JP2015112990A - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP2015112990A
JP2015112990A JP2013256020A JP2013256020A JP2015112990A JP 2015112990 A JP2015112990 A JP 2015112990A JP 2013256020 A JP2013256020 A JP 2013256020A JP 2013256020 A JP2013256020 A JP 2013256020A JP 2015112990 A JP2015112990 A JP 2015112990A
Authority
JP
Japan
Prior art keywords
voltage
limit value
upper limit
charging power
regenerative current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013256020A
Other languages
Japanese (ja)
Inventor
貴也 相馬
Takaya Soma
貴也 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013256020A priority Critical patent/JP2015112990A/en
Priority to PCT/JP2014/005418 priority patent/WO2015087479A1/en
Publication of JP2015112990A publication Critical patent/JP2015112990A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid vehicle capable of recovering an increased regenerative current and protecting a switching element of a step-up converter when the regenerative current is increased.SOLUTION: A control apparatus 500 sets a power charge limit value Win of a battery 150 and an upper limit value of a voltage VH of a drive voltage system. When a detected regenerative current IB reaches or exceeds a first threshold, the control apparatus 500 decreases the voltage VH of the drive voltage system proportionately with time and increases the power charge limit value Win proportionately with time.

Description

本発明は、ハイブリッド車両に関する。   The present invention relates to a hybrid vehicle.

特開2012−239332号公報(特許文献1)には、昇圧コンバータのスイッチング素子の保護を図るために、昇圧コンバータのリアクトルに流れる電流が大きいほど低くなる傾向の上限電圧を設定することが記載されている。   Japanese Patent Laid-Open No. 2012-239332 (Patent Document 1) describes setting an upper limit voltage that tends to decrease as the current flowing through the reactor of the boost converter increases in order to protect the switching element of the boost converter. ing.

特開2012−239332号公報JP 2012-239332 A

しかしながら、上記の特許文献1に記載の技術では、リアクトルに流れる回生電流が増加したときに、昇圧コンバータの上限電圧の低減が追いつかない場合に、昇圧コンバータのスイッチング素子を保護しきれない。   However, with the technique described in Patent Document 1 described above, when the regenerative current flowing through the reactor increases, if the reduction of the upper limit voltage of the boost converter cannot catch up, the switching element of the boost converter cannot be protected.

それゆえに、本発明の目的は、回生電流が増加したときに、増加した回生電流を回収でき、かつ昇圧コンバータのスイッチング素子を保護することができるハイブリッド車両を提供することである。   Therefore, an object of the present invention is to provide a hybrid vehicle that can recover the increased regenerative current and protect the switching element of the boost converter when the regenerative current increases.

本発明のハイブリッド車両は、蓄電装置と、電動機と、蓄電装置の電圧を昇圧して電動機が接続された駆動電圧系に供給することが可能であり、かつ駆動電圧系の電圧を降圧して蓄電装置に蓄電することが可能なコンバータと、回生制動時の回生電流の大きさを検出するセンサと、蓄電装置の充電電力制限値および駆動電圧系の電圧の上限値を設定する制御部とを備える。制御部は、検出された回生電流が第1の閾値以上となったときに、駆動電圧系の電圧の上限値を時間とともに減少させ、かつ充電電力制限値を時間ととともに増加させる。   The hybrid vehicle of the present invention is capable of boosting the voltage of the power storage device, the electric motor, and the power storage device to supply to the drive voltage system to which the motor is connected, and storing the voltage by reducing the voltage of the drive voltage system. A converter capable of storing power in the device, a sensor for detecting the magnitude of the regenerative current during regenerative braking, and a control unit for setting the charging power limit value of the power storage device and the upper limit value of the voltage of the drive voltage system . The control unit decreases the upper limit value of the voltage of the drive voltage system with time and increases the charging power limit value with time when the detected regenerative current becomes equal to or greater than the first threshold value.

これによって、回生電流が増加したときに、回生電流を十分に回収でき、かつコンバータのスイッチング素子を保護できる。   Thereby, when the regenerative current increases, the regenerative current can be sufficiently recovered, and the switching element of the converter can be protected.

好ましくは、制御部は、検出された回生電流が第1の閾値以上となったときに、駆動電圧系の電圧の上限値を第1の所定の変化割合で減少させ、かつ充電電力制限値を第2の所定の変化割合で増加させる。   Preferably, the control unit decreases the upper limit value of the voltage of the drive voltage system at a first predetermined change rate when the detected regenerative current is equal to or higher than the first threshold value, and sets the charging power limit value. Increase at a second predetermined rate of change.

これによって、より簡易な制御によって、回生電力を十分に回収でき、かつコンバータのスイッチング素子を保護できるような駆動電圧系の電圧の上限値と充電電力制限値を設定することができる。   Thereby, the upper limit value of the voltage of the drive voltage system and the charge power limit value that can sufficiently recover the regenerative power and protect the switching element of the converter can be set by simpler control.

好ましくは、制御部は、駆動電圧系の電圧の上限値が小さくなるほど、充電電力制限値が大きくなるような、駆動電圧系の電圧の上限値と充電電力制限値との対応関係を定めたマップを有する。制御部は、回生電流が第1の閾値以上となったときに、駆動電圧系の電圧の上限値を第1の所定の変化割合で減少させ、かつマップに従って充電電力制限値を設定する。   Preferably, the control unit defines a correspondence relationship between the upper limit value of the driving voltage system voltage and the charging power limit value such that the charging power limit value increases as the upper limit value of the driving voltage system voltage decreases. Have When the regenerative current becomes equal to or greater than the first threshold, the control unit decreases the upper limit value of the voltage of the drive voltage system at the first predetermined change rate, and sets the charging power limit value according to the map.

これによって、駆動電圧系の電圧の上限値の変化に追随させて、充電電力制限値を設定することができる。   Accordingly, the charging power limit value can be set in accordance with the change in the upper limit value of the voltage of the drive voltage system.

好ましくは、マップにおいて、駆動電圧系の電圧の上限値の第1の電圧から第2の電圧までの減少に対して、充電電力制限値が第1の電力から第2の電力まで線形に増加するように定められる。制御部は、回生電流が第1の閾値未満では、駆動電圧系の電圧の上限値を第1の電圧に設定し、かつマップに従って充電電力制限値を第1の電力に設定する。制御部は、回生電流が第1の閾値以上となったときに、駆動電圧系の電圧の上限値を第1の電圧から第2の電圧まで第1の所定の変化割合で減少させ、かつマップに従って、充電電力制限値を設定する。   Preferably, in the map, the charging power limit value increases linearly from the first power to the second power as the upper limit value of the voltage of the driving voltage system decreases from the first voltage to the second voltage. It is determined as follows. When the regenerative current is less than the first threshold, the control unit sets the upper limit value of the voltage of the drive voltage system to the first voltage, and sets the charging power limit value to the first power according to the map. The control unit decreases the upper limit value of the voltage of the driving voltage system from the first voltage to the second voltage at a first predetermined change rate when the regenerative current becomes equal to or higher than the first threshold, and maps To set the charging power limit value.

これによって、マップによって、回生電力を十分に回収でき、かつコンバータのスイッチング素子を保護できるように、駆動電圧系の電圧の上限値と充電電力制限値の対応関係を定めることができる。   Thus, the correspondence between the upper limit value of the voltage of the drive voltage system and the charge power limit value can be determined by the map so that the regenerative power can be sufficiently collected and the switching element of the converter can be protected.

好ましくは、制御部は、回生電流が第2の閾値以下となったときに、駆動電圧系の電圧の上限値を第2の電圧から第1の電圧まで第3の所定の変化割合で増加させ、かつマップに従って充電電力制限値を設定する。   Preferably, the control unit increases the upper limit value of the voltage of the drive voltage system from the second voltage to the first voltage at a third predetermined change rate when the regenerative current becomes equal to or less than the second threshold value. And the charging power limit value is set according to the map.

回生電流が減少したときに、充電電力制限値を減少させることができるので、駆動電圧系の電圧の上限値を増加しても、コンバータのスイッチング素子を保護できる。駆動電圧系の電圧の上限値を増加することによって、大きな車両要求パワーに対応することができる。   When the regenerative current decreases, the charge power limit value can be reduced, so that the switching element of the converter can be protected even if the upper limit value of the voltage of the drive voltage system is increased. By increasing the upper limit value of the voltage of the drive voltage system, it is possible to cope with a large vehicle required power.

本発明によれば、回生電流の増大に対して、昇圧コンバータの上限電圧の低減が追いつかなくなるのを防止できる。   According to the present invention, it is possible to prevent the decrease in the upper limit voltage of the boost converter from catching up with the increase in the regenerative current.

本発明の実施の形態による電動車両の代表例として示されるハイブリッド車両の構成例を説明するためのブロック図である。It is a block diagram for explaining a configuration example of a hybrid vehicle shown as a representative example of an electric vehicle according to an embodiment of the present invention. 図1に示したハイブリッド車両の電気システムの構成例を説明する回路図である。It is a circuit diagram explaining the structural example of the electric system of the hybrid vehicle shown in FIG. 参考例1のシステム電圧VHの上限値と充電電力制限値Winの設定例を表わす図である。It is a figure showing the example of a setting of the upper limit of the system voltage VH of reference example 1, and the charging power limit value Win. 参考例2のシステム電圧VHの上限値と充電電力制限値Winの設定例を表わす図である。It is a figure showing the example of a setting of the upper limit of the system voltage VH of reference example 2, and the charging power limit value Win. 本実施の形態のシステム電圧VHの上限値に対応する充電電力制限値Winの対応マップを説明するための図である。It is a figure for demonstrating the correspondence map of the charging power limiting value Win corresponding to the upper limit of the system voltage VH of this Embodiment. 本実施の形態のシステム電圧VHの上限値と充電電力制限値Winの設定例を表わす図である。It is a figure showing the example of a setting of the upper limit of the system voltage VH of this Embodiment, and the charging power limit value Win. 本発明の実施形態のシステム電圧VHの上限値と充電電力制限値Winの設定手順を表わすフローチャートである。It is a flowchart showing the setting procedure of the upper limit of the system voltage VH and charging power limit value Win of embodiment of this invention.

以下、本発明の実施の形態について図面を用いて説明する。
図1は、本発明の実施の形態による電動車両の代表例として示されるハイブリッド車両の構成例を説明するためのブロック図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram for explaining a configuration example of a hybrid vehicle shown as a representative example of an electric vehicle according to an embodiment of the present invention.

図1を参照して、ハイブリッド車両は、「内燃機関」に対応するエンジン100と、第1MG(Motor Generator)110と、第2MG120と、動力分割機構130と、減速機140と、バッテリ150と、駆動輪160と、制御装置500とを備える。   Referring to FIG. 1, the hybrid vehicle includes an engine 100 corresponding to an “internal combustion engine”, a first MG (Motor Generator) 110, a second MG 120, a power split mechanism 130, a speed reducer 140, a battery 150, Drive wheel 160 and control device 500 are provided.

ハイブリッド車両は、エンジン100および第2MG120のうちの少なくともいずれか一方からの駆動力により走行する。エンジン100、第1MG110および第2MG120は、動力分割機構130を介して連結されている。   The hybrid vehicle travels by driving force from at least one of engine 100 and second MG 120. Engine 100, first MG 110, and second MG 120 are connected via power split mechanism 130.

動力分割機構130は、代表的には、遊星歯車機構として構成される。動力分割機構130は、外歯歯車のサンギヤ131と、このサンギヤ131と同心円上に配置された内歯歯車のリングギヤ132と、サンギヤ131に噛合するとともにリングギヤ132に噛合する複数のピニオンギヤ133と、キャリア134とを含む。キャリア134は、複数のピニオンギヤ133を自転かつ公転自在に保持するように構成される。   The power split mechanism 130 is typically configured as a planetary gear mechanism. The power split mechanism 130 includes an external gear sun gear 131, an internal gear ring gear 132 arranged concentrically with the sun gear 131, a plurality of pinion gears 133 that mesh with the sun gear 131 and mesh with the ring gear 132, and a carrier 134. The carrier 134 is configured to hold a plurality of pinion gears 133 so as to rotate and revolve freely.

動力分割機構130によって、エンジン100が発生する動力は、2経路に分割される。一方は減速機140を介して駆動輪160を駆動する経路である。もう一方は、第1MG110を駆動させて発電する経路である。   The power split mechanism 130 splits the power generated by the engine 100 into two paths. One is a path for driving the drive wheels 160 via the speed reducer 140. The other is a path for driving the first MG 110 to generate power.

第1MG110および第2MG120は、代表的には、永久磁石モータによって構成された、三相交流回転電機である。   The first MG 110 and the second MG 120 are typically three-phase AC rotating electric machines configured by permanent magnet motors.

第1MG110は、主に「発電機」として動作して、動力分割機構130により分割されたエンジン100からの駆動力により発電することができる。第1MG110により発電された電力は、車両の走行状態や、バッテリ150のSOC(State Of Charge)の状態に応じて使い分けられる。その後、この電力は、後述するコンバータにより電圧が調整されてバッテリ150に蓄えられる。なお、第1MG110は、エンジン始動時にエンジン100をモータリングする場合等には、トルク制御の結果として電動機として動作することも可能である。   First MG 110 mainly operates as a “generator” and can generate electric power by the driving force from engine 100 divided by power split device 130. The electric power generated by first MG 110 is selectively used according to the running state of the vehicle and the state of charge (SOC) of battery 150. Thereafter, the electric power is adjusted in voltage by a converter described later and stored in the battery 150. First MG 110 can also operate as an electric motor as a result of torque control, for example, when motoring engine 100 at the time of engine start.

第2MG120は、主に「電動機」として動作して、バッテリ150に蓄えられた電力および第1MG110により発電された電力のうちの少なくともいずれかの電力により駆動する。第2MG120が発生する動力は、駆動軸135へ伝達され、さらに減速機140を介して駆動輪160に伝達される。これにより、第2MG120は、エンジン100をアシストしたり、第2MG120からの駆動力により車両を走行させたりする。   Second MG 120 mainly operates as an “electric motor” and is driven by at least one of the electric power stored in battery 150 and the electric power generated by first MG 110. The power generated by the second MG 120 is transmitted to the drive shaft 135 and further transmitted to the drive wheel 160 via the speed reducer 140. Thereby, second MG 120 assists engine 100 or causes the vehicle to travel by the driving force from second MG 120.

ハイブリッド車両の回生制動時には、減速機140を介して駆動輪160により第2MG120が駆動される。この場合には、第2MG120は発電機として動作する。これにより、第2MG120は、制動エネルギを電力に変換する回生ブレーキとして機能する。このとき、第2MG120によって発電された回生電力は、インバータ220、コンバータ200を経て、バッテリ150に充電される。ハイブリッド車両の回生制動は、フットブレーキ操作があった場合、およびアクセルペダルをオフした場合に行なわれる。   During regenerative braking of the hybrid vehicle, second MG 120 is driven by drive wheels 160 via reduction gear 140. In this case, the second MG 120 operates as a generator. Thus, second MG 120 functions as a regenerative brake that converts braking energy into electric power. At this time, the regenerative power generated by the second MG 120 is charged to the battery 150 via the inverter 220 and the converter 200. The regenerative braking of the hybrid vehicle is performed when a foot brake operation is performed and when the accelerator pedal is turned off.

バッテリ150は、複数のバッテリセルを一体化したバッテリモジュールを、さらに複数直列に接続して構成された組電池である。バッテリ150の電圧は、たとえば200V程度である。バッテリ150は、第1MG110もしくは第2MG120により発電された電力によって充電することができる。バッテリ150の温度・電圧・電流は、電池センサ152により検出される。電池センサ152は、温度センサ、電圧センサ、電流センサを包括的に標記するものである。回生制動時に、バッテリ150に流れる電流(以下、回生電流)IBは、電池センサ152によって検出される。   The battery 150 is an assembled battery configured by connecting a plurality of battery modules in which a plurality of battery cells are integrated in series. The voltage of the battery 150 is about 200V, for example. Battery 150 can be charged with the electric power generated by first MG 110 or second MG 120. The temperature, voltage, and current of the battery 150 are detected by the battery sensor 152. The battery sensor 152 comprehensively indicates a temperature sensor, a voltage sensor, and a current sensor. During regenerative braking, a current (hereinafter referred to as regenerative current) IB flowing through the battery 150 is detected by the battery sensor 152.

制御装置500は、図示しないCPU(Central Processing Unit)およびメモリを内蔵して構成され、当該メモリに記憶されたマップおよびプログラムに従うソフトウェア処理によって、各センサによる検出値に基づく演算処理を実行するように構成される。あるいは、制御装置500の少なくとも一部は、専用の電子回路等によるハードウェア処理によって、所定の数値演算処理および/または論理演算処理を実行するように構成されてもよい。   The control device 500 is configured to include a CPU (Central Processing Unit) and a memory (not shown), and executes a calculation process based on a detection value by each sensor by a software process according to a map and a program stored in the memory. Composed. Alternatively, at least a part of the control device 500 may be configured to execute predetermined numerical operation processing and / or logical operation processing by hardware processing using a dedicated electronic circuit or the like.

エンジン100は、制御装置500からの動作指令値に従って制御される。第1MG110、第2MG120、コンバータ200、インバータ210,220は、制御装置500によって制御される。   Engine 100 is controlled in accordance with an operation command value from control device 500. First MG 110, second MG 120, converter 200, and inverters 210 and 220 are controlled by control device 500.

図2は、図1に示したハイブリッド車両の電気システムの構成例を説明する回路図である。   FIG. 2 is a circuit diagram illustrating a configuration example of the electric system of the hybrid vehicle illustrated in FIG.

図2を参照して、ハイブリッド車両の電気システムには、コンバータ200と、第1MG110に対応するインバータ210と、第2MG120に対応するインバータ220と、SMR(System Main Relay)230と、コンデンサC1,C2とが設けられる。   Referring to FIG. 2, the electric system of the hybrid vehicle includes a converter 200, an inverter 210 corresponding to the first MG 110, an inverter 220 corresponding to the second MG 120, an SMR (System Main Relay) 230, and capacitors C1, C2. And are provided.

コンバータ200は、直列接続された2個の電力用半導体スイッチング素子Q1,Q2(以下、単に「スイッチング素子」とも称する)と、各スイッチング素子Q1,Q2に対応して設けられたダイオードD1,D2と、リアクトルLを含む。   Converter 200 includes two power semiconductor switching elements Q1 and Q2 (hereinafter also simply referred to as “switching elements”) connected in series, and diodes D1 and D2 provided corresponding to the switching elements Q1 and Q2, respectively. , Including reactor L.

スイッチング素子Q1,Q2は、正極線PL2とバッテリ150の負極に接続される接地線GLとの間に直列に接続される。スイッチング素子Q1のコレクタは正極線PL2に接続され、スイッチング素子Q2のエミッタは接地線GLに接続される。ダイオードD1,D2は、それぞれスイッチング素子Q1,Q2に逆並列に接続される。そして、スイッチング素子Q1およびダイオードD1は、コンバータ200の上アームを構成し、スイッチング素子Q2およびダイオードD2は、コンバータ200の下アームを構成する。   Switching elements Q1, Q2 are connected in series between positive electrode line PL2 and ground line GL connected to the negative electrode of battery 150. Switching element Q1 has a collector connected to positive line PL2, and switching element Q2 has an emitter connected to ground line GL. Diodes D1 and D2 are connected in antiparallel to switching elements Q1 and Q2, respectively. Switching element Q1 and diode D1 constitute the upper arm of converter 200, and switching element Q2 and diode D2 constitute the lower arm of converter 200.

電力用半導体スイッチング素子Q1,Q2としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタ、電力用バイポーラトランジスタ等を適宜採用することができる。各スイッチング素子Q1,Q2のオン/オフは、制御装置500からのスイッチング制御信号によって制御される。   As the power semiconductor switching elements Q1 and Q2, an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor) transistor, a power bipolar transistor, or the like can be appropriately employed. On / off of each switching element Q1, Q2 is controlled by a switching control signal from control device 500.

リアクトルLの一方端は、バッテリ150の正極に接続される正極線PL1に接続され、他方端は、スイッチング素子Q1,Q2の接続ノード、すなわち、スイッチング素子Q1のエミッタとスイッチング素子Q2のコレクタとの接続点に接続される。   Reactor L has one end connected to positive line PL1 connected to the positive electrode of battery 150, and the other end connected to a connection node of switching elements Q1, Q2, that is, an emitter of switching element Q1 and a collector of switching element Q2. Connected to the connection point.

コンデンサC2は、正極線PL2と接地線GLとの間に接続される。コンデンサC2は
、正極線PL2および接地線GL間の電圧変動の交流成分を平滑化する。コンデンサC1は、正極線PL1と接地線GLとの間に接続される。コンデンサC1は、正極線PL1および接地線GL間の電圧変動の交流成分を平滑化する。
Capacitor C2 is connected between positive electrode line PL2 and ground line GL. Capacitor C2 smoothes the AC component of the voltage fluctuation between positive line PL2 and ground line GL. Capacitor C1 is connected between positive electrode line PL1 and ground line GL. Capacitor C1 smoothes the AC component of voltage fluctuation between positive line PL1 and ground line GL.

電圧センサ180は、コンバータ200の出力電圧であるコンデンサC2の端子間電圧、すなわち正極線PL2と接地線GLとの間の電圧VH(システム電圧または駆動電圧系の電圧)を検出し、その検出値を制御装置500へ出力する。   Voltage sensor 180 detects a voltage between terminals of capacitor C2, which is an output voltage of converter 200, that is, voltage VH (system voltage or drive voltage system voltage) between positive line PL2 and ground line GL, and the detected value. Is output to the control device 500.

コンバータ200と、インバータ210およびインバータ220とは、正極線PL2および接地線GLを介して、互いに電気的に接続される。   Converter 200, inverter 210 and inverter 220 are electrically connected to each other via positive line PL2 and ground line GL.

コンバータ200は、昇圧動作時には、バッテリ150から供給された直流電圧(コンデンサC1の両端の電圧、または電池電圧系の電圧)を昇圧し、昇圧されたシステム電圧VHをインバータ210,220へ供給する。より具体的には、制御装置500からのスイッチング制御信号に応答して、スイッチング素子Q1のオン期間およびQ2のオン期間が交互に設けられ、昇圧比は、これらのオン期間の比に応じたものとなる。   Converter 200 boosts the DC voltage supplied from battery 150 (the voltage across capacitor C1 or the voltage of the battery voltage system) during boosting operation, and supplies the boosted system voltage VH to inverters 210 and 220. More specifically, in response to a switching control signal from control device 500, an ON period of switching element Q1 and an ON period of Q2 are alternately provided, and the step-up ratio corresponds to the ratio of these ON periods. It becomes.

コンバータ200は、降圧動作時には、コンデンサC2を介してインバータ210,220から供給されたシステム電圧VHを降圧してバッテリ150を充電する。より具体的には、制御装置500からのスイッチング制御信号に応答して、スイッチング素子Q1のみがオンする期間と、スイッチング素子Q1,Q2の両方がオフする期間とが交互に設けられ、降圧比は上記オン期間のデューティ比に応じたものとなる。   During the step-down operation, converter 200 steps down system voltage VH supplied from inverters 210 and 220 via capacitor C2 and charges battery 150. More specifically, in response to a switching control signal from control device 500, a period in which only switching element Q1 is turned on and a period in which both switching elements Q1, Q2 are turned off are alternately provided, and the step-down ratio is This is in accordance with the duty ratio of the ON period.

インバータ210は、一般的な三相インバータで構成され、U相アーム15と、V相アーム16と、W相アーム17とから成る。アーム15〜17は、スイッチング素子Q3〜Q8と、逆並列ダイオードD3〜D8とを含む。   Inverter 210 is formed of a general three-phase inverter, and includes U-phase arm 15, V-phase arm 16, and W-phase arm 17. Arms 15-17 include switching elements Q3-Q8 and antiparallel diodes D3-D8.

インバータ210は、車両走行時には、車両走行に要求される駆動力(車両駆動トルク、発電トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従って第1MG110が動作するように、第1MG110の各相コイルの電流または電圧を制御する。すなわち、インバータ210は、正極線PL2および第1MG110の間で双方向のDC/AC電力変換を実行する。   Inverter 210 operates when first MG 110 operates according to an operation command value (typically torque command value) set to generate a driving force (vehicle driving torque, power generation torque, etc.) required for vehicle traveling. As described above, the current or voltage of each phase coil of the first MG 110 is controlled. That is, inverter 210 performs bidirectional DC / AC power conversion between positive electrode line PL2 and first MG 110.

インバータ220は、インバータ210と同様に、一般的な三相インバータで構成される。インバータ220は、車両走行時には、車両走行に要求される駆動力(車両駆動トルク、回生制動トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従って第2MG120が動作するように、第2MG120の各相コイルの電流または電圧を制御する。すなわち、インバータ220は、正極線PL2および第2MG120の間で双方向のDC/AC電力変換を実行する。   Inverter 220 is formed of a general three-phase inverter, similarly to inverter 210. When the vehicle is traveling, the inverter 220 sets the second MG 120 according to an operation command value (typically a torque command value) set to generate a driving force (vehicle driving torque, regenerative braking torque, etc.) required for vehicle traveling. The current or voltage of each phase coil of the second MG 120 is controlled so as to operate. In other words, inverter 220 performs bidirectional DC / AC power conversion between positive line PL2 and second MG 120.

制御装置500は、アクセル開度Accおよびハイブリッド車両の車速Vに基づいて、第1MG110のトルク指令値TR1、および第2MG120のトルク指令値TR2を算出する。制御装置500は、第1MG110のトルク指令値TR1、第2MG120のトルク指令値TR2、第1MG110のモータ回転数MRN1,第2MG120のモータ回転数MRN2に基づいて、コンバータ200の出力電圧(システム電圧)VHを設定する。   Control device 500 calculates torque command value TR1 of first MG 110 and torque command value TR2 of second MG 120 based on accelerator opening Acc and vehicle speed V of the hybrid vehicle. Based on torque command value TR1 of first MG 110, torque command value TR2 of second MG 120, motor rotational speed MRN1 of first MG 110, and motor rotational speed MRN2 of second MG 120, control device 500 outputs an output voltage (system voltage) VH of converter 200. Set.

回生制動時には、コンバータ200に流れる電流は、上アーム側のスイッチング素子Q1と、下アーム側のダイオードD2に流れる。ダイオードD2は、温度上昇に対して自己保持機能を有さない。回生電流IBの大きさが大きいときに、ダイオードD2に流れる電流が大きくなるので、ダイオードD2が破壊されることがある。また、システム電圧VHが大きいときにも、ダイオードD2の通電時間が長くなるので、ダイオードD2が破壊されることがある。本実施の形態では、回生電流IBの大きさ、システム電圧VHの大きさを制限することによって、ダイオードD2の破壊を防止する。   During regenerative braking, the current flowing through the converter 200 flows through the switching element Q1 on the upper arm side and the diode D2 on the lower arm side. The diode D2 does not have a self-holding function with respect to the temperature rise. When the magnitude of the regenerative current IB is large, the current flowing through the diode D2 increases, and thus the diode D2 may be destroyed. Further, even when the system voltage VH is high, the energization time of the diode D2 becomes long, so that the diode D2 may be destroyed. In the present embodiment, the diode D2 is prevented from being destroyed by limiting the regenerative current IB and the system voltage VH.

制御装置500は、システム電圧VHの上限値を設定する。制御装置500は、システム電圧VHの上限値以下の範囲で、システム電圧VHを設定する。また、制御装置500は、バッテリ150の充電電力の制限値を示す充電電力制限値Winを設定する。したがって、回生制動時に、回生電流IBの大きさは、充電電力制限値Winによって制限される。   Control device 500 sets an upper limit value of system voltage VH. Control device 500 sets system voltage VH within a range equal to or lower than the upper limit value of system voltage VH. In addition, control device 500 sets charging power limit value Win indicating a limit value of charging power of battery 150. Therefore, at the time of regenerative braking, the magnitude of the regenerative current IB is limited by the charging power limit value Win.

次に、図3および図4を用いて、参考例としての充電電力制限値Winの設定およびシステム電圧VHの設定例について説明する。   Next, a setting example of the charging power limit value Win and a setting value of the system voltage VH as reference examples will be described with reference to FIGS.

なお、以下の説明では、バッテリ150が放電するときの電流(放電電流)の符号を正とし、バッテリ150を充電するときの電流(回生電流、充電電流)の符号を負とする。また、充電電力制限値Winの符号は負である。回生電流IBが大きいとは、回生電流IBの絶対値が大きいことを意味し、充電電力制限値Winが大きいとは、充電電力制限値Winの絶対値が大きいことを意味する。   In the following description, the sign of current (discharge current) when battery 150 is discharged is positive, and the sign of current (regenerative current and charge current) when battery 150 is charged is negative. Further, the sign of the charging power limit value Win is negative. A large regenerative current IB means that the absolute value of the regenerative current IB is large, and a large charge power limit value Win means that the absolute value of the charge power limit value Win is large.

(参考例1)
図3に示すように、初期設定時に、制御装置は、回生電流の回収を考慮して、充電電力制限値Winを比較的大きめの値(−29kw)に設定し、大きな車両要求パワーに対応するために、システム電圧VHの上限値VHを最大値(600V)に設定する。
(Reference Example 1)
As shown in FIG. 3, at the time of initial setting, the control device sets the charging power limit value Win to a relatively large value (−29 kW) in consideration of recovery of the regenerative current, and corresponds to a large vehicle required power. Therefore, the upper limit value VH of the system voltage VH is set to the maximum value (600V).

ブレーキ操作によって回生される回生電流IBが一定の変化割合で増加する。ブレーキ操作によって回生される回生電流IBが閾値TH1に達したときに、ダイオードD2を保護するために、制御装置は、システム電圧VHの上限値を600Vから450Vまで所定の変化割合で減少させる。システム電圧VHを600Vから450まで急激に変化させると、制御に支障が生じるためである。   The regenerative current IB regenerated by the brake operation increases at a constant change rate. When the regenerative current IB regenerated by the brake operation reaches the threshold value TH1, the control device decreases the upper limit value of the system voltage VH from 600V to 450V at a predetermined change rate in order to protect the diode D2. This is because if the system voltage VH is suddenly changed from 600 V to 450, control is hindered.

一方、充電電力制限値Winが比較的大きめの値(−29kw)に設定されているため、回生電流IBは、充電電力制限値Winの制限を受けずに、一定の変化割合で増加し続ける。   On the other hand, since the charging power limit value Win is set to a relatively large value (−29 kw), the regenerative current IB continues to increase at a constant change rate without being limited by the charging power limit value Win.

回生電流IBの増加する速度に対してシステム電圧VHの上限値の減少する速度が小さいため、回生電流IBが大きく、システム電圧VHも大きな状態が発生する。たとえば、回生電流IBが最大値に達した時でもシステム電圧VHの上限値は、550Vまでしか減少していない。このような状態の発生によって、ダイオードD2が破壊されることがある。   Since the rate at which the upper limit value of the system voltage VH decreases with respect to the rate at which the regenerative current IB increases, the regenerative current IB increases and the system voltage VH also increases. For example, even when the regenerative current IB reaches the maximum value, the upper limit value of the system voltage VH is reduced only to 550V. The occurrence of such a state may destroy the diode D2.

(参考例2)
図4に示すように、初期設定時に、制御装置は、ダイオードD2の保護を考慮して、充電電力制限値Winを比較的低めの値(−25kw)に設定し、大きな車両要求パワーに対応するために、システム電圧VHの上限値VHを最大値(600V)に設定する。
(Reference Example 2)
As shown in FIG. 4, at the time of initial setting, the control device sets the charging power limit value Win to a relatively low value (−25 kw) in consideration of protection of the diode D <b> 2, and corresponds to a large vehicle required power. Therefore, the upper limit value VH of the system voltage VH is set to the maximum value (600V).

ブレーキ操作によって回生される回生電流IBが一定の変化割合で増加する。ブレーキ操作によって回生される回生電流IBが閾値TH1に達したときに、充電電力制限Winの制限を受けて、回生電流IBがこれ以上増加しない。したがって、この場合は、回生電流IBの大きさが厳しく制限されるので、ダイオードD2を保護できるが、回生電流を十分に回収しきれない。   The regenerative current IB regenerated by the brake operation increases at a constant change rate. When the regenerative current IB regenerated by the brake operation reaches the threshold value TH1, the regenerative current IB does not increase any more due to the limit of the charging power limit Win. Therefore, in this case, since the magnitude of the regenerative current IB is severely limited, the diode D2 can be protected, but the regenerative current cannot be fully recovered.

(本実施の形態の設定例)
次に、図5および図6を用いて、本実施の形態の充電電力制限値Winの設定およびシステム電圧VHの設定例について説明する。
(Setting example of this embodiment)
Next, a setting example of charging power limit value Win and a setting of system voltage VH according to the present embodiment will be described with reference to FIGS. 5 and 6.

本実施の形態では、システム電圧VHの上限値との対応関係を定めた対応マップに基づいて、充電電力制限値Winを設定する。対応マップは、システム電圧VHの上限値に対して、充電電力制限値Winの対応関係を図5に示すような関係で定める。   In the present embodiment, charging power limit value Win is set based on a correspondence map that defines a correspondence relationship with the upper limit value of system voltage VH. The correspondence map defines the correspondence relationship between the charging power limit value Win and the upper limit value of the system voltage VH as shown in FIG.

すなわち、システム電圧VHの上限値が第1の値(600V)から第2の値(450V)までの減少に対して、充電電力制限値Winが第1の電力(−25kw)から第2の電力(−29kw)まで線形に増加するように定められている。この対応マップに従って、システム電圧VHの上限値に対して、充電電力制限値Winを設定することによって、ダイオードD2の破壊が防止できるとともに、回生電流を十分に回収できる。   That is, when the upper limit value of the system voltage VH is decreased from the first value (600V) to the second value (450V), the charging power limit value Win is changed from the first power (−25 kw) to the second power. It is determined to increase linearly up to (−29 kw). By setting charging power limit value Win with respect to the upper limit value of system voltage VH according to this correspondence map, destruction of diode D2 can be prevented and the regenerative current can be sufficiently recovered.

図6に示すように、初期設定時に、制御装置500は、ダイオードD2の保護を考慮して、充電電力制限値Winを比較的低めの値(−25kw)に設定し、大きな車両要求パワーに対応するために、図5に示す対応マップに従って、システム電圧VHの上限値VHを最大値(600V)に設定する。   As shown in FIG. 6, at the time of initial setting, control device 500 sets charging power limit value Win to a relatively low value (−25 kW) in consideration of protection of diode D <b> 2, and responds to a large vehicle required power. Therefore, the upper limit value VH of the system voltage VH is set to the maximum value (600 V) according to the correspondence map shown in FIG.

ブレーキ操作によって回生される回生電流IBが一定の変化割合で増加する。制御装置500は、ブレーキ操作によって回生される回生電流IBが閾値TH1に達したときに、システム電圧VHの上限値を600Vから450Vまで所定の第1の変化割合で減少させる。また、制御装置500は、図5に示す対応マップに従って、回生電流を回収するために充電電力制限値Winを設定することによって、充電電力制限値Winを所定の第2の変化割合で増加させる。   The regenerative current IB regenerated by the brake operation increases at a constant change rate. The control device 500 decreases the upper limit value of the system voltage VH from 600V to 450V at a predetermined first change rate when the regenerative current IB regenerated by the brake operation reaches the threshold value TH1. Further, control device 500 increases charging power limit value Win at a predetermined second change rate by setting charging power limit value Win to recover the regenerative current according to the correspondence map shown in FIG.

回生電流IBが閾値TH1に達した時に、充電電力制限Win(−25kw)の制限がかかるが、充電電力制限値Winを増加させているため、回生電流IBを増加し続けさせることができる。回生電流IBが増加しても、システム電圧VHの上限値を下げているので、回生電流IBが大きく、システム電圧VHも大きな状態が発生しないため、ダイオードD2が破壊されることがない。   When the regenerative current IB reaches the threshold value TH1, the charging power limit Win (−25 kw) is limited. However, since the charging power limit value Win is increased, the regenerative current IB can be continuously increased. Even if the regenerative current IB increases, the upper limit value of the system voltage VH is lowered, so that the regenerative current IB is large and the system voltage VH is not large, so that the diode D2 is not destroyed.

その後、回生電流IBが一定の変化割合で減少する。回生電流IBが閾値TH2に達したときに、システム電圧VHの上限値を450Vから600Vまで所定の第3の変化割合で増加させる。また、制御装置は、図5に示す対応マップに従って、ダイオードD2の保護を考慮して充電電力制限値Winを設定することによって、充電電力制限値Winを所定の第4の変化割合で減少させる。   Thereafter, the regenerative current IB decreases at a constant change rate. When the regenerative current IB reaches the threshold value TH2, the upper limit value of the system voltage VH is increased from 450V to 600V at a predetermined third change rate. Further, the control device sets the charging power limit value Win in consideration of protection of the diode D2 in accordance with the correspondence map shown in FIG. 5, thereby reducing the charging power limit value Win at a predetermined fourth change rate.

(動作フロー)
図7は、本発明の実施形態のシステム電圧VHの上限値と充電電力制限値Winの設定手順を表わすフローチャートである。
(Operation flow)
FIG. 7 is a flowchart showing a procedure for setting the upper limit value of system voltage VH and charging power limit value Win according to the embodiment of the present invention.

ステップST1において、制御装置500は、システム電圧VHの上限値の初期値を最大値である(600V)に設定し、ステップST2において、制御装置500は、充電電力制限値Winを初期値(−25kw)に設定する。   In step ST1, control device 500 sets the initial value of the upper limit value of system voltage VH to the maximum value (600V), and in step ST2, control device 500 sets charging power limit value Win to the initial value (−25 kW). ).

ステップST3において、電池センサ152で検出された回生電流IBが閾値TH1以上まで増加したときには、処理がステップST4に進む。   In step ST3, when the regenerative current IB detected by the battery sensor 152 increases to the threshold value TH1 or more, the process proceeds to step ST4.

ステップST3において、電池センサ152で検出された回生電流IBが閾値TH2以下まで減少したときには、処理がステップST7に進む。   In step ST3, when the regenerative current IB detected by the battery sensor 152 decreases to a threshold value TH2 or less, the process proceeds to step ST7.

ステップST4において、制御装置500は、システム電圧VHの上限値を600Vから450Vまで所定の第1の変化割合で減少させる。これによって、制御装置500は、現在のシステム電圧VHの上限値以下の範囲で、システム電圧VHを設定する。   In step ST4, control device 500 decreases the upper limit value of system voltage VH from 600V to 450V at a predetermined first change rate. Thereby, control device 500 sets system voltage VH within a range equal to or lower than the upper limit value of current system voltage VH.

さらに、ステップST5において、制御装置500は、図5に示す対応マップに従って、システム電圧VHの上限値に対応して充電電力制限値Winを設定することによって、充電電力制限値Winを所定の第2の変化割合で増加させる。   Further, in step ST5, control device 500 sets charging power limit value Win to a predetermined second value by setting charging power limit value Win corresponding to the upper limit value of system voltage VH according to the correspondence map shown in FIG. Increase the rate of change.

ステップST7において、制御装置500は、システム電圧VHの上限値を450Vから600Vまで所定の第3の変化割合で増加させる。これによって、制御装置500は、現在のシステム電圧VHの上限値以下の範囲で、システム電圧VHを設定する。   In step ST7, control device 500 increases the upper limit value of system voltage VH from 450V to 600V at a predetermined third change rate. Thereby, control device 500 sets system voltage VH within a range equal to or lower than the upper limit value of current system voltage VH.

さらに、ステップST7において、制御装置500は、図5に示す対応マップに従って、システム電圧VHの上限値に対応して充電電力制限値Winを設定することによって、充電電力制限値Winを所定の第4の変化割合で減少させる。   Further, in step ST7, control device 500 sets charging power limit value Win to a predetermined fourth value by setting charging power limit value Win corresponding to the upper limit value of system voltage VH according to the correspondence map shown in FIG. Decrease at the rate of change.

以上のように、本実施の形態によれば、システム電圧VHを減少させるときには、充電電力制限値Winを増加させ、システム電圧VHを増加させるときには、充電電力制限値Winを増加させるので、ダイオードを保護し、かつ回生電流を回収できる。   As described above, according to the present embodiment, when the system voltage VH is decreased, the charging power limit value Win is increased, and when the system voltage VH is increased, the charging power limit value Win is increased. It can protect and recover the regenerative current.

なお、本実施の形態では、制御装置は、回生電流が閾値以上となった場合に、システム電圧VHの上限値を所定の第1の変化割合で減少させ、対応マップに従って、システム電圧VHの上限値に対応する充電電力制限値Winを設定したが、これに限定するものではない。   In the present embodiment, the control device decreases the upper limit value of the system voltage VH at a predetermined first change rate when the regenerative current becomes equal to or greater than the threshold, and according to the correspondence map, the upper limit value of the system voltage VH. Although the charging power limit value Win corresponding to the value is set, the present invention is not limited to this.

たとえば、制御装置は、回生電流が閾値以上となった場合に、充電電力制限値Winを所定の第2の変化割合で増加させ、対応マップに従って、充電電力制限値Winに対応するシステム電圧VHの上限値を設定することによって、システム電圧VHの上限値を所定の第1の変化割合で減少させることとしてもよい。   For example, when the regenerative current becomes equal to or greater than the threshold, the control device increases the charging power limit value Win at a predetermined second change rate, and the system voltage VH corresponding to the charging power limit value Win is determined according to the correspondence map. By setting the upper limit value, the upper limit value of the system voltage VH may be decreased at a predetermined first change rate.

あるいは、対応マップを用いずに、制御装置は、回生電流が閾値以上となった場合に、システム電圧VHの上限値を所定の第1の変化割合で減少させ、充電電力制限値Winを所定の第2の変化割合で増加させることとしてもよい。所定の第1の変化割合と所定の第2の変化割合は、回生電流を必要な程度回収でき、かつダイオードD2を保護できるように予め設定される。   Alternatively, without using the correspondence map, when the regenerative current becomes equal to or greater than the threshold, the control device decreases the upper limit value of the system voltage VH at a predetermined first change rate and sets the charging power limit value Win to a predetermined value. It is good also as increasing by the 2nd change rate. The predetermined first change rate and the predetermined second change rate are set in advance so that the regenerative current can be recovered to a necessary extent and the diode D2 can be protected.

また、回生電流を必要な程度回収でき、かつダイオードD2を保護できれば、第1の変化割合〜第4の変化割合は一定でなくてもよい。システム電圧VHを600Vから450Vまで変化させる途中、および450Vから600Vまで変化させる途中で変化割合が変化してもよい。充電電力制限値Winが−25kwから−29kwまで変化させる途中、および充電電力制限値Winが−29kwから−25kwまで変化させる途中で変化割合が変化してもよい。   In addition, the first change rate to the fourth change rate may not be constant as long as the regenerative current can be recovered to a necessary extent and the diode D2 can be protected. The rate of change may change during the change of system voltage VH from 600 V to 450 V and during the change from 450 V to 600 V. The rate of change may change while the charging power limit value Win is changed from −25 kw to −29 kw, and while the charging power limit value Win is changed from −29 kw to −25 kw.

また、本実施の形態では、制御装置は、回生電流が閾値以上となった場合に、システム電圧VHの上限値が450Vまで減少するタイミングと、充電電力制限値Winが−29kwまで増加するタイミングが同一であったが、これに限定するものではない。   In the present embodiment, when the regenerative current is equal to or greater than the threshold, the control device has a timing when the upper limit value of the system voltage VH decreases to 450 V and a timing when the charging power limit value Win increases to -29 kW. Although it was the same, it is not limited to this.

回生電流を必要な程度回収でき、かつダイオードD2を保護できれば、システム電圧VHの上限値が450Vまで減少するタイミングと、充電電力制限値Winが−29kwまで増加するタイミングのいずれかが早くてもよい。   If the regenerative current can be recovered to a necessary extent and the diode D2 can be protected, either the timing when the upper limit value of the system voltage VH decreases to 450V or the timing when the charging power limit value Win increases to -29 kW may be earlier. .

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

100 エンジン、102 クランクシャフト、110 第1MG、120 第2MG、130 動力分割機構、131 サンギヤ、132 リングギヤ、133 ピニオンギヤ、134 キャリア、135 リングギヤ軸(駆動軸)、140 減速機、150 バッテリ、152 電池センサ、160 駆動輪、180 電圧センサ、200 コンバータ、210,220 インバータ、230 SMR、500 制御装置、PL1,PL2 正極線、GL 接地線、Q1〜Q8 スイッチング素子、D1〜D8 ダイオード、C1,C2 コンデンサ、L リアクトル。   100 Engine, 102 Crankshaft, 110 1st MG, 120 2nd MG, 130 Power split mechanism, 131 Sun gear, 132 Ring gear, 133 Pinion gear, 134 Carrier, 135 Ring gear shaft (drive shaft), 140 Reducer, 150 Battery, 152 Battery sensor , 160 drive wheel, 180 voltage sensor, 200 converter, 210, 220 inverter, 230 SMR, 500 controller, PL1, PL2 positive line, GL ground line, Q1-Q8 switching element, D1-D8 diode, C1, C2 capacitor, L reactor.

Claims (5)

蓄電装置と、
電動機と、
前記蓄電装置の電圧を昇圧して前記電動機が接続された駆動電圧系に供給することが可能であり、かつ前記駆動電圧系の電圧を降圧して前記蓄電装置に蓄電することが可能なコンバータと、
回生制動時の回生電流の大きさを検出するセンサと、
前記蓄電装置の充電電力制限値および前記駆動電圧系の電圧の上限値を設定する制御部とを備え、
前記制御部は、前記検出された回生電流が第1の閾値以上となったときに、前記駆動電圧系の電圧の上限値を時間とともに減少させ、かつ前記充電電力制限値を時間ととともに増加させる、ハイブリッド車両。
A power storage device;
An electric motor,
A converter capable of boosting the voltage of the power storage device and supplying the boosted voltage to a drive voltage system connected to the electric motor, and stepping down the voltage of the drive voltage system and storing the voltage in the power storage device; ,
A sensor for detecting the magnitude of the regenerative current during regenerative braking;
A control unit for setting a charging power limit value of the power storage device and an upper limit value of the voltage of the drive voltage system,
The control unit decreases the upper limit value of the voltage of the drive voltage system with time and increases the charging power limit value with time when the detected regenerative current is equal to or greater than a first threshold value. , Hybrid vehicle.
前記制御部は、前記検出された回生電流が前記第1の閾値以上となったときに、前記駆動電圧系の電圧の上限値を第1の所定の変化割合で減少させ、かつ前記充電電力制限値を第2の所定の変化割合で増加させる、請求項1記載のハイブリッド車両。   The control unit decreases the upper limit value of the voltage of the drive voltage system at a first predetermined change rate when the detected regenerative current is equal to or greater than the first threshold value, and limits the charging power The hybrid vehicle according to claim 1, wherein the value is increased at a second predetermined change rate. 前記制御部は、前記駆動電圧系の電圧の上限値が小さくなるほど、前記充電電力制限値が大きくなるような、前記駆動電圧系の電圧の上限値と前記充電電力制限値との対応関係を定めたマップを有し、
前記制御部は、前記回生電流が前記第1の閾値以上となったときに、前記駆動電圧系の電圧の上限値を前記第1の所定の変化割合で減少させ、かつ前記マップに従って前記充電電力制限値を設定する、請求項2記載のハイブリッド車両。
The control unit determines a correspondence relationship between the upper limit value of the driving voltage system voltage and the charging power limit value such that the charging power limit value increases as the upper limit value of the driving voltage system voltage decreases. Have a map
The control unit decreases the upper limit value of the voltage of the drive voltage system at the first predetermined change rate when the regenerative current becomes equal to or higher than the first threshold, and the charging power according to the map. The hybrid vehicle according to claim 2, wherein a limit value is set.
前記マップにおいて、前記駆動電圧系の電圧の上限値の第1の電圧から第2の電圧までの減少に対して、前記充電電力制限値が第1の電力から第2の電力まで線形に増加するように定められ、
前記制御部は、前記回生電流が前記第1の閾値未満では、前記駆動電圧系の電圧の上限値を前記第1の電圧に設定し、かつ前記マップに従って前記充電電力制限値を前記第1の電力に設定し、
前記制御部は、前記回生電流が前記第1の閾値以上となったときに、前記駆動電圧系の電圧の上限値を前記第1の電圧から前記第2の電圧まで前記第1の所定の変化割合で減少させ、かつ前記マップに従って前記充電電力制限値を設定する、請求項3記載のハイブリッド車両。
In the map, the charging power limit value increases linearly from the first power to the second power as the upper limit value of the voltage of the driving voltage system decreases from the first voltage to the second voltage. Is defined as
The control unit sets an upper limit value of the voltage of the drive voltage system to the first voltage when the regenerative current is less than the first threshold, and sets the charging power limit value according to the map to the first voltage. Set to power,
The control unit sets the upper limit value of the voltage of the drive voltage system from the first voltage to the second voltage when the regenerative current becomes greater than or equal to the first threshold value. The hybrid vehicle according to claim 3, wherein the charging power limit value is set in accordance with the map, and the charging power limit value is set in accordance with the map.
前記制御部は、前記回生電流が第2の閾値以下となったときに、前記駆動電圧系の電圧の上限値を前記第2の電圧から前記第1の電圧まで第3の所定の変化割合で増加させ、かつ前記マップに従って前記充電電力制限値を設定する、請求項4記載のハイブリッド車両。   The control unit sets the upper limit value of the voltage of the drive voltage system at a third predetermined change rate from the second voltage to the first voltage when the regenerative current becomes a second threshold value or less. The hybrid vehicle according to claim 4, wherein the charge power limit value is increased and the charging power limit value is set according to the map.
JP2013256020A 2013-12-11 2013-12-11 Hybrid vehicle Pending JP2015112990A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013256020A JP2015112990A (en) 2013-12-11 2013-12-11 Hybrid vehicle
PCT/JP2014/005418 WO2015087479A1 (en) 2013-12-11 2014-10-27 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256020A JP2015112990A (en) 2013-12-11 2013-12-11 Hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2015112990A true JP2015112990A (en) 2015-06-22

Family

ID=52004018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256020A Pending JP2015112990A (en) 2013-12-11 2013-12-11 Hybrid vehicle

Country Status (2)

Country Link
JP (1) JP2015112990A (en)
WO (1) WO2015087479A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109878494A (en) * 2017-12-05 2019-06-14 丰田自动车株式会社 The control device of hybrid vehicle and Hybrid Vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112150A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Power device and method of controlling the same, and vehicle
JP2010098882A (en) * 2008-10-17 2010-04-30 Toyota Motor Corp Vehicle control system
JP2011183917A (en) * 2010-03-08 2011-09-22 Toyota Motor Corp Hybrid vehicle
JP2012239332A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Drive apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288928B2 (en) * 1996-06-14 2002-06-04 日野自動車株式会社 In-vehicle battery control device
KR20120064068A (en) * 2009-07-03 2012-06-18 오브쉐츠보 에스 오그라니쉐노이 오트베츠베토츄이 '토바리쉐츠보 에네르겟췌스키크 아이 일렉트로모바일닉 프로엑토브' Electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112150A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Power device and method of controlling the same, and vehicle
JP2010098882A (en) * 2008-10-17 2010-04-30 Toyota Motor Corp Vehicle control system
JP2011183917A (en) * 2010-03-08 2011-09-22 Toyota Motor Corp Hybrid vehicle
JP2012239332A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Drive apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109878494A (en) * 2017-12-05 2019-06-14 丰田自动车株式会社 The control device of hybrid vehicle and Hybrid Vehicle
CN109878494B (en) * 2017-12-05 2022-02-18 丰田自动车株式会社 Hybrid vehicle and control device for hybrid vehicle

Also Published As

Publication number Publication date
WO2015087479A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP4737195B2 (en) Load driving device, vehicle, and abnormality processing method in load driving device
JP5029793B2 (en) vehicle
JP4325637B2 (en) Load driving device and vehicle equipped with the same
JP4305553B2 (en) Electric vehicle
JP5892182B2 (en) Vehicle power supply
JP2013207914A (en) Controller of voltage converter
JP2008167616A (en) Controller for load device, and vehicle
JP2011072067A (en) Power supply system for vehicle and electric vehicle equipped with the same
JP2007244124A (en) Power system for vehicle drive
JP6117680B2 (en) Vehicle power supply
JP6252574B2 (en) Hybrid vehicle
JP2013240162A (en) Voltage conversion device
JP5949749B2 (en) Vehicle power supply
JP2014183687A (en) Vehicle
JP2003244801A (en) Voltage converter
JP5928442B2 (en) Vehicle power supply
JP6344345B2 (en) Hybrid vehicle
JP2009060726A (en) Vehicle power supply device and control method therefor
JP2008154371A (en) Drive unit for vehicle, control method for drive unit of vehicle, program for making computer execute control method for drive unit of vehicle, and recording medium having recorded that program computer-readably
JP2007282357A (en) Power system for driving vehicle
JP4948329B2 (en) Motor drive device and control method of motor drive device
JP2015112990A (en) Hybrid vehicle
JP2014059158A (en) Insulation resistance reduction-detecting device, and vehicle having the same
JP2015133862A (en) Vehicular power supply apparatus
JP6274169B2 (en) Motor drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003