JP2015110857A - Air bag base fabric - Google Patents
Air bag base fabric Download PDFInfo
- Publication number
- JP2015110857A JP2015110857A JP2014228291A JP2014228291A JP2015110857A JP 2015110857 A JP2015110857 A JP 2015110857A JP 2014228291 A JP2014228291 A JP 2014228291A JP 2014228291 A JP2014228291 A JP 2014228291A JP 2015110857 A JP2015110857 A JP 2015110857A
- Authority
- JP
- Japan
- Prior art keywords
- base fabric
- warp
- less
- dtex
- airbag base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Woven Fabrics (AREA)
- Air Bags (AREA)
Abstract
Description
本発明はエアバッグ基布に関する。より詳しくは対バースト性に優れたエアバッグ基布に関する。 The present invention relates to an airbag base fabric. More specifically, the present invention relates to an airbag base fabric excellent in anti-burst property.
エアバッグは事故時の衝突の衝撃や、車内装備品と人体の接触を軽減するものである。そのために、エアバッグには高い気密性が求められているが、気密性が高くなるに従い、膨張部と非膨張部の境界部分には大きな応力がかかる。特に経糸に対し、45°、135°、225°、315°の角度方向(以下バイアス方向と言う)は一般に目開きし易く、この目開き部分からのガス漏れによる気密性低下が問題となる。バーストの挙動を解析してみると、最初にバイアス方向の目開きが発生し、この部分よりガスが噴出し、これがきっかけとなってバッグがバーストすることが判明した。特にパイロテクニックインフレータの様に、バッグが高温ガスに曝される場合、より目開きしやすくなる為にバイアス方向の目開きに対する抵抗性は特に重要である。 Airbags reduce the impact of collisions in the event of accidents and the contact between in-vehicle equipment and the human body. Therefore, the air bag is required to have high airtightness. However, as the airtightness increases, a large stress is applied to the boundary portion between the inflatable portion and the non-inflatable portion. In particular, 45 °, 135 °, 225 °, and 315 ° angular directions (hereinafter referred to as the bias direction) are generally easy to open with respect to the warp, and there is a problem of a decrease in airtightness due to gas leakage from the opening. When analyzing the behavior of the burst, it was found that an opening in the bias direction first occurred, gas was ejected from this part, and this triggered the bag to burst. In particular, when the bag is exposed to a high-temperature gas, such as a Pyrotechnic inflator, resistance to opening in the bias direction is particularly important in order to make the opening easier.
上記バイアス方向の目開きに対する改良は下記特許文献1に開示されている。これは、バイアス方向の強力を経緯方向の平均強力に対し20%以上とするものである。しかしながら、上記解析結果の如く、バーストに対しては最初の目開きが重要であり、それを表現する刃梳き抵抗性が重要であるが、上記文献には当該パラメータの紹介はなされていない。また、強力のみでは刃梳き抵抗を推定することはできない。
An improvement with respect to the opening in the bias direction is disclosed in
目開き抑制としては下記特許文献2に開示されている。これは、織物の分解糸の総繊度、織物を構成する織糸の引抜抵抗、基布経緯方向の強力、引張試験における荷重300Nでの伸び、剛軟度、目付を特定の領域に制御することで収納性、耐久性、展開速度を改善しようとするものである。また、こういった基布を得るためには経緯方向とも緊張状態でのセットが好ましいとある。これは低繊度高密度織物においては経緯の接点が多いためそれほど問題とならないが、350dtex以上の繊度においては、繊維が比較的太いために上記低繊度品より経緯交点数は少なく設計される。こういった基布においての加熱時の緯方向の緊張は気密性の低下を招く場合があることが分かっている。また、当該文献においてもバイアス方向の刃梳き抵抗については記述されていない。つまり上記の如く、バイアス方向の目開き抑制の方法については未だ検討されていないのである。
The opening suppression is disclosed in
本発明の目的は、袋体としたときの膨張部と非膨張部の境界部分の展開初期のバイアス方向における目開きを抑制し、エアバッグとしたときの耐バースト性に優れた基布を提供することである。 An object of the present invention is to provide a base fabric excellent in burst resistance when used as an airbag by suppressing the opening in the bias direction at the initial stage of deployment of the boundary portion between the inflatable portion and the non-inflatable portion when the bag is used. It is to be.
本発明者は、エアバッグ基布としたときのバイアス方向の刃梳き抵抗値を適正なバランスに調整することで、バーストに対し高い耐性を持つ基布が得られることを見出し、本発明に至った。
すなわち、本発明は以下のとおりである。
The present inventor has found that a base fabric having high resistance to burst can be obtained by adjusting the blade resistance value in the bias direction when an airbag base fabric is used to an appropriate balance, and has led to the present invention. It was.
That is, the present invention is as follows.
[1]刃梳き抵抗値が経糸に対し45°のバイアス方向において200N以上1000N未満であり、かつ、下式(1)及び(2)で表される刃梳き経指数ECP(W)及び刃梳き緯指数ECP(F)が30未満であるノンコートエアバッグ基布。
ECP(W)=ABS(EC45−ECW)/EC45*100 (1)
ECP(F)=ABS(EC45−ECF)/EC45*100 (2)
(上記(1)および(2)式中、EC45は経糸に対し45°方向の刃梳き抵抗値であり、ECWは経糸方向の刃梳き抵抗値であり、ECFは緯糸方向の刃梳き抵抗値であり、ABSは絶対値記号である。)
[2]刃梳き抵抗値が経糸方向、緯糸方向のいずれも380N以上1000N未満である前記[1]に記載のノンコートエアバッグ基布。
[3]分解糸繊度が350dtex以上750dtex以下である前記[1]または[2]に記載のエアバッグ基布。
[4]カバーファクターが2000以上2600以下である前記[1]〜[3]のいずれか一項に記載のエアバッグ基布。
[5]残油率が0.05重量%以上0.2重量%以下である前記[1]〜[4]のいずれか一項に記載のエアバッグ基布。
[6]ASTM D4032剛軟度が10N以上30N以下である前記[1]〜[5]のいずれか一項に記載のエアバッグ基布。
[7]引裂き強力が160N以上300N以下である前記[1]〜[6]のいずれか一項に記載のエアバッグ基布。
[8]構成する繊維の単糸繊度が2〜7dtexである前記[1]〜[7]のいずれか一項に記載のエアバッグ基布。
[9]構成する繊維の単糸断面形状が丸断面である前記[1]〜[8]のいずれか一項に記載のエアバッグ基布。
[10]構成する繊維の原糸強度が8.2〜11.0cN/dtexである前記[1]〜[9]のいずれか一項に記載のエアバッグ基布。
[11]構成する繊維がポリアミドである前記[1]〜[10]のいずれか一項に記載のエアバッグ基布。
[12]少なくとも下記(a)〜(c)の条件を含む製織工程で製造されることを特徴とする前記[1]〜[11]のいずれか一項に記載のエアバッグ基布。
(a)製織時の経糸張力が0.30cN/dtex〜0.45cN/dtexである。
(b)精練時の経張力が1.2N/cm〜3.0N/cmである。
(c)熱セット時の経オーバーフィードが6%未満である。
[13]前記[1]〜[12]のいずれか一項に記載のエアバッグ基布を用いたエアバッグ。
[14]前記[13]に記載のエアバッグを用いたエアバッグ装置。
[1] A blade-thickness warp index ECP (W) expressed by the following formulas (1) and (2) and a blade-throw resistance, which is 200 N or more and less than 1000 N in a bias direction of 45 ° with respect to the warp. A non-coated airbag base fabric having a weft index ECP (F) of less than 30.
ECP (W) = ABS (EC45−ECW) / EC45 * 100 (1)
ECP (F) = ABS (EC45−ECF) / EC45 * 100 (2)
(In the above formulas (1) and (2), EC45 is the blade resistance value in the 45 ° direction with respect to the warp, ECW is the blade resistance value in the warp direction, and ECF is the blade resistance value in the weft direction. Yes, ABS is an absolute value symbol.)
[2] The non-coated airbag base fabric according to the above [1], wherein the blade-throw resistance value is 380 N or more and less than 1000 N in both the warp direction and the weft direction.
[3] The airbag base fabric according to [1] or [2], wherein the fineness of the decomposed yarn is 350 dtex or more and 750 dtex or less.
[4] The airbag base fabric according to any one of [1] to [3], wherein the cover factor is 2000 or more and 2600 or less.
[5] The airbag base fabric according to any one of [1] to [4], wherein a residual oil ratio is 0.05% by weight or more and 0.2% by weight or less.
[6] The airbag base fabric according to any one of [1] to [5], wherein the ASTM D4032 bending resistance is 10N or more and 30N or less.
[7] The airbag base fabric according to any one of [1] to [6], wherein the tear strength is 160N or more and 300N or less.
[8] The airbag base fabric according to any one of [1] to [7], wherein the single yarn fineness of the constituent fibers is 2 to 7 dtex.
[9] The airbag base fabric according to any one of [1] to [8], wherein the single yarn cross-sectional shape of the constituent fiber is a round cross-section.
[10] The airbag base fabric according to any one of [1] to [9], wherein the constituent yarn has a yarn strength of 8.2 to 11.0 cN / dtex.
[11] The airbag base fabric according to any one of [1] to [10], wherein the constituent fiber is polyamide.
[12] The airbag base fabric according to any one of [1] to [11], which is manufactured by a weaving process including at least the following conditions (a) to (c).
(A) The warp tension during weaving is 0.30 cN / dtex to 0.45 cN / dtex.
(B) Warp tension during scouring is 1.2 N / cm to 3.0 N / cm.
(C) The warp overfeed during heat setting is less than 6%.
[13] An airbag using the airbag base fabric according to any one of [1] to [12].
[14] An airbag device using the airbag according to [13].
本発明のエアバッグ基布は、バッグ展開時に気密性が損なわれやすい膨張部と非膨張部の境界部分において、特に目開きの発生が大きいバイアス方向においても目開きの発生を防ぐことができる。 The airbag base fabric of the present invention can prevent the opening from occurring at the boundary portion between the inflated portion and the non-inflated portion where the airtightness tends to be impaired when the bag is deployed, especially in the bias direction where the occurrence of the opening is large.
以下、本発明について詳細に説明する。
本発明のエアバッグ基布は、刃梳き抵抗値が経糸に対し45°の方向において200N以上1000N未満が必要である。好ましくは300N以上950N未満、さらに好ましくは600N以上900N未満である。200N未満の部分があれば、バッグ展開時にその部分より目開きが発生し、気密性の著しい低下や、バーストが発生する場合がある。1000N以上になると基布が硬くなり、引裂き強力の低下によってバッグの膨張部と非膨張部の境界部分が破壊し、バーストする場合がある。
また、刃梳き抵抗値は経糸方向、緯糸方向のいずれにおいても380N以上1000N未満であることが好ましい。刃梳き抵抗値が経糸方向、緯糸方向のいずれにおいても380N以上であれば、バッグ展開時の負荷による目開きが抑制されたレベルにあり、気密性の向上や抗バースト性に一層寄与する。刃梳き抵抗値が経糸方向、緯糸方向のいずれにおいても1000N未満であれば、引裂き強力の維持に一層寄与する。
Hereinafter, the present invention will be described in detail.
The airbag base fabric of the present invention needs to have a blade resistance value of 200 N or more and less than 1000 N in the direction of 45 ° with respect to the warp. Preferably they are 300N or more and less than 950N, More preferably, they are 600N or more and less than 900N. If there is a portion of less than 200 N, opening of the bag may occur when the bag is deployed, and airtightness may be significantly reduced or burst may occur. When it becomes 1000 N or more, the base fabric becomes hard, and the boundary portion between the inflatable portion and the non-inflatable portion of the bag may be broken due to a decrease in tearing strength, which may burst.
Further, it is preferable that the blade resistance value is 380 N or more and less than 1000 N in both the warp direction and the weft direction. If the blade resistance value is 380 N or more in both the warp direction and the weft direction, the opening due to the load when the bag is unfolded is at a level that is suppressed, which further contributes to improved airtightness and anti-burst properties. If the blade resistance value is less than 1000 N in both the warp direction and the weft direction, it further contributes to maintaining the tearing strength.
さらに、上記式(1)および(2)で表される刃梳き経指数ECP(W)及びは刃梳き緯指数ECP(F)が30以下であって、刃梳き抵抗のバランスが良いことが必要である。好ましくは25以下、より好ましくは20以下である。ECP(W)及びECP(F)が30を超える部分がある場合は、その部分におけるバッグ展開時にかかる応力がバイアス方向に集中してかかり、目開きを誘発する場合がある。刃梳き抵抗は織糸方向に対する角度依存性が無いことが好ましく、ECP(W)及びECP(F)はそれぞれ0であることが最も好ましい。 Furthermore, the blade cutting warp index ECP (W) and the blade cutting latitude index ECP (F) represented by the above formulas (1) and (2) must be 30 or less, and the blade cutting resistance must be well balanced. It is. Preferably it is 25 or less, More preferably, it is 20 or less. When there is a portion where ECP (W) and ECP (F) exceed 30, there is a case where stress applied at the time of developing the bag concentrates in the bias direction and induces an opening. It is preferable that the blade resistance has no angle dependency on the weaving direction, and ECP (W) and ECP (F) are most preferably 0.
刃梳き抵抗値と刃梳き指数を上記の範囲にするには、熱可塑性樹脂を溶融紡糸し、紡糸時の紡糸油剤としてエステル系平滑剤が30〜70重量%、乳化剤が70〜30重量%の組成物をエマルジョン化した油剤を糸重量に対し0.5〜2.0重量%付与し、製織時には経糸張力を0.30〜0.45cN/dtexとして製織し、温水加工工程では60〜90℃の湯洗を経糸方向のみに1.2N/cm以上で引っ張りながら実施し、100℃以上の熱セットにおいて、テンター等の幅だしを実施せずに経糸方向のみに引っ張る処理を行い、基布の緩和を未処理反に対し6%未満に抑えることが好ましい。
紡糸油剤については、基布に残存する油分(残油率)が織物重量に対して0.2重量%以下であることが好ましい。残油率が0.2重量%以下であれば、バイアス方向の刃梳き抵抗を高くすることができる。一方、0.05重量%以上であることが好ましく、基布の引裂き強力が高く維持できる。紡糸油剤の組成としては、乳化剤が70〜30重量%が好ましく、エマルジョン化できる組成が好ましい。糸重量に対し0.5〜2.0重量%付与したものを、製織から加工の工程で適切な量に減らしてゆくことができる。
In order to make the blade resistance value and the blade index within the above ranges, melt spinning of a thermoplastic resin, 30 to 70% by weight of an ester-based smoothing agent and 70 to 30% by weight of an emulsifier as a spinning oil during spinning. An oil agent obtained by emulsifying the composition is applied in an amount of 0.5 to 2.0% by weight based on the yarn weight, and weaving is performed with a warp tension of 0.30 to 0.45 cN / dtex at the time of weaving. Is performed while pulling in the warp direction only at 1.2 N / cm or more, and in a heat set at 100 ° C. or more, the pulling process is performed only in the warp direction without carrying out the width of the tenter, etc. It is preferable to suppress the relaxation to less than 6% with respect to the untreated film.
With respect to the spinning oil, the oil content (residual oil ratio) remaining on the base fabric is preferably 0.2% by weight or less based on the weight of the fabric. If the residual oil ratio is 0.2% by weight or less, it is possible to increase the blade-thrust resistance in the bias direction. On the other hand, it is preferably 0.05% by weight or more, and the tear strength of the base fabric can be maintained high. The composition of the spinning oil is preferably 70 to 30% by weight of an emulsifier, and a composition that can be emulsified is preferable. The amount of 0.5 to 2.0% by weight based on the yarn weight can be reduced to an appropriate amount in the process from weaving to processing.
製織時の経糸張力は、0.30cN/dtex以上が好ましく、バイアス方向の刃梳き抵抗を高く維持できる。一方、0.45cN/dtex以下が好ましいく、経糸損傷による製織停止が避けられる。
温水加工時の張力、即ち精練時の経張力は、経糸方向のみに1.2N/cm以上が好ましい。1.2N/cm以上であればバイアス刃梳き抵抗を高く維持しバランスよくできる。温水中の織物を正常に搬送制御するため、3.0N/cm以下がより好ましい。
熱セットは、織物幅方向では引張りをできるだけしないことが好ましい。織物長方向では、引張制御をおこない、オーバーフィードを6%未満とすることが好ましい。より好ましくは、製織生機から最終の熱セット処理までの間での織物の経収縮発現を6%未満とすることが好ましい。織物長方向すなわち経方向の収縮発現を6%未満とすることでバイアス方向の刃梳き抵抗を高く維持しバランスよくできる。
The warp tension at the time of weaving is preferably 0.30 cN / dtex or more, and can maintain a high blade resistance in the bias direction. On the other hand, 0.45 cN / dtex or less is preferable and weaving stoppage due to warp damage is avoided.
The tension during hot water processing, that is, the warp tension during scouring, is preferably 1.2 N / cm or more only in the warp direction. If it is 1.2 N / cm or more, the bias cutting resistance can be kept high and balanced. In order to normally carry and control the fabric in warm water, 3.0 N / cm or less is more preferable.
It is preferable that the heat set is not pulled as much as possible in the fabric width direction. In the fabric length direction, it is preferable to perform tension control and make the overfeed less than 6%. More preferably, the expression of warp shrinkage of the woven fabric between the weaving machine and the final heat setting treatment is preferably less than 6%. By making the shrinkage in the longitudinal direction of the fabric, that is, the warp direction less than 6%, the blade resistance in the bias direction can be maintained high and balanced.
本発明のエアバッグ基布を構成する繊維の総繊度は、分解糸としたときに350以上750dtex未満であると、柔軟性が適正で十分な基布強力が得られ、より好適である。350dtex未満であれば基布強度が低くなる場合がある。750dtex以上になると、基布としたときに経緯の接点が少ないために、剛軟度が高くなり膨張部と非膨張部の境界部に応力がかかりやすくなり、目開きが大きくなる場合がある。
また、単糸繊度を2〜7dtexとすることで、製織時の擦過による毛羽発生を抑制でき、基布とした場合の刃梳き抵抗性値の範囲をより好適な範囲に収めることが出来る。
When the total fineness of the fibers constituting the airbag base fabric of the present invention is 350 or more and less than 750 dtex when the yarn is decomposed, it is more preferable that the base fabric has sufficient flexibility and sufficient strength. If it is less than 350 dtex, the base fabric strength may be lowered. When it is 750 dtex or more, since the contact point of the background is small when the base fabric is used, the bending resistance becomes high, the stress is easily applied to the boundary portion between the expanded portion and the non-expanded portion, and the opening may be increased.
Moreover, by setting the single yarn fineness to 2 to 7 dtex, generation of fluff due to rubbing during weaving can be suppressed, and the range of the blade resistance value when used as a base fabric can be kept within a more preferable range.
基布を構成する織糸の単糸断面形状は丸断面が好ましい。丸断面糸は、基布に応力がかかる場合において、均等に応力がかかる為に、引裂き、引張強力の高い基布を得ることができる。ここでの丸断面とはアスペクト比が1.0以上1.5未満のことを言い、アスペクト比の長軸の定義はその断面の最大径、短軸の定義は最小径を示す。より好ましくは、アスペクト比が1.0以上1.1未満である。 The cross-sectional shape of the single yarn of the woven yarn constituting the base fabric is preferably a round cross section. Since the round cross-section yarn is evenly stressed when stress is applied to the base fabric, a base fabric having high tensile strength can be obtained. The round section here means that the aspect ratio is 1.0 or more and less than 1.5, the definition of the major axis of the aspect ratio indicates the maximum diameter of the section, and the definition of the minor axis indicates the minimum diameter. More preferably, the aspect ratio is 1.0 or more and less than 1.1.
基布のカバーファクターが2000以上2600以下を満足する範囲であることが好ましい。カバーファクターが2300以上2500以下であればより好ましく、2350以上2450未満が最も好ましい。2000以上であれば、バイアス方向の刃梳き抵抗を高くすることができる。2600以下であれば剛軟度を抑制できる。ここで、カバーファクターは[√(経繊度(dtex))×経密度(本/2.54cm)+√(緯繊度(dtex))×緯密度(本/2.54cm)]である。 The cover factor of the base fabric is preferably in a range satisfying 2000 or more and 2600 or less. The cover factor is more preferably 2300 or more and 2500 or less, and most preferably 2350 or more and less than 2450. If it is 2000 or more, it is possible to increase the cutting resistance in the bias direction. If it is 2600 or less, the bending resistance can be suppressed. Here, the cover factor is [√ (warp fineness (dtex)) × warp density (lines / 2.54 cm) + √ (weft fineness (dtex)) × latitude density (lines / 2.54 cm)].
基布の引裂き強力が160N以上300N未満であることが好ましい。170N以上がより好ましく、180N以上であれば最も好ましい。160N以上ではエアバッグが展開する際に縫目において基布破壊することが回避できる。また300N以下の基布であれば柔軟な基布となり、収納性に有利になる。ここでの引裂き強力はISO13937−2に規定されているシングルタング法で求めるものである。
本発明のエアバッグ基布の剛軟度を10N以上30N以下とすれば、収納性と目開きのバランスがさらによくなりより好適である。10N未満では、実質的には糸―糸間の拘束力が極端に低下することになって、目開きが大きくなる傾向となる。一方で、10N以上ではバッグを折りたたむ際の折り癖がつきやすく、折り戻りなくパッケージ姿をとどめるため、収納工程の作業性が良いうえに、収納形態の品質が向上する。また、30Nを超えれば折りたたみにくくなり収納性が悪くなる場合がある。
It is preferable that the tear strength of the base fabric is 160N or more and less than 300N. 170N or more is more preferable, and 180N or more is most preferable. At 160N or more, it is possible to avoid the base fabric from being broken at the seam when the airbag is deployed. Moreover, if it is a base fabric of 300 N or less, it will become a flexible base fabric, and it will become advantageous to storage property. The tear strength here is obtained by the single tongue method defined in ISO 13937-2.
If the bending resistance of the airbag base fabric of the present invention is 10N or more and 30N or less, the balance between the storage property and the opening is further improved, which is more preferable. If it is less than 10 N, the binding force between the yarn and the yarn is substantially reduced, and the opening tends to be large. On the other hand, if it is 10N or more, the bag is easy to fold when folded, and the package shape is maintained without being folded back, so that the workability of the storage process is good and the quality of the storage form is improved. Moreover, if it exceeds 30N, it will become difficult to fold and storage property may worsen.
本発明のエアバッグ基布に使用する繊維は熱可塑性繊維が好適に使用できる。熱可塑性繊維の中でもポリアミド系繊維が機械物性や価格面より好適である。特にナイロン66繊維は、熱容量が大きく、パイロガスによるエアバッグ展開に用いる場合に、バイアス目開きからのホットガス溶融バーストがしにくいため有利であり、機械物性、価格面のバランスが取れていてより好適である。
また、本発明のエアバッグ基布に使用する繊維は、原糸における強度が8.2〜11.0cN/dtexであることが好ましい。さらに好ましくは8.5〜9.1cN/dtexである。8.2cN/dtex未満では基布としたときの強力が低くなる場合があり好ましくない。一方、11.0cN/dtexを超えると繊維分子が高度に配向しすぎ、製織等における繊維軸に対し横方向の力が加わった場合、毛羽になりやすいので好ましくない。
As the fiber used for the airbag base fabric of the present invention, a thermoplastic fiber can be suitably used. Among thermoplastic fibers, polyamide-based fibers are preferred from the viewpoint of mechanical properties and price. Nylon 66 fiber is particularly advantageous because it has a large heat capacity and is difficult to cause a hot gas melting burst from a bias opening when it is used to deploy an air bag with pyrogas, and is more suitable because it balances mechanical properties and price. It is.
Moreover, it is preferable that the fiber used for the airbag base fabric of the present invention has a strength in the raw yarn of 8.2 to 11.0 cN / dtex. More preferably, it is 8.5 to 9.1 cN / dtex. If it is less than 8.2 cN / dtex, the strength when used as a base fabric may be lowered, which is not preferable. On the other hand, if it exceeds 11.0 cN / dtex, the fiber molecules are excessively oriented, and when a force in the transverse direction is applied to the fiber axis in weaving or the like, fluff is likely to occur, which is not preferable.
次に、実施例、比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。先ず、本発明における各種測定方法および評価方法の説明をする。
(1)基布の刃梳き抵抗はASTM−D6479に準じて測定した。
(2)基布の引裂き強力はJIS L−1096 8.15 A−1法にて測定した。
(3)製織時の停台の評価は、豊田自動織機社製LWT710を用い、2.3m幅、織機回転数600rpmで試織を行い、停台が5回/日以上で×、2回以下で○、3〜4回で△とした。
(4)分解糸総繊度は、JIS L1096 附属書14に準じて、織物を分解し、経緯の分解糸につき試料長を25cmとして計測した。
(5)原糸の強度はJIS L1013 8.5.1法にて測定した。
(6)基布の剛軟度はASTM D4032−94にしたがって測定した。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited only to these Examples. First, various measurement methods and evaluation methods in the present invention will be described.
(1) The cutting resistance of the base fabric was measured according to ASTM-D6479.
(2) The tear strength of the base fabric was measured by JIS L-1096 8.15 A-1.
(3) Evaluation of the stop during weaving was performed using a LWT710 manufactured by Toyota Industries Corporation, 2.3 m wide, with a loom rotation speed of 600 rpm, and the stop was 5 times / day or more x 2 times or less. ◯, and 3 to 4 times △.
(4) The total fineness of the decomposed yarn was measured in accordance with JIS L1096 Annex 14, by disassembling the woven fabric and setting the sample length to 25 cm for the processed disassembled yarn.
(5) The strength of the raw yarn was measured by JIS L1013 8.5.1 method.
(6) The bending resistance of the base fabric was measured according to ASTM D4032-94.
(7)展開試験目開(コールドガス)は、図1に示す円形バッグを、1680dtex1本撚りの縫い糸を用いて、運針数が55針/10cmの本縫いにて縫製し、マイクロシステム社製CGSシステムを用い、試験圧力10MPa、試験ガス容量1L、オリフィス0.6inchとしてHeガスを瞬時にバッグ内へ供給し、その後のバッグ縫製部の目開きをノギスで測定し、下記の基準で評価した。
また、展開試験目開(インフレータ)は、上記と同じ円形バッグを用い、60L試験タンクにおいて200kPaを示すパイロテクニックインフレータにて展開し、その後のバッグ縫製部の目開きをノギスで測定し、下記の基準で評価した。
○:展開後の目開きが3mm未満で縫い糸が破断しない状態
△:展開後の目開きが3mm以上で縫い糸が破断しない状態
×:展開後の縫い糸が破断した状態
なお、展開試験目開き評価において、表1および2に記載した数値は目開き方向の経糸に対する角度である。
(7) Opening test (cold gas) is performed by sewing the circular bag shown in FIG. 1 with a 1680 dtex single-thread sewing thread with a main stitch of 55 stitches / 10 cm. Using the system, He gas was instantaneously supplied into the bag with a test pressure of 10 MPa, a test gas volume of 1 L, and an orifice of 0.6 inch, and the opening of the bag sewing portion thereafter was measured with calipers and evaluated according to the following criteria.
Further, the development test opening (inflator) is the same circular bag as described above, and is developed with a pyrotechnic inflator showing 200 kPa in a 60 L test tank, and the opening of the bag sewing portion after that is measured with a caliper. Evaluated by criteria.
○: Opening after opening is less than 3 mm and the sewing thread does not break. Δ: Opening after opening is 3 mm or more and the sewing thread does not break. ×: State after opening the sewing thread is broken. The numerical values described in Tables 1 and 2 are angles with respect to the warp in the direction of opening.
(8)パッケージばらけ:基布から直径760mmの円形布を2枚きりだし、周縁部同士を縫合して図2(A)のようにエアバッグ(1)を作成した。このエアバッグを図2(B)のように折りたたんで、300mm角のガラス板(2)と錘(3)で200gの荷重をかけて5分間保持した。この荷重を除いた30秒後に、折り戻り反発で折りたたんだパッケージが開いてしまう程度を観察、以下のように評価した。
(×):パッケージが開いてしまい、150mm角のエリアをはみ出してしまうもの。
(△):パッケージが開き、150mm角のエリアをはみ出さないものの、開き高さが折りたたみ高さ(図2(B)のX)の2.5倍以上になっているもの。
(〇):パッケージの開き高さが折りたたみ高さ(図2(B)のX)の2.5倍に達せず、150mm角エリアに収まっているもの。
(9)残油率:基布15gを採取して試料とし、絶乾状態の試料を精秤して試料重量とした。シクロヘキサンを溶媒として基布試料のソックスレー抽出を行なった。抽出した溶媒を加熱蒸発させ、その乾燥残渣重量を精密天秤にて測定し、油分重量を求めた。この油分重量を試料重量で割って、残油率(重量%)を得た。
(8) Package loosening: Two circular cloths having a diameter of 760 mm were cut out from the base cloth, and the peripheral edges were sewn together to produce the airbag (1) as shown in FIG. The airbag was folded as shown in FIG. 2 (B), and was held for 5 minutes by applying a load of 200 g with a 300 mm square glass plate (2) and a weight (3). Thirty seconds after removing this load, the degree of opening of the folded package due to rebound was observed and evaluated as follows.
(X): The package opens and protrudes an area of 150 mm square.
(Δ): The package opens and does not protrude a 150 mm square area, but the open height is 2.5 times or more the folding height (X in FIG. 2B).
(◯): The open height of the package does not reach 2.5 times the folding height (X in FIG. 2B) and is within the 150 mm square area.
(9) Residual oil ratio: 15 g of the base fabric was sampled and used as a sample. Soxhlet extraction of the base fabric sample was performed using cyclohexane as a solvent. The extracted solvent was evaporated by heating, and the dry residue weight was measured with a precision balance to obtain the oil weight. The oil weight was divided by the sample weight to obtain a residual oil ratio (% by weight).
[実施例1]
ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらエステル系平滑剤60重量%及び非イオン型界面活性剤40重量%の紡糸油剤を油分25重量%の水分散液として繊維に付与した。ついで200℃の熱延伸ロールにて4.9倍に延伸したのち、圧縮空気にて交絡を付与し、繊度が470dtexおよび単糸数が136本の原糸を得た。この原糸の強度は8.6cN/dtex、破断伸び率は20.0%、油剤付着率は0.8重量%であった。この原糸を用い、糊付けすることなく豊田自動織機社製LWT710にて、経糸設定密度51本/inch、緯糸設定密度52本/inch、反幅230cm、経糸張力0.35cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexのナイロン66モノフィラメント2本を使用した。また、増し糸として絡み糸の内側に33dtexのナイロン66モノフィラメント8本を平織で織り込み、原料反を得た。その後、80℃の湯浴に400Nの張力下で60秒間滞留処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油率を計測した結果、織物重量に対し0.1重量%であった。得られた織物について、評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
[Example 1]
Polyamide 66 resin was melt-spun at 300 ° C., and while cooling, a spinning oil of 60% by weight of ester-based smoothing agent and 40% by weight of nonionic surfactant was applied to the fiber as an aqueous dispersion of 25% by weight of oil. Next, the film was drawn 4.9 times with a 200 ° C. hot drawing roll, and then entangled with compressed air to obtain an original yarn having a fineness of 470 dtex and a single yarn number of 136. The strength of this raw yarn was 8.6 cN / dtex, the elongation at break was 20.0%, and the oil agent adhesion rate was 0.8% by weight. Using this raw yarn, without any gluing, LWT710 manufactured by Toyota Industries Corporation, warp set density 51 / inch, weft set density 52 / inch, counter width 230cm, warp tension 0.35cN / dtex, loom rotation speed Plain weaving was performed at 600 rpm. For both ears, two 33 dtex nylon 66 monofilaments were used as entanglement yarns. In addition, eight 33 dtex nylon 66 monofilaments were woven in plain weave inside the entangled yarn as additional yarn to obtain a raw material fabric. Thereafter, the film was retained in an 80 ° C. hot water bath under a tension of 400 N for 60 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having a target weaving density of 55 yarns / inch. As a result of measuring the residual oil ratio of this fabric, it was 0.1% by weight with respect to the fabric weight. The obtained fabric was evaluated and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
[実施例2]
実施例1に記載のナイロン66繊維を用い、経糸設定密度53本/inch、緯糸設定密度53本/inch、反幅230cm、経糸張力0.35cN/dtex、織機回転数500rpmで平織製織を行った。両耳部分は実施例1と同様にして原料反を得た。その後80℃の湯浴に400Nの張力下で60秒間処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に57本/inchの織物を得た。この織物の残油率を計測した結果、織物重量に対し0.12重量%であった。得られた織物について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
[Example 2]
Plain weaving was performed using the nylon 66 fiber described in Example 1 at a warp setting density of 53 / inch, a weft setting density of 53 / inch, a counter width of 230 cm, a warp tension of 0.35 cN / dtex, and a loom rotation speed of 500 rpm. . For both ears, a raw material was obtained in the same manner as in Example 1. Thereafter, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 60 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having an intended weaving density of 57 yarns / inch. As a result of measuring the residual oil ratio of this fabric, it was 0.12% by weight with respect to the fabric weight. Various properties were measured and evaluated for the obtained woven fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
[実施例3]
実施例1に記載のナイロン66繊維を用い、経糸設定密度49本/inch、緯糸設定密度50本/inch、反幅230cm、経糸張力0.35cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分は実施例1と同様にして原料反を得た。その後80℃の湯浴に400Nの張力下で60秒間処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に53本/inchの織物を得た。この織物の残油量率を計測した結果、織物重量に対し0.09重量%であった。得られた織物について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
[Example 3]
Using the nylon 66 fiber described in Example 1, a plain weaving was performed at a warp setting density of 49 yarns / inch, a weft yarn setting density of 50 yarns / inch, a counter width of 230 cm, a warp tension of 0.35 cN / dtex, and a loom rotation speed of 600 rpm. . For both ears, a raw material was obtained in the same manner as in Example 1. Thereafter, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 60 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having a target woven density of 53 yarns / inch. As a result of measuring the residual oil amount ratio of this fabric, it was 0.09% by weight with respect to the fabric weight. Various properties were measured and evaluated for the obtained woven fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
[実施例4]
ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらエステル系平滑剤60重量%及び非イオン型界面活性剤40重量%の紡糸油剤を油分25重量%の水分散液として繊維に付与した。ついで200℃の熱延伸ロールにて4.9倍に延伸したのち、圧縮空気にて交絡を付与し、繊度470dtex、フィラメント数216本の原糸を得た。原糸の強度は8.7cN/dtex、破断伸び率は19.5%、油剤付着率は0.85重量%であった。この原糸を用いて、糊付けすることなく豊田自動織機社製LWT710にて、経糸設定密度51.5本/inch、緯糸設定密度52.5本/inch、反幅230cm、経糸張力0.35cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexのナイロン66モノフィラメント8本を使用した。また、増し糸として絡み糸の内側に33dtexのナイロン66モノフィラメント8本を平織で織り込み、原料反を得た。その後、80℃の湯浴に400Nの張力下で60秒間処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油率を計測した結果、織物重量に対し0.1重量%であった。得られた織物について、評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
[Example 4]
Polyamide 66 resin was melt-spun at 300 ° C., and while cooling, a spinning oil of 60% by weight of ester-based smoothing agent and 40% by weight of nonionic surfactant was applied to the fiber as an aqueous dispersion of 25% by weight of oil. Subsequently, the film was drawn 4.9 times with a 200 ° C. hot drawing roll, and then entangled with compressed air to obtain an original yarn having a fineness of 470 dtex and a filament number of 216. The strength of the raw yarn was 8.7 cN / dtex, the elongation at break was 19.5%, and the oil agent adhesion was 0.85% by weight. Using this raw yarn, a warp setting density of 51.5 yarns / inch, a weft yarn setting density of 52.5 yarns / inch, an anti-width of 230 cm, and a warp tension of 0.35 cN / inch are used in an LWT710 manufactured by Toyota Industries Corporation without gluing. Plain weaving was performed at dtex and a loom speed of 600 rpm. For both ears, eight 33 dtex nylon 66 monofilaments were used as entanglement yarns. In addition, eight 33 dtex nylon 66 monofilaments were woven in plain weave inside the entangled yarn as additional yarn to obtain a raw material fabric. Then, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 60 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having an intended weaving density of 55 yarns / inch. As a result of measuring the residual oil ratio of this fabric, it was 0.1% by weight with respect to the fabric weight. The obtained fabric was evaluated and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
[実施例5]
ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらエステル系平滑剤60重量%及び非イオン型界面活性剤40重量%の紡糸油剤を油分25重量%の水分散液として繊維に付与した。その後200℃の熱延伸ロールにて4.8倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、フィラメント数72本の原糸を得た。原糸の強度は8.6cN/dtex、破断伸び率は20.2%であった。この原糸を用い、糊付けすることなく豊田自動織機社製LWT710にて、経糸設定密度51.5本/inch、緯糸設定密度52.5本/inch、反幅230cm、経糸張力0.30cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexのナイロン66モノフィラメント8本を使用した。また、増し糸として絡み糸の内側に33dtexのナイロン66モノフィラメント2本を平織で織り込み、原料反を得た。その後、80℃の湯浴に400Nの張力下で60秒間処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油率を計測した結果、織物重量に対し0.1重量%であった。得られた織物について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
[Example 5]
Polyamide 66 resin was melt-spun at 300 ° C., and while cooling, a spinning oil of 60% by weight of ester-based smoothing agent and 40% by weight of nonionic surfactant was applied to the fiber as an aqueous dispersion of 25% by weight of oil. Thereafter, the film was drawn 4.8 times with a 200 ° C. hot drawing roll and then entangled with compressed air to obtain an original yarn having a fineness of 470 dtex and a filament number of 72. The strength of the raw yarn was 8.6 cN / dtex, and the elongation at break was 20.2%. Using this raw yarn, without using glue, LWT710 manufactured by Toyota Industries Corporation, warp set density 51.5 / inch, weft set density 52.5 / inch, counter width 230cm, warp tension 0.30cN / dtex Plain weaving was performed at a loom speed of 600 rpm. For both ears, eight 33 dtex nylon 66 monofilaments were used as entanglement yarns. Also, two 33 dtex nylon 66 monofilaments were woven in plain weave inside the entangled yarn as additional yarn to obtain a raw material fabric. Then, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 60 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having an intended weaving density of 55 yarns / inch. As a result of measuring the residual oil ratio of this fabric, it was 0.1% by weight with respect to the fabric weight. Various properties were measured and evaluated for the obtained woven fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
[実施例6]
ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらエステル系平滑剤60重量%及び非イオン型界面活性剤40重量%の紡糸油剤を油分25重量%の水分散液として繊維に付与した。その後200℃の熱延伸ロールにて4.4倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、フィラメント数136本の原糸を得た。原糸の強度は8.0cN/dtex、破断伸び率は25.5%であった。この原糸を用い、糊付けすることなく豊田自動織機社製LWT710にて、経糸設定密度51.5本/inch、緯糸設定密度53.0本/inch、反幅230cm、経糸張力0.30cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexのナイロン66モノフィラメント8本を使用した。また、増し糸として絡み糸の内側に33dtexのナイロン66モノフィラメント2本を平織で織り込み、原料反を得た。その後、80℃の湯浴に400Nの張力下で60秒間処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油率を計測した結果、織物重量に対し0.1重量%であった。得られた織物について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
[Example 6]
Polyamide 66 resin was melt-spun at 300 ° C., and while cooling, a spinning oil of 60% by weight of ester-based smoothing agent and 40% by weight of nonionic surfactant was applied to the fiber as an aqueous dispersion of 25% by weight of oil. Thereafter, the film was drawn 4.4 times with a 200 ° C. hot drawing roll, and then entangled with compressed air to obtain an original yarn having a fineness of 470 dtex and 136 filaments. The strength of the raw yarn was 8.0 cN / dtex and the elongation at break was 25.5%. Using this raw yarn, without any gluing, LWT710 manufactured by Toyota Industries Corporation, warp setting density 51.5 / inch, weft setting density 53.0 / inch, counter width 230cm, warp tension 0.30cN / dtex Plain weaving was performed at a loom speed of 600 rpm. For both ears, eight 33 dtex nylon 66 monofilaments were used as entanglement yarns. Also, two 33 dtex nylon 66 monofilaments were woven in plain weave inside the entangled yarn as additional yarn to obtain a raw material fabric. Then, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 60 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having an intended weaving density of 55 yarns / inch. As a result of measuring the residual oil ratio of this fabric, it was 0.1% by weight with respect to the fabric weight. Various properties were measured and evaluated for the obtained woven fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
[実施例7]
実施例1に記載のナイロン66繊維を用い、経糸設定密度46本/inch、緯糸設定密度45.5本/inch、反幅230cm、経糸張力0.35cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexのナイロン66モノフィラメント2本を使用した。また、増し糸として絡み糸の内側に33dtexのナイロン66モノフィラメント2本を平織で織り込み原料反を得た。その後80℃の湯浴に400Nの張力下で60秒間処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に49本/inchの織物を得た。この織物の残油率を計測した結果、織物重量に対し0.09重量%であった。得られた織物について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
[Example 7]
Using the nylon 66 fiber described in Example 1, plain weaving with a warp set density of 46 / inch, a weft set density of 45.5 / inch, a counter width of 230 cm, a warp tension of 0.35 cN / dtex, and a loom rotation speed of 600 rpm. went. For both ears, two 33 dtex nylon 66 monofilaments were used as entanglement yarns. Further, as a reinforcing yarn, two 33 dtex nylon 66 monofilaments were woven in a plain weave inside the entangled yarn to obtain a raw material fabric. Thereafter, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 60 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having a target woven density of 49 yarns / inch. As a result of measuring the residual oil ratio of this fabric, it was 0.09% by weight with respect to the fabric weight. Various properties were measured and evaluated for the obtained woven fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
[実施例8]
ポリエチレンテレフタレート樹脂を290℃において溶融紡糸し、冷却しながらエステル系平滑剤60重量%及び非イオン型界面活性剤40重量%の紡糸油剤を油分25重量%の水分散液として繊維に付与した。その後200℃の熱延伸ロールにて6.0倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度550dtex、フィラメント数96本の原糸を得た。原糸の強度は7.0cN/dtex、破断伸び率は20%、油剤付着量は0.75重量%であった。この原糸を用いて実施例3と同様な製織及び熱セットを実施した結果、残油率は織物重量に対し0.08重量%であった。得られた織物について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
[Example 8]
Polyethylene terephthalate resin was melt-spun at 290 ° C., and while cooling, a spinning oil of 60% by weight of ester-based smoothing agent and 40% by weight of nonionic surfactant was applied to the fiber as an aqueous dispersion of 25% by weight of oil. Thereafter, the film was drawn 6.0 times with a 200 ° C. hot drawing roll, and then entangled with compressed air to obtain an original yarn having a fineness of 550 dtex and 96 filaments. The strength of the raw yarn was 7.0 cN / dtex, the elongation at break was 20%, and the adhesion amount of the oil agent was 0.75% by weight. As a result of weaving and heat setting similar to Example 3 using this raw yarn, the residual oil ratio was 0.08% by weight relative to the weight of the fabric. Various properties were measured and evaluated for the obtained woven fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
[比較例1]
実施例1に記載のナイロン66繊維を用い、経糸設定密度46.5本/inch、緯糸設定密度46本/inch、反幅230cm、経糸張力0.25cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexのナイロン66モノフィラメント2本を使用した。また、増し糸として絡み糸の内側に33dtexのナイロン66モノフィラメント2本を平織で織り込み、原料反を得た。その後80℃の湯浴に400Nの張力下で60秒間処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に49本/inchの織物を得た。この織物の残油率を計測した結果、織物重量に対し0.08重量%であった。得られた織物について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。織物製織の経糸張力が低く、バイアス方向の刃梳き抵抗が低い。エアバッグのパイロガス展開では縫目部でホットガスによる縫糸破断が生じていた。
[Comparative Example 1]
Using the nylon 66 fiber described in Example 1, plain weaving with a warp set density of 46.5 / inch, a weft set density of 46 / inch, a counter width of 230 cm, a warp tension of 0.25 cN / dtex, and a loom rotation speed of 600 rpm. went. For both ears, two 33 dtex nylon 66 monofilaments were used as entanglement yarns. Also, two 33 dtex nylon 66 monofilaments were woven in plain weave inside the entangled yarn as additional yarn to obtain a raw material fabric. Thereafter, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 60 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having a target woven density of 49 yarns / inch. As a result of measuring the residual oil ratio of this fabric, it was 0.08% by weight with respect to the fabric weight. Various properties were measured and evaluated for the obtained woven fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving. The warp tension of the woven fabric is low, and the resistance to cutting in the bias direction is low. When the air bag was expanded with pyrogas, the seam was broken by hot gas at the seam.
[比較例2]
実施例1に記載のナイロン66繊維を用い、経糸設定密度40本/inch、緯糸設定密度39.5本/inch、反幅230cm、経糸張力0.32cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexのナイロン66モノフィラメント2本を使用した。また、増し糸として絡み糸の内側に33dtexのナイロン66モノフィラメント2本を平織で織り込み、原料反を得た。その後80℃の湯浴に400Nの張力下で60秒間処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に42本/inchの織物を得た。この織物の残油率を計測した結果、織物重量に対し0.07重量%であった。得られた織物について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。織物の織密度が低く、バイアス方向の刃梳き抵抗が低い。エアバッグのパイロガス展開では縫目部でホットガスによる縫糸破断が生じていた。エアバッグのパッケージも折り戻りばらけしやすく、収納品位が劣っていた。
[Comparative Example 2]
Using the nylon 66 fiber described in Example 1, a plain weave weaving with a warp set density of 40 / inch, a weft set density of 39.5 / inch, an opposite width of 230 cm, a warp tension of 0.32 cN / dtex, and a loom rotation speed of 600 rpm. went. For both ears, two 33 dtex nylon 66 monofilaments were used as entanglement yarns. Also, two 33 dtex nylon 66 monofilaments were woven in plain weave inside the entangled yarn as additional yarn to obtain a raw material fabric. Thereafter, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 60 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having a target weaving density of 42 yarns / inch. As a result of measuring the residual oil ratio of this fabric, it was 0.07% by weight with respect to the fabric weight. Various properties were measured and evaluated for the obtained woven fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving. The weaving density of the woven fabric is low and the cutting resistance in the bias direction is low. When the air bag was expanded with pyrogas, the seam was broken by hot gas at the seam. The airbag package was easy to fold back and the storage quality was poor.
[比較例3]
実施例1の繊維を用い、整経時にポリアクリル酸を糸重量に対し2重量%糊付けし、豊田自動織機社製LWT710にて、経糸設定密度52本/inch、緯糸設定密度53.5本/inch、反幅230cm、経糸張力0.35cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexのナイロン66モノフィラメント2本を使用した。また、増し糸として絡み糸の内側に33dtexのナイロン66モノフィラメント8本を平織で織り込み、原料反を得た。その後、湯浴に浸漬せずに、そのまま加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の油剤率を計測した結果、織物重量に対し0.5重量%であった。得られた織物について、評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。バイアス方向の刃梳き抵抗が高いが、引裂き強力が低い。エアバッグのパイロガス展開では縫目部でホットガスによる縫糸破断や基布破壊が生じていた。
[Comparative Example 3]
Using the fiber of Example 1, 2% by weight of polyacrylic acid was glued with respect to the yarn weight during aging, and a warp setting density of 52 yarns / inch and a weft yarn setting density of 53.5 yarns / LWT710 manufactured by Toyota Industries Corporation. plain weaving was performed at an inch, an anti-width of 230 cm, a warp tension of 0.35 cN / dtex, and a loom rotation speed of 600 rpm. For both ears, two 33 dtex nylon 66 monofilaments were used as entanglement yarns. In addition, eight 33 dtex nylon 66 monofilaments were woven in plain weave inside the entangled yarn as additional yarn to obtain a raw material fabric. Then, without immersing in a hot water bath, it was directly dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having an intended weaving density of 55 pieces / inch. As a result of measuring the oil agent ratio of this fabric, it was 0.5% by weight with respect to the fabric weight. The obtained woven fabric was evaluated and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving. High blade resistance in the bias direction, but low tear strength. In the deployment of the air bag pyrogas, the seam was broken by the hot gas and the base fabric was broken at the seam.
[比較例4]
実施例1に記載のナイロン66繊維を用い、経糸設定密度51本/inch、緯糸設定密度52本/inch、反幅230cm、経糸張力0.25cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexのナイロン66モノフィラメント2本を使用した。また、増し糸として絡み糸の内側に33dtexのナイロン66モノフィラメント2本を平織で織り込み、原料反を得た。その後80℃の湯浴に最少搬送力である経張力50Nで60秒間滞留処理し、加熱ドラムにて110℃で40秒間乾燥を行い、目的の織密度が経55.5本/inch緯55本/inchの織物を得た。この織物の残油率を計測した結果、織物重量に対し0.05重量%であった。得られた織物について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。精練において、織物がほぼ自由収縮で、バイアス方向の刃梳き抵抗が低くバランスも悪い。エアバッグのパイロガス展開では縫目部でホットガスによる縫糸破断が生じていた。
[Comparative Example 4]
Using the nylon 66 fiber described in Example 1, plain weaving was performed at a warp setting density of 51 yarns / inch, a weft yarn setting density of 52 yarns / inch, a counter width of 230 cm, a warp tension of 0.25 cN / dtex, and a loom rotation speed of 600 rpm. . For both ears, two 33 dtex nylon 66 monofilaments were used as entanglement yarns. Also, two 33 dtex nylon 66 monofilaments were woven in plain weave inside the entangled yarn as additional yarn to obtain a raw material fabric. After that, it stays in a 80 ° C hot water bath with a minimum conveying force of 50N at 60N for 60 seconds, and is dried on a heating drum at 110 ° C for 40 seconds. The target weaving density is 555.5 / inch weft. / Inch fabric was obtained. As a result of measuring the residual oil ratio of this fabric, it was 0.05% by weight with respect to the fabric weight. Various properties were measured and evaluated for the obtained woven fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving. In scouring, the fabric is almost free-shrinking, has a low blade resistance in the bias direction, and has a poor balance. When the air bag was expanded with pyrogas, the seam was broken by hot gas at the seam.
本発明のエアバッグ基布は、膨張部と非膨張部の境界部分の目開きがバイアス方向おいても高度に抑制されるので、産業上の利用価値は極めて大きい。 The airbag base fabric of the present invention has a very high industrial utility value because the opening of the boundary portion between the inflatable portion and the non-inflatable portion is highly suppressed even in the bias direction.
Claims (14)
ECP(W)=ABS(EC45−ECW)/EC45*100 (1)
ECP(F)=ABS(EC45−ECF)/EC45*100 (2)
(上記(1)および(2)式中、EC45は経糸に対し45°方向の刃梳き抵抗値であり、ECWは経糸方向の刃梳き抵抗値であり、ECFは緯糸方向の刃梳き抵抗値であり、ABSは絶対値記号である。) The edge resistance value is 200N or more and less than 1000N in the bias direction of 45 ° with respect to the warp, and the edge warp index ECP (W) and the edge weft index ECP represented by the following expressions (1) and (2) A non-coated airbag base fabric in which (F) is less than 30.
ECP (W) = ABS (EC45−ECW) / EC45 * 100 (1)
ECP (F) = ABS (EC45−ECF) / EC45 * 100 (2)
(In the above formulas (1) and (2), EC45 is the blade resistance value in the 45 ° direction with respect to the warp, ECW is the blade resistance value in the warp direction, and ECF is the blade resistance value in the weft direction. Yes, ABS is an absolute value symbol.)
(a)製織時の経糸張力が0.30cN/dtex〜0.45cN/dtexである。
(b)精練時の経張力が1.2N/cm〜3.0N/cmである。
(c)熱セット時の経オーバーフィードが6%未満である。 The airbag base fabric according to any one of claims 1 to 11, wherein the airbag base fabric is manufactured by a weaving process including at least the following conditions (a) to (c).
(A) The warp tension during weaving is 0.30 cN / dtex to 0.45 cN / dtex.
(B) Warp tension during scouring is 1.2 N / cm to 3.0 N / cm.
(C) The warp overfeed during heat setting is less than 6%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014228291A JP2015110857A (en) | 2013-11-11 | 2014-11-10 | Air bag base fabric |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013233396 | 2013-11-11 | ||
JP2013233396 | 2013-11-11 | ||
JP2014228291A JP2015110857A (en) | 2013-11-11 | 2014-11-10 | Air bag base fabric |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015110857A true JP2015110857A (en) | 2015-06-18 |
Family
ID=53210192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014228291A Pending JP2015110857A (en) | 2013-11-11 | 2014-11-10 | Air bag base fabric |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015110857A (en) |
CN (1) | CN104630966B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019065880A1 (en) * | 2017-09-29 | 2020-09-10 | 東洋紡株式会社 | Airbag base fabric and airbags containing it |
WO2022080432A1 (en) * | 2020-10-13 | 2022-04-21 | 旭化成株式会社 | Airbag base fabric and method for manufacturing same |
US11390241B2 (en) | 2017-09-28 | 2022-07-19 | Seiren Co., Ltd. | Non-coated airbag fabric and airbag |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5023761B2 (en) * | 2007-03-29 | 2012-09-12 | 東レ株式会社 | Airbag |
CN101348962A (en) * | 2007-07-20 | 2009-01-21 | 东丽纤维研究所(中国)有限公司 | Non-coated fabric of safety air bag |
CN102016143B (en) * | 2008-03-10 | 2014-09-03 | 东丽株式会社 | Base cloth for air bag, raw yarn for air bag, and method for production of the raw yarn |
JP5527897B2 (en) * | 2008-04-25 | 2014-06-25 | 旭化成せんい株式会社 | Thin fabric |
EP2610377B9 (en) * | 2010-08-23 | 2017-08-02 | Asahi Kasei Kabushiki Kaisha | Base fabric for airbag |
KR101736421B1 (en) * | 2010-09-17 | 2017-05-17 | 코오롱인더스트리 주식회사 | Polyester fiber and preparation method thereof |
-
2014
- 2014-11-10 JP JP2014228291A patent/JP2015110857A/en active Pending
- 2014-11-11 CN CN201410645319.XA patent/CN104630966B/en active Active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11390241B2 (en) | 2017-09-28 | 2022-07-19 | Seiren Co., Ltd. | Non-coated airbag fabric and airbag |
JPWO2019065880A1 (en) * | 2017-09-29 | 2020-09-10 | 東洋紡株式会社 | Airbag base fabric and airbags containing it |
EP3690091A4 (en) * | 2017-09-29 | 2021-06-16 | Toyobo Co., Ltd. | Airbag base cloth and airbag including same |
US11358562B2 (en) | 2017-09-29 | 2022-06-14 | Toyobo Co., Ltd. | Airbag base cloth and airbag including same |
JP7188393B2 (en) | 2017-09-29 | 2022-12-13 | 東洋紡株式会社 | Airbag base fabric and airbag including the same |
WO2022080432A1 (en) * | 2020-10-13 | 2022-04-21 | 旭化成株式会社 | Airbag base fabric and method for manufacturing same |
JP7529790B2 (en) | 2020-10-13 | 2024-08-06 | 旭化成株式会社 | Airbag fabric and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN104630966A (en) | 2015-05-20 |
CN104630966B (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102183372B1 (en) | Woven fabric of low permeability and high strength and method of manufacturing the same | |
JP6011721B2 (en) | Airbag base fabric and manufacturing method thereof | |
JP6760067B2 (en) | Manufacturing method of airbag base cloth, airbag and airbag base cloth | |
CN104060366B (en) | high-density fabric | |
JP6013710B2 (en) | Airbag fabrics and airbags | |
KR102071752B1 (en) | Airbag fabric and airbag | |
KR20140064993A (en) | Polyamide fiber and airbag fabric | |
JP2015110857A (en) | Air bag base fabric | |
JPWO2014123090A1 (en) | Airbag fabrics and fabric rolls | |
EP3034663B1 (en) | Woven fabric | |
US11987910B2 (en) | Base cloth for material and manufacturing method therefor | |
CN111155219B (en) | Fabric for airbag, method for producing same, and airbag | |
JP2015183309A (en) | Woven base cloth for air-bag | |
JP5789068B2 (en) | Airbag fabric | |
JP4553656B2 (en) | Weaving method of high density bag weave base fabric | |
JP6694490B2 (en) | Fabric base fabric for airbags | |
JP2007023410A (en) | Ground fabric for airbag and method for producing the same | |
JP2015143407A (en) | Double width high density woven fabric roll | |
JP2005112093A (en) | Hose for introduction and distribution of inflator gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20160405 |