JP2015112325A - White blood cell and drug removing method, white blood cell and drug removing filter, and white blood cell and drug removing system - Google Patents

White blood cell and drug removing method, white blood cell and drug removing filter, and white blood cell and drug removing system Download PDF

Info

Publication number
JP2015112325A
JP2015112325A JP2013257134A JP2013257134A JP2015112325A JP 2015112325 A JP2015112325 A JP 2015112325A JP 2013257134 A JP2013257134 A JP 2013257134A JP 2013257134 A JP2013257134 A JP 2013257134A JP 2015112325 A JP2015112325 A JP 2015112325A
Authority
JP
Japan
Prior art keywords
drug
leukocyte
filter
blood
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013257134A
Other languages
Japanese (ja)
Other versions
JP6240490B2 (en
Inventor
絹枝 柴田
Kinue Shibata
絹枝 柴田
覚 井上
Satoru Inoue
覚 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2013257134A priority Critical patent/JP6240490B2/en
Publication of JP2015112325A publication Critical patent/JP2015112325A/en
Application granted granted Critical
Publication of JP6240490B2 publication Critical patent/JP6240490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To simultaneously remove at a high rate and in a short time white blood cells and an inactivating drug from a blood product containing red blood cells while suppressing hemolysis.SOLUTION: A white blood cell and drug removing method comprises a process for adding an inactivating drug to a blood product containing red blood cells, introducing the blood product after inactivation into an inlet 2a of a white blood cell and drug removing filter 1 which has a white blood cell removing medium in the upstream side and a drug removing medium in the downstream side, and discharging the blood product from an outlet 2b, to thereby remove the white blood cells in the upstream side and remove the remaining inactivating drug in the downstream side.

Description

本発明は、血液製剤から白血球及び薬剤を同時に除去するフィルター、除去システム、及び除去方法に関するものである。   The present invention relates to a filter, a removal system, and a removal method for simultaneously removing leukocytes and a drug from a blood product.

近年、輸血分野においては、血液製剤中に含まれる病原体及び白血球の増殖能を輸血前に失活(不活化)させる技術が、欧州を中心に普及している。このような不活化技術は、大別して薬剤(不活化薬剤)投与、光照射、またはこれらの組み合わせによって達成される。   In recent years, in the field of blood transfusion, a technique for inactivating (inactivating) the proliferating ability of pathogens and leukocytes contained in blood products before blood transfusion has been widespread mainly in Europe. Such an inactivation technique is roughly achieved by drug (inactivation drug) administration, light irradiation, or a combination thereof.

病原体とは、例えば、ウイルス、細菌、原虫、寄生虫などのDNAやRNAを有するものである。病原体の不活化によって、HBV、HCV、HIV、HAV、HEV、HTLV、WNV、CMVなどのウイルスによる感染症、細菌による感染症、バベシア症、シャーガス病、マラリアなどの原虫による感染症といった輸血に伴う感染症を防止することができる。仮に、血液製剤に未知の病原体種あるいは検出困難な希薄な濃度レベルの病原体が含まれていた場合でも、不活化によって、感染症のリスクを抑えることができる。また、白血球の不活化によって、輸血投与された人体(受血者)中でドナーのリンパ球が拒絶反応を起こし異常増殖することで起こる輸血後移植片対宿主病(GVHD)等の重篤な輸血副作用を抑えることができる。   A pathogen is, for example, a virus, bacterium, protozoan, parasite, or other DNA or RNA. Due to inactivation of pathogens, transfusions such as infections caused by viruses such as HBV, HCV, HIV, HAV, HEV, HTLV, WNV, CMV, infections caused by bacteria, infections caused by protozoa such as Babesia, Chagas disease, and malaria Infections can be prevented. Even if the blood product contains an unknown pathogen species or a pathogen with a dilute concentration level that is difficult to detect, the risk of infection can be suppressed by inactivation. In addition, severe injuries such as post-transfusion graft-versus-host disease (GVHD) caused by the inactivation of leukocytes and the abnormal proliferation of donor lymphocytes in the human body (receiver) who received blood transfusion. Transfusion side effects can be suppressed.

病原体及び白血球に対する不活化技術としては、血漿製剤の場合、S/D法(Octapharma社)、UVC照射(Macopharma社)、メチレンブルーと可視光照射の組み合わせ(Macopharma社)、アモトサレンとUVA照射の組み合わせ(Cerus社)、リボフラビンとUVB照射の組み合わせ(Termo BCT社)によるものがある。   As inactivation techniques for pathogens and leukocytes, in the case of plasma preparations, S / D method (Otapharma), UVC irradiation (Makopharma), methylene blue and visible light irradiation (Makopharma), amotosalen and UVA irradiation ( Cerus), a combination of riboflavin and UVB irradiation (Thermo BCT).

また、血小板製剤の場合は、アモトサレンとUVA照射の組み合わせ(Cerus社)によるものが欧州を中心に利用されている。更に、赤血球製剤の場合は、エチレンイミン多量体(Inactine,VITEX社)、アクリジン誘導体(CERUS社)、リボフラビンとUVB照射の組み合わせ(Termo BCT社)、ジメチルメチレンブルー(米赤十字社)等によるものがある。このような病原体の不活化技術自体は開発が進んでいる。   In the case of platelet preparations, a combination of amotosalen and UVA irradiation (Cerus) is used mainly in Europe. Furthermore, in the case of erythrocyte preparations, there are those based on ethyleneimine multimers (Inactine, VITEX), acridine derivatives (CERUS), combinations of riboflavin and UVB irradiation (Termo BCT), dimethylmethylene blue (US Red Cross), etc. . Such pathogen inactivation technology itself has been developed.

上記血液製剤の不活化技術においては、残存する遊離薬剤除去が必要である。これは遊離薬剤が、不活化機序に伴う副作用を受血者に及ぼすためである。不活化機序には主として二通りある。一つは有機溶剤と界面活性剤を血液製剤に添加し、病原体細胞のリン脂質膜を溶解させる不活化機序である。もう一つはDNAの末端塩基を標的とする化学結合性薬剤を血液製剤に添加し、病原体DNA末端塩基に不可逆的な結合を形成することで病原体の転写、複製を阻止する不活化機序である。いずれも不活化後の残分薬剤が血液製剤中に残存したまま輸血に提供された場合、受血者の健常な血球細胞膜や体細胞膜に損傷や抗体産生を引き起こし、発がん性、変異原性を示す等の副作用が知られているため、薬剤除去が必要である。 In the blood product inactivation technique, it is necessary to remove the remaining free drug. This is because the free drug has side effects associated with the inactivation mechanism on the recipient. There are two main inactivation mechanisms. One is an inactivation mechanism in which an organic solvent and a surfactant are added to a blood product to dissolve a phospholipid membrane of a pathogen cell. The other is an inactivation mechanism that prevents transcription and replication of pathogens by adding a chemical binding agent that targets the terminal bases of DNA to blood products and forming an irreversible bond to the DNA bases of pathogens. is there. In either case, if the inactivated residual drug remains in the blood product and is provided for blood transfusion, it will cause damage and antibody production in the recipient's healthy blood cell membrane and somatic cell membrane, causing carcinogenicity and mutagenicity. Since side effects such as showing are known, drug removal is necessary.

血液製剤中に含まれる薬剤除去技術として、従来、例えば特許文献1に代表されるように、血液の入口と出口を有する容器内に多孔質吸着剤ビーズや多孔質繊維等を充填し、粒径や繊維径、比表面積等の物性を制御する技術が検討されてきた。例えば上記多孔質吸着剤ビーズや多孔質繊維をマトリクス媒体に一部含有させ、血液製剤と長時間接触させて薬剤除去するバッチ式除去技術や、血液製剤をワンパスフロー式で流入させて薬剤除去するフロー式除去技術が確立されてきた。   As a technique for removing a drug contained in a blood product, conventionally, as represented by, for example, Patent Document 1, a container having a blood inlet and outlet is filled with porous adsorbent beads, porous fibers, etc. Techniques for controlling physical properties such as fiber diameter and specific surface area have been studied. For example, the above-mentioned porous adsorbent beads and porous fibers are partly contained in a matrix medium, and removed with a batch-type removal technique in which the drug is removed by contact with the blood product for a long time, or the blood product is introduced by a one-pass flow method to remove the drug Flow removal techniques have been established.

一方、輸血分野においては、白血球を除去した血液製剤を輸血する方法が広く普及している。これは、血液製剤中に含まれる白血球のうち、顆粒球上のヒト白血球抗原(HLA)がドナーと受血者の間で一致しない場合や、その他のドナー顆粒球抗原の侵入が原因となり、受血者体内で抗体産生、補体活性等の免疫反応が起こり、発熱、嘔吐、悪寒、アレルギー反応、顆粒球減少、輸血関連急性肺障害(TRALI)、呼吸困難、血圧低下、アナフィラキシーショック等の副作用が引き起こされるおそれがあるためである。これらの輸血副作用を低減し、より安全な輸血を行うためには、輸血製剤単位中の残存白血球数が10〜10以下になるまで除去する必要があることが知られている。これは、標準的な400ml全血製剤中に約2.0×10個の白血球が存在する場合、少なくとも−3.3log10以上の白血球除去率が必要であることを意味する。 On the other hand, in the field of blood transfusion, a method for transfusion of a blood product from which leukocytes have been removed is widely used. This is because, among leukocytes contained in blood products, human leukocyte antigens (HLA) on granulocytes do not match between donors and recipients, or due to invasion of other donor granulocyte antigens. Abnormal reactions such as antibody production and complement activity occur in the body of the blood, and side effects such as fever, vomiting, chills, allergic reactions, granulocytopenia, blood transfusion-related acute lung injury (TRALI), dyspnea, hypotension, and anaphylactic shock This is because there is a risk of causing. In order to reduce these transfusion side effects and perform safer transfusion, it is known that it is necessary to remove until the number of remaining white blood cells in the transfusion preparation unit is 10 4 to 10 6 or less. This means that if there are about 2.0 × 10 9 leukocytes in a standard 400 ml whole blood product, a leukocyte removal rate of at least −3.3 log 10 or higher is required.

血液製剤に含まれる白血球の除去技術として、従来、例えば特許文献2に代表されるように、血液の入口と出口を有する容器内に不織布を収納し、その繊維直径、嵩密度、嵩高、表面構造等の物性を制御し、あるいは組み合わせることで、より簡便に、効率よく白血球除去可能なろ過技術が確立されてきた。   As a technique for removing leukocytes contained in blood products, conventionally, as represented by Patent Document 2, for example, a nonwoven fabric is housed in a container having a blood inlet and outlet, and its fiber diameter, bulk density, bulkiness, surface structure Filtration technology capable of removing leukocytes more easily and efficiently by controlling or combining physical properties such as these has been established.

以上の従来技術1、2によれば、不活化処理後の血液製剤から薬剤及び白血球を両方とも除去しようとする場合、薬剤除去、白血球除去を別々に実施するしか手段がないが、以下のように、白血球と薬剤を同時に除去するフィルターの検討も進められてきた。 According to the above prior arts 1 and 2, when both the drug and leukocytes are to be removed from the inactivated blood product, there is no other way but to remove the drug and leukocytes separately. In addition, studies have been made on filters that simultaneously remove leukocytes and drugs.

例えば、特許文献3のように、白血球を吸着するヘパリンリガンドが結合された賽の目入り織布フィルター要素と、不活化薬剤を吸着する活性炭含有フィルター要素とを共に備えたフィルターに対し、血液製剤をワンパスフローさせることによって、血液製剤から白血球と薬剤とを同時に除去する技術が開示されている。 For example, as in Patent Document 3, a blood product is one-passed against a filter having both a woven filter element with an eyelet bonded with a heparin ligand that adsorbs leukocytes and a filter element containing activated carbon that adsorbs an inactivating agent. A technique for simultaneously removing leukocytes and a drug from a blood product by flowing is disclosed.

また、特許文献4のように、白血球除去可能な不織布繊維と、不活化薬剤除去可能な活性炭繊維とを備えたフィルターに、予め赤血球を除去した血液製剤をワンパスフローさせることで、赤血球を除去した血液製剤から白血球と不活化薬剤とを同時に除去する技術も開示されている。 Further, as in Patent Document 4, red blood cells were removed by one-pass flow of a blood product from which red blood cells had been removed in advance through a filter provided with non-woven fibers capable of removing white blood cells and activated carbon fibers capable of removing inactivated chemicals. A technique for simultaneously removing leukocytes and an inactivating drug from a blood product is also disclosed.

特開2010−31049号公報JP 2010-31049 A 特許第1707022号公報Japanese Patent No. 1707022 特表平9-508823号公報JP 9-508823 A 米国特許第5660731号明細書US Pat. No. 5,667,731

上述の先行特許文献1、2に代表される技術の場合、血液製剤から白血球と薬剤とを別々に除去する必要がある。また、先行特許文献3、4に代表される技術の場合、血液製剤から白血球と薬剤とを同時に除去する思想はあるが、実際に技術検討された血液製剤の種類は血漿や血小板にとどまっており、赤血球を含む血液製剤に適用した場合に懸念される、フィルターの目詰まりによる流れ性低下や溶血等、実使用上の不備を解決する手段は開示されていない。そこで、白血球及び薬剤を同時に除去するフィルターを、赤血球を含む血液製剤にも問題なく適用し、実使用上フィルターの目詰まり、流れ性低下、溶血を回避するための方法を検討する必要がある。   In the case of the techniques represented by the above-mentioned prior patent documents 1 and 2, it is necessary to separately remove leukocytes and drugs from the blood product. Further, in the case of the techniques represented by the prior patent documents 3 and 4, there is a concept of simultaneously removing leukocytes and drugs from blood products, but the types of blood products actually studied are only plasma and platelets. No means for solving deficiencies in actual use, such as a decrease in flowability due to clogging of the filter or hemolysis, which is a concern when applied to blood products containing red blood cells, is not disclosed. Therefore, it is necessary to apply a filter that simultaneously removes leukocytes and drugs to blood products containing red blood cells without problems, and to examine a method for avoiding clogging, flowability deterioration, and hemolysis of the filter in practical use.

そこで、本発明は、赤血球を含む血液製剤から、白血球及び不活化薬剤を同時に、溶血を抑えながらしかも短時間で高率に除去することが可能であるフロー式の白血球及び薬剤除去方法、白血球及び薬剤除去フィルター、及び白血球及び薬剤除去システムを提供することを目的とする。 Accordingly, the present invention provides a flow-type leukocyte and drug removal method capable of simultaneously removing leukocytes and an inactivated drug from a blood product containing red blood cells at a high rate in a short time while suppressing hemolysis, leukocytes and It is an object to provide a drug removal filter and a leukocyte and drug removal system.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、白血球除去可能な不織繊維構造体などの白血球除去媒体と、薬剤除去可能な繊維状活性炭などの薬剤除去媒体とを適切な配置で容器内に収めることで、白血球及び不活化薬剤を同時に、溶血を抑えながらしかも短時間で高率に除去することが可能であるフロー式の除去方法、及び除去システムを提供できるという知見を得た。   As a result of intensive research aimed at achieving the above-mentioned object, the present inventors appropriately used a leukocyte removal medium such as a non-woven fibrous structure capable of removing leukocytes and a drug removal medium such as fibrous activated carbon capable of removing the drug. Knowledge that it is possible to provide a flow-type removal method and a removal system that can remove leukocytes and inactivated drugs at the same time while suppressing hemolysis and at a high rate in a short time by placing them in a container with a simple arrangement Got.

本発明の白血球及び薬剤除去方法は、赤血球を含む血液製剤に不活化薬剤を添加し、不活化した後の血液製剤を、上流側に白血球除去媒体、下流側に薬剤除去媒体を含む単一フィルターの入口に導入するとともに出口から排出することにより、フィルターの上流側で白血球を除去し、下流側で残余の不活化薬剤を除去する工程を備える。   The leukocyte and drug removal method of the present invention is a single filter comprising an inactivated drug added to a blood product containing red blood cells, the inactivated blood product containing a leukocyte removal medium on the upstream side, and a drug removal medium on the downstream side. And removing it from the outlet to remove leukocytes on the upstream side of the filter and remove the remaining inactivated drug on the downstream side.

また、本発明の白血球及び薬剤除去フィルターは、赤血球を含む血液製剤中に含まれる不活化対象物を不活化した後の血液製剤から白血球及び不活化薬剤を除去するフィルターであって、赤血球を含む血液製剤が導入される入口と、血液製剤が排出される出口とを有する容器と、容器内に収納され、白血球を除去可能な白血球除去媒体と、容器内に収納され、薬剤を吸着除去可能な薬剤除去媒体と、を備え、白血球除去媒体は、薬剤除去媒体よりも上流に配置される。   The leukocyte and drug removal filter of the present invention is a filter that removes leukocytes and an inactivated drug from a blood product after inactivation of an inactivation target contained in a blood product containing red blood cells, and includes red blood cells. A container having an inlet through which blood products are introduced and an outlet through which blood products are discharged; a leukocyte-removing medium that is housed in the container and capable of removing white blood cells; A leukocyte removal medium, and the leukocyte removal medium is disposed upstream of the drug removal medium.

これらの発明によれば、フィルターの上流側で白血球を除去し、下流側で残余の不活化薬剤を除去することで、白血球及び不活化薬剤を同時に、かつ溶血を抑えながらしかも短時間で高率に除去することができる。   According to these inventions, leukocytes are removed on the upstream side of the filter, and the remaining inactivating agent is removed on the downstream side, so that the leukocytes and the inactivating agent can be simultaneously removed at a high rate in a short time while suppressing hemolysis. Can be removed.

また、上記の白血球除去媒体は不織繊維構造体であり、薬剤除去媒体は繊維状活性炭であるとすることもできる。薬剤除去媒体として活性炭を用い、特に、活性炭の形態を粒子ではなく繊維状とすることで、活性炭の単位重量当たりの細孔表面積が大きくなり、高い薬剤除去能が得られる。また、血球の通過する空隙が大きいため、フィルターの圧力損失の増加が抑えられ、血液製剤の溶血をより効果的に抑制できる。また、繊維状活性炭は、製造上成形性に優れ、品質管理が比較的簡易であり、同一設計で高い薬剤除去性能を再現できるので、大量生産に適している。その上、不織繊維構造体を熱可塑性材料で製造すると、繊維状活性炭は、不織繊維構造体や容器と組み合わせて熱、圧力等エネルギーを加えて一体成形したり、接着材料により接着させる等により一体成形したりすることが可能となり、製造上も優位である。   The leukocyte removal medium may be a non-woven fiber structure, and the drug removal medium may be fibrous activated carbon. Activated carbon is used as the drug removal medium, and in particular, by making the activated carbon form fibrous rather than particles, the pore surface area per unit weight of the activated carbon is increased, and high drug removal ability is obtained. Moreover, since the space | gap which a blood cell passes is large, the increase in the pressure loss of a filter can be suppressed and the hemolysis of a blood formulation can be suppressed more effectively. In addition, fibrous activated carbon is suitable for mass production because it is excellent in moldability in production, quality control is relatively simple, and high chemical removal performance can be reproduced with the same design. In addition, when the non-woven fiber structure is manufactured from a thermoplastic material, the fibrous activated carbon is combined with the non-woven fiber structure and the container, and is integrally formed by applying energy such as heat and pressure, or bonded by an adhesive material. Can be formed integrally, which is advantageous in manufacturing.

また、繊維状活性炭の比表面積は900m/g以上、3000m/g以下であり、かつ白血球及び薬剤除去フィルターの通気圧損は500Pa以上、2000Pa以下とすると、より高率な除去率が得られるとともに、より効果的に溶血を抑えることができて好ましい。 Further, when the specific surface area of the fibrous activated carbon is 900 m 2 / g or more and 3000 m 2 / g or less, and the ventilation pressure loss of the leukocytes and the drug removal filter is 500 Pa or more and 2000 Pa or less, a higher removal rate can be obtained. At the same time, it is preferable because hemolysis can be suppressed more effectively.

ここで、通気圧損とは、フィルターの抵抗値を表す指標であり、ろ過後血液製剤の溶血度や白血球除去率が所定の目的を達成するかを簡便に選別するのに適した指標である。本発明でいう通気圧損とは、白血球及び薬剤除去フィルターに一定線速の気体を流したときにフィルター部分で発生する入口圧と出口圧の差を測定することで求められる。   Here, the aeration pressure loss is an index representing the resistance value of the filter, and is an index suitable for simply selecting whether the degree of hemolysis and the leukocyte removal rate of the blood product after filtration achieves a predetermined purpose. The airflow pressure loss referred to in the present invention is determined by measuring the difference between the inlet pressure and the outlet pressure generated in the filter portion when a gas having a constant linear velocity is passed through the leukocyte and drug removal filter.

また、本発明の白血球及び薬剤除去システムは、上記の白血球及び薬剤除去フィルターと、血液製剤を貯留する血液製剤貯留手段と、白血球及び薬剤除去フィルターによって、白血球及び薬剤が除去された血液製剤を回収する血液製剤回収手段と、を備えている。このシステムによれば、フィルターの上流側で白血球を除去し、下流側で残余の不活化薬剤を除去することで、白血球及び不活化薬剤を同時に、かつ溶血を抑えながらしかも短時間で高率に除去することができ、白血球及び不活化薬剤を除去した血液製剤を回収できる。   The leukocyte and drug removal system of the present invention collects a blood product from which leukocytes and drugs have been removed by the leukocyte and drug removal filter, a blood product storage means for storing a blood product, and a leukocyte and drug removal filter. Blood product recovery means. According to this system, leukocytes are removed on the upstream side of the filter, and the remaining inactivated drug is removed on the downstream side, so that the leukocytes and the inactivated drug can be simultaneously reduced while suppressing hemolysis and at a high rate in a short time. The blood product from which leukocytes and inactivating drugs have been removed can be recovered.

本発明によれば、赤血球を含む血液製剤から、白血球及び不活化薬剤を同時に、溶血を抑えながらしかも短時間で高率に除去することが可能である。   According to the present invention, leukocytes and inactivated drugs can be simultaneously removed from blood products containing red blood cells at a high rate in a short time while suppressing hemolysis.

本発明の実施形態に係る白血球及び薬剤除去フィルターの断面図である。It is sectional drawing of the leukocyte and chemical | medical agent removal filter which concerns on embodiment of this invention. 本発明の実施形態に係る白血球及び薬剤除去システムの構成を示す図である。It is a figure which shows the structure of the leukocyte and chemical | medical agent removal system which concerns on embodiment of this invention.

以下、図面を参照しつつ本発明に係る白血球及び薬剤除去フィルターの好適な実施形態について詳細に説明する。
[実施形態]
(白血球及び薬剤除去フィルター)
Hereinafter, preferred embodiments of a leukocyte and drug removal filter according to the present invention will be described in detail with reference to the drawings.
[Embodiment]
(Leukocyte and drug removal filter)

まず、図1を参照して、実施形態に係る白血球及び薬剤除去フィルター1について説明する。白血球及び薬剤除去フィルター1は、赤血球を含む血液製剤中の不活化対象物を不活化した後の血液製剤から白血球及び不活化薬剤を同時に除去するカラムである。特に、本実施形態に係る白血球及び薬剤除去フィルター1は、単一フィルターとして単体で利用され、赤血球を含む血液製剤から、白血球及び不活化薬剤を同時に、溶血を抑えながらしかも短時間で高率に除去することを目的とする。ここでいう血液製剤とは、赤血球を含む各種血液製剤、例えば全血、赤血球製剤等である。また、血液製剤中の不活化対象物とは、例えば白血球や病原体などであり、薬剤とは、例えば、病原体不活化薬剤である。   First, the leukocyte and drug removal filter 1 according to the embodiment will be described with reference to FIG. The leukocyte and drug removal filter 1 is a column that simultaneously removes leukocytes and an inactivated drug from a blood product after the inactivation target in the blood product containing red blood cells is inactivated. In particular, the leukocyte and drug removal filter 1 according to the present embodiment is used alone as a single filter, and from a blood product containing red blood cells, leukocytes and an inactivated drug are simultaneously suppressed at a high rate in a short time while suppressing hemolysis. The purpose is to remove. The blood product as used herein refers to various blood products containing red blood cells, such as whole blood and red blood cell preparations. Further, the inactivation target in the blood product is, for example, leukocytes or pathogens, and the drug is, for example, a pathogen inactivation drug.

ここで、「病原体不活化」とは、白血球、あるいはウイルス、細菌、原虫、寄生虫などの病原体に対し、それらが複製または増殖する能力を奪うことである。また、「病原体不活化薬剤」とは、血液製剤中に混入している白血球、あるいはウイルス、細菌、原虫、寄生虫などの病原体を不活化する機能を持つ薬剤である。また、不活化薬剤を用いて行う不活化のための処理(白血球及び病原体不活化処理)とは、病原体不活化薬剤を血液製剤中に添加し、必要に応じて一定時間光を照射する処理方法である。不活化薬剤は、光増感作用により一重項酸素、ヒドロキシラジカル、過酸化水素等の反応性の高い化合物を発生させ、白血球や病原体のDNA、あるいはRNAに障害を与えたり、DNA、あるいはRNAの塩基間に共有結合を生成させ、白血球や病原体の自己複製に関する挙動やウイルスタンパク発現を妨げることで白血球や病原体を不活化する。病原体不活化薬剤としては、アクリジン誘導体、チアジン誘導体、フェノチアジン誘導体、ピリジン誘導体、ポルフィリン誘導体、クマリン誘導体、ピリミジン誘導体、リボフラビン、ソラレン誘導体、エチレンイミン多量体等が挙げられる。   Here, “pathogen inactivation” means depriving leukocytes or pathogens such as viruses, bacteria, protozoa and parasites from their ability to replicate or proliferate. The “pathogen inactivating drug” is a drug having a function of inactivating leukocytes mixed in blood products or pathogens such as viruses, bacteria, protozoa, and parasites. Moreover, the treatment for inactivation performed using an inactivating agent (white blood cell and pathogen inactivating treatment) is a treatment method in which a pathogen inactivating agent is added to a blood product and light is irradiated for a certain period of time as necessary. It is. An inactivating agent generates highly reactive compounds such as singlet oxygen, hydroxy radicals, and hydrogen peroxide by photosensitizing action, damages leukocytes and pathogen DNA or RNA, and DNA or RNA It inactivates leukocytes and pathogens by creating covalent bonds between bases and hindering leukocyte and pathogen self-replication behavior and viral protein expression. Examples of the pathogen inactivating agent include acridine derivatives, thiazine derivatives, phenothiazine derivatives, pyridine derivatives, porphyrin derivatives, coumarin derivatives, pyrimidine derivatives, riboflavin, psoralen derivatives, ethyleneimine multimers, and the like.

白血球及び薬剤除去フィルター1は、入口2aと出口2bとを有するカラム(容器)2と、カラム2内に収容された白血球除去に適した不織繊維構造体3bと、薬剤除去に適した繊維状活性炭4と、を備えている。不織繊維構造体3bは、白血球除去媒体の一例であり、繊維状活性炭4は薬剤を吸着除去可能な薬剤除去媒体の一例である。不織繊維構造体3bは繊維状活性炭4よりも上流に配置されている。また、カラム2の入口2aには、血液製剤を導入するための血液回路が接続される入口接続部5aが設けられている。同様に出口2bには、血液製剤を排出するための血液回路が接続される出口接続部5bが設けられている。   The leukocyte and drug removal filter 1 includes a column (container) 2 having an inlet 2a and an outlet 2b, a non-woven fibrous structure 3b suitable for removing leukocytes contained in the column 2, and a fibrous shape suitable for drug removal. Activated carbon 4. The non-woven fiber structure 3b is an example of a leukocyte removal medium, and the fibrous activated carbon 4 is an example of a drug removal medium capable of adsorbing and removing a drug. The non-woven fiber structure 3 b is disposed upstream of the fibrous activated carbon 4. The inlet 2a of the column 2 is provided with an inlet connection 5a to which a blood circuit for introducing a blood product is connected. Similarly, the outlet 2b is provided with an outlet connecting portion 5b to which a blood circuit for discharging the blood product is connected.

また、本実施形態では、カラム2の内部で入口2aに隣接する部分、即ち血液製剤の流れに対して最上流に、微小凝集塊の除去を目的として、平均繊維径4μm以上、100μm以下の不織繊維構造体3aが設けられている。不織繊維構造体3aを設けることで好適な態様を実現できるが、不織繊維構造体3aは必須では無く、省略することも可能である。   Further, in the present embodiment, a portion of the column 2 adjacent to the inlet 2a, that is, the uppermost stream with respect to the blood product flow, has a mean fiber diameter of 4 μm or more and 100 μm or less for the purpose of removing microaggregates. A woven fiber structure 3a is provided. Although a suitable aspect can be realized by providing the non-woven fiber structure 3a, the non-woven fiber structure 3a is not essential and can be omitted.

なお、上記の微小凝集塊とは、例えば、血液製剤の保存中に生じるフィブリンやタンパク質を含む血球凝集物(アグリゲート)や脂質、タンパク塊等である。不織繊維構造体3aを設けることにより、血液製剤が不織繊維構造体3bと接触する前に微小凝集塊の除去が完了するため、その後の白血球除去段階、及び薬剤除去段階で良好な流れ性を確保できる。この不織繊維構造体3aの材質や厚み等については、白血球及び薬剤除去フィルター1の目的を達成できる範囲で、適宜に決定でき、特に限定は無い。   The above-mentioned microaggregates are, for example, blood cell aggregates (aggregates), lipids, protein aggregates and the like containing fibrin and proteins generated during storage of blood products. By providing the non-woven fiber structure 3a, the microaggregates are completely removed before the blood product comes into contact with the non-woven fiber structure 3b. Therefore, good flowability is obtained in the subsequent leukocyte removal step and drug removal step. Can be secured. The material, thickness, and the like of the nonwoven fiber structure 3a can be determined as appropriate as long as the purpose of the leukocyte and drug removal filter 1 can be achieved, and there is no particular limitation.

また、本実施形態として、カラム2の出口2b側、即ち血液製剤の流れに対して最下流に、メッシュ3cが設けられている。メッシュ3cを設けることで好適な態様を実現できるが、メッシュ3cは必須では無く、省略することも可能である。   In the present embodiment, the mesh 3c is provided on the outlet 2b side of the column 2, that is, on the most downstream side with respect to the blood product flow. Although a suitable aspect can be realized by providing the mesh 3c, the mesh 3c is not essential and can be omitted.

メッシュ3cを設けることで、血液製剤処理中に活性炭繊維が脱落した場合、これを捕捉して血液製剤への混入を回避できる。また、ろ過中の血液製剤をより均一流とし、片流れを防止する効果もある。上記メッシュ3cの材質、繊維径、孔径、厚み等については、白血球及び薬剤除去フィルター1の目的を達成できる範囲で、適宜に決定でき、特に限定は無い。   By providing the mesh 3c, when activated carbon fiber falls off during the blood product processing, it can be captured and mixed into the blood product can be avoided. It also has the effect of making the blood product being filtered more uniform and preventing single flow. The material, fiber diameter, pore diameter, thickness, and the like of the mesh 3c can be appropriately determined as long as the purpose of the leukocyte and drug removal filter 1 can be achieved, and is not particularly limited.

白血球及び薬剤除去フィルター1のように血液製剤を流入させ、フロー式でろ材と接触させるデバイスは、インラインカラムという。インラインカラムを用いる方法は、長時間に渡り血液製剤とろ材とを接触させるバッチ式のような振とう装置が不要である。また、短時間で白血球及び薬剤除去が完了するため、経済的、かつ作業が効率的であり好ましい。バッチ式は、活性炭と赤血球の接触時間の増加により赤血球表面が損傷を受け、溶血が引き起こされる傾向があるため、特に赤血球を含む血液製剤には適さない。   A device that allows blood products to flow in like the leukocyte and drug removal filter 1 and contact the filter medium in a flow type is called an inline column. The method using an in-line column does not require a batch-type shaking device that brings a blood product and a filter medium into contact for a long time. Moreover, since the removal of leukocytes and drugs is completed in a short time, it is preferable because it is economical and efficient. The batch method is not particularly suitable for blood products containing red blood cells because the contact time between activated carbon and red blood cells tends to damage the red blood cell surface and cause hemolysis.

白血球及び薬剤除去フィルター1は、フィルター内で不織繊維構造体(白血球除去媒体)3bを繊維状活性炭(薬剤除去媒体)4よりも上流に配置することにより、最初に白血球除去を完了し、次に薬剤除去を完了する段階を踏むため、繊維状活性炭4における目詰まりが回避でき、血液製剤の良好な流れ性を確保できる。   The leukocyte and drug removal filter 1 first completes leukocyte removal by disposing the non-woven fiber structure (leukocyte removal medium) 3b upstream of the fibrous activated carbon (drug removal medium) 4 in the filter, Further, since the step of completing the removal of the drug is taken, clogging in the fibrous activated carbon 4 can be avoided, and good flowability of the blood product can be ensured.

また、繊維状活性炭4の比表面積を900m/g以上、3000m/g以下とすることで、十分な薬剤除去能が得られる。また白血球及び薬剤除去フィルター1の通気圧損を500Pa以上、2000Pa以下とすることで、十分な白血球除去率が得られ、かつ赤血球とろ材間の物理的摩擦を抑えられるので、溶血を抑制する上で有利である。 Further, the specific surface area of the fibrous activated carbon 4 900m 2 / g or more, is set to lower than or equal to 3000 m 2 / g, sufficient drug removal capability can be obtained. Further, by setting the air pressure loss of the leukocyte and drug removal filter 1 to 500 Pa or more and 2000 Pa or less, a sufficient leukocyte removal rate can be obtained and physical friction between the red blood cells and the filter medium can be suppressed. It is advantageous.

ここで、比表面積とは、多孔質体の多孔度の指標であり、多孔質体の細孔表面積を含めた表面積を多孔質体の単位重量当たりに換算した量である。比表面積は、気体分子の吸着量による気体吸着法や水銀圧入法などにより、細孔分布を測定し求めることができる。繊維状活性炭4は特にミクロ孔(8Å〜20Å)、またはメソ孔(20Å〜500Å)に分布のピークがみられるものであり、活性炭表面の細孔は特に、低分子薬剤の吸着に優れた性能を発揮する。   Here, the specific surface area is an index of the porosity of the porous body, and is an amount obtained by converting the surface area including the pore surface area of the porous body per unit weight of the porous body. The specific surface area can be obtained by measuring the pore distribution by a gas adsorption method or a mercury intrusion method based on the adsorption amount of gas molecules. The fibrous activated carbon 4 has a distribution peak particularly in micropores (8 to 20 cm) or mesopores (20 to 500 cm), and the pores on the surface of the activated carbon are particularly excellent in adsorption of low molecular weight drugs. Demonstrate.

また、通気圧損とは、フィルターの抵抗値を表す指標であり、ろ過後血液製剤の溶血度や白血球除去率が所定の目的を達成するかを簡便に選別するのに適した指標である。本実施形態でいう通気圧損とは、白血球及び薬剤除去フィルター1に一定線速の気体を流したときにフィルター部分で発生する入口圧と出口圧の差を測定することで求められる。通気圧損の詳細な測定方法は、以下に示す通りである。   The airflow pressure loss is an index representing the resistance value of the filter, and is an index suitable for simply selecting whether the degree of hemolysis and the leukocyte removal rate of the blood product after filtration achieves a predetermined purpose. The airflow pressure loss referred to in the present embodiment is obtained by measuring the difference between the inlet pressure and the outlet pressure generated in the filter portion when a gas having a constant linear velocity is passed through the leukocyte and drug removal filter 1. A detailed method for measuring the airflow pressure loss is as follows.

白血球及び薬剤除去フィルター1のカラム2の入口2aから膜流量計により通気線速を0.73m/分に調整した気体を流入させ、カラム2の出口2bから上記空気を自由に排出させる。その後流量が十分安定したときの入口圧と出口圧の差を、圧力トランスデューサで測定することにより、通気圧損(Pa)を求めた。   A gas whose aeration line speed is adjusted to 0.73 m / min by a membrane flow meter is introduced from the inlet 2a of the column 2 of the leukocyte and drug removal filter 1 and the air is freely discharged from the outlet 2b of the column 2. Thereafter, the difference between the inlet pressure and the outlet pressure when the flow rate was sufficiently stabilized was measured with a pressure transducer to determine the ventilation pressure loss (Pa).

ここでいう通気線速とは、フィルター内(例えば、カラム2内)に一定流速の気体を流したとき、単位時間に単位断面積を通過する気体の体積である。フィルター断面積をS(m)、フィルター容器入口側から流入する気体流速をv(L/分)とするとき、通気線速はv×10−3÷S(m/分)で表される。
(繊維状活性炭)
The ventilation line speed here is the volume of the gas that passes through the unit cross-sectional area per unit time when a gas having a constant flow rate is caused to flow in the filter (for example, in the column 2). When the cross-sectional area of the filter is S (m 2 ) and the flow velocity of the gas flowing from the filter container inlet side is v (L / min), the linear velocity of the air is expressed by v × 10 −3 ÷ S (m / min). .
(Fibrous activated carbon)

繊維状活性炭4は、カラム2内に収納され、薬剤除去が可能であり、特に、赤血球の溶血を低減可能な材料であれば足りる。例えば、石油ピッチ、石炭ピッチ、石炭コークス、タール泥炭、亜炭などの鉱物系原料及びフェノール樹脂、セルロース樹脂、レーヨン、アクリル樹脂、塩化ビニリデン樹脂、ポリアクリロニトリル系繊維、ポリビニルアルコール系繊維などの樹脂素材である活性炭原料を溶融紡糸、成形加工したのち、不融化処理を施し、炭化後、高温で水蒸気を含むガスと反応させて賦活することで形成する。または、不融化、炭化した前駆体繊維を、賦活した後成形加工し、繊維状活性炭4を形成することもできる。比表面積は900m/g以上、3000m/g以下であることが望ましい。比表面積が900m/g未満の場合、薬剤を除去できるものの、その除去率が低下するおそれがある。 The fibrous activated carbon 4 is housed in the column 2 and can be removed from the drug. In particular, any material that can reduce hemolysis of erythrocytes is sufficient. For example, mineral materials such as petroleum pitch, coal pitch, coal coke, tar peat, lignite, and resin materials such as phenol resin, cellulose resin, rayon, acrylic resin, vinylidene chloride resin, polyacrylonitrile fiber, polyvinyl alcohol fiber, etc. After a certain activated carbon raw material is melt-spun and molded, it is infusibilized, and after carbonization, it is activated by reacting with a gas containing water vapor at a high temperature. Alternatively, the fibrous activated carbon 4 can be formed by activating and molding the infusible and carbonized precursor fiber. The specific surface area is desirably 900 m 2 / g or more and 3000 m 2 / g or less. When the specific surface area is less than 900 m 2 / g, the drug can be removed, but the removal rate may decrease.

繊維状活性炭4の平均繊維径は10μm以上、100μm以下であると好適である。平均繊維径が10μm未満である場合は、機械的強度が不十分であるため、ろ過工程において血球が通過する際、繊維状活性炭4が流体の圧力により変形し、血球を通過する空隙が過小となることで血球の目詰まりや圧上昇を引き起こす傾向があり、溶血の抑制効果が下がる傾向がある。逆に、平均繊維径が100μmより大きい場合は、薬剤除去に必要な比表面積が得られないため薬剤除去率が低下する傾向がある。つまり、繊維状活性炭4の平均繊維径を10μm以上、100μm以下とすると、溶血の抑制と薬剤除去率との両面で優位性がある。   The average fiber diameter of the fibrous activated carbon 4 is preferably 10 μm or more and 100 μm or less. When the average fiber diameter is less than 10 μm, the mechanical strength is insufficient. Therefore, when blood cells pass in the filtration step, the fibrous activated carbon 4 is deformed by the pressure of the fluid, and the gap passing through the blood cells is too small. This tends to cause clogging of blood cells and an increase in pressure, and the effect of suppressing hemolysis tends to decrease. On the other hand, when the average fiber diameter is larger than 100 μm, the specific surface area required for drug removal cannot be obtained, and the drug removal rate tends to decrease. That is, when the average fiber diameter of the fibrous activated carbon 4 is 10 μm or more and 100 μm or less, there is an advantage in both the suppression of hemolysis and the drug removal rate.

本実施形態の繊維状活性炭4の形状は、特に限定されるものではないが、チョップ状、フェルト状、撚糸状、織布状、紙状等が挙げられる。いずれも、適正な比表面積の繊維状活性炭4を、適正な通気圧損となるように均一にカラム内に充填することによれば、それ以外の形状の材料であっても使用できる。繊維状活性炭4の目付の均一性、空隙の均一性、寸法を維持する機械的強度等の観点から、フェルト状、織布状がより好ましい。   Although the shape of the fibrous activated carbon 4 of this embodiment is not specifically limited, Chop shape, felt shape, twisted yarn shape, woven fabric shape, paper shape, etc. are mentioned. In any case, if the fibrous activated carbon 4 having an appropriate specific surface area is uniformly packed in the column so as to have an appropriate airflow pressure loss, materials having other shapes can be used. From the viewpoint of the uniformity of the basis weight of the fibrous activated carbon 4, the uniformity of the voids, the mechanical strength for maintaining the dimensions, etc., a felt shape and a woven fabric shape are more preferable.

フェルト状活性炭の製造法としては、鉱物系、天然樹脂系、あるいは合成樹脂系原料より紡糸を行いフェルト用の繊維を形成し、続いて不融化、炭素化、賦活処理、繊維にクリンプを生成する工程の中で、不融化前、あるいは不融化後にフェルト加工する方法が知られている。(例えば特開平3−130447号)。また、繊維形成能を有する天然樹脂、あるいは合成樹脂由来の繊維を不融化、炭化、賦活処理し、活性炭繊維を製造した後にフェルト加工する方法も知られている(例えば特許第4153529号)。一般的なフェルト加工工程は、繊維の調合工程、紡毛機で薄いラップ状とする工程、ラップを数層重ねて熱、蒸気を当てながら圧縮し、水、酸、あるいは弱アルカリ性溶液を含ませ、熱、圧力、振動などを加えて縮絨を行う工程、続いて毛剪、熱プレスすることにより繊維を互いに交絡密着させ、厚みや硬さを均一に加工する工程を含む。フェルト状活性炭はほつれにくく、成形しやすく、形状維持しやすい特長を有する。   As a method for producing felt-like activated carbon, spinning is performed from mineral, natural resin, or synthetic resin raw materials to form felt fibers, followed by infusibilization, carbonization, activation treatment, and crimping of the fibers. In the process, a method of felting before or after infusibilization is known. (For example, JP-A-3-130447). Also known is a method in which a natural resin having a fiber-forming ability or a fiber derived from a synthetic resin is infusibilized, carbonized and activated to produce an activated carbon fiber and then felted (for example, Japanese Patent No. 4153529). A general felt processing process is a fiber blending process, a thin wrapping process with a spinning machine, several layers of wraps are compressed while applying heat and steam, and water, acid, or a weak alkaline solution is included, A step of shrinking by applying heat, pressure, vibration, etc., followed by a step of making the thickness and hardness uniform by bringing the fibers into contact with each other by hair cutting and hot pressing. Felt-like activated carbon is difficult to fray, and is easy to mold and maintain its shape.

織布状活性炭の製造法としては、鉱物系原料、あるいは樹脂系原料より紡糸し線維化した後、織布状に加工し、これを炭化、賦活する方法が知られている(例えばポリアクリロニトリル系に関しては特開昭62−133124号、フェノール樹脂系に関しては特開昭60−35509号、特許第4153529号、ポリビニルアルコール系に関しては特開昭53−114925号、特開昭59−187624号、特開昭61−47827号、特開2003−64535号)。一般的な織布加工工程は、天然繊維あるいは化学繊維を精紡して単糸を製造する工程、合糸、撚糸、糸蒸し等の紡績工程、経糸と緯糸を組み合わせる織布工程等を含む。織布状活性炭は、平織り形状であることから厚みや硬さが均一であり、形状維持しやすい特長を有する。   As a method for producing a woven activated carbon, a method is known in which a fiber is spun from a mineral raw material or a resin raw material, and then processed into a woven cloth, which is carbonized and activated (for example, a polyacrylonitrile type). JP-A-62-133124, phenol-resin system, JP-A-60-35509, JP-A-4153529, and polyvinyl alcohol system, JP-A-53-114925, JP-A-59-187624. (Kaisho 61-47827, JP2003-64535). A general woven fabric processing step includes a step of producing a single yarn by spinning natural fibers or chemical fibers, a spinning step such as combined yarn, twisted yarn, and steaming, a woven fabric step of combining warp and weft. Since the woven activated carbon is a plain weave shape, the thickness and hardness are uniform, and the shape is easily maintained.

また、最適な実施形態として、繊維状活性炭4は、ヒドロキシエチルメタクリレート系重合体をはじめとした生体親和性の高い親水化材で被覆されていることが特に好ましい。このような親水化材は、血液に対して影響がないものであれば、特に限定なくいかなるものでも使用できる。例えば、ポリ(2−ヒドロキシエチルメタクリレート)(PHEMA)、ポリ(N−イソプロピルアクリルアミド)、ポリ(N,N−ジメチルアクリルアミド)、ポリ(ビニルアルコール)、ポリ(N−ビニル−2−ピロリドン)(PVP)等が挙げられる。この中でも特に汎用性が高く、生産コストが抑えられるPHEMA、PVP等の合成高分子を素材とする親水化ポリマーが好ましい。   As an optimal embodiment, the fibrous activated carbon 4 is particularly preferably coated with a hydrophilic material having high biocompatibility including a hydroxyethyl methacrylate polymer. Any hydrophilic material can be used without particular limitation as long as it does not affect blood. For example, poly (2-hydroxyethyl methacrylate) (PHEMA), poly (N-isopropylacrylamide), poly (N, N-dimethylacrylamide), poly (vinyl alcohol), poly (N-vinyl-2-pyrrolidone) (PVP) ) And the like. Among these, hydrophilic polymers made of synthetic polymers such as PHEMA and PVP, which are particularly versatile and can reduce production costs, are preferable.

繊維状活性炭4の表面を上記親水化材で被覆することにより、赤血球と繊維状活性炭4との間の疎水的な付着力や物理的摩擦が減少し、溶血を抑えられるので好ましい。また、繊維状活性炭4の血液製剤に対する濡れ性が向上し、良好な流れ性を確保できるため、短時間で薬剤除去を実施でき好ましい。また、濡れ性の向上により片流れを抑制できるため、繊維状活性炭4の薬剤除去能を十分発揮できる点でも好ましい。   It is preferable to coat the surface of the fibrous activated carbon 4 with the above-mentioned hydrophilizing material because the hydrophobic adhesion force and physical friction between the erythrocytes and the fibrous activated carbon 4 are reduced and hemolysis can be suppressed. Moreover, since the wettability with respect to the blood formulation of the fibrous activated carbon 4 improves and favorable fluidity | liquidity can be ensured, a chemical | medical agent removal can be implemented in a short time and it is preferable. Moreover, since the single flow can be suppressed by improving the wettability, it is also preferable in that the chemical removing ability of the fibrous activated carbon 4 can be sufficiently exhibited.

繊維状活性炭4の表面を上記親水化材で被覆した後、更に湿熱滅菌または放射線滅菌を行うとより一層好ましい。これにより、繊維状活性炭4の表面に架橋が起こり、白血球及び薬剤除去フィルター1の生産工程において、繊維状活性炭4の表面から粉塵が発生することが抑制できる。また、白血球及び薬剤除去フィルター1の使用時には、血液製剤へ脱落繊維が混入することを抑制できる。
(不織繊維構造体)
More preferably, the surface of the fibrous activated carbon 4 is coated with the hydrophilizing material and then further subjected to wet heat sterilization or radiation sterilization. Thereby, bridge | crosslinking arises on the surface of the fibrous activated carbon 4, and it can suppress that dust generate | occur | produces from the surface of the fibrous activated carbon 4 in the production process of the leukocyte and chemical | medical agent removal filter 1. Further, when the leukocyte and drug removal filter 1 is used, it is possible to suppress the fallen fibers from being mixed into the blood product.
(Nonwoven fiber structure)

本実施形態に係る不織繊維構造体3bの具体例としては、メルトブロー不織布やフラッシュ不織布あるいはスパンボンド不織布、スパンレース不織布、湿式不織布、乾式不織布、等の不織布の他、紙、織布、メッシュ等の織物が挙げられる。また繊維素材の例としては、ポリアミド、ポリエステル、ポリアクリロニトリル、ポリウレタン、ポリビニルホルマール、ポリビニルアセタール、ポリトリフルオロクロルエチレン、ポリ(メタ)アクリレート、ポリスルホン、ポリスチレン、ポリエチレン、ポリプロピレン、セルロース、セルロールアセテート、麻、綿、絹、ガラス、炭素等があり、いずれも適する。   Specific examples of the nonwoven fiber structure 3b according to this embodiment include melt blown nonwoven fabric, flash nonwoven fabric, spunbond nonwoven fabric, spunlace nonwoven fabric, wet nonwoven fabric, dry nonwoven fabric, and other nonwoven fabrics as well as paper, woven fabric, mesh, etc. Woven fabrics. Examples of fiber materials include polyamide, polyester, polyacrylonitrile, polyurethane, polyvinyl formal, polyvinyl acetal, polytrifluorochloroethylene, poly (meth) acrylate, polysulfone, polystyrene, polyethylene, polypropylene, cellulose, cellulose acetate, hemp , Cotton, silk, glass, carbon, etc., all suitable.

また、最適な実施形態として、白血球を除去可能な不織繊維構造体3bの平均繊維径は0.7μm以上、2.2μm以下であれば好適である。平均繊維径が0.7μm未満である場合は、血球が通過する際、不織繊維構造体3bが流体の圧力により変形し、血球が通過する空隙が過小となることにより、目詰まりや圧上昇を引き起こす傾向があり、溶血の抑制効果が下がる可能性がある。逆に、平均繊維径が2.2μmより大きい場合は、血球が通過する空隙の大きさが過大になり、白血球と接触する表面積が減少するため、白血球除去能が低下する傾向がある。つまり、不織繊維構造体3bの平均繊維径を0.7μm以上、2.2μm以下とすると、溶血の抑制と白血球除去能向上との両面で優位性がある。   Moreover, as an optimal embodiment, the average fiber diameter of the nonwoven fiber structure 3b capable of removing leukocytes is preferably 0.7 μm or more and 2.2 μm or less. When the average fiber diameter is less than 0.7 μm, when the blood cells pass, the non-woven fiber structure 3b is deformed by the pressure of the fluid, and the gap through which the blood cells pass becomes too small, resulting in clogging and pressure increase. There is a tendency to reduce hemolysis suppression effect. On the other hand, when the average fiber diameter is larger than 2.2 μm, the size of the voids through which blood cells pass becomes excessive, and the surface area in contact with the white blood cells decreases, so that the white blood cell removal ability tends to decrease. That is, when the average fiber diameter of the nonwoven fiber structure 3b is 0.7 μm or more and 2.2 μm or less, there is an advantage in both suppression of hemolysis and improvement of leukocyte removal ability.

また、最適な実施形態として、不織繊維構造体3bは親水化材で被覆されていると好適である。これによれば、赤血球と不織繊維構造体3bとの間の疎水的な付着力や物理的摩擦が減少し、溶血を抑えられるので好ましい。また、不織繊維構造体3bの血液製剤に対する濡れ性が向上し、良好な流れ性を確保できるため、短時間で白血球除去を実施でき好ましい。また、濡れ性の向上により片流れを抑制できるため、不織繊維構造体3bの白血球除去能を十分発揮できる点でも好ましい。   Moreover, as an optimal embodiment, it is preferable that the nonwoven fiber structure 3b is covered with a hydrophilizing material. This is preferable because the hydrophobic adhesion force and physical friction between the red blood cells and the nonwoven fiber structure 3b are reduced, and hemolysis can be suppressed. In addition, the wettability of the nonwoven fibrous structure 3b to the blood product is improved, and good flowability can be secured, which is preferable because leukocyte removal can be performed in a short time. Moreover, since the single flow can be suppressed by improving the wettability, it is also preferable in that the leukocyte removing ability of the non-woven fibrous structure 3b can be sufficiently exhibited.

不織繊維構造体3a、3b、メッシュ3c、及び繊維状活性炭4は、白血球及び薬剤除去フィルター1のカラム2内に収納される以前に、あらかじめ決められた範囲の寸法となるように組み合わせた形に予備形成されていても良い。
(カラム)
The non-woven fiber structures 3a, 3b, the mesh 3c, and the fibrous activated carbon 4 are combined so as to have a predetermined size before being stored in the column 2 of the leukocyte and drug removal filter 1. May be preformed.
(column)

本実施形態において、白血球及び薬剤除去フィルター1にろ材を収容するためのカラム2の材質は、硬質性樹脂や可撓性樹脂のいずれでも良く、硬質性樹脂の場合、素材はフェノール樹脂、アクリル樹脂、エポキシ樹脂、ホルムアルデヒド樹脂、尿素樹脂、ケイ素樹脂、ABS樹脂、ナイロン、ポリウレタン、ポリカーボネート、塩化ビニル、ポリエチレン、ポリプロピレン、ポリエステル、スチレン−ブタジエン共重合体等が挙げられる。可撓性樹脂の場合、可撓性の合成樹脂製のシート状または円筒状成型物から形成されるのが好ましく、素材は軟質ポリ塩化ビニル、ポリウレタン、エチレン−酢酸ビニル共重合体、ポリエチレンやポリプロピレンのようなポリオレフィン、スチレン−ブタジエン−スチレン共重合体の水添物、スチレン−イソプレン−スチレン共重合体またはその水添物等の熱可塑性エラストマー、及び熱可塑性エラストマーとポリオレフィン、エチレン−エチルアクリレート等の軟化剤との混合物等が好適な材料として挙げられる。好ましくはポリカーボネート、ポリエチレン、ポリプロピレン、軟質塩化ビニル、ポリウレタン、エチレン−酢酸ビニル共重合体、ポリオレフィン、及びこれらを主成分とする熱可塑性エラストマーであり、更に好ましくはポリカーボネート、軟質塩化ビニル、ポリオレフィンである。   In this embodiment, the material of the column 2 for accommodating the filter medium in the leukocyte and drug removal filter 1 may be either a hard resin or a flexible resin. In the case of a hard resin, the material is a phenol resin or an acrylic resin. Epoxy resin, formaldehyde resin, urea resin, silicon resin, ABS resin, nylon, polyurethane, polycarbonate, vinyl chloride, polyethylene, polypropylene, polyester, styrene-butadiene copolymer, and the like. In the case of a flexible resin, it is preferably formed from a sheet or cylindrical molded product made of a flexible synthetic resin, and the material is soft polyvinyl chloride, polyurethane, ethylene-vinyl acetate copolymer, polyethylene or polypropylene. Such as polyolefin, hydrogenated product of styrene-butadiene-styrene copolymer, thermoplastic elastomer such as styrene-isoprene-styrene copolymer or hydrogenated product thereof, and thermoplastic elastomer and polyolefin, ethylene-ethyl acrylate, etc. A suitable material is a mixture with a softening agent. Preferred are polycarbonate, polyethylene, polypropylene, soft vinyl chloride, polyurethane, ethylene-vinyl acetate copolymer, polyolefin, and thermoplastic elastomers based on these, more preferred are polycarbonate, soft vinyl chloride, and polyolefin.

また、カラム形状は、血液製剤の入口2aと出口2bとを有する形状であれば特に限定は無いが、円柱、多角柱形の硬質容器または可撓性容器などは好適である。ろ材との密着を防止して血液流路を確保するために、カラム内面を凹凸状に形成しても良い。特に可撓性容器の場合、血液の入口2a側からのろ過圧力及びろ過後血液が落差で回収される場合、陰圧によりろ材が血液の出口2b側の容器に押し付けられて密着し、血流が阻害される可能性が高いので、血液出口側の内面を凹凸状にすることは効果的である。本実施形態のカラム成型方法については、フィルター内部で不織繊維構造体3b、繊維状活性炭4を密封の上、形状を保持でき、本実施形態が意図する通気圧損範囲内のフィルターが得られる限りにおいて、特に限定は無い。   The column shape is not particularly limited as long as it has a blood product inlet 2a and outlet 2b, but a columnar, polygonal columnar rigid container or flexible container is suitable. In order to prevent close contact with the filter medium and secure the blood flow path, the inner surface of the column may be formed in an uneven shape. In particular, in the case of a flexible container, when the filtration pressure from the blood inlet 2a side and the blood after filtration are collected by a drop, the filter medium is pressed against the container on the blood outlet 2b side by the negative pressure, and the blood flow It is effective to make the inner surface of the blood outlet side uneven. As for the column molding method of the present embodiment, as long as the non-woven fiber structure 3b and the fibrous activated carbon 4 are sealed inside the filter and the shape can be maintained, a filter within the air pressure loss range intended by the present embodiment can be obtained. There is no particular limitation.

以上のような構成を有する本実施形態の白血球及び薬剤除去フィルター1によれば、比較的高濃度の白血球や不活化薬剤を有する血液製剤であっても、薬剤を少なくとも85%以上除去でき、血液製剤単位あたりの残存白血球数を1×10以下に低減できる。更に、回収される血液製剤の溶血を抑制することもできる。 According to the leukocyte and drug removal filter 1 of the present embodiment having the above-described configuration, at least 85% or more of the drug can be removed even with a blood product having a relatively high concentration of leukocytes or an inactivated drug, and blood The number of remaining leukocytes per unit of preparation can be reduced to 1 × 10 6 or less. Furthermore, hemolysis of the collected blood product can be suppressed.

また、白血球及び薬剤除去フィルター1は、実質的に問題となるような形状変形を起こし得ない材料から成り、実使用時において適切な形状及び通気圧損を保持し、十分な白血球及び薬剤除去性能を維持できる。
(白血球及び薬剤除去システム)
In addition, the leukocyte and drug removal filter 1 is made of a material that cannot cause shape deformation that is a substantial problem, and maintains an appropriate shape and airflow pressure loss during actual use, and has sufficient leukocyte and drug removal performance. Can be maintained.
(Leukocyte and drug removal system)

次に、実施形態に係る白血球及び薬剤除去フィルター1を備えて構成される実施形態の白血球及び薬剤除去システム100について、図2を参照して説明する。図2は、白血球及び薬剤除去システム100の構成図である。   Next, the leukocyte and drug removal system 100 of the embodiment configured with the leukocyte and drug removal filter 1 according to the embodiment will be described with reference to FIG. FIG. 2 is a configuration diagram of the leukocyte and drug removal system 100.

白血球及び薬剤除去システム100は、白血球及び薬剤除去フィルター1と、血液製剤を貯留する血液製剤バック(血液製剤貯留手段)11と、不活化薬剤を供給する薬剤供給部12と、不活化用バック13と、白血球と薬剤とを除去完了した後の血液製剤を回収する処理液回収バック(血液製剤回収手段)14と、配管L1〜L5と、クランプC1〜C4と、を備える。   The leukocyte and drug removal system 100 includes a leukocyte and drug removal filter 1, a blood product bag (blood product storage means) 11 that stores a blood product, a drug supply unit 12 that supplies an inactivated drug, and an inactivation bag 13. And a treatment liquid recovery bag (blood product recovery means) 14 for recovering the blood product after completing the removal of the leukocytes and the drug, pipes L1 to L5, and clamps C1 to C4.

ここで、血液製剤とは、赤血球を含む各種血液製剤であり、例えば、全血、濃厚赤血球製剤等である。薬剤供給部12は、不活化用バック13に血液チューブなどの配管L1によって接続され、配管L1を通じて不活化用バック13に薬剤を供給する。血液製剤バック11は配管L2に接続され、配管L2は処理開始時に配管L1にSCD接続される。不活化用バック13は、血液製剤バック11及び薬剤供給部12から配管L1、L2を介して血液製剤及び薬剤を受け入れ、不活化処理を行う。   Here, blood products are various blood products containing red blood cells, such as whole blood and concentrated red blood cell preparations. The drug supply unit 12 is connected to the inactivation back 13 by a pipe L1 such as a blood tube, and supplies the drug to the inactivation back 13 through the pipe L1. Blood product bag 11 is connected to pipe L2, and pipe L2 is SCD connected to pipe L1 at the start of processing. The inactivation bag 13 receives the blood product and the drug from the blood product bag 11 and the drug supply unit 12 via the pipes L1 and L2, and performs an inactivation process.

不活化用バック13と白血球及び薬剤除去フィルター1の入口接続部5aとは、配管L3によって互いに接続され、処理液回収バック14と白血球及び薬剤除去フィルター1の出口接続部5bとは、配管L4によって互いに接続されている。白血球及び薬剤除去フィルター1には、配管L3を通じ、白血球と不活化薬剤を含む血液製剤が供給される。不織繊維構造体3b及び繊維状活性炭4を備えた白血球及び薬剤除去フィルター1では、血液製剤中に含まれる白血球及び薬剤を除去する。白血球及び薬剤を除去された血液製剤は、配管L4を通じて処理液回収バック14に回収される。   The inactivation bag 13 and the inlet connection part 5a of the leukocyte / drug removal filter 1 are connected to each other by a pipe L3, and the treatment liquid recovery bag 14 and the outlet connection part 5b of the leukocyte / drug removal filter 1 are connected by a pipe L4. Are connected to each other. A blood product containing leukocytes and an inactivated drug is supplied to the leukocyte and drug removal filter 1 through the pipe L3. The leukocyte and drug removal filter 1 provided with the non-woven fiber structure 3b and the fibrous activated carbon 4 removes leukocytes and drug contained in the blood product. The blood product from which the leukocytes and the drug have been removed is collected in the treatment liquid collection bag 14 through the pipe L4.

また、配管L3、L4は分岐して白血球及び薬剤除去フィルター1をバイパスする配管L5からなるバイパス経路を形成している。配管L5は、処理液回収バック14の空気抜きに用いられる。クランプC1は、配管L1の不活化用バック13がSCD接続される場所よりも不活化用バック13側に備えられている。また、クランプC2、C3、C4は、それぞれ配管L3、L5、L4に備えられている。
(白血球及び薬剤除去方法)
Further, the pipes L3 and L4 branch to form a bypass path including a pipe L5 that bypasses the leukocyte and drug removal filter 1. The pipe L <b> 5 is used for venting the processing liquid recovery bag 14. The clamp C1 is provided closer to the inactivation back 13 than the place where the inactivation back 13 of the pipe L1 is connected to the SCD. The clamps C2, C3, and C4 are provided in the pipes L3, L5, and L4, respectively.
(Leukocyte and drug removal method)

続いて、白血球及び薬剤除去システム100を用いた白血球及び薬剤除去方法について説明する。
(1)まず、クランプC1、C2、C3、C4がすべて閉じていることを確認する。
(2)血液製剤バック11に接続する配管L2を配管L1にSCD接続する。
(3)クランプC1を開けて配管L1を開通させ、薬剤供給部12から配管L1を通じて薬剤を不活化用バック13に供給するとともに、血液製剤バック11から配管L2,L1を通じて血液製剤を落差によって不活化用バック13に導入する。
(4)クランプC1を閉じ、配管L1をクランプC1より不活化用バック13側でシールして切り、血液製剤バック11及び薬剤供給部12側の配管L1を捨てる。
(5)不活化用バック13中で薬剤及び血液製剤を混和し、必要に応じて所定時間UV照射し、インキュベート(静置)する。インキュベート中に不活化が起こる。
(6)インキュベート完了後、不活化用バック13中で再度血液製剤を混和し、クランプC2、C4を開けて、不活化用バック13から、血液製剤を、配管L3を通じて白血球及び薬剤除去フィルター1に送り出し、白血球及び薬剤除去フィルター1をろ過する。白血球及び薬剤除去フィルター1でろ過された血液製剤は、配管L4を通じて処理液回収バック14に回収される(白血球及び薬剤除去工程)。
(7)クランプC3を開けて、配管L5を開通させる。
(8)処理液回収バック14の空気を、空になった不活化用バック13に配管L5を通して逃がす。
(9)クランプC2、C3、C4を閉じる。
(10)シールして、処理液回収バック14を取り出す。
Next, a leukocyte and drug removal method using the leukocyte and drug removal system 100 will be described.
(1) First, it is confirmed that all the clamps C1, C2, C3, and C4 are closed.
(2) The pipe L2 connected to the blood product bag 11 is SCD connected to the pipe L1.
(3) The clamp C1 is opened to open the pipe L1, and the drug is supplied from the drug supply unit 12 to the inactivation bag 13 through the pipe L1, and the blood product is not dropped from the blood product bag 11 through the pipes L2 and L1 due to a drop. Introduced into the bag 13 for activation.
(4) The clamp C1 is closed, the pipe L1 is sealed and cut from the clamp C1 on the inactivation back 13 side, and the blood product bag 11 and the pipe L1 on the drug supply unit 12 side are discarded.
(5) A drug and a blood product are mixed in the inactivation bag 13 and, if necessary, UV irradiation is performed for a predetermined time, and incubation (standing) is performed. Inactivation occurs during incubation.
(6) After completion of the incubation, the blood product is mixed again in the inactivation bag 13, the clamps C2 and C4 are opened, and the blood product is transferred from the inactivation bag 13 to the leukocyte and drug removal filter 1 through the pipe L3. The white blood cell and the drug removal filter 1 are filtered out. The blood product filtered by the leukocyte and drug removal filter 1 is collected in the treatment liquid collection bag 14 through the pipe L4 (white blood cell and drug removal step).
(7) Open the clamp L3 and open the pipe L5.
(8) The air in the treatment liquid recovery bag 14 is released to the inactivated bag 13 through the pipe L5.
(9) Close the clamps C2, C3, C4.
(10) Seal and take out the processing liquid recovery bag 14.

上記の操作により、赤血球製剤に不活化薬剤を添加し、不活化した後の血液製剤を、上流側に白血球除去媒体、下流側に薬剤除去媒体を含む白血球及び薬剤除去フィルター(単一フィルター)1の入口2aに導入するとともに出口2bから排出することにより、白血球及び薬剤除去フィルター1の上流側で白血球を除去し、下流側で残余の不活化薬剤を除去する工程を備える白血球及び薬剤除去方法を実現できる。   By the above operation, an inactivated drug is added to the erythrocyte preparation, and the inactivated blood product is converted into a leukocyte removal medium on the upstream side and a leukocyte and drug removal filter (single filter) 1 containing the drug removal medium on the downstream side. A leukocyte and drug removal method comprising a step of removing leukocytes on the upstream side of the leukocyte and drug removal filter 1 and removing the remaining inactivated drug on the downstream side by being introduced into the inlet 2a and discharged from the outlet 2b. realizable.

以上、各実施形態を参照しつつ本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、つまり、このシステムは、システムの構築例に過ぎず、バッグや回路の構築方法、配置、及びシステムの使用条件、方法、手順を限定するものではない。   As described above, the present invention has been described with reference to each embodiment. However, the present invention is not limited to the above-described embodiment, that is, this system is only an example of system construction, and construction of bags and circuits. The method, arrangement, and use conditions, method, and procedure of the system are not limited.

以下、実施例により本発明を更に詳細に説明するが、本発明は以下の実施例によって限定されるものではない。
(実施例1)
(白血球及び薬剤除去フィルターの作成)
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by a following example.
Example 1
(Creation of leukocyte and drug removal filter)

平均繊維径1.2μm、目付40g/mのポリエチレンテレフタレート(PET)製不織布(不織繊維構造体)3bを10枚、平均繊維径14.5μm、目付90g/mのフェルト状活性炭(繊維状活性炭)4を4枚、合計14枚をこの順に積層した。この積層ろ材を72×72mmの正方形に切断して硬質容器のカラム2に充填し、有効ろ過面積67×67mmとなるように超音波溶着法を用いて溶着することで、白血球及び薬剤除去フィルター1を作成した。
(白血球及び薬剤除去回路の作成)
The average fiber diameter of 1.2 [mu] m, basis weight 40 g / m 2 of polyethylene terephthalate (PET) nonwoven fabric (nonwoven fabric structure) 3b 10 sheets of an average fiber diameter of 14.5 [mu] m, felted activated carbon having a basis weight of 90 g / m 2 (fibers Four activated carbons) 4 were laminated in this order. This laminated filter medium is cut into 72 × 72 mm 2 squares, filled in the column 2 of the hard container, and welded using an ultrasonic welding method so that the effective filtration area is 67 × 67 mm 2. Filter 1 was created.
(Creation of leukocyte and drug removal circuit)

上記の白血球及び薬剤除去フィルター1を、不活化用バック13と処理液回収バック14との間に配置し、不活化用バック13に接続した導管を白血球及び薬剤除去フィルター1の入口接続部5aへ、処理液回収バック14に接続した導管を白血球及び薬剤除去フィルター1の出口接続部5bへそれぞれ接続した。また、それぞれの導管として、内径3.0mm、外径4.2mmのポリ塩化ビニル製のチューブを使用した。
(繊維状活性炭の比表面積測定)
The leukocyte and drug removal filter 1 is disposed between the inactivation bag 13 and the treatment liquid recovery bag 14, and the conduit connected to the inactivation bag 13 is connected to the inlet connection portion 5 a of the leukocyte and drug removal filter 1. Then, the conduit connected to the treatment liquid recovery bag 14 was connected to the outlet connection portion 5b of the leukocyte and drug removal filter 1, respectively. Moreover, as each conduit, a tube made of polyvinyl chloride having an inner diameter of 3.0 mm and an outer diameter of 4.2 mm was used.
(Specific surface area measurement of fibrous activated carbon)

(株)島津製作所製自動比表面積測定装置Tristar3000の測定セルに、上記繊維状活性炭4を必要量入れて密栓し、(株)島津製作所製サンプル脱ガス装置VacPrep061を用いて100ミリTorr以下で60分間脱ガスを行い、吸着ガス:窒素ガス、吸着温度:液体窒素温度にて、気体吸着法により比表面積を測定した結果、900m/gであった。
(通気圧損値の評価)
A necessary amount of the above-mentioned fibrous activated carbon 4 is put in a measuring cell of an automatic specific surface area measuring apparatus Tristar 3000 manufactured by Shimadzu Corporation and sealed, and the sample degassing apparatus VacPrep061 manufactured by Shimadzu Corporation is used for 60 or less at 100 millitorr or less. It was 900 m 2 / g as a result of performing degassing for a minute and measuring the specific surface area by the gas adsorption method at adsorption gas: nitrogen gas and adsorption temperature: liquid nitrogen temperature.
(Evaluation of air pressure loss value)

白血球及び薬剤除去フィルター1のカラム2の入口2aから、膜流量計により通気線速を0.73m/分に調整した気体を流入させ、カラム2の出口2bから上記気体を自由に排出させた。その後流量が安定してからフィルター部分の入口圧と出口圧の差を圧力トランスデューサで測定したところ、通気圧損は500Paであった。
(重力落差による薬剤ろ過方法)
A gas whose aeration linear velocity was adjusted to 0.73 m / min by a membrane flow meter was introduced from the inlet 2a of the column 2 of the leukocyte and drug removal filter 1 and the gas was freely discharged from the outlet 2b of the column 2. Thereafter, after the flow rate was stabilized, the difference between the inlet pressure and the outlet pressure of the filter portion was measured with a pressure transducer. As a result, the ventilation pressure loss was 500 Pa.
(Drug filtering method by gravity drop)

上記白血球及び薬剤除去方法、及びシステムを用いた薬剤ろ過方法は以下の通りである。生理食塩水にメチレンブルーを溶解させ1μMに調製した溶液を、白血球及び薬剤除去フィルター1に適した量調整し、不活化用バック13に封入した。次に、上記白血球及び薬剤除去フィルター1のカラム2の入口2aから重力落差によって流入させ、出口2bより排出させることにより白血球薬剤ろ過を実施した。
(薬剤除去率の測定方法)
The above-described leukocyte and drug removal method and drug filtration method using the system are as follows. A solution prepared by dissolving methylene blue in physiological saline to a concentration of 1 μM was adjusted to an amount suitable for the leukocyte and drug removal filter 1 and enclosed in an inactivation bag 13. Next, leukocyte drug filtration was carried out by flowing in from the inlet 2a of the column 2 of the leukocyte and drug removal filter 1 by gravity drop and discharging from the outlet 2b.
(Measurement method of drug removal rate)

ろ過前後の上記メチレンブルー溶液を石英セルに入れ、JASCO社製紫外可視分光光度計V−570にセットし644nmの吸光度測定を行った。濃度既知のメチレンブルー溶液より得られた検量線で濃度換算を行い、薬剤除去率を以下の式により計算した。
薬剤除去率(%)=(ろ過後のメチレンブルー濃度mM)/(ろ過前のメチレンブルー濃度mM)×100
(重力落差によるヒト血ろ過方法)
The methylene blue solution before and after filtration was placed in a quartz cell and set in a UV-visible spectrophotometer V-570 manufactured by JASCO, and absorbance at 644 nm was measured. The concentration was converted with a calibration curve obtained from a methylene blue solution having a known concentration, and the drug removal rate was calculated by the following equation.
Drug removal rate (%) = (methylene blue concentration mM after filtration) / (methylene blue concentration mM before filtration) × 100
(Human blood filtration method using gravity drop)

上記白血球及び薬剤除去方法、及びシステムを用いたヒト血ろ過方法は以下の通りである。健常人より採血したヒト全血を白血球及び薬剤除去フィルター1に適した量、不活化用バック13に封入した。次に、不活化用バック13に封入したヒト全血を、上記白血球及び薬剤除去フィルター1のカラム2の入口2aから重力落差によって流入させ、出口2bより排出させることにより実施した。
(ヒト全血採取方法)
The human blood filtration method using the leukocyte and drug removal method and system is as follows. Human whole blood collected from a healthy person was enclosed in an inactivation bag 13 in an amount suitable for the leukocyte and drug removal filter 1. Next, human whole blood sealed in the inactivation bag 13 was introduced by gravity drop from the inlet 2a of the column 2 of the leukocyte and drug removal filter 1 and discharged from the outlet 2b.
(Human whole blood collection method)

上記ヒト全血は、全血100mlに対し、抗凝固剤としてCPD14mlを添加する割合で健常人より採血し得られた。採血後の全血は室温22℃で保管し、採血から4時間以内に使用した。
(白血球除去能の評価方法)
The human whole blood was obtained from a healthy person at a rate of adding 14 ml of CPD as an anticoagulant to 100 ml of whole blood. The collected whole blood was stored at room temperature of 22 ° C. and used within 4 hours after blood collection.
(Evaluation method of leukocyte removal ability)

白血球除去能の指標として、白血球除去率を測定した。ろ過前後のヒト全血中白血球濃度を、日本ベクトンディッキンソン社製LeucoCOUNTキット、及びフローサイトメーターFACSCantoIIを用いて測定し、以下の式から白血球除去率を算出した。
白血球除去率=log10{ろ過後ヒト全血中白血球濃度(/ml)÷ろ過前ヒト全血中白血球濃度(/ml)}
(溶血の評価方法)
The leukocyte removal rate was measured as an index of leukocyte removal ability. The concentration of leukocytes in human whole blood before and after filtration was measured using a LeucoCOUNT kit manufactured by Nippon Becton Dickinson and a flow cytometer FACSCanto II, and the leukocyte removal rate was calculated from the following equation.
Leukocyte removal rate = log 10 {white blood cell concentration in human whole blood after filtration (/ ml) ÷ white blood cell concentration in human whole blood before filtration (/ ml)}
(Method for evaluating hemolysis)

血液製剤の溶血の指標として、上清ヘモグロビン(Hb)濃度を以下のように測定した。ろ過後のヒト全血を採血管に入れ、KUBOTA社製テーブルトップ遠心機5100を用いて3000rpm(1700×g)、15分間遠心分離することにより、上清を回収した。次に、ヘモキュー社製マイクロキュベットの先端部分に接触させ、上清を吸い上げた。このマイクロキュベットを、ヘモキュー社製遊離/低濃度ヘモグロビン測定装置にセットし、上清Hb濃度を測定した。ここで、上清Hb濃度が0.02g/dLを超えないことが好ましい。
(流れ性の評価方法)
As an indicator of hemolysis of blood products, supernatant hemoglobin (Hb) concentration was measured as follows. The filtered human whole blood was placed in a blood collection tube and centrifuged at 3000 rpm (1700 × g) for 15 minutes using a table top centrifuge 5100 manufactured by KUBOTA, and the supernatant was collected. Next, the sample was brought into contact with the tip of a micro cuvette manufactured by Hemokyu Corporation, and the supernatant was sucked up. This micro cuvette was set in a free / low-concentration hemoglobin measuring device manufactured by Hemokyu Corporation, and the supernatant Hb concentration was measured. Here, it is preferable that the supernatant Hb concentration does not exceed 0.02 g / dL.
(Evaluation method for flowability)

白血球及び薬剤除去フィルター1に対するヒト血の流れ性の指標として、ろ過処理に要した時間を以下のように測定した。ろ過開始時点は、全血が落差により不活化用バック13から白血球及び薬剤除去フィルター1のカラム2の入口2aに向かって鉛直下方に移動し始めた時点とし、SEIKO社製ストップウォッチS056により計測を開始した。ろ過終了時点は、入口2a側の容器とろ材の間に充填された血液がなくなった時点として、ストップウォッチ計測を終了した。   As an index of human blood flowability with respect to the leukocyte and drug removal filter 1, the time required for the filtration treatment was measured as follows. The filtration start time is the time when the whole blood starts to move vertically downward from the inactivation bag 13 toward the inlet 2a of the column 2 of the leukocyte and drug removal filter 1 due to a drop, and is measured by a stopwatch S056 manufactured by SEIKO. Started. The end point of the filtration was the time when the blood filled between the container on the inlet 2a side and the filter medium disappeared, and the stopwatch measurement was finished.

実施例1の評価結果より、繊維状活性炭の比表面積を900m/g、白血球及び薬剤除去フィルター1の通気圧損を500Paとすることにより、薬剤除去率は88%、白血球除去率は−3.5log10、処理時間は11.2分、上清Hb濃度は0.00g/dLとなった。
(実施例2)
From the evaluation results of Example 1, by setting the specific surface area of fibrous activated carbon to 900 m 2 / g and the ventilation pressure loss of leukocytes and drug removal filter 1 to 500 Pa, the drug removal rate is 88% and the white blood cell removal rate is −3. 5 log 10 , the treatment time was 11.2 minutes, and the supernatant Hb concentration was 0.00 g / dL.
(Example 2)

白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを22枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計26枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は1800m/g、白血球及び薬剤除去フィルター1の通気圧損は1200Paであった。 In the leukocyte and drug removal filter 1, 22 sheets of the same non-woven fabric 3b made of PET as in Example 1, 4 sheets of felt-like activated carbon 4 having the same average fiber diameter and basis weight as in Example 1, but different in the degree of micropores, totaled A white blood cell and drug removal filter 1 was prepared and evaluated in the same manner as in Example 1 except that 26 sheets were laminated in this order. The specific surface area of the fibrous activated carbon measured by the same method as in Example 1 was 1800 m 2 / g, and the air pressure loss of the leukocyte and drug removal filter 1 was 1200 Pa.

実施例2の評価結果より、繊維状活性炭の比表面積を1800m/g、白血球及び薬剤除去フィルター1の通気圧損を1200Paとすることにより、薬剤除去率は99.5%以上、白血球除去率は−4.2log10、処理時間は16.1分、上清Hb濃度は0.01g/dLとなった。
(実施例3)
From the evaluation results of Example 2, by setting the specific surface area of the fibrous activated carbon to 1800 m 2 / g and the ventilation pressure loss of the leukocytes and the drug removal filter 1 to 1200 Pa, the drug removal rate is 99.5% or more, and the leukocyte removal rate is -4.2 log 10 , treatment time was 16.1 minutes, and supernatant Hb concentration was 0.01 g / dL.
(Example 3)

白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを32枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計36枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は3000m/g、白血球及び薬剤除去フィルター1の通気圧損は2000Paであった。 In the leukocyte and drug removal filter 1, 32 sheets of the same non-woven fabric 3b made of PET as in Example 1, 4 sheets of felt-like activated carbon 4 having the same average fiber diameter and basis weight as in Example 1, but different in the degree of micropores, totaled A white blood cell and drug removal filter 1 was prepared and evaluated in the same manner as in Example 1 except that 36 sheets were laminated in this order. The specific surface area of the fibrous activated carbon measured by the same method as in Example 1 was 3000 m 2 / g, and the air pressure loss of the leukocyte and drug removal filter 1 was 2000 Pa.

実施例3の評価結果より、繊維状活性炭の比表面積を3000m/g、白血球及び薬剤除去フィルター1の通気圧損を2000Paとすることにより、薬剤除去率は99.5%以上、白血球除去率は−4.8log10、処理時間は23.6分、上清Hb濃度は0.01g/dLとなった。
(実施例4)
From the evaluation results of Example 3, by setting the specific surface area of the fibrous activated carbon to 3000 m 2 / g and the ventilation pressure loss of the leukocytes and the drug removal filter 1 to 2000 Pa, the drug removal rate is 99.5% or more, and the leukocyte removal rate is -4.8 log 10 , treatment time was 23.6 minutes, and supernatant Hb concentration was 0.01 g / dL.
Example 4

白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを10枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計14枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は750m/g、白血球及び薬剤除去フィルター1の通気圧損は500Paであった。 In the leukocyte and drug removal filter 1, ten sheets of the same non-woven fabric 3b made of PET as in Example 1, four sheets of felt-like activated carbon 4 having the same average fiber diameter and basis weight as in Example 1 and different degrees of micropores, totaling A white blood cell and drug removal filter 1 was prepared and evaluated in the same manner as in Example 1 except that 14 sheets were laminated in this order. The specific surface area of the fibrous activated carbon measured by the same method as in Example 1 was 750 m 2 / g, and the air pressure loss of the leukocyte and drug removal filter 1 was 500 Pa.

実施例4の評価結果より、繊維状活性炭の比表面積を750m/g、白血球及び薬剤除去フィルター1の通気圧損を500Paとすることにより、薬剤除去率は85%、白血球除去率は−3.5log10、処理時間は12.0分、上清Hb濃度は0.00g/dLとなった。
(実施例5)
From the evaluation results of Example 4, by setting the specific surface area of the fibrous activated carbon to 750 m 2 / g and the ventilation pressure loss of the leukocytes and the drug removal filter 1 to 500 Pa, the drug removal rate is 85% and the leukocyte removal rate is −3. 5 log 10 , treatment time was 12.0 minutes, and the supernatant Hb concentration was 0.00 g / dL.
(Example 5)

白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを8枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計12枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は900m/g、白血球及び薬剤除去フィルター1の通気圧損は400Paであった。 In the leukocyte and drug removal filter 1, eight sheets of the same non-woven fabric 3b made of PET as in Example 1, four sheets of felt-like activated carbon 4 having the same average fiber diameter and basis weight as in Example 1 and different degrees of micropores, totaling A white blood cell and drug removal filter 1 was prepared and evaluated in the same manner as in Example 1 except that 12 sheets were laminated in this order. The specific surface area of the fibrous activated carbon measured by the same method as in Example 1 was 900 m 2 / g, and the air pressure loss of the leukocyte and drug removal filter 1 was 400 Pa.

実施例5の評価結果より、繊維状活性炭の比表面積を900m/g、白血球及び薬剤除去フィルター1の通気圧損を400Paとすることにより、薬剤除去率は87%、白血球除去率は−3.3log10、処理時間8.4分、上清Hb濃度は0.00g/dLとなった。
(実施例6)
From the evaluation results of Example 5, by setting the specific surface area of the fibrous activated carbon to 900 m 2 / g and the ventilation pressure loss of the leukocytes and the drug removal filter 1 to 400 Pa, the drug removal rate is 87% and the leukocyte removal rate is −3. 3 log 10 , treatment time 8.4 minutes, supernatant Hb concentration was 0.00 g / dL.
(Example 6)

白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを36枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計40枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は3000m/g、白血球及び薬剤除去フィルター1の通気圧損は2250Paであった。 In the leukocyte and drug removal filter 1, 36 sheets of the same non-woven fabric 3b made of PET as in Example 1, and 4 sheets of felt-like activated carbon 4 having the same average fiber diameter and basis weight as in Example 1 but different in the degree of micropores, total A white blood cell and drug removal filter 1 was prepared and evaluated in the same manner as in Example 1 except that 40 sheets were laminated in this order. The specific surface area of the fibrous activated carbon measured by the same method as in Example 1 was 3000 m 2 / g, and the aeration pressure loss of the leukocyte and drug removal filter 1 was 2250 Pa.

実施例6の評価結果より、繊維状活性炭の比表面積を3000m/g、白血球及び薬剤除去フィルター1の通気圧損を2250Paとすることにより、薬剤除去率は99.5%以上、白血球除去率は−5.0log10、処理時間は28.2分、上清Hb濃度は0.02g/dLとなった。
(比較例1)
From the evaluation results of Example 6, by setting the specific surface area of the fibrous activated carbon to 3000 m 2 / g and the ventilation pressure loss of the leukocytes and the drug removal filter 1 to 2250 Pa, the drug removal rate is 99.5% or more, and the leukocyte removal rate is -5.0 log 10 , treatment time 28.2 minutes, supernatant Hb concentration was 0.02 g / dL.
(Comparative Example 1)

白血球及び薬剤除去フィルター1において、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、実施例1と同じPET製不織布3bを22枚、合計26枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は1800m/g、白血球及び薬剤除去フィルター1の通気圧損は1200Paであった。 In the leukocyte and drug removal filter 1, 4 felt-like activated carbons 4 having the same average fiber diameter and basis weight as in Example 1 and different micropore opening degrees, and 22 PET nonwoven fabrics 3b as in Example 1, total A white blood cell and drug removal filter 1 was prepared and evaluated in the same manner as in Example 1 except that 26 sheets were laminated in this order. The specific surface area of the fibrous activated carbon measured by the same method as in Example 1 was 1800 m 2 / g, and the air pressure loss of the leukocyte and drug removal filter 1 was 1200 Pa.

比較例1の評価結果より、繊維状活性炭の比表面積を1800m/g、白血球及び薬剤除去フィルター1の通気圧損を1200Paとすることにより、薬剤除去率は99.5%以上、白血球除去率は−3.9log10、上清Hb濃度は0.13g/dLとなった。処理時間60分経過しても、ストップフローによりろ過が終了しなかったため途中で中止した。 From the evaluation results of Comparative Example 1, by setting the specific surface area of fibrous activated carbon to 1800 m 2 / g and the ventilation pressure loss of leukocytes and drug removal filter 1 to 1200 Pa, the drug removal rate is 99.5% or more, and the leukocyte removal rate is -3.9 log 10 and the supernatant Hb concentration was 0.13 g / dL. Even after the treatment time of 60 minutes passed, the filtration was not completed due to the stop flow, so the process was stopped halfway.

白血球及び薬剤除去率、上清Hbの評価結果を表1に示す。

Figure 2015112325
The evaluation results of leukocyte and drug removal rate and supernatant Hb are shown in Table 1.
Figure 2015112325

1…白血球及び薬剤除去フィルター、2…カラム(容器)、2a…入口、2b…出口、3a、3b…不織繊維構造体(白血球除去媒体)、4…繊維状活性炭(薬剤除去媒体)、11…血液製剤バック(血液製剤貯留手段)、12…薬剤供給部、13…不活化用バック、14…処理液回収バック(血液製剤回収手段)、100…白血球及び薬剤除去システム。
DESCRIPTION OF SYMBOLS 1 ... White blood cell and chemical | medical agent removal filter, 2 ... Column (container), 2a ... Inlet, 2b ... Outlet, 3a, 3b ... Nonwoven fiber structure (leukocyte removal medium), 4 ... Fibrous activated carbon (drug removal medium), 11 ... blood product bag (blood product storage means), 12 ... drug supply unit, 13 ... inactivation bag, 14 ... treatment liquid recovery bag (blood product collection means), 100 ... leukocyte and drug removal system.

Claims (7)

赤血球を含む血液製剤に不活化薬剤を添加し、不活化した後の前記血液製剤を、上流側に白血球除去媒体、下流側に薬剤除去媒体を含む単一フィルターの入口に導入するとともに出口から排出することにより、前記フィルターの上流側で白血球を除去し、下流側で残余の不活化薬剤を除去する工程を備える白血球及び薬剤除去方法。   An inactivated drug is added to a blood product containing red blood cells, and the inactivated blood product is introduced into the inlet of a single filter containing a white blood cell removing medium on the upstream side and a drug removing medium on the downstream side and discharged from the outlet. A leukocyte and drug removal method comprising a step of removing leukocytes upstream of the filter and removing residual inactivated drug downstream. 前記白血球除去媒体は不織繊維構造体であり、前記薬剤除去媒体は繊維状活性炭である請求項1記載の白血球及び薬剤除去方法。   The leukocyte and drug removal method according to claim 1, wherein the leukocyte removal medium is a non-woven fiber structure, and the drug removal medium is fibrous activated carbon. 前記繊維状活性炭の比表面積は900m/g以上、3000m/g以下であり、かつ前記フィルターの通気圧損は500Pa以上、2000Pa以下であることを特徴とする請求項2記載の白血球及び薬剤除去方法。 3. The leukocyte and drug removal according to claim 2, wherein the fibrous activated carbon has a specific surface area of 900 m 2 / g or more and 3000 m 2 / g or less, and the airflow pressure loss of the filter is 500 Pa or more and 2000 Pa or less. Method. 赤血球を含む血液製剤中に含まれる不活化対象物を不活化した後の血液製剤から白血球及び不活化薬剤を除去するフィルターであって、
赤血球を含む血液製剤が導入される入口と、前記血液製剤が排出される出口とを有する容器と、
前記容器内に収納され、前記白血球を除去可能な白血球除去媒体と、
前記容器内に収納され、前記薬剤を吸着除去可能な薬剤除去媒体と、を備え、
前記白血球除去媒体は、前記薬剤除去媒体よりも上流に配置される、白血球及び薬剤除去フィルター。
A filter that removes leukocytes and inactivating agents from a blood product after inactivating an inactivated target contained in a blood product containing red blood cells,
A container having an inlet for introducing a blood product containing red blood cells and an outlet for discharging the blood product;
A leukocyte removal medium housed in the container and capable of removing the leukocytes;
A medicine removal medium housed in the container and capable of adsorbing and removing the medicine,
The leukocyte and drug removal filter, wherein the leukocyte removal medium is disposed upstream of the drug removal medium.
前記白血球除去媒体は不織繊維構造体であり、前記薬剤除去媒体は繊維状活性炭である請求項4記載の白血球及び薬剤除去フィルター。   The leukocyte and drug removal filter according to claim 4, wherein the leukocyte removal medium is a non-woven fiber structure, and the drug removal medium is fibrous activated carbon. 前記繊維状活性炭の比表面積は900m/g以上、3000m/g以下であり、かつ前記白血球及び薬剤除去フィルターの通気圧損は500Pa以上、2000Pa以下であることを特徴とする請求項5記載の白血球及び薬剤除去フィルター。 The specific surface area of the fibrous activated carbon is 900 m 2 / g or more and 3000 m 2 / g or less, and the aeration pressure loss of the leukocytes and the drug removal filter is 500 Pa or more and 2000 Pa or less. Leukocyte and drug removal filter. 白血球及び薬剤除去システムであって、
請求項4〜6のいずれか一項記載の白血球及び薬剤除去フィルターと、
前記血液製剤を貯留する血液製剤貯留手段と、
前記白血球及び薬剤除去フィルターによって、前記白血球及び薬剤が除去された血液製剤を回収する血液製剤回収手段と、を備えている白血球及び薬剤除去システム。
A leukocyte and drug removal system,
The leukocyte and drug removal filter according to any one of claims 4 to 6,
Blood product storage means for storing the blood product;
A leukocyte and drug removal system comprising: a blood product recovery means for recovering a blood product from which the leukocytes and drug have been removed by the leukocyte and drug removal filter.
JP2013257134A 2013-12-12 2013-12-12 Leukocyte and drug removal method, leukocyte and drug removal filter, and leukocyte and drug removal system Active JP6240490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013257134A JP6240490B2 (en) 2013-12-12 2013-12-12 Leukocyte and drug removal method, leukocyte and drug removal filter, and leukocyte and drug removal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013257134A JP6240490B2 (en) 2013-12-12 2013-12-12 Leukocyte and drug removal method, leukocyte and drug removal filter, and leukocyte and drug removal system

Publications (2)

Publication Number Publication Date
JP2015112325A true JP2015112325A (en) 2015-06-22
JP6240490B2 JP6240490B2 (en) 2017-11-29

Family

ID=53526696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013257134A Active JP6240490B2 (en) 2013-12-12 2013-12-12 Leukocyte and drug removal method, leukocyte and drug removal filter, and leukocyte and drug removal system

Country Status (1)

Country Link
JP (1) JP6240490B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266073A (en) * 1986-05-14 1987-11-18 テルモ株式会社 Apparatus for purifying body fluids
JPH03242152A (en) * 1990-02-16 1991-10-29 Toyobo Co Ltd Blood treating device
JPH0824637A (en) * 1994-07-13 1996-01-30 Toho Rayon Co Ltd Adsorbing material
US5660731A (en) * 1994-11-08 1997-08-26 Pall Corporation Filter for separating photoactive agent
JP2007050013A (en) * 2005-08-15 2007-03-01 Asahi Kasei Medical Co Ltd Method of removing leukocyte and leukocyte removing filter
JP2007504947A (en) * 2003-09-12 2007-03-08 バクスター・インターナショナル・インコーポレイテッド Flow-through removal device and system using such a device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266073A (en) * 1986-05-14 1987-11-18 テルモ株式会社 Apparatus for purifying body fluids
JPH03242152A (en) * 1990-02-16 1991-10-29 Toyobo Co Ltd Blood treating device
JPH0824637A (en) * 1994-07-13 1996-01-30 Toho Rayon Co Ltd Adsorbing material
US5660731A (en) * 1994-11-08 1997-08-26 Pall Corporation Filter for separating photoactive agent
JP2007504947A (en) * 2003-09-12 2007-03-08 バクスター・インターナショナル・インコーポレイテッド Flow-through removal device and system using such a device
JP2007050013A (en) * 2005-08-15 2007-03-01 Asahi Kasei Medical Co Ltd Method of removing leukocyte and leukocyte removing filter

Also Published As

Publication number Publication date
JP6240490B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US5935436A (en) Device for simultaneously removing leukocytes and methylene blue from plasma
US5639376A (en) Process for simultaneously removing leukocytes and methylene blue from plasma
EP1931445B1 (en) Cyclic olefin copolymer as a leukoreduction material
US6337026B1 (en) Leukocyte reduction filtration media
US7591954B2 (en) Method for removing leukocytes, leukocyte-removing filter and utilization thereof
US9585997B2 (en) Leucocyte removal filter
AU2014362169B2 (en) Leukocyte removal filter material and leukocyte removal method
US6669905B1 (en) Systems and methods for collecting plasma that is free or virtually free of cellular blood species
JPWO2004052270A1 (en) Virus removal bag and virus removal method using the same
CN107735116B (en) Filter member for blood treatment filter and blood treatment filter
CN109562210B (en) Filter element for blood treatment filter, and method for removing leukocytes
ES2268245T3 (en) FILTER, PURIFICATION DEVICE AND METHOD FOR THE EXTRACTION OF SUBSTANCES FROM BLOOD PRODUCTS.
CN107708760B (en) Filter member for blood treatment filter, and blood treatment method
US10265456B2 (en) Blood filter and method of manufacturing the same
JP2804055B2 (en) Preparation method of non-infectious substance containing virus antigen or antibody
JPH067429A (en) Blood filter medium
JPH01320064A (en) Blood component separating system
JP6240490B2 (en) Leukocyte and drug removal method, leukocyte and drug removal filter, and leukocyte and drug removal system
JP2009167128A (en) Filter having prion removal function
JP6261282B2 (en) Drug removal filter, drug removal system, and drug removal method
JP6228807B2 (en) Drug removal filter, drug removal system, and drug removal method
KR101342883B1 (en) Leukocyte removal bi-filter for preventing of blood transfusion
JP2015008932A (en) Drug removing filter, drug removing system, and drug removing method
JP2009165667A (en) Filter having prion removal function
JP2011072815A (en) Filter for blood processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R150 Certificate of patent or registration of utility model

Ref document number: 6240490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350