid solution was used as a curing agent. 17 indicates that the injection range is significantly wider than that of Reference 10 in which sulfuric acid is used as a curing agent and an alkali agent is not added to solution A. Also, in Example No. At 17 ° C, calcium chloride is formed by injection, which is water-soluble and does not affect permeability, whereas Reference 10 using sulfuric acid produces almost water-insoluble calcium sulfate. It can also be seen that the permeation range is narrowed.
[0079]
Example 18
A repeated torsion test was performed according to the above-mentioned "repeated torsion test". The samples subjected to the test are the same as those of Example No. 18. For comparison, the same test was carried out for the water glass-sulfuric acid system shown in Reference 11 of Table 10 and the unmodified product shown in Reference 12. The number of repetitions at both amplitudes of 7.5% shear strain is 20 times. Table 10 shows the results.
[0080]
[Table 10]
Figure 2004027023
[0081]
From Table 10, it can be seen that Example Nos. It can be seen that the 18 ° consolidated body has a very good repetitive stress ratio (liquefaction strength R201) as compared with Reference 11 using 10% sulfuric acid as a curing agent and the untreated unmodified body.
[0082]
Examples 19 to 20
In Table 4, sample No. As shown in Table 11, a mixed solution without addition of colloidal silica and a mixed solution with the added colloidal silica were prepared from the acidified water glass solution (pH 1.8, gelation time not less than 1 week) obtained at 27 °, respectively. . 19 ° and 20. The permeation distance and strength of these mixed liquids were measured using the same measurement test method as described above. Table 11 shows the measurement results.
[0083]
[Table 11]
Figure 2004027023
[0084]
From Table 11, it can be seen that Example No. 1 having a low silica concentration and a long gelation time. Example No. 19 # has good permeability and is suitable as an injection for preventing liquefaction. 20 ° indicates that the strength of the consolidated body is increased.
[0085]
5.Experiment 3
An irritating odor confirmation test was performed for each of the mixed liquids shown in Table 12. Table 12 shows the results. In Table 12, the mark ◎ means no irritating odor, the mark 多少 means some irritating odor, the sign あ り means irritating odor, and the mark × means there is irritating odor.
[0086]
[Table 12]
Figure 2004027023
[0087]
From Table 12, each sample No. of the stabilized hydrochloric acid and 10% hydrochloric acid was used. It can be seen that no irritating odor is generated for 28 ° to 34 °, whereas a stimulating odor is generated for each of 75% sulfuric acid, 10% sulfuric acid and 15% hydrochloric acid.
[0088]
6.Experiment 4
A mortar sample (5φ × 10 cm) was immersed in the following compounding solution to observe the formation of a film on the concrete surface. Blended liquid 1- 10% hydrochloric acid containing 1% phosphoric acid and water glass 1 were mixed to prepare an acidic liquid having a silica concentration of 0.20% and PH of 3.0. Blended liquid 2- 10% hydrochloric acid containing 0.5% sodium hexametaphosphate and water glass 1 were mixed to prepare an acidic liquid having a silica concentration of 0.2% and PH of 3.0. Mixing solution 3-10% hydrochloric acid and water glass 1 were mixed to prepare an acidic solution having a silica concentration of 0.15% and a pH of 3.0.
[0089]
200 ml of the compounding solution was placed in a plastic container, and the mortar specimen was immersed therein and allowed to stand for one year. In Formulations 1 and 2, a white film was formed on the mortar surface. On the other hand, the coating liquid was not formed on the mortar surface in the liquid mixture 3. One year after standing, the mortar specimen was taken out, washed lightly with water, and immersed in 200 ml of water. One day later, the pH of the curing water was 4.5 in the mixture 1 and 4.8 in the mixture 2, but was 11.0 ° in the mixture 3. After a lapse of three months, the pH of the curing water was 5.1 for the first liquid and 5.3 for the second liquid, but was 11.9 for the third liquid. After a lapse of 6 months, the pH of the curing water was 5.8 for the mixed liquid 1 and 5.9 for the mixed liquid 2, but was 12.1 for the mixed liquid 3.
[0090]
The coating formed on the mortar surface was not damaged at all and remained formed. When mortar not immersed in the compounding liquid was immersed in water, the pH became 12 or more in one day. Furthermore, in the case of the mixed solution 1 and 2 where the silica concentration was 0.15%, almost the same results as those of the mixed solution 3 were shown.
[0091]
Maintaining a neutral pH of about 9.0 or less means that a white film has formed a film that suppresses the elution of alkali from the mortar specimen, preventing neutralization and preventing external contamination. This means preventing invasion of undesired ions. This means that such a film requires a silica concentration of 0.2% or more.
[0092]
Examples 21 to 28
Example 13 shown in Table 13 For each of the blended liquids of 21 ° to 28, the SiO of AB2Concentration, pure hydrogen chloride, molar ratio HCl / SiO2Was measured and the presence or absence of a pungent odor and the presence or absence of a partial gel were also observed. The results are shown in Table 13.
[0093]
[Table 13]
Figure 2004027023
[0094]
From Table 13, it is apparent that Example No. 21 ° to 28 are all SiO2Concentration, pure hydrogen chloride, HCl / SiO2The molar ratio was within the specific range of the present invention, and there was no pungent odor and no partial gel was formed. On the other hand, for Reference 11, no irritating odor or partial gel was generated,2The concentration is 0.10% and the pure hydrogen chloride content is 0.06%, which is outside the scope of the present invention.
[0095]
Examples 29 to 31
Example 14 shown in Table 14 The irritating odor was measured for the water-glass acidified solution of 29 to 31 to determine the workability. At the same time, an acidified solution of water glass using 35% hydrochloric acid (Reference 13) and 15% hydrochloric acid (Reference 14) was measured for reference. Table 14 shows the results.
[0096]
[Table 14]
Figure 2004027023
[0097]
From Table 14, it can be seen that the water-glass acidified liquid of the AB combined liquid has no irritation and is excellent in workability. On the other hand, Reference 13 using 35% hydrochloric acid and Reference 14 using 15% hydrochloric acid both have considerable irritation and are inferior in workability.
[0098]
Example 32
The injection material according to the present invention was injected into the ground by the double pipe double packer method using the injection device of FIG. Prior to this injection, first, cement-based grout was injected into the ground 17 to be treated as a primary injection material, and the ground was roughly filled.
[0099]
Next, the liquid A (water glass aqueous solution) of Example 1 shown in Table 5 is stored in the water glass storage tank 2 of the transportation system A in FIG. The liquid A (water glass aqueous solution) and the liquid B (stabilized hydrochloric acid aqueous solution) were separately transported to the mixing system B through the conduits 3 and 6 by operating the transport pumps 1 and 4 respectively.
[0100]
As the mixing system B, the circulating closed mixer 7 shown in FIG. 2 was used. The valves 9 and 10 in FIG. 2 are opened to introduce equal amounts of the solution A and the solution B into the mixing device 7, respectively, and the solution A and the solution B are sufficiently mixed while circulating. The injection material according to the present invention was stored in the storage tank 12.
[0101]
As shown in FIG. 1, the injection material stored in the injection material storage tank 12 was injected into the ground 17 as a one-liquid type through the injection pipe 18 in the ground 17 through the conduit 15 by the operation of the injection pump 16. .
[0102]
As a result of the injection, the injected material did not generate an insoluble salt in the ground 17, was sufficiently penetrated without causing clogging between the soil particles, and was firmly consolidated, which was optimal for preventing liquefaction of the ground. .
[0103]
Example 33
In Example 32, a flash grout (gel time: 30 seconds) was used as the primary injecting material instead of cement grout, and the mixing system B in FIG. 1 was replaced with the circulation type closed mixing device 7 in FIG. Injection into the ground was performed in the same manner as in Example 32, except that the injection-type closed mixer 8 shown in FIG. 3 was used. That is, the valves 9 and 10 in FIG. 3 are opened to introduce equal amounts of the liquid A and the liquid B into the mixing device 8, and the liquids A and B are sufficiently mixed while being sprayed. From No. 14 was stored in the injection material storage tank 12 to prepare an injection material according to the present invention.
[0104]
At the time of injection, a double pipe is used as the injection pipe 18, a water glass acidifying liquid is sent from one pipe, and a water glass aqueous solution is sent from the other pipe. The water-glass acidifying solution was injected as a cemented grout and then as a cemented grout, and this was repeated.
[0105]
As a result of the injection, the injected material does not generate an insoluble salt in the ground 17 and sufficiently penetrates without causing clogging between the soil particles as in Example 32, and is firmly consolidated to liquefy the ground. Perfect for prevention.
[0106]
【The invention's effect】
1. Despite the use of a hydrochloric acid solution, it has not only a small irritating odor but also a small effect on the human body and is excellent in handleability.
[0107]
2. The gel time can be easily adjusted, and the ground improvement can be ensured.
[0108]
3. Since the gel, which is a cured material of the injection material, has little shrinkage, the water-stopping property of the improved ground is extremely low.
[0109]
4. A water glass acidifying solution can be easily prepared.
[0110]
5. When applied to the prevention of liquefaction, the permeability can be improved, so that the range of improvement by injection from one location can be widened.
[0111]
6. By using colloidal silica in combination, it is possible to improve the ground with high strength or to obtain a ground excellent in durability.
[Brief description of the drawings]
FIG. 1 is a flow sheet of a specific example of a ground injection device according to the present invention.
FIG. 2 is a schematic diagram of a circulation-type closed mixing apparatus that is a specific example of a mixing system.
FIG. 3 is a schematic view of another specific example of a mixing system, which is an injection-type hermetic mixing apparatus.
[Explanation of symbols]
A Transportation system
B mixed system
C injection system
1 Transport pump
2) Water glass storage tank
3 conduit
3a @ one end
3b @ other end
4 Transport pump
5 hydrochloric acid storage tank
6 conduit
6a @ one end
6b @ other end
7 Recirculating closed mixer
8 injection type closed mixer
9mm valve
10mm valve
11 valve
12 Injection liquid storage tank
13 stirrer
14 bottom
15 conduit
15a @ one end
16 infusion pump
16a @ other end
17 ground

Claims (19)

水ガラス水溶液と、塩酸液とを有効成分とし、シリカ(SiO2 )が0.2〜10重量パーセントおよび、塩化水素純分が0.1〜6.0重量パーセントであることを特徴とする水ガラス系地盤注入材。And water glass solution, a hydrochloric acid solution and the active ingredient, silica (SiO 2) is 0.2 to 10% by weight and the hydrogen chloride purity is characterized in that it is a 0.1 to 6.0 weight percent water Glass-based ground injection material. 請求項1において、塩酸液が塩化水素純分11重量パーセント以上の塩酸を水またはアルカリ剤を用いて塩化水素純分11(重量)パーセント以下に調整された安定化塩酸である請求項1に記載の水ガラス系地盤注入材。2. The stabilized hydrochloric acid according to claim 1, wherein the hydrochloric acid solution is a hydrochloric acid having a pure hydrogen chloride content of 11% by weight or more adjusted to a pure hydrogen chloride content of 11% by weight or less using water or an alkali agent. Water glass ground injection material. 請求項1において、シリカと塩酸液との比率(モル比)がHCl/SiO2 =0.4〜1.5である請求項1に記載に水ガラス系地盤注入材。In claim 1, the ratio of silica to hydrochloric acid solution (molar ratio) of water glass-based soil injection material according to claim 1, wherein the HCl / SiO 2 = 0.4~1.5. 請求項1の水ガラス系地盤注入材がPH0.5〜9の範囲の酸性から弱アルカリ性を呈する請求項1に記載の水ガラス系地盤注入材。The water-glass-based ground injection material according to claim 1, wherein the water-glass-based ground injection material exhibits an acidic to weakly alkaline property in a pH range of 0.5 to 9. 請求項4において、まず、PH0.5〜4の水ガラス酸性化液を製造し、次いでこの水ガラス酸性化液をPH2.5〜9の範囲に調整する請求項4に記載の水ガラス系地盤注入材。The water glass-based ground according to claim 4, wherein a water glass acidifying solution having a pH of 0.5 to 4 is first produced, and then the water glass acidifying solution is adjusted to have a pH of 2.5 to 9. Injection material. 請求項1において、さらに燐酸系化合物または金属イオン封鎖剤を含有する請求項1に記載の水ガラス系地盤注入材。The water-glass-based ground injection material according to claim 1, further comprising a phosphate compound or a sequestering agent. 請求項6において、燐酸系化合物または金属イオン封鎖剤が塩酸液中に含有される請求項6に記載の水ガラス系地盤注入材。The water-glass-based ground injection material according to claim 6, wherein the phosphoric acid compound or the sequestering agent is contained in the hydrochloric acid solution. 請求項1において、水ガラス水溶液がアルカリ土金属化合物を含有する請求項1に記載の水ガラス系地盤注入材。The water-glass-based ground injection material according to claim 1, wherein the water-glass aqueous solution contains an alkaline earth metal compound. 請求項1の水ガラス系地盤注入材にさらに、コロイダルシリカを含有せしめてシリカ(SiO2 )濃度を高めてなる請求項1に記載の水ガラス系地盤注入材。Claim 1 of water-glass-based soil injection material further by the additional inclusion of colloidal silica silica (SiO 2) water glass system according to claim 1 comprising increasing the concentration soil injection material. 請求項1の水ガラス系地盤注入材にさらに、セメントを有効成分とする懸濁液を含有せしめて懸濁型注入材とする請求項1に記載の水ガラス系地盤注入材。The water-glass-based ground injection material according to claim 1, wherein the water-glass-based ground injection material according to claim 1 further contains a suspension containing cement as an active ingredient to prepare a suspension-type injection material. 請求項10において、さらにゲル化調整剤を含有せしめてなる請求項10に記載の水ガラス系地盤注入材。The water-glass-based ground injection material according to claim 10, further comprising a gelling modifier. 請求項1において、水ガラス系地盤注入材が液状化防止に用いられる請求項1に記載の水ガラス系地盤注入材。The water-glass-based ground injection material according to claim 1, wherein the water-glass-based ground injection material is used for preventing liquefaction. 水ガラス水溶液と、塩酸液とを密閉状態で混合してシリカ(SiO2 )が0.2〜10重量パーセントおよび塩化水素純分が0.1〜6.0重量パーセントの注入材を製造することを特徴とする水ガラス系地盤注入材の製造方法。A water glass aqueous solution and a hydrochloric acid solution are mixed in a closed state to produce an injection material containing 0.2 to 10% by weight of silica (SiO 2 ) and 0.1 to 6.0% by weight of pure hydrogen chloride. A method for producing a water glass-based ground injection material, characterized in that: 地盤中に注入材を注入して該地盤を固結する地盤注入工法において、セメント系グラウトまたは瞬結グラウトによる粗詰注入、および水ガラス水溶液と、塩酸液とを有効成分とし、シリカ(SiO2 )が0.2〜10重量パーセントおよび塩化水素純分が0.1〜6.0重量パーセントである水ガラス系地盤注入材による土粒子間注入を併用することを特徴とする地盤注入工法。In a ground injection method of injecting an injection material into the ground and consolidating the ground, a method of roughly filling with cement-based grout or flash-setting grout, and using a water glass aqueous solution and a hydrochloric acid solution as active ingredients, silica (SiO 2 ) Is 0.2 to 10% by weight and the hydrogen chloride pure content is 0.1 to 6.0% by weight. 水ガラス水溶液および塩酸液をそれぞれ別々に輸送する輸送系統と、前記輸送系統からそれぞれ別々に輸送された水ガラス水溶液および塩酸液を混合する混合系統と、混合によって得られた水ガラス系地盤注入材を地盤中に設置された注入管を通して地盤中に注入する注入系統とからなり、前記水ガラス系地盤注入材がシリカ(SiO2 )0.2〜10重量パーセント、および塩化水素純分0.1〜6.0重量パーセントであることを特徴とする地盤注入装置。A water glass aqueous solution and a hydrochloric acid solution, respectively, a transport system for separately transporting the water glass aqueous solution and the hydrochloric acid solution, and a mixing system for mixing the water glass aqueous solution and the hydrochloric acid solution separately transported from the transport system; And an injection system for injecting water into the ground through an injection pipe installed in the ground, wherein the water glass-based ground injection material contains silica (SiO 2 ) in an amount of 0.2 to 10% by weight and a hydrogen chloride pure content of 0.1. The soil injection device, characterized in that the soil injection amount is up to 6.0% by weight. 請求項15において、輸送系統の水ガラス水溶液および塩酸液はそれぞれ水ガラス貯留槽および塩酸貯留槽から別々に輸送される請求項15に記載の地盤注入装置。The ground injection device according to claim 15, wherein the water glass aqueous solution and the hydrochloric acid solution of the transport system are separately transported from the water glass storage tank and the hydrochloric acid storage tank, respectively. 請求項16において、塩酸貯留槽が密閉型貯留槽である請求項15に記載の地盤注入装置。The ground injection device according to claim 15, wherein the hydrochloric acid storage tank is a closed storage tank. 請求項17において、塩酸貯留槽は塩酸液の貯留時に水またはアルカリ水を槽中に噴射する請求項17に記載の地盤注入装置。18. The ground injection device according to claim 17, wherein the hydrochloric acid storage tank injects water or alkaline water into the tank when storing the hydrochloric acid solution. 請求項15において、前記混合系統が密閉型混合槽である請求項15に記載の地盤注入装置。The ground injection device according to claim 15, wherein the mixing system is a closed type mixing tank.
JP2002185512A 2002-06-26 2002-06-26 Water glass grouting material and manufacturing method, grouting method and apparatus Pending JP2004027023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185512A JP2004027023A (en) 2002-06-26 2002-06-26 Water glass grouting material and manufacturing method, grouting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185512A JP2004027023A (en) 2002-06-26 2002-06-26 Water glass grouting material and manufacturing method, grouting method and apparatus

Publications (1)

Publication Number Publication Date
JP2004027023A true JP2004027023A (en) 2004-01-29

Family

ID=31181118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185512A Pending JP2004027023A (en) 2002-06-26 2002-06-26 Water glass grouting material and manufacturing method, grouting method and apparatus

Country Status (1)

Country Link
JP (1) JP2004027023A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191490A (en) * 2008-02-13 2009-08-27 Kyokado Eng Co Ltd Grouting method
JP2013221035A (en) * 2012-04-12 2013-10-28 Shimoda Gijutsu Kenkyusho:Kk Grout manufacturing device and method of manufacturing grout
JP2014189622A (en) * 2013-03-27 2014-10-06 Raito Kogyo Co Ltd Manufacturing method and manufacturing facility of silica sol grout
CN105155544A (en) * 2015-08-04 2015-12-16 中铁建大桥工程局集团第五工程有限公司 Grouting construction method for radius-controllable deep holes
CN111119187A (en) * 2020-01-07 2020-05-08 中国地质大学(北京) Fine sand layer high frequency low pressure gas of powder splits formula slip casting device in advance
JP6984834B1 (en) * 2020-12-07 2021-12-22 強化土エンジニヤリング株式会社 Ground injection method
KR102435539B1 (en) * 2022-06-08 2022-08-22 지피이엔씨(주) Manufacturing method of cement-free water blocking grout forming silica-sol phase and grouting method using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191490A (en) * 2008-02-13 2009-08-27 Kyokado Eng Co Ltd Grouting method
JP4701370B2 (en) * 2008-02-13 2011-06-15 強化土エンジニヤリング株式会社 Ground injection method
JP2013221035A (en) * 2012-04-12 2013-10-28 Shimoda Gijutsu Kenkyusho:Kk Grout manufacturing device and method of manufacturing grout
JP2014189622A (en) * 2013-03-27 2014-10-06 Raito Kogyo Co Ltd Manufacturing method and manufacturing facility of silica sol grout
CN105155544A (en) * 2015-08-04 2015-12-16 中铁建大桥工程局集团第五工程有限公司 Grouting construction method for radius-controllable deep holes
CN111119187A (en) * 2020-01-07 2020-05-08 中国地质大学(北京) Fine sand layer high frequency low pressure gas of powder splits formula slip casting device in advance
CN111119187B (en) * 2020-01-07 2020-10-23 中国地质大学(北京) Fine sand layer high frequency low pressure gas of powder splits formula slip casting device in advance
JP6984834B1 (en) * 2020-12-07 2021-12-22 強化土エンジニヤリング株式会社 Ground injection method
JP2022090498A (en) * 2020-12-07 2022-06-17 強化土エンジニヤリング株式会社 Ground injection method
KR102435539B1 (en) * 2022-06-08 2022-08-22 지피이엔씨(주) Manufacturing method of cement-free water blocking grout forming silica-sol phase and grouting method using the same

Similar Documents

Publication Publication Date Title
EP0273445B1 (en) Chemical grout for ground injection and method for accretion
KR102435537B1 (en) Eco-friendly grout manufacturing method forming silica-sol phase and grouting method using the same
JP2004027023A (en) Water glass grouting material and manufacturing method, grouting method and apparatus
JP4955123B2 (en) Ground injection material and ground injection method
JP5015193B2 (en) Ground injection material and ground injection method
JPH11349363A (en) Corrosion inhibitor-containing cement for injection
JP4780803B2 (en) Ground improvement method
JP2021038371A (en) Grouting material and soil improvement method using the same
JP3072346B2 (en) Ground injection material
JP5017620B1 (en) Ground improvement method, silica grout and its raw materials
JP6497990B2 (en) Liquid admixture for ground stabilization, ground stabilization material, and ground stabilization method using the same
JP6712828B1 (en) Ground injection material and ground injection method
WO2021161868A1 (en) Soil improvement method
WO2020036087A1 (en) Grouting material and method of grouting using same
JP3216878B2 (en) Grout material for ground injection
JP4948661B2 (en) Ground improvement method
JP2003119465A (en) Liquefaction-preventing grouting chemical liquid
JPH07206495A (en) Cement admixture for grouting method and its grouting method
JP2020070559A (en) Ground injection material and ground improvement method
JP4757428B2 (en) Alkaline silica for solidification of ground, apparatus for producing the same, and ground consolidation material
TWI375742B (en)
JP2004196922A (en) Alkaline silica for ground hardening, apparatus for producing the same and ground hardening material
JP3095431B2 (en) Hardener composition for preparing ground injection chemical, method of preparing ground injection, and method of injecting chemical into ground
JPS629155B2 (en)
JP4094285B2 (en) Silicate-based soil stabilization chemicals

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107