JP2015108618A - High pressure insulation monitor method and device - Google Patents

High pressure insulation monitor method and device Download PDF

Info

Publication number
JP2015108618A
JP2015108618A JP2014217430A JP2014217430A JP2015108618A JP 2015108618 A JP2015108618 A JP 2015108618A JP 2014217430 A JP2014217430 A JP 2014217430A JP 2014217430 A JP2014217430 A JP 2014217430A JP 2015108618 A JP2015108618 A JP 2015108618A
Authority
JP
Japan
Prior art keywords
ground
phase
ground fault
zero
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014217430A
Other languages
Japanese (ja)
Other versions
JP5889992B2 (en
Inventor
善和 井上
Yoshikazu Inoue
善和 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI ELECTRICAL SAFETY INSPECTION ASS
KANSAI ELECTRICAL SAFETY INSPECTION ASSOCIATION
Original Assignee
KANSAI ELECTRICAL SAFETY INSPECTION ASS
KANSAI ELECTRICAL SAFETY INSPECTION ASSOCIATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI ELECTRICAL SAFETY INSPECTION ASS, KANSAI ELECTRICAL SAFETY INSPECTION ASSOCIATION filed Critical KANSAI ELECTRICAL SAFETY INSPECTION ASS
Priority to JP2014217430A priority Critical patent/JP5889992B2/en
Publication of JP2015108618A publication Critical patent/JP2015108618A/en
Application granted granted Critical
Publication of JP5889992B2 publication Critical patent/JP5889992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide high pressure insulation monitor method and device capable of monitoring an insulation deterioration state of a high pressure electric circuit in a building at low cost in a hot line condition with simple means.SOLUTION: When a fluctuation portion ΔIof a zero-phase current Iis approximate to 0, an admittance Y between ground in-building is calculated by a relation expression of -Y={(I-If)/I}.Yor -Y={(I-I)/I}.Y, therefore an inverse 1/Yr of a real part Yr of the admittance Y between ground in-building is measured as an earth resistance Rg in a provisional mode. When the fluctuation portion ΔIof the zero-phase current Ibecomes larger than 0 after start of measurement, the admittance Y between ground in-building is calculated by a relation expression of -Y=(ΔI/ΔI).Y, and thereby the inverse 1/Yr of the real part Yr of the admittance Y between ground in-building is measured as an earth resistance Rg in a determined mode.

Description

本発明は、非接地系電路で発生した地絡事故により非接地系電路に接続された構内高圧電路に発生する零相電流を検出することにより、構内高圧電路の絶縁劣化状態について地絡抵抗を計測することで監視する高圧絶縁監視方法および高圧絶縁監視装置に関する。   The present invention detects the zero-phase current generated in the campus high-voltage circuit connected to the non-grounded electrical circuit due to the ground fault occurring in the non-grounded system circuit, thereby reducing the ground fault resistance for the insulation degradation state of the campus high-voltage circuit. The present invention relates to a high voltage insulation monitoring method and a high voltage insulation monitoring apparatus which are monitored by measuring.

非接地系電路に接続している高圧電路には、各種の電気設備(例えば、変圧器、進相コンデンサ、計器用変圧器、変流器など)が接続されており、その高圧電路に設置された零相変流器ZCTにより、地絡事故の発生時に構内高圧電路に流れる零相電流を検出することで、構内高圧電路の絶縁劣化状態を監視するようにしている。高圧電路との接続点である受電点から負荷側を構内と称して保護範囲とし、前述の受電点から系統側を構外と称して保護範囲外としているのが一般的である。   Various electrical equipment (for example, transformers, phase-advancing capacitors, instrument transformers, current transformers, etc.) is connected to the high-voltage circuit connected to the non-grounded circuit, and installed on the high-voltage circuit. In addition, the zero-phase current transformer ZCT detects the zero-phase current flowing in the campus high-voltage path when a ground fault occurs, thereby monitoring the insulation deterioration state of the campus high-voltage path. In general, the load side from the power receiving point, which is a connection point with the high piezoelectric path, is referred to as a premise, and the protection range is referred to, and the system side from the power receiving point is referred to as the premise, and is outside the protection range.

このようにして、地絡事故の発生時に構内高圧電路に流れる零相電流を零相変流器ZCTで検出することにより、その地絡事故が構内地絡であるか否かを判定することで、構内高圧電路の絶縁劣化状態を監視するようにしている。従来、構内高圧電路の絶縁劣化状態を監視する手段として、例えば、特許文献1に開示されたものが提案されている。   In this way, by detecting the zero-phase current flowing in the campus high piezoelectric path at the time of occurrence of the ground fault with the zero-phase current transformer ZCT, it is determined whether or not the ground fault is a campus ground fault. The insulation deterioration state of the campus high piezoelectric path is monitored. Conventionally, for example, a device disclosed in Patent Document 1 has been proposed as a means for monitoring an insulation deterioration state of a campus high piezoelectric path.

この特許文献1は、非接地系電路の線路定数を活線状態で計測すると共に、この線路定数から電路の絶縁状態を的確に把握する線路定数計測装置、およびこれによって計測された線路定数に基づいて算出した零相電流から地絡電流を精度よく求めることができる非接地系電路の地絡監視装置を開示したものである。   This Patent Document 1 is based on a line constant measuring device that measures the line constant of an ungrounded electric circuit in a live line state and accurately grasps the insulation state of the electric circuit from the line constant, and the line constant measured thereby. This discloses a ground fault monitoring device for a non-grounded electric circuit capable of accurately obtaining the ground fault current from the zero-phase current calculated in this manner.

つまり、特許文献1に開示された線路定数計測装置は、非接地系電路に流れる零相電流を検出する零相電流検出手段と、その非接地系電路の零相電圧を検出する零相電圧検出手段と、電路の一部の電圧を検出して零相分を除いた基準電圧を作成する基準電圧作成手段と、線路定数計測開始時の零相電流と零相電圧を記憶し、検出している零相電圧がこの記憶値から所定値以上変動したとき、検出している零相電流と零相電圧を記憶する電路変化検出手段と、各相の対地アドミタンスのベクトル和を第1の線路定数とし、各相の対地アドミタンスの不平衡分によって流れる零相電流を基準電圧によって表した式における対地アドミタンスを第2の線路定数とするとき電路変化検出手段によって記憶された零相電圧および零相電流に基づき、二元連立ベクトル方程式を解いて、第1の線路定数および第2の線路定数を算出する線路定数演算手段とを備えたものである。   That is, the line constant measuring device disclosed in Patent Document 1 includes a zero-phase current detection unit that detects a zero-phase current flowing in a non-grounded circuit, and a zero-phase voltage detection that detects a zero-phase voltage of the non-grounded circuit. Means, a reference voltage generating means for detecting a voltage of a part of the electric circuit and generating a reference voltage excluding the zero phase, and storing and detecting the zero phase current and the zero phase voltage at the start of the line constant measurement. When the zero-phase voltage is changed from the stored value by a predetermined value or more, the electric line change detecting means for storing the detected zero-phase current and the zero-phase voltage, and the vector sum of the ground admittance of each phase as the first line constant And the zero-phase voltage and zero-phase current memorized by the circuit change detecting means when the ground admittance in the equation representing the zero-phase current flowing by the unbalanced portion of the ground admittance of each phase as a reference voltage is the second line constant Based on the two By solving the standing vector equation, in which a line constant computing means for calculating a first line constant and a second line constants.

また、特許文献1に開示された地絡監視装置は、前述の線路定数計測装置を有し、この装置によって算出した第1の線路定数と第2の線路定数を用い、零相電流、零相電圧、基準電圧をベクトル量として入力し、所定の演算式に基づくベクトル演算を行って地絡電流を算出する地絡電流演算手段を備えたものである。   Moreover, the ground fault monitoring apparatus disclosed in Patent Document 1 has the above-described line constant measurement device, and uses the first line constant and the second line constant calculated by this device, and the zero-phase current, zero-phase A ground fault current calculating means for inputting a voltage and a reference voltage as a vector quantity and performing a vector calculation based on a predetermined calculation formula to calculate a ground fault current is provided.

特許第2992615号公報Japanese Patent No. 2999615

ところで、特許文献1では、電路に現出した零相電圧を零相電圧検出手段により検出するようにしている。この零相電圧検出手段は、電路にスター接続された3つのコンデンサの中心接続点とアース間に分圧コンデンサを接続し、その分圧コンデンサの両端電圧を変成器を介して取り出す構成のものである。この場合、変成器自体が高価なものであり、また、地絡電流の計測時、変圧器の取り付けおよび取り外しに手間がかかり、その変圧器の取り付けおよび取り外し時には電路を停電させなければならないという改善すべき点が残されていた。   By the way, in patent document 1, the zero phase voltage which appeared on the electric circuit is detected by the zero phase voltage detecting means. This zero-phase voltage detecting means has a configuration in which a voltage dividing capacitor is connected between the center connection point of three capacitors star-connected to the electric circuit and the ground, and the voltage across the voltage dividing capacitor is taken out via a transformer. is there. In this case, the transformer itself is expensive, and it takes time to install and remove the transformer when measuring the ground fault current, and the power circuit must be interrupted when installing and removing the transformer. There was a point left to do.

また、構内高圧電路の絶縁劣化状態を監視する手段として、JISC4601,4609で規定されているように一般的に普及している地絡継電器(GR/DGR)や、本出願人が先に提案した高圧絶縁監視装置(特開平11−271384号公報)がある。   In addition, as means for monitoring the insulation deterioration state of the campus high piezoelectric road, the ground fault relay (GR / DGR) which is generally spread as defined in JISC4601, 4609 and the applicant previously proposed. There is a high voltage insulation monitoring device (Japanese Patent Laid-Open No. 11-271384).

しかしながら、前者の地絡継電器では、零相電流が100mA程度以下である構内高圧電路での地絡事故を検出する機能がない。また、後者の高圧絶縁監視装置では、構内高圧電路の各相電圧(対地電圧)の位相を計測する手段を備えていないので、演算により得られた地絡電流が抵抗性地絡、誘導性地絡あるいは容量性地絡のいずれであるかを特定することができない。さらに、この高圧絶縁監視装置では、零相電流が20mA以下である微小地絡を検出する機能がない。   However, the former ground fault relay does not have a function of detecting a ground fault in a high voltage road on the premises where the zero phase current is about 100 mA or less. In addition, since the latter high-voltage insulation monitoring device does not have means for measuring the phase of each phase voltage (ground voltage) of the premises high-voltage piezoelectric path, the ground fault current obtained by the calculation is a resistive ground fault, inductive ground. Whether it is a fault or a capacitive ground fault cannot be specified. Furthermore, this high voltage insulation monitoring device does not have a function of detecting a micro ground fault with a zero-phase current of 20 mA or less.

そこで、本発明は前述の改善点に鑑みて提案されたもので、その目的とするところは、簡易な手段により活線状態で、構内高圧電路の絶縁劣化状態を安価に監視し得る高圧絶縁監視方法および高圧絶縁監視装置を提供することにある。   Therefore, the present invention has been proposed in view of the above-described improvements, and the object of the present invention is to provide a high voltage insulation monitor that can monitor the insulation deterioration state of the campus high piezoelectric path at a low cost by a simple means. It is to provide a method and a high voltage insulation monitoring device.

本発明は、非接地系電路での地絡事故の発生時、非接地系電路に接続された構内高圧電路に流れる零相電流I0、および構内高圧電路に設置された電力ケーブルのシールド線に流れる零相電流I0Sを変流器で検出し、構内高圧電路に流れる零相電流I0と、電力ケーブルのシールド線に流れる零相電流I0Sに基づいて地絡抵抗を計測する高圧絶縁監視方法および高圧絶縁監視装置である。 The present invention provides a zero-phase current I 0 that flows through a high voltage path on a campus connected to a non-grounded circuit when a ground fault occurs on a non-grounded circuit, and a shield line of a power cable installed on the high voltage path on the campus. through the zero-phase current I 0S is detected by current transformer, the zero-phase current I 0 flowing through the premises pressure path, high insulation monitoring to measure the ground fault resistance based on the zero-phase current I 0S flowing through the shield wire of the power cable Method and high voltage insulation monitoring device.

前述した目的を達成するための技術的手段として、本発明の高圧絶縁監視方法は、計測開始時に零相電流I0の変動分ΔI0が0に近似する場合、構内対地間アドミタンスYを−Y={(I02−If)/I0S2}・Y0Sあるいは−Y={(I02−I01)/I0S2}・Y0Sの関係式でもって算出することにより、その構内対地間アドミタンスYの実数部Yrの逆数1/Yrを暫定モードでの地絡抵抗Rgとして計測し、計測開始後に零相電流I0の変動分ΔI0が0よりも大きくなった場合、構内対地間アドミタンスYを−Y=(ΔI0/ΔI0S)・Y0Sの関係式でもって算出することにより、その構内対地間アドミタンスYの実数部Yrの逆数1/Yrを確定モードでの地絡抵抗Rgとして計測することを特徴とする。 As a technical means for achieving the above-described object, the high voltage insulation monitoring method according to the present invention sets the premises-to-ground admittance Y to -Y when the variation ΔI 0 of the zero-phase current I 0 approximates 0 at the start of measurement. = {(I 02 −If ) / I 0S2 } · Y 0S or −Y = {(I 02 −I 01 ) / I 0S2 } · Y 0S , by calculating the relational yard-to-ground admittance Y Is measured as the ground fault resistance Rg in the provisional mode, and the fluctuation ΔI 0 of the zero-phase current I 0 becomes larger than 0 after the measurement is started, the premises-to-ground admittance Y is By calculating with the relational expression of −Y = (ΔI 0 / ΔI 0S ) · Y 0S , the reciprocal 1 / Yr of the real part Yr of the premises-to-ground admittance Y is measured as the ground fault resistance Rg in the definite mode. It is characterized by that.

本発明の高圧絶縁監視方法では、地絡事故の発生時に電力ケーブルのシールド線に流れる零相電流I0Sを変流器で検出することにより、簡易な手段により活線状態で、構内高圧電路の絶縁劣化状態について地絡抵抗を計測することで監視する安価な装置を実現できる。また、計測開始時に零相電流I0の変動分ΔI0が0に近似する場合、構内対地間アドミタンスYを−Y={(I02−If)/I0S2}・Y0Sあるいは−Y={(I02−I01)/I0S2}・Y0Sの関係式でもって算出することにより、構内対地間アドミタンスYの実数部Yrの逆数1/Yrを暫定モードでの地絡抵抗Rgとして計測することができる。このようにして、暫定モードでの地絡抵抗Rgを計測することで、計測開始時における構内高圧電路の絶縁劣化状態を的確に判定することができる。 In the high voltage insulation monitoring method of the present invention, the zero-phase current I 0S flowing through the shield wire of the power cable at the time of occurrence of a ground fault is detected by a current transformer, so that a live means can be used in a live state by a simple means. An inexpensive device can be realized that monitors the grounding resistance by measuring the ground fault resistance. Further, when the variation ΔI 0 of the zero-phase current I 0 approximates to 0 at the start of measurement, the premises-to-ground admittance Y is set to −Y = {(I 02 −If ) / I 0S2 } · Y 0S or −Y = { By calculating with the relational expression of (I 02 −I 01 ) / I 0S2 } · Y 0S , the reciprocal 1 / Yr of the real part Yr of the premises premises admittance Y is measured as the ground fault resistance Rg in the provisional mode. be able to. In this way, by measuring the ground fault resistance Rg in the provisional mode, it is possible to accurately determine the insulation deterioration state of the campus high piezoelectric path at the start of measurement.

さらに、計測開始後に零相電流I0の変動分ΔI0が0よりも大きくなった場合、構内対地間アドミタンスYを−Y=(ΔI0/ΔI0S)・Y0Sの関係式でもって算出することにより、構内対地間アドミタンスYの実数部Yrの逆数1/Yrを確定モードでの地絡抵抗Rgとして計測することができる。このようにして、確定モードでの地絡抵抗Rgを計測することで、計測開始後における構内高圧電路の絶縁劣化状態を的確に判定することができる。なお、本発明では、構内対地間アドミタンスYの虚数部Yiを電源周波数の角速度ωで除算することにより、構内の対地静電容量Cを計測することも可能である。 Further, when the variation ΔI 0 of the zero-phase current I 0 becomes larger than 0 after the measurement is started, the premises-to-ground admittance Y is calculated by a relational expression of −Y = (ΔI 0 / ΔI 0S ) · Y 0S. Thus, the reciprocal 1 / Yr of the real part Yr of the premises-to-ground admittance Y can be measured as the ground fault resistance Rg in the definite mode. Thus, by measuring the ground fault resistance Rg in the definite mode, it is possible to accurately determine the insulation deterioration state of the campus high piezoelectric path after the measurement is started. In the present invention, the ground capacitance C on the campus can be measured by dividing the imaginary part Yi of the ground-to-ground admittance Y by the angular velocity ω of the power supply frequency.

本発明の高圧絶縁監視方法では、構内高圧電路に設置された零相変流器ZCTにより、地絡事故の発生時に構内高圧電路に流れる零相電流I0を検出することが可能であるが、他の手段として、零相変流器ZCTの二次側に変流器を接続し、その変流器により地絡事故の発生時に構内高圧電路に流れる零相電流I0を検出することが望ましい。このようにすれば、地絡保護継電器用として既設された零相変流器ZCTの二次側に変流器を取り付けるだけで簡易に絶縁監視を行うことができ、しかも、構内高圧電路に雷サージ等の過電圧が印加されても、零相変流器ZCTにより絶縁されるので、その過電圧に対する保護も確実となって信頼性の向上が図れる。 In the high voltage insulation monitoring method of the present invention, it is possible to detect the zero phase current I 0 flowing in the campus high piezoelectric path when a ground fault occurs by the zero phase current transformer ZCT installed in the campus high piezoelectric path. As another means, it is desirable to connect a current transformer to the secondary side of the zero-phase current transformer ZCT, and to detect the zero-phase current I 0 flowing through the campus high piezoelectric path when a ground fault occurs. . In this way, insulation monitoring can be performed simply by attaching a current transformer to the secondary side of the zero-phase current transformer ZCT already installed for ground fault protection relays. Even if an overvoltage such as a surge is applied, insulation is performed by the zero-phase current transformer ZCT, so that the protection against the overvoltage is ensured and reliability can be improved.

また、本発明の高圧絶縁監視装置は、構内高圧電路の健全時の構内対地間アドミタンスY0を−Y0=(I02−I01)ωC0S/(I0S2−I0S1)の関係式で算出すると共に、構内高圧電路の健全時および地絡時の構内対地間アドミタンスYを−Y=(I0−I01)ωC0S/(I0S−I0S1)あるいは−Y=(I0−I02)ωC0S/(I0S−I0S2)の関係式で算出し、構内対地間アドミタンスYと構内対地間アドミタンスY0との差分である構内対地間アドミタンスYの実数部Yrから算出される地絡電流Igについて、対地電圧を基準位相として各相地絡電流Iga,Igb,Igcを算出し、それら各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の立方根(ΣIg31/3を抵抗性地絡電流Igrとして算出することにより地絡抵抗を計測する演算部を具備したことを特徴とする。 Further, the high voltage insulation monitoring apparatus of the present invention has a yard-to-ground admittance Y 0 when the premises high piezoelectric road is healthy as a relational expression of −Y 0 = (I 02 −I 01 ) ωC 0S / (I 0S2 −I 0S1 ). In addition to the calculation, the premises-to-ground admittance Y when the campus high-piezoelectric road is healthy and when there is a ground fault is -Y = (I 0 -I 01 ) ωC 0S / (I 0S -I 0S1 ) or -Y = (I 0 -I 02 ) The ground calculated from the relational expression of ωC 0S / (I 0S −I 0S2 ) and calculated from the real part Yr of the campus-to-ground admittance Y, which is the difference between the campus-to-ground admittance Y and the campus-to-ground admittance Y 0 The ground current Iga, Igb, Igc is calculated with respect to the ground voltage Ig using the ground voltage as a reference phase, and the cube root (ΣIg 3 ) 1 / of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc 3 is calculated as the resistance ground fault current Igr. An arithmetic unit for measuring resistance is provided.

このように、対地電圧を基準位相として各相地絡電流Iga,Igb,Igcを算出し、それら各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の立方根(ΣIg31/3を抵抗性地絡電流Igrとして算出することにより地絡抵抗を計測することで、非接地系電路で発生した地絡事故が微小地絡であっても、その地絡事故を正確に検出することができる。 Thus, each phase ground fault current Iga, Igb, Igc is calculated using the ground voltage as a reference phase, and the cube root (ΣIg 3 ) 1/3 of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc. By measuring the ground fault resistance by calculating the resistance ground fault current Igr, it is possible to accurately detect the ground fault accident even if the ground fault occurred in the ungrounded circuit is a micro ground fault Can do.

本発明において、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3をその最大値nの逆数倍で補正することにより、三乗和ΣIg3の真値(ΣIg3)/nを算出し、三乗和ΣIg3の真値(ΣIg3)/nの立方根{(ΣIg3)/n}1/3を抵抗性地絡電流Igrとして算出することが望ましい。このようにすれば、地絡事故をより一層正確に検出することができる。 In the present invention, each phase ground fault current Iga, Igb, by correcting the inverse number times the maximum value n of the cube sum ShigumaIg 3 of Igc, the true value of the cube sum ShigumaIg 3 a (ΣIg 3) / n The cube root {(ΣIg 3 ) / n} 1/3 of the true value (ΣIg 3 ) / n of the cube sum ΣIg 3 is preferably calculated as the resistive ground fault current Igr. In this way, a ground fault can be detected more accurately.

本発明において、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3を監視レベルで正規化し、その正規化された三乗和の平方根を複数回算出することが望ましい。このようにすれば、位相検出角度を広角度化することができ、抵抗性地絡電流を正確に算出することができる。 In the present invention, it is desirable to normalize the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc at the monitoring level and calculate the square root of the normalized cube sum a plurality of times. In this way, the phase detection angle can be widened, and the resistive ground fault current can be accurately calculated.

本発明において、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3をDCバイアスによりオフセットすることが望ましい。このようにすれば、抵抗性地絡電流の補正および位相角度の補正を容易に実現することができる。 In the present invention, it is desirable to offset the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc by a DC bias. In this way, the correction of the resistive ground fault current and the correction of the phase angle can be easily realized.

本発明によれば、地絡事故の発生時に電力ケーブルのシールド線に流れる零相電流I0Sを変流器で検出することにより、簡易な手段により活線状態で、構内高圧電路の絶縁劣化状態について地絡抵抗を計測することで監視する安価な装置を実現できる。また、計測開始時に零相電流I0の変動分ΔI0が0に近似する場合、構内対地間アドミタンスYを−Y={(I02−If)/I0S2}・Y0Sあるいは−Y={(I02−I01)/I0S2}・Y0Sの関係式でもって算出することにより、構内対地間アドミタンスYの実数部Yrの逆数1/Yrを暫定モードでの地絡抵抗Rgとして計測することができる。 According to the present invention, by detecting the zero-phase current I 0S flowing through the shield line of the power cable at the time of the occurrence of the ground fault with the current transformer, the insulation deterioration state of the high voltage road on the premises is kept in a live state by a simple means. It is possible to realize an inexpensive device for monitoring by measuring the ground fault resistance. Further, when the variation ΔI 0 of the zero-phase current I 0 approximates to 0 at the start of measurement, the premises-to-ground admittance Y is set to −Y = {(I 02 −If ) / I 0S2 } · Y 0S or −Y = { By calculating with the relational expression of (I 02 −I 01 ) / I 0S2 } · Y 0S , the reciprocal 1 / Yr of the real part Yr of the premises premises admittance Y is measured as the ground fault resistance Rg in the provisional mode. be able to.

さらに、計測開始後に零相電流I0の変動分ΔI0が0よりも大きくなった場合、構内対地間アドミタンスYを−Y=(ΔI0/ΔI0S)・Y0Sの関係式でもって算出することにより、構内対地間アドミタンスYの実数部Yrの逆数1/Yrを確定モードでの地絡抵抗Rgとして計測することができる。以上のようにして、暫定モードでの地絡抵抗および確定モードでの地絡抵抗を計測することで、構内高圧電路の絶縁劣化状態を的確に判定することができる。 Further, when the variation ΔI 0 of the zero-phase current I 0 becomes larger than 0 after the measurement is started, the premises-to-ground admittance Y is calculated by a relational expression of −Y = (ΔI 0 / ΔI 0S ) · Y 0S. Thus, the reciprocal 1 / Yr of the real part Yr of the premises-to-ground admittance Y can be measured as the ground fault resistance Rg in the definite mode. As described above, by measuring the ground fault resistance in the provisional mode and the ground fault resistance in the definite mode, it is possible to accurately determine the insulation deterioration state of the campus high piezoelectric path.

また、対地電圧を基準位相として各相地絡電流Iga,Igb,Igcを算出し、それら各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の立方根(ΣIg31/3を抵抗性地絡電流Igrとして算出することにより地絡抵抗を計測することで、非接地系電路で発生した地絡事故が微小地絡であっても、その地絡事故を正確に検出することができる。 Also, each phase ground fault current Iga, Igb, Igc is calculated using the ground voltage as a reference phase, and the cube root (ΣIg 3 ) 1/3 of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc is resistance. By measuring the ground fault resistance by calculating the ground fault current Igr, the ground fault can be accurately detected even if the ground fault occurring in the non-grounded circuit is a micro ground fault. .

本発明の実施形態で、一線地絡時の構内高圧電路および高圧絶縁監視方法を説明するための図である。It is a figure for demonstrating the local high piezoelectric path at the time of a one-line ground fault, and the high voltage | pressure insulation monitoring method in embodiment of this invention. 本発明の他の実施形態で、一線地絡時の構内高圧電路および高圧絶縁監視方法を説明するための図である。It is a figure for demonstrating the local high voltage path at the time of a one-line ground fault, and the high voltage | pressure insulation monitoring method in other embodiment of this invention. 電源投入から計測開始時を経て計測開始後に至る零相電流I0,I0Sを示す波形図である。FIG. 6 is a waveform diagram showing zero-phase currents I 0 and I 0S from when power is turned on to when measurement starts and after measurement starts. 本発明の実施形態で、微小地絡時の構内高圧電路および高圧絶縁監視装置を示す構成図である。It is a block diagram which shows the local high piezoelectric path and high voltage | pressure insulation monitoring apparatus at the time of a micro ground fault in embodiment of this invention. 本発明の他の実施形態で、微小地絡時の構内高圧電路および高圧絶縁監視装置を示す構成図である。It is a block diagram which shows the local high voltage path and high voltage | pressure insulation monitoring apparatus at the time of a micro ground fault in other embodiment of this invention. 一線地絡事故の発生時の等価回路図である。It is an equivalent circuit diagram at the time of occurrence of a one-line ground fault. 一線地絡事故の発生時のベクトル図である。It is a vector diagram at the time of occurrence of a one-line ground fault. 抵抗性地絡Rgにおいて、(A)は地絡電流Igを位相検波した各相地絡電流Iga,Igb,Igcを示すベクトル図、(B)は各相地絡電流Iga,Igb,Igcの大きさを示すグラフである。In the resistive ground fault Rg, (A) is a vector diagram showing the phase ground fault currents Iga, Igb, Igc obtained by phase detection of the ground fault current Ig, and (B) is the magnitude of each phase ground fault current Iga, Igb, Igc. It is a graph which shows thickness. 誘導性地絡Lgにおいて、(A)は地絡電流IgLを位相検波した各相地絡電流Iga,Igb,Igcを示すベクトル図、(B)は各相地絡電流Iga,Igb,Igcの大きさを示すグラフである。In the inductive ground fault Lg, (A) is a vector diagram showing each phase ground fault current Iga, Igb, Igc obtained by phase detection of the ground fault current IgL, and (B) is a magnitude of each phase ground fault current Iga, Igb, Igc. It is a graph which shows thickness. 容量性地絡Cgにおいて、(A)は地絡電流IgCを位相検波した各相地絡電流Iga,Igb,Igcを示すベクトル図、(B)は各相地絡電流Iga,Igb,Igcの大きさを示すグラフである。In the capacitive ground fault Cg, (A) is a vector diagram showing each phase ground fault current Iga, Igb, Igc obtained by phase detection of the ground fault current IgC, and (B) is a magnitude of each phase ground fault current Iga, Igb, Igc. It is a graph which shows thickness. 各相地絡電流Iga,Igb,Igcおよびその三乗和ΣIg3を示す位相特性図である。It is a phase characteristic diagram showing each phase ground fault current Iga, Igb, Igc and its cube sum ΣIg 3 . 図11の波形を極座標で表示した特性図である。It is the characteristic view which displayed the waveform of FIG. 11 by the polar coordinate. 各相地絡電流Iga,Igb,Igcの三乗和ΣIg3を正規化し、その平方根を複数回演算した結果を示す位相特性図である。It is a phase characteristic diagram showing the result of normalizing the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc and calculating the square root a plurality of times. 図13の波形を極座標で表示した特性図である。It is the characteristic view which displayed the waveform of FIG. 13 by the polar coordinate. 各相地絡電流Iga,Igb,Igcの三乗和ΣIg3をオフセットした結果を示す位相特性図である。It is a phase characteristic figure showing the result of offsetting the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc. 図15の波形を極座標で表示した特性図である。It is the characteristic view which displayed the waveform of FIG. 15 by the polar coordinate. A相が地絡した場合における地絡継電器および高圧絶縁監視装置の監視感度を比較した図である。It is the figure which compared the monitoring sensitivity of a ground fault relay and a high voltage | pressure insulation monitoring apparatus in the case of a ground fault of A phase.

本発明の実施形態を以下に詳述する。以下の実施形態では、非接地系電路での地絡事故の発生時、その非接地系電路に接続された構内高圧電路に流れる零相電流、および電力ケーブル(例えば、JISC3606に規程される高圧架橋ポリエチレンケーブル)のシールド線に流れる零相電流に基づいて、地絡抵抗を計測する高圧絶縁監視方法を説明する。   Embodiments of the present invention are described in detail below. In the following embodiments, when a ground fault occurs in a non-grounded electric circuit, a zero-phase current flowing in a high-voltage road on the premises connected to the non-grounded electric circuit and a power cable (for example, a high-voltage bridge specified in JISC3606) A high voltage insulation monitoring method for measuring the ground fault resistance based on the zero-phase current flowing in the shield wire of the polyethylene cable) will be described.

図1は本発明の一つの実施形態を示し、図2は本発明の他の実施形態を示す。図1および図2に示す6.6kVの非接地系電路(三相回路)では、変電所11から延びる構内高圧電路12に設置された電力ケーブル13に各種の電気設備(例えば、変圧器、進相コンデンサ、計器用変圧器、変流器など)が接続されている。   FIG. 1 shows one embodiment of the present invention, and FIG. 2 shows another embodiment of the present invention. In the 6.6 kV ungrounded electric circuit (three-phase circuit) shown in FIGS. 1 and 2, various electric facilities (for example, a transformer, an advancement) are connected to the power cable 13 installed on the campus high-voltage circuit 12 extending from the substation 11. Phase capacitors, instrument transformers, current transformers, etc.).

地絡事故の発生時、構内高圧電路12に流れる零相電流I0、および電力ケーブル13のシールド線14に流れる零相電流I0Sを検出することにより、構内高圧電路12の絶縁劣化状態について地絡抵抗を計測することで監視するようにしている。この絶縁監視では、高圧電路12と電力ケーブル13の接続点である受電点から負荷側を構内と称して保護範囲とし、受電点から系統側を構外と称して保護範囲外としている。 Upon the occurrence of a ground fault, by detecting the zero-phase current I 0S flowing through the shielded wire 14 of the private branch high-pressure path 12 zero-phase current I 0 flows in, and the power cable 13, the land for the insulation deterioration of the premises high pressure path 12 Monitoring is performed by measuring the resistance of the wire. In this insulation monitoring, the load side from the power receiving point, which is the connection point between the high piezoelectric path 12 and the power cable 13, is referred to as the premise, and the protection side is referred to as the premise, and the system side from the power receiving point is referred to as the premise, and is outside the protective range.

なお、図1および図2は電力ケーブル13に接続された構内電気設備のA相に一線地絡事故が発生した場合を例示し、その時の地絡電流をIg、地絡抵抗をRgとする。図1および図2における符号CA1,CB1,CC1は高圧電路12と大地との間に存在する構外の対地静電容量であり、符号CA2,CB2,CC2は電力ケーブル13および各種電気機器と大地との間に存在する構内の対地静電容量である。また、符号IA,IB,ICは、各相に流れる電流である〔IA=(Ea−V0)・jωCA2、IB=(Eb−V0)・jωCB2、IC=(Ec−V0)・jωCC2〕。 1 and 2 exemplify a case where a one-line ground fault has occurred in the A phase of the on-premises electrical equipment connected to the power cable 13, and the ground fault current at that time is Ig and the ground fault resistance is Rg. 1 and 2, reference characters C A1 , C B1 , and C C1 are off-site ground capacitances existing between the high piezoelectric path 12 and the ground, and reference characters C A2 , C B2 , and C C2 are the power cables 13 and This is the ground capacitance on the premises that exists between various electrical devices and the ground. Symbols I A , I B , and I C are currents flowing through the respective phases [I A = (Ea−V 0 ) · jωC A2 , I B = (Eb−V 0 ) · jωC B2 , I C = (Ec−V 0 ) · jωC C2 ].

図1に示す実施形態では、高圧電路12に設置された零相変流器ZCT15により、地絡事故の発生時に構内高圧電路12に流れる零相電流I0を検出する構成を採用している。一方、図2に示す実施形態では、地絡保護継電器16が接続された既設の零相変流器ZCT15の二次側にクランプ式変流器17を接続し、このクランプ式変流器17により、地絡事故の発生時に構内高圧電路12に流れる零相電流I0を検出する構成を採用している。 In the embodiment shown in FIG. 1, a configuration is adopted in which a zero-phase current transformer ZCT 15 installed in the high-voltage path 12 detects a zero-phase current I 0 flowing in the local high-voltage path 12 when a ground fault occurs. On the other hand, in the embodiment shown in FIG. 2, a clamp-type current transformer 17 is connected to the secondary side of the existing zero-phase current transformer ZCT 15 to which the ground fault protection relay 16 is connected. A configuration is adopted in which the zero-phase current I 0 flowing through the high-voltage road 12 on the premises is detected when a ground fault occurs.

図2に示す実施形態の場合、既設の零相変流器ZCT15の二次側にクランプ式変流器17を取り付けるだけで簡易に絶縁監視を行うことができる。しかも、電力ケーブル13に雷サージ等の過電圧が印加されても、その過電圧が高圧絶縁監視装置19へ直接印加することがないので過電圧に対する保護も確実となって信頼性の向上が図れる。なお、零相変流器ZCT15の二次側に接続する変流器としては、クランプ式以外に、例えば、貫通式変流器であってもよい。   In the case of the embodiment shown in FIG. 2, insulation monitoring can be performed simply by attaching the clamp type current transformer 17 to the secondary side of the existing zero-phase current transformer ZCT15. Moreover, even if an overvoltage such as a lightning surge is applied to the power cable 13, the overvoltage is not directly applied to the high voltage insulation monitoring device 19, so that the protection against the overvoltage is ensured and the reliability can be improved. The current transformer connected to the secondary side of the zero-phase current transformer ZCT15 may be, for example, a through-type current transformer other than the clamp type.

この高圧絶縁監視装置19では、高圧電路12に設置された零相変流器ZCT15(図1参照)、あるいはその零相変流器ZCT15の二次側に接続されたクランプ式変流器17(図2参照)により、地絡事故の発生時に構内高圧電路12に流れる零相電流I0を検出する。また、構内高圧電路12に設置された電力ケーブル13のシールド線14にクランプ式変流器18を取り付け、そのクランプ式変流器18により、地絡事故の発生時に電力ケーブル13のシールド線14に流れる零相電流I0Sを検出する。 In this high-voltage insulation monitoring device 19, a zero-phase current transformer ZCT15 (see FIG. 1) installed in the high piezoelectric path 12 or a clamp-type current transformer 17 (connected to the secondary side of the zero-phase current transformer ZCT15) ( 2), the zero-phase current I 0 flowing through the campus high piezoelectric path 12 when a ground fault occurs is detected. In addition, a clamp type current transformer 18 is attached to the shield wire 14 of the power cable 13 installed in the campus high piezoelectric path 12, and the clamp type current transformer 18 allows the shield cable 14 of the power cable 13 to be connected when a ground fault occurs. The flowing zero-phase current I 0S is detected.

このクランプ式変流器18も、前述のクランプ式変流器17と同様、電力ケーブル13のシールド線14に取り付けるだけで簡易に絶縁監視を行うことができ、しかも、電力ケーブル13に雷サージ等の過電圧が印加されても、その過電圧が高圧絶縁監視装置19へ直接印加することがないので過電圧に対する保護も確実となって信頼性の向上が図れる。なお、電力ケーブル13のシールド線14に接続する変流器としては、クランプ式以外に、例えば、貫通式変流器であってもよい。   The clamp type current transformer 18 can also be easily monitored for insulation just by being attached to the shielded wire 14 of the power cable 13, as in the above-described clamp type current transformer 17. Even if the overvoltage is applied, the overvoltage is not directly applied to the high voltage insulation monitoring device 19, so that the overvoltage is reliably protected and the reliability can be improved. The current transformer connected to the shield wire 14 of the power cable 13 may be, for example, a through-type current transformer other than the clamp type.

これらクランプ式変流器17,18は、磁気回路を構成して電流を検出するリング状部が本体先端に開閉可能に設けられた構造を具備する。クランプ式変流器17,18の零相変流器ZCT15の二次側および電力ケーブル13のシールド線14への装着は、リング状部を手動操作により開いてその内部に地絡保護継電器16との接続線および電力ケーブル13のシールド線14を取り込んだ後に閉じることで、磁気回路を構成するリング状部に接続線および電力ケーブル13のシールド線14を貫通させるようにして行われる。このような簡単な操作でその取り付け作業が容易であるので、現場における作業も効率よく実施できてその実用的価値は大きい。   These clamp type current transformers 17 and 18 have a structure in which a ring-shaped portion that constitutes a magnetic circuit and detects a current is provided at the front end of the main body so as to be opened and closed. The clamp-type current transformers 17 and 18 are attached to the secondary side of the zero-phase current transformer ZCT15 and the shielded cable 14 of the power cable 13 by manually opening the ring-shaped portion and connecting the ground fault protection relay 16 to the inside thereof. The connection line and the shield line 14 of the power cable 13 are taken in and then closed so that the connection line and the shield line 14 of the power cable 13 pass through the ring-shaped portion constituting the magnetic circuit. Since the attachment work is easy by such a simple operation, the work in the field can be carried out efficiently and its practical value is great.

ここで、地絡事故の発生により、構内高圧電路12に流れる零相電流I0および電力ケーブル13のシールド線14に流れる零相電流I0Sは、電力ケーブル13に接続された構内電気設備の投入や遮断により変動する。図3は、高圧絶縁監視装置19の電源投入から計測開始時を経て計測開始後に至って増加する零相電流I0,I0Sを示す。 Here, due to the occurrence of a ground fault, the zero-phase current I 0 flowing through the campus high-piezoelectric path 12 and the zero-phase current I 0S flowing through the shield wire 14 of the power cable 13 are turned on to the on-site electrical equipment connected to the power cable 13. And fluctuates due to interruption. FIG. 3 shows zero-phase currents I 0 and I 0S that increase after the measurement is started after the high-voltage insulation monitoring device 19 is turned on and after the measurement is started.

電源投入時(図中のA点)から零相電流I0,I0Sが共に高圧絶縁監視装置19において演算可能な最低レベルL(例えば2mA)に増加するまでを待機モードとし、零相電流I0,I0Sが共に演算可能な最低レベルLに達した時点で地絡抵抗Rgを計測開始する。この計測開始時(図中のB点)の零相電流I0,I0Sを零相電流I01,I0S1とし、計測開始後(図中のC点)に計測された零相電流I0,I0Sを現在値として零相電流I02,I0S2とする。 The standby mode is set until the zero-phase currents I 0 and I 0S both increase to the lowest level L (for example, 2 mA) that can be calculated in the high-voltage insulation monitoring device 19 from when the power is turned on (point A in the figure). Measurement of ground fault resistance Rg is started when 0 and I 0S both reach the lowest level L that can be calculated. The zero-phase currents I 0 and I 0S at the start of measurement (point B in the figure) are set as zero-phase currents I 01 and I 0S1, and the zero-phase current I 0 measured after the start of measurement (point C in the figure). , I 0S is a current value and zero-phase currents I 02 and I 0S2 are assumed.

なお、前述した計測開始時の零相電流I01,I0S1は、地絡抵抗Rgを演算するときの基準値の役目を負うので次のように扱う。つまり、最初に計測した零相電流I01,I0S1を標準として固定値とする。また、演算結果の地絡抵抗Rgが無限大に近く構内高圧電路12に地絡事故がないと判定できる時には、計測された現在値の零相電流I02,I0S2を零相電流I01,I0S1として自動または手動により更新する。この更新は、外部からの通信指令や、外部からの直接入力手段によって行われる。 Note that the zero-phase currents I 01 and I 0S1 at the start of measurement described above have the role of a reference value when calculating the ground fault resistance Rg, and are handled as follows. That is, the first measured zero phase currents I 01 and I 0S1 are set as fixed values. When the ground fault resistance Rg of the calculation result is close to infinity and it can be determined that there is no ground fault in the high voltage path 12 on the premises, the measured zero phase currents I 02 and I 0S2 are converted to zero phase currents I 01 , I 01 , Update as I 0S1 automatically or manually. This update is performed by an external communication command or an external direct input means.

高圧絶縁監視装置19では、零相電流I0,I0Sが共に演算可能な最低レベルLに達した時点、つまり、計測開始により、待機モードから暫定モードへ移行する。この暫定モードでは、零相電流I0の変動分ΔI0(=I02−I01)が0に近似する区間である(I02≒I01)。さらに、その変動分ΔI0(=I02−I01)が0よりも大きくなると、暫定モードから確定モードへ移行する。この待機モードから暫定モードへの移行、および暫定モードから確定モードへの移行は、高圧絶縁監視装置19の判定部20で行われる。なお、零相電流I0の変動分ΔI0が0に近似する場合と、零相電流I0の変動分ΔI0が0よりも大きくなる場合との境界値は、高圧絶縁監視装置19の計測および演算性能に依存するものである。 In the high voltage insulation monitoring device 19, when the zero phase currents I 0 and I 0S reach the lowest level L that can be calculated, that is, when the measurement is started, the standby mode is shifted to the temporary mode. In this provisional mode, the variation ΔI 0 (= I 02 −I 01 ) of the zero-phase current I 0 is an interval in which it approximates 0 (I 02 ≈I 01 ). Further, when the variation ΔI 0 (= I 02 −I 01 ) becomes larger than 0, the transition is made from the provisional mode to the fixed mode. The transition from the standby mode to the provisional mode and the transition from the provisional mode to the confirmation mode are performed by the determination unit 20 of the high-voltage insulation monitoring device 19. Incidentally, in the case where variation [Delta] I 0 of the zero-phase current I 0 is approximate to 0, the boundary value between the case where variation [Delta] I 0 of the zero-phase current I 0 is greater than 0, the measurement of the high voltage insulator monitoring device 19 It depends on the calculation performance.

ここで、電力ケーブル13のシールド線14に流れる零相電流I0Sは、地絡事故の発生で高圧電路12に現出した零相電圧V0でもって、電力ケーブル13の芯線と大地間の対地静電容量C0S=CAS+CBS+CCS(図示せず)により流れる電流である〔I0S=ω・C0S・V0、ただし、ω=2π・電源周波数(Hz)〕。この電力ケーブル13の芯線と大地間の各相の対地静電容量CAS,CBS,CCSは、電力ケーブル13の太さ、長さおよび製造メーカ等の仕様により異なる。この対地静電容量CAS,CBS,CCSとしては、JISC3606または前述の仕様に示された値を使用し、構内電気設備の敷設記録による情報を基にして電力ケーブル13の仕様を高圧絶縁監視装置19に手動または自動で設定する。 Here, the zero-phase current I 0S flowing through the shield wire 14 of the power cable 13 is grounded between the core wire of the power cable 13 and the ground with the zero-phase voltage V 0 appearing on the high piezoelectric path 12 due to the occurrence of a ground fault. Capacitance C 0S = C AS + C BS + C CS (not shown) is a current that flows (I 0S = ω · C 0S · V 0 , where ω = 2π · power supply frequency (Hz)). The ground capacitances C AS , C BS , C CS of each phase between the core of the power cable 13 and the ground vary depending on the thickness, length, and specifications of the manufacturer, etc. of the power cable 13. As the ground capacitances C AS , C BS , C CS , use the values shown in JISC3606 or the above-mentioned specifications, and the high-voltage insulation of the specifications of the power cable 13 based on the information recorded in the premises electrical equipment The monitoring device 19 is set manually or automatically.

手動設定方法としては、外部に設けた設定器(またはパソコン)と高圧絶縁監視装置19との通信手段により、電力ケーブル13の対地静電容量CAS,CBS,CCSまたは仕様を各相(A相,B相,C相)ごとに入力する方法や、高圧絶縁監視装置19の内部に設定回路を設けてダイヤルスイッチにより、電力ケーブル13の対地静電容量CAS,CBS,CCSまたは仕様を各相ごとに入力する方法がある。 As a manual setting method, the ground capacitances C AS , C BS , C CS or specifications of the power cable 13 are set for each phase (by means of communication between the setting device (or personal computer) provided outside and the high voltage insulation monitoring device 19 ( (A phase, B phase, C phase) or by setting a setting circuit inside the high voltage insulation monitoring device 19 and using a dial switch, the ground capacitances C AS , C BS , C CS of the power cable 13 or There is a method to input specifications for each phase.

この方法を採用した場合、電力ケーブル13の構内対地間インピーダンスZ0Sは、各相の対地静電容量CAS,CBS,CCSと電源周波数の角速度ωを乗算したものの逆数の和になる〔Z0S=(1/ωCAS+1/ωCBS+1/ωCCS)〕。この構内対地間インピーダンスZ0Sの逆数である電力ケーブル13の構内対地間アドミタンスY0S(以下、単に構内対地間アドミタンスY0Sと称す)は、Y0S=1/(1/ωCAS+1/ωCBS+1/ωCCS)として、構内高圧電路12の健全時および地絡時の構内対地間アドミタンスY(以下、単に構内対地間アドミタンスYと称す)を算出するための演算処理に供される。 When employing this method, premises ground impedance between Z 0S power cable 13 is the sum of the reciprocals though each phase of the capacitance to ground C AS, C BS, the angular velocity ω of C CS and the power supply frequency obtained by multiplying [ Z 0S = (1 / ωC AS + 1 / ωC BS + 1 / ωC CS )]. The premises-to-ground admittance Y 0S (hereinafter simply referred to as premises-to-ground admittance Y 0S ) of the power cable 13, which is the reciprocal of this premises-to-ground impedance Z 0S , is Y 0S = 1 / (1 / ωC AS + 1 / ωC BS + 1 / ωC CS ) is used for arithmetic processing for calculating the premises admittance Y (hereinafter simply referred to as premises-to-ground admittance Y) when the premises high piezoelectric road 12 is healthy and when there is a ground fault.

自動設定方法としては、図3に示す確定モードにおいて、構内対地間アドミタンスYを演算部23で算出することにより、その構内対地間アドミタンスYの虚数部jYiが求められる。従って、この構内対地間アドミタンスYの虚数部jYiのスカラ量|Yi|と構内対地間アドミタンスY0Sのスカラ量|Y0S|は、零相電流I0の変動分ΔI0と零相電流I0Sの変動分ΔI0Sの比に比例する。つまり、構内対地間アドミタンスY0Sのスカラ量は、|Y0S|=(ΔI0S/ΔI0)・|Yi|の式で求められ、構内対地間アドミタンスYを算出するための演算処理に供される。なお、構内対地間アドミタンスYの虚数部(|Yi|=|ωC|)を電源周波数の角速度ω(=2π×電源周波数)で除算すると構内の対地静電容量C(三相あたり)となる。 As an automatic setting method, the imaginary part jYi of the premises-to-ground admittance Y is obtained by calculating the premises-to-ground admittance Y in the determination mode shown in FIG. Accordingly, the scalar quantity of the imaginary part jYi of the premises ground between admittance Y | Yi | and scalar amounts of premises ground between admittance Y 0S | Y 0S | is variation [Delta] I 0 of the zero-phase current I 0 and zero-phase current I 0S It is proportional to the ratio of the variation ΔI 0S of. That is, the scalar quantity of the premises-to-ground admittance Y 0S is obtained by the equation | Y 0S | = (ΔI 0S / ΔI 0 ) · | Yi |, and is used for the arithmetic processing for calculating the premises-to-ground admittance Y. The When the imaginary part (| Yi | = | ωC |) of the premises-to-ground admittance Y is divided by the angular velocity ω (= 2π × power supply frequency) of the power supply frequency, the ground capacitance C (per three phases) is obtained.

地絡事故の発生時に構内高圧電路12に流れる零相電流I0には、構内対地間アドミタンスYの不平衡の影響を受けた零相電流Ifが含まれる〔If=jω(CA2・Ea+CB2・Eb+CC2・Ec)〕。この構内対地間アドミタンスYの不平衡による零相電流Ifは、零相電圧V0の項がないので零相電圧V0の変動による影響を受けない。また、送電側の各相電圧(=Ea,Eb,Ec)が平衡三相電圧であるので影響を受けない。この零相電流Ifが変動の影響を受けるのは、構内の対地静電容量CA2,CB2,CC2の不平衡である。従って、構内対地間アドミタンスYの不平衡による零相電流Ifは、通常10mA以下で計測される。 The zero-phase current I 0 that flows through the campus high piezoelectric path 12 when a ground fault occurs includes the zero-phase current If that is affected by the imbalance of the premises admittance Y [If = jω (C A2 · Ea + C B2 Eb + C C2 Ec)]. The zero-phase current If due to imbalance of the premises ground between admittance Y is not affected by variation in the zero-phase voltage V 0 since there is no term of zero-phase voltage V 0. Further, since each phase voltage (= Ea, Eb, Ec) on the power transmission side is a balanced three-phase voltage, it is not affected. The zero-phase current If is affected by fluctuations due to the unbalance of the ground capacitances C A2 , C B2 and C C2 on the premises. Therefore, the zero-phase current If due to the imbalance of the premises-to-ground admittance Y is usually measured at 10 mA or less.

また、電力ケーブル13のシールド線14に流れる零相電流I0Sには、構内対地間アドミタンスY0Sの不平衡の影響を受けた零相電流If0Sが含まれる。この零相電流If0Sが変動の影響を受けるのは、電力ケーブル13の対地静電容量であるが、その電力ケーブル13の対地静電容量は各相で等しいので(CAS=CBS=CCS)、零相電流If0Sは、通常、0mAとして計測される。 Further, the zero-phase current I 0S flowing through the shield line 14 of the power cable 13 includes the zero-phase current If 0S affected by the imbalance of the premises admittance Y 0S . The zero-phase current If 0S is affected by fluctuations in the ground capacitance of the power cable 13, but the ground capacitance of the power cable 13 is equal in each phase (C AS = C BS = C CS ), the zero-phase current If 0S is normally measured as 0 mA.

高圧絶縁監視装置19では、構内高圧電路12に設置された零相変流器ZCT15あるいはその二次側に接続されたクランプ式変流器17により検出された零相電流I0と、電力ケーブル13のシールド線14に取り付けられたクランプ式変流器18により検出された零相電流I0Sと、電力ケーブル13の芯線と大地間の対地静電容量CAS,CBS,CCSを電力ケーブル13の太さ、長さおよび製造メーカ等の仕様により手動設定または自動設定することで得られた対地間アドミタンスY0Sと、構内対地間アドミタンスYの不平衡による零相電流Ifとに基づいて、以下の要領でもって地絡抵抗Rgを計測する。 In the high voltage insulation monitoring device 19, the zero phase current I 0 detected by the zero phase current transformer ZCT 15 installed in the campus high piezoelectric path 12 or the clamp type current transformer 17 connected to the secondary side thereof, and the power cable 13 The zero-phase current I 0S detected by the clamp-type current transformer 18 attached to the shield wire 14 and the ground capacitances C AS , C BS , C CS between the core wire and the ground of the power cable 13 are converted into the power cable 13. Based on the ground-to-ground admittance Y 0S obtained by manual setting or automatic setting according to the thickness, length and specifications of the manufacturer, etc., and the zero-phase current If due to the imbalance of the premises-to-ground admittance Y, The ground fault resistance Rg is measured in the manner described above.

まず、図1に示す符号IA,IB,IC,Igは、IA=(Ea−V0)・jωCA2、IB=(Eb−V0)・jωCB2、IC=(Ec−V0)・jωCC2、Ig=(Ea−V0)/Rgで表される。また、構内高圧電路12に設置された零相変流器ZCT15あるいはその二次側に接続されたクランプ式変流器17により検出される零相電流I0は、I0=IA+IB+IC+Igとなる。 First, the codes I A , I B , I C , and Ig shown in FIG. 1 are I A = (Ea−V 0 ) · jωC A2 , I B = (Eb−V 0 ) · jωC B2 , I C = (Ec −V 0 ) · jωC C2 , Ig = (Ea−V 0 ) / Rg Further, the zero-phase current I 0 detected by the zero-phase current transformer ZCT 15 installed in the campus high piezoelectric path 12 or the clamp-type current transformer 17 connected to the secondary side thereof is I 0 = I A + I B + I C + Ig.

従って、その零相電流I0は、I0=Ig−jω(CA2+CB2+CC2)・V0+jω(Ea・CA2+Eb・CB2+Ec・CC2)で表される。ここで、Y=jω(CA2+CB2+CC2)、If=jω(Ea・CA2+Eb・CB2+Ec・CC2)であることから、零相電流I0は、I0=Ig−Y・V0+Ifで表される。 Therefore, the zero-phase current I 0 is expressed as I 0 = Ig−jω (C A2 + C B2 + C C2 ) · V 0 + jω (Ea · C A2 + Eb · C B2 + Ec · C C2 ). Here, since Y = jω (C A2 + C B2 + C C2 ) and If = jω (Ea · C A2 + Eb · C B2 + Ec · C C2 ), the zero-phase current I 0 is I 0 = Ig−Y • V 0 + If.

地絡電流Igは、Ig=I0−(−Y・V0+If)で表される。また、監視当初は構内電気設備の対地間絶縁が良好で地絡電流が流れないので(Ig=0)、零相電流I0は、I0=−Y・V0+Ifとなる。さらに、構内対地間アドミタンスYの不平衡による零相電流Ifは、If=I0−(−Y・V0)となる。零相電圧V0を計測しないので、V0=I0S/Y0Sを用いると、If=I0−{−Y・(I0S/Y0S)}=I0−{−(Y/Y0S)・I0S}となる。 The ground fault current Ig is represented by Ig = I 0 − (− Y · V 0 + If). In addition, since the ground electrical current of the premises electrical equipment is good and no ground fault current flows (Ig = 0) at the beginning of monitoring, the zero-phase current I 0 is I 0 = −Y · V 0 + If. Further, the zero-phase current If caused by the imbalance of the premises-to-ground admittance Y is If = I 0 − (− Y · V 0 ). Since the zero-phase voltage V 0 is not measured, if V 0 = I 0S / Y 0S is used, If = I 0 − {− Y · (I 0S / Y 0S )} = I 0 − {− (Y / Y 0S ) · I 0S }.

図3に示す待機モードでは、零相電流I01,I0S1の値が演算可能な最低レベルLに達していないので絶縁監視はできない。次の暫定モードに移行した時は、零相電流I01,I0S1の値が演算可能な最低レベルLに達した時点でこれらを基準値とする。ここで、零相電流I0S1の値を基準値とするのは、電力ケーブル13には、絶縁体(架橋ポリエチレン)の特性上、絶縁破壊(電力ケーブル13の絶縁体である架橋ポリエチレンに起きる水トリー現象等による絶縁体間の橋絡現象)に至る直前まで電力ケーブル13の内部劣化による地絡電流はほとんど流れないからである。また、電力ケーブル13における三相の電線は同じサイズの同軸構造となっており同じ長さを有する構造であることから、構内対地間アドミタンスYの不平衡による零相電流Ifが流れることもない。 In the standby mode shown in FIG. 3, since the values of the zero-phase currents I 01 and I 0S1 have not reached the lowest level L that can be calculated, insulation monitoring cannot be performed. When shifting to the next provisional mode, the zero-phase currents I 01 and I 0S1 are used as reference values when the values reach the lowest level L that can be calculated. Here, the value of the zero-phase current I 0S1 is used as a reference value for the power cable 13 because of the characteristics of the insulator (crosslinked polyethylene). This is because a ground fault current due to internal deterioration of the power cable 13 hardly flows until just before the bridge phenomenon between insulators due to a tree phenomenon or the like. Further, since the three-phase wires in the power cable 13 have the same size and the same length, the zero-phase current If does not flow due to the imbalance of the premises premises admittance Y.

なお、電力ケーブル13が絶縁破壊に至った場合には、その電力ケーブル13に大電流が流れるが、その電力ケーブル13の絶縁破壊状態は、絶縁監視の対象外である。また、基準値とする零相電流I01については、監視当初で電気機器に地絡事故が生じていない状態(地絡電流Ig=0)を想定している。これ以後の計測値は、零相電流I02,I0S2の値として、暫定モードでの地絡電流Igおよび地絡抵抗Rgの算出に供される。以下、基本式に基づく確定モードを暫定モードよりも先に説明する。 In addition, when the power cable 13 reaches dielectric breakdown, a large current flows through the power cable 13, but the dielectric breakdown state of the power cable 13 is not subject to insulation monitoring. As for the zero-phase current I 01 as the reference value, it is assumed that no ground fault has occurred in the electrical equipment at the beginning of monitoring (ground fault current Ig = 0). The measured values thereafter are used as the values of the zero-phase currents I 02 and I 0S2 to calculate the ground fault current Ig and the ground fault resistance Rg in the provisional mode. Hereinafter, the definite mode based on the basic formula will be described before the provisional mode.

高圧絶縁監視装置19における確定モードでは、零相電流I0の変動分ΔI0(=I02−I01)が0よりも大きいことから(I02≠I01)、その変動分ΔI0を高圧絶縁監視装置19で演算することが容易である。そこで、この確定モードにおいて、高圧絶縁監視装置19では、まず、演算部23により、零相変流器ZCT15あるいはクランプ式変流器17により検出された零相電流I0と、クランプ式変流器18により検出された零相電流I0Sとを基準にして構内対地間アドミタンスYを以下の関係式でもって算出する。 In the definite mode in the high voltage insulation monitoring device 19, since the variation ΔI 0 (= I 02 −I 01 ) of the zero-phase current I 0 is larger than 0 (I 02 ≠ I 01 ), the variation ΔI 0 is set to a high voltage. It is easy to calculate with the insulation monitoring device 19. Therefore, in this fixed mode, in the high voltage insulation monitoring device 19, first, the calculation unit 23 detects the zero phase current I 0 detected by the zero phase current transformer ZCT15 or the clamp current transformer 17, and the clamp current transformer. The premises-to-ground admittance Y is calculated by the following relational expression based on the zero-phase current I 0S detected by 18.

この確定モードでは、前述の式I0=−Y・V0+Ifを用いると、零相電流I01は、I01=−Y・V01+Ifとなり、また、零相電流I02は、I02=−Y・V02+Ifとなる。現在値の零相電流I02と計測開始時の零相電流I01との差分I02−I01=−Y(V02−V01)を算出することで、構内対地間アドミタンスYを演算部23で算出する〔−Y=(I02−I01)/(V02−V01)〕。 In this fixed mode, using the above-described formula I 0 = −Y · V 0 + If, the zero-phase current I 01 becomes I 01 = −Y · V 01 + If, and the zero-phase current I 02 becomes I 02 = −Y · V 02 + If. Calculate the difference I 02 −I 01 = −Y (V 02 −V 01 ) between the current zero-phase current I 02 and the zero-phase current I 01 at the start of measurement to calculate the premises admittance Y between the premises and the ground [−Y = (I 02 −I 01 ) / (V 02 −V 01 )].

ここで、零相電圧V01,V02は計測していないので、その代わりに、クランプ式変流器18により検出された電力ケーブル13のシールド線14の零相電流I0S1,I0S2を演算処理に供する。つまり、これら零相電流I0S1,I0S2は、この零相電圧V01,V02と構内対地間アドミタンスY0Sを乗算したもの(V01=I0S1/Y0S,V02=I0S2/Y0S)であることから、−Y=(I02−I01)/(V02−V01)は、−Y=(I02−I01)/{(I0S2/Y0S)−(I0S1/Y0S)}=(I02−I01)/{(I0S2−I0S1)/Y0S)}={(I02−I01)/(I0S2−I0S1)}・Y0Sとなる。 Here, since the zero-phase voltages V 01 and V 02 are not measured, the zero-phase currents I 0S1 and I 0S2 of the shield wire 14 of the power cable 13 detected by the clamp type current transformer 18 are calculated instead . Provide for processing. That is, these zero-phase currents I 0S1 and I 0S2 are obtained by multiplying these zero-phase voltages V 01 and V 02 by the premises admittance Y 0S (V 01 = I 0S1 / Y 0S , V 02 = I 0S2 / Y since it is 0S), -Y = (I 02 -I 01) / (V 02 -V 01) is, -Y = (I 02 -I 01 ) / {(I 0S2 / Y 0S) - (I 0S1 a / Y 0S)} = (I 02 -I 01) / {(I 0S2 -I 0S1) / Y 0S)} = {(I 02 -I 01) / (I 0S2 -I 0S1)} · Y 0S .

ここで、零相電流I0の変動分(I02−I01)をΔI0、零相電流I0Sの変動分(I0S2−I0S1)をΔI0Sとすると、−Y=(ΔI0/ΔI0S)・Y0Sとなり、この関係式から構内対地間アドミタンスYが求まる。このように、電力ケーブル13のシールド線14に流れる零相電流I0Sを基準値として構内高圧電路12に流れる零相電流I0から構内対地間アドミタンスYが求められる。つまり、零相電流I0の変動分ΔI0と零相電流I0Sの変動分ΔI0Sの比(ΔI0/ΔI0S)に構内対地間アドミタンスY0Sを乗算することにより、構内対地間アドミタンスYが求められる。 Here, if the variation of the zero phase current I 0 (I 02 −I 01 ) is ΔI 0 and the variation of the zero phase current I 0S (I 0S2 −I 0S1 ) is ΔI 0S , −Y = (ΔI 0 / ΔI 0S ) · Y 0S , and premises-to-ground admittance Y is obtained from this relational expression. In this way, the premises admittance Y is obtained from the zero phase current I 0 flowing in the campus high piezoelectric path 12 with the zero phase current I 0S flowing in the shield wire 14 of the power cable 13 as a reference value. In other words, by multiplying the premises ground between admittance Y 0S to the ratio of the variation [Delta] I 0S of variation [Delta] I 0 of the zero-phase current I 0 and zero-phase current I 0S (ΔI 0 / ΔI 0S ), premises ground between admittance Y Is required.

この構内対地間アドミタンスYを複素数計算すると、−Y=Yr+jYiから、実数部Yrと虚数部Yiが求まる。−Y=(ΔI0/ΔI0S)・Y0Sの分子の項に対地間の地絡電流Igが含まれる時は、構内対地間アドミタンスYの実数部Yrの逆数1/Yrを演算部24で算出することにより、地絡抵抗Rgを確定的に計測することができる〔Rg=1/Yr〕。 When this premises-to-ground admittance Y is calculated as a complex number, a real part Yr and an imaginary part Yi are obtained from -Y = Yr + jYi. When a ground fault current Ig between ground is included in the numerator of −Y = (ΔI 0 / ΔI 0S ) · Y 0S , the reciprocal 1 / Yr of the real part Yr of the premises-to-ground admittance Y is calculated by the arithmetic unit 24. By calculating, the ground fault resistance Rg can be definitely measured [Rg = 1 / Yr].

また、前述した式I0=Ig−Y・V0+Ifを用いることにより、零相電流I02から地絡電流Igを求める。この時は、構内対地間アドミタンスYの不平衡による零相電流Ifが不明であるので、地絡抵抗Rgが無限大に近い値の時に零相電流I0から構内対地間アドミタンスYと零相電圧V0を乗算したものをベクトル減算して求めて確定する(If=I0+Y・V0)。 Further, the ground fault current Ig is obtained from the zero-phase current I 02 by using the above-described formula I 0 = Ig−Y · V 0 + If. At this time, since the zero-phase current If due to the imbalance of the premises-to-ground admittance Y is unknown, the premises-to-ground admittance Y and the zero-phase voltage are calculated from the zero-phase current I 0 when the ground fault resistance Rg is close to infinity. A value obtained by multiplying V 0 is obtained by vector subtraction and determined (If = I 0 + Y · V 0 ).

監視当初は地絡電流Igが流れないので(Ig=0)、現在値の零相電流I02から、地絡電流Igは、Ig=I02−(If−Y・V02)で表され、零相電圧V02は計測していないことから、V02=I0S2/Y0Sを用いると、Ig=I02−{If−Y・(I0S2/Y0S)}=I02−{If−(Y/Y0S)・I0S2}となり、地絡電流Igが得られる。 Since the ground fault current Ig does not flow at the beginning of monitoring (Ig = 0), the ground fault current Ig is expressed by Ig = I 02 − (If−Y · V 02 ) from the current zero-phase current I 02 . Since the zero phase voltage V 02 is not measured, using V 02 = I 0S2 / Y 0S , Ig = I 02 − {If−Y · (I 0S2 / Y 0S )} = I 02 − {If− (Y / Y 0S ) · I 0S2 }, and the ground fault current Ig is obtained.

この地絡検出時に地絡抵抗が大きい時(Rg>約10kΩ)は、実数部|Yr|≪虚数部|Yi|となる。従って、相電圧Ea,Eb,Ecと対地電圧Va,Vb,Vcとはほぼ等しい。相電圧=線間電圧/√3=6600V/√3=3810Vであることから、この相電圧Ea,Eb,Ecとほぼ等しい対地電圧Va,Vb,Vcを用いて地絡抵抗Rgが次の式で求められる。つまり、地絡抵抗Rg=対地電圧/地絡電流=3810V/Igとなる。   When the ground fault resistance is large when this ground fault is detected (Rg> about 10 kΩ), the real part | Yr | << the imaginary part | Yi | Therefore, the phase voltages Ea, Eb, Ec and the ground voltages Va, Vb, Vc are substantially equal. Since phase voltage = line voltage / √3 = 6600 V / √3 = 3810 V, ground fault resistance Rg is expressed by the following equation using ground voltages Va, Vb, Vc substantially equal to phase voltages Ea, Eb, Ec. Is required. That is, the ground fault resistance Rg = ground voltage / ground fault current = 3810 V / Ig.

本出願人は、模擬電気室(一線地絡電流=7.89A)を用いて以下の試験条件で地絡実験(確定モード)を行った。   The present applicant conducted a ground fault experiment (determined mode) under the following test conditions using a simulated electric room (single wire ground fault current = 7.89 A).

・電力ケーブル:公称断面積22mm2、長さ20m=0.0162[μF](1相当たり)電源周波数60Hz
・地絡抵抗Rg:1000[kΩ]
・構内の対地静電容量C:0.2[μF]
・残留電圧:約100[V]

Figure 2015108618
-Power cable: Nominal cross-sectional area 22mm 2 , length 20m = 0.0162 [μF] (per phase) power supply frequency 60Hz
・ Ground fault resistance Rg: 1000 [kΩ]
・ Ground capacitance C on ground: 0.2 [μF]
・ Residual voltage: about 100 [V]
Figure 2015108618

[計算値]
0S=1/(1/ωC)=ωC=6.107×10-6∠90[S]
Y={(35.3×10-3∠293.2−24.3×10-3∠293.2)}/{(0.696×10-3∠291.7−0.465×10-3∠291.1)}×6.107×10-6∠90
−Y=−1.031×10-6+j0.2155×10-3
Rg=1/Yr=1/1.031×10-6=970.1[kΩ]
C=Yi/3ω=0.2155×10-3/1130.97=0.1905[μF]
[Calculated value]
Y 0S = 1 / (1 / ωC) = ωC = 6.107 × 10 −6 ∠90 [S]
Y = {(35.3 × 10 −3 ∠293.2-24.3 × 10 −3 ∠293.2)} / {(0.696 × 10 −3 ∠291.7−0.465 × 10 − 3 ∠291.1)} × 6.107 × 10 −6 ∠90
−Y = −1.031 × 10 −6 + j0.2155 × 10 −3
Rg = 1 / Yr = 1 / 1.031 × 10 −6 = 970.1 [kΩ]
C = Yi / 3ω = 0.2155 × 10 −3 /1130.97=0.1905 [μF]

以上のように、確定モードにおける計算結果として得られた地絡抵抗Rg(970.1[kΩ])は、実際の地絡抵抗Rg(1000[kΩ])に近似することから、地絡抵抗Rgを精度よく検出できることが判明した。また、構内の対地静電容量についても、計算結果として得られた構内の対地静電容量C(0.1905[μF])は、実際の構内の対地静電容量(0.2[μF])に近似することが判明した。   As described above, since the ground fault resistance Rg (970.1 [kΩ]) obtained as the calculation result in the definite mode approximates the actual ground fault resistance Rg (1000 [kΩ]), the ground fault resistance Rg It was found that can be detected with high accuracy. As for the ground capacitance on the premises, the ground capacitance C (0.1905 [μF]) on the premises obtained as the calculation result is the actual ground capacitance (0.2 [μF]) on the premises. It turns out to approximate.

なお、前述した確定モードにおいて、計測開始時の零相電流I01と、計測開始後の零相電流I02とが等しくなった時には、零相電流I0の変動分ΔI0(=I02−I01)〔−Y=(ΔI0/ΔI0S)・Y0Sの分子〕が0なので、構内対地間アドミタンスYが0となる。その結果、構内対地間アドミタンスYの実数部Yrの逆数1/Yrが無限大となることから、地絡抵抗(Rg=∞)がなく健全であると判定する。 Incidentally, in the fixed mode as described above, the zero-phase current I 01 at the start of measurement, when the zero-phase current I 02 after the start of measurement is equal to the variation [Delta] I 0 of the zero-phase current I 0 (= I 02 - Since I 01 ) [− Y = (ΔI 0 / ΔI 0S ) · Y 0S numerator] is zero, the premises admittance Y is zero. As a result, since the reciprocal 1 / Yr of the real part Yr of the premises-to-ground admittance Y becomes infinite, it is determined that there is no ground fault resistance (Rg = ∞) and is sound.

一方、計測開始時の零相電流I0S1と、計測開始後の零相電流I0S2とが等しくなった時には、零相電流I0Sの変動分ΔI0S〔−Y=(ΔI0/ΔI0S)・Y0Sの分母〕が0となるので、構内対地間アドミタンスYが無限大となる。その結果、構内対地間アドミタンスYの実数部Yrの逆数1/Yrが0となることから、地絡抵抗(Rg=0)がなるので、この場合、地絡抵抗Rgの演算を行わないか、あるいは、暫定モードで地絡抵抗Rgの演算を行う。 On the other hand, when the zero-phase current I 0S1 at the start of measurement becomes equal to the zero-phase current I 0S2 after the start of measurement, the variation ΔI 0S [−Y = (ΔI 0 / ΔI 0S ) of the zero-phase current I 0S Since the denominator of Y 0S ] is 0, the on-site admittance Y is infinite. As a result, since the inverse 1 / Yr of the real part Yr of the premises-to-ground admittance Y is 0, a ground fault resistance (Rg = 0) is obtained. In this case, the ground fault resistance Rg is not calculated. Alternatively, the ground fault resistance Rg is calculated in the provisional mode.

次に、高圧絶縁監視装置19における暫定モードでは、待機モードで計測した零相電流I0,I0Sの計測値が有効となり、この2つの計測値を基準である零相電流I01,I0S1とし、現在値としての零相電流I02の計測値と零相電流I0S2の計測値が得られた時に暫定モードとなる。暫定モードに入った直後は、零相電流I01と零相電流I02、零相電流I0S1と零相電流I0S2は近似している。従って、−Y=(ΔI0/ΔI0S)・Y0Sの変動分ΔI0が0に近似する状態になるので、構内対地間アドミタンスYが正確に計算できない。 Next, in the provisional mode in the high voltage insulation monitoring device 19, the measured values of the zero phase currents I 0 and I 0S measured in the standby mode are valid, and these two measured values are used as the reference zero phase currents I 01 and I 0S1. When the measured value of the zero-phase current I 02 and the measured value of the zero-phase current I 0S2 are obtained as the current value, the temporary mode is set. Immediately after entering the provisional mode, the zero phase current I 01 and the zero phase current I 02 , and the zero phase current I 0S1 and the zero phase current I 0S2 are approximated. Thus, -Y = so (ΔI 0 / ΔI 0S) · Y variation [Delta] I 0 of 0S is in a state approximating to 0, premises ground between admittance Y can not be accurately calculated.

そこで、この暫定モードにおいて、高圧絶縁監視装置19では、まず、演算部21により、零相変流器ZCT15あるいはクランプ式変流器17により検出された零相電流I0と、クランプ式変流器18により検出された零相電流I0Sとに基づいて構内対地間アドミタンスYを以下の関係式でもって算出する。 Therefore, in this temporary mode, in the high voltage insulation monitoring device 19, first, the calculation unit 21 detects the zero phase current I 0 detected by the zero phase current transformer ZCT 15 or the clamp current transformer 17, and the clamp current transformer. Based on the zero-phase current I 0S detected by 18, the premises-to-ground admittance Y is calculated by the following relational expression.

なお、この暫定モードでは、零相電流I0Sを基準にした時に、零相電流I0が+90°≦I0≦−90°(構内地絡相当の位相)になる場合が通常であるが、零相電流I0が小さい場合や雷サージによる乱れた波形では、その零相電流I0が−90°≦I0≦+90°(構外地絡相当の位相)になる場合もある。そのため、暫定モードでは、構内対地間アドミタンスYの算出を、零相電流I0が+90°≦I0≦−90°の場合と、零相電流I0が−90°≦I0≦+90°の場合とに分けて以下に説明する。 In this provisional mode, when the zero-phase current I 0S is used as a reference, the zero-phase current I 0 is normally + 90 ° ≦ I 0 ≦ −90 ° (phase corresponding to the ground fault on the campus). When the zero-phase current I 0 is small or the waveform is disturbed by a lightning surge, the zero-phase current I 0 may be −90 ° ≦ I 0 ≦ + 90 ° (phase corresponding to an off-ground ground fault). Therefore, in the provisional mode, the premises-to-ground admittance Y is calculated when the zero-phase current I 0 is + 90 ° ≦ I 0 ≦ −90 ° and the zero-phase current I 0 is −90 ° ≦ I 0 ≦ + 90 °. This will be described separately for each case.

[構内地絡相当の位相]
零相電流I0S1を基準にした時に、零相電流I02が+90°≦I0≦−90°になる場合、ΔI0≒0、ΔI0S≒0の状態では、−Y=(I02−I01)/(V02−V01)の演算により、構内対地間アドミタンスYを求めることができない。この時は、構内対地間アドミタンスYの不平衡による零相電流Ifが不明であるので、零相電流I0Sの位相を基準として計測された零相電流I0(複素数)の虚数部(=I0image)を零相電流Ifの虚数部(=Ifimage)に代入する。零相電流Ifの実数部(=Ifreal)は、0[mA]にして演算処理に使用する。従って、I0=−Y・V0+Ifに現在値として測定された零相電流I02,I0S2を適用する。なお、計測直後なので地絡電流Igは観測されない。
[Phase equivalent to ground fault on campus]
The zero-phase current I 0S1 when the reference, if the zero-phase current I 02 becomes + 90 ° ≦ I 0 ≦ -90 °, ΔI 0 ≒ 0, in the state of ΔI 0S ≒ 0, -Y = ( I 02 - The premises-to-ground admittance Y cannot be obtained by the calculation of I 01 ) / (V 02 −V 01 ). At this time, since the zero-phase current If due to the imbalance of the premises-to-ground admittance Y is unknown, the imaginary part (= I) of the zero-phase current I 0 (complex number) measured with reference to the phase of the zero-phase current I 0S 0 image) is substituted into the imaginary part (= Ifimage) of the zero-phase current If. The real part (= Ifreal) of the zero-phase current If is set to 0 [mA] and used for the arithmetic processing. Therefore, the zero-phase currents I 02 and I 0S2 measured as current values are applied to I 0 = −Y · V 0 + If. In addition, since it is immediately after the measurement, the ground fault current Ig is not observed.

零相電流I02は、I02=−Y・V02+Ifとなり、この式から、構内対地間アドミタンスYは、−Y=(I02−If)/V02で表される。ここで、零相電圧V02は計測していないので、V02=I0S2/Y0Sを用いると、−Y=(I02−If)/(I0S2/Y0S)={(I02−If)/I0S2}・Y0Sとなり、この関係式から構内対地間アドミタンスYが求まる。 The zero-phase current I 02 is I 02 = −Y · V 02 + If. From this equation, the premises admittance Y between the premises and the ground is expressed by −Y = (I 02 −If) / V 02 . Here, since the zero-phase voltage V 02 is not measured, if V 02 = I 0S2 / Y 0S is used, −Y = (I 02 −If ) / (I 0S2 / Y 0S ) = {(I 02 − If) / I 0S2 } · Y 0S , and the premises-to-ground admittance Y is obtained from this relational expression.

この構内対地間アドミタンスYを複素数計算すると、−Y=Yr+jYiから、実数部Yrと虚数部Yiが求まる。−Y={(I02−If)/I0S2}・Y0Sの分子の項に対地間の地絡電流Igが含まれる時は、構内対地間アドミタンスYの実数部Yrの逆数1/Yrを演算部24で算出することにより、地絡抵抗Rgを暫定的に計測することができる〔Rg=1/Yr〕。 When this premises-to-ground admittance Y is calculated as a complex number, a real part Yr and an imaginary part Yi are obtained from -Y = Yr + jYi. -Y = {(I 02 -If ) / I 0S2 } · Y 0S When the ground fault Ig between ground is included in the numerator term, the reciprocal 1 / Yr of the real part Yr of the campus-to-ground admittance Y is By calculating the calculation unit 24, the ground fault resistance Rg can be provisionally measured [Rg = 1 / Yr].

また、前述した式I0=Ig−Y・V0+Ifを用いることにより、零相電流I02から地絡電流Igを求める。つまり、地絡電流Igは、Ig=I02−(If−Y・V02)で表され、零相電圧V02は計測していないので、V02=I0S2/Y0Sを用いると、Ig=I02−{If−Y・(I0S2/Y0S)}=I02−{If−(Y/Y0S)・I0S2}となり、地絡電流Igが得られる。 Further, the ground fault current Ig is obtained from the zero-phase current I 02 by using the above-described formula I 0 = Ig−Y · V 0 + If. That is, the ground fault current Ig is expressed as Ig = I 02 − (If−Y · V 02 ), and the zero-phase voltage V 02 is not measured. Therefore, when V 02 = I 0S2 / Y 0S is used, Ig = I 02 - {If-Y · (I 0S2 / Y 0S)} = I 02 - {If- (Y / Y 0S) · I 0S2} next, the ground fault current Ig is obtained.

この地絡検出時に地絡抵抗が大きい時(Rg>約10kΩ)は、実数部|Yr|≪虚数部|Yi|となる。従って、相電圧Ea,Eb,Ecと対地電圧Va,Vb,Vcとはほぼ等しい。相電圧=線間電圧/√3=6600V/√3=3810Vであることから、この相電圧Ea,Eb,Ecとほぼ等しい対地電圧Va,Vb,Vcを用いて地絡抵抗Rgが次の式で求められる。つまり、地絡抵抗Rg=対地電圧/地絡電流=3810V/Igとなる。   When the ground fault resistance is large when this ground fault is detected (Rg> about 10 kΩ), the real part | Yr | << the imaginary part | Yi | Therefore, the phase voltages Ea, Eb, Ec and the ground voltages Va, Vb, Vc are substantially equal. Since phase voltage = line voltage / √3 = 6600 V / √3 = 3810 V, ground fault resistance Rg is expressed by the following equation using ground voltages Va, Vb, Vc substantially equal to phase voltages Ea, Eb, Ec. Is required. That is, the ground fault resistance Rg = ground voltage / ground fault current = 3810 V / Ig.

[構外地絡相当の位相]
零相電流I0S1を基準にした時、零相電流I02が−90°≦I0≦+90°になる場合は、零相電流I0が小さい場合や雷サージによる乱れた状態である。この時は、構内対地間アドミタンスYの不平衡による零相電流Ifが不明であるので、零相電流I0Sの位相を基準として計測された零相電流I01を零相電流Ifに相当するものとして用いる〔If=I01〕。
[Phase equivalent to ground fault]
When the zero-phase current I 0S1 is used as a reference and the zero-phase current I 02 is −90 ° ≦ I 0 ≦ + 90 °, the zero-phase current I 0 is small or it is disturbed by a lightning surge. At this time, since the zero-phase current If due to the imbalance of the premises-to-ground admittance Y is unknown, the zero-phase current I 01 measured with reference to the phase of the zero-phase current I 0S corresponds to the zero-phase current If. [If = I 01 ].

零相電流I02は、I02=−Y・V02+I01となり、この式から、構内対地間アドミタンスYは、−Y=(I02−I01)/V02で表される。ここで、零相電圧V02は計測していないので、V02=I0S2/Y0Sを用いると、−Y=(I02−I01)/(I0S2/Y0S)={(I02−I01)/I0S2}・Y0Sとなり、この関係式から構内対地間アドミタンスYが求まる。 The zero-phase current I 02 becomes I 02 = −Y · V 02 + I 01 , and the premises-to-ground admittance Y is expressed by −Y = (I 02 −I 01 ) / V 02 from this equation. Since the zero-phase voltage V 02 is not measured, the use of V 02 = I 0S2 / Y 0S , -Y = (I 02 -I 01) / (I 0S2 / Y 0S) = {(I 02 −I 01 ) / I 0S2 } · Y 0S , and the premises-to-ground admittance Y is obtained from this relational expression.

この構内対地間アドミタンスYを複素数計算すると、−Y=Yr+jYiから、実数部Yrと虚数部Yiが求まる。−Y={(I02−I01)/I0S2}・Y0Sの分子の項に対地間の地絡電流Igが含まれる時は、構内対地間アドミタンスYの実数部Yrの逆数1/Yrを演算部24で算出することにより、地絡抵抗Rgを暫定的に計測することができる〔Rg=1/Yr〕。 When this premises-to-ground admittance Y is calculated as a complex number, a real part Yr and an imaginary part Yi are obtained from -Y = Yr + jYi. -Y = {(I 02 -I 01 ) / I 0S2 } · Y 0S When the ground fault Ig between ground is included in the numerator term, the reciprocal 1 / Yr of the real part Yr of the local ground-to-ground admittance Y Can be tentatively measured by calculating the calculation unit 24 [Rg = 1 / Yr].

また、前述した式I02=Ig−Y・V02+I01を用いることにより、零相電流I02から地絡電流Igを求める。つまり、地絡電流Igは、Ig=I02−(I01−Y・V02)で表され、零相電圧V02は計測していないので、V02=I0S2/Y0Sを用いると、Ig=I02−{I01−Y・(I0S2/Y0S)}=I02−{I01−(Y/Y0S)・I0S2}となり、地絡電流Igが得られる。 Further, the ground fault current Ig is obtained from the zero-phase current I 02 by using the above-described formula I 02 = Ig−Y · V 02 + I 01 . That is, the ground fault current Ig is represented by Ig = I 02 − (I 01 −Y · V 02 ), and the zero phase voltage V 02 is not measured. Therefore, when V 02 = I 0S2 / Y 0S is used, Ig = I 02 - {I 01 -Y · (I 0S2 / Y 0S)} = I 02 - {I 01 - (Y / Y 0S) · I 0S2} next, ground fault current Ig obtained.

この地絡検出時に地絡抵抗が大きい時(Rg>約10kΩ)は、実数部|Yr|≪虚数部|Yi|となる。従って、相電圧Ea,Eb,Ecと対地電圧Va,Vb,Vcとはほぼ等しい。相電圧=線間電圧/√3=6600V/√3=3810Vであることから、この相電圧Ea,Eb,Ecとほぼ等しい対地電圧Va,Vb,Vcを用いて地絡抵抗Rgが次の式で求められる。つまり、地絡抵抗Rg=対地電圧/地絡電流=3810V/Igとなる。   When the ground fault resistance is large when this ground fault is detected (Rg> about 10 kΩ), the real part | Yr | << the imaginary part | Yi | Therefore, the phase voltages Ea, Eb, Ec and the ground voltages Va, Vb, Vc are substantially equal. Since phase voltage = line voltage / √3 = 6600 V / √3 = 3810 V, ground fault resistance Rg is expressed by the following equation using ground voltages Va, Vb, Vc substantially equal to phase voltages Ea, Eb, Ec. Is required. That is, the ground fault resistance Rg = ground voltage / ground fault current = 3810 V / Ig.

本出願人は、模擬電気室(一線地絡電流=7.89A)を用いて以下の試験条件で地絡実験(暫定モード)を行った。   The present applicant conducted a ground fault experiment (provisional mode) under the following test conditions using a simulated electric room (single wire ground fault current = 7.89 A).

・電力ケーブル:公称断面積22mm2、長さ20m=0.0162[μF](1相当たり)電源周波数60Hz
・地絡抵抗Rg:1000[kΩ]
・構内の対地静電容量C:0.2[μF]
・残留電圧:約100[V]

Figure 2015108618
-Power cable: Nominal cross-sectional area 22mm 2 , length 20m = 0.0162 [μF] (per phase) power supply frequency 60Hz
・ Ground fault resistance Rg: 1000 [kΩ]
・ Ground capacitance C on ground: 0.2 [μF]
・ Residual voltage: about 100 [V]
Figure 2015108618

[計算値]
0S=1/(1/ωC)=ωC=6.107×10-6∠90[S]
Y={(I02−If)/I0S2}×Y0S
={(24.3×10-3∠293.2−0.460×10-3∠180.0)}/(0.696×10-3∠291.7)×6.107×10-6∠90
−Y=−6.910×10-6+j0.1589×10-3
Rg=1/Yr=1/6.910×10-6=144.7[kΩ]
C=Yi/3ω=0.1589×10-3/1130.97=0.140[μF]
[Calculated value]
Y 0S = 1 / (1 / ωC) = ωC = 6.107 × 10 −6 ∠90 [S]
Y = {(I 02 −If ) / I 0S2 } × Y 0S
= {(24.3 × 10 −3 ∠293.2−0.460 × 10 −3 ∠180.0)} / (0.696 × 10 −3 ∠291.7) × 6.107 × 10 −6 ∠90
−Y = −6.910 × 10 −6 + j0.1589 × 10 −3
Rg = 1 / Yr = 1 / 6.910 × 10 −6 = 144.7 [kΩ]
C = Yi / 3ω = 0.589 × 10 −3 /1130.97=0.140 [μF]

以上のように、暫定モードにおける計算結果として得られた地絡抵抗Rg(144.7[kΩ])は、実際の地絡抵抗Rg(1000[kΩ])よりも小さい値となって地絡抵抗Rgの精度が低いが、暫定モードであっても地絡事故の有無を監視できることが判明した。また、構内の対地静電容量については、計算結果として得られた構内の対地静電容量C(0.140[μF])は、実際の構内の対地静電容量(0.2[μF])に近似することが判明した。   As described above, the ground fault resistance Rg (144.7 [kΩ]) obtained as the calculation result in the provisional mode becomes a value smaller than the actual ground fault resistance Rg (1000 [kΩ]), and the ground fault resistance is obtained. Although the accuracy of Rg is low, it has been found that the presence or absence of a ground fault can be monitored even in the provisional mode. As for the ground capacitance on the premises, the ground capacitance C (0.140 [μF]) on the premises obtained as a calculation result is the actual ground capacitance (0.2 [μF]) on the premises. It turns out to approximate.

以上のようにして、地絡事故の発生時に電力ケーブル13のシールド線14に流れる零相電流I0Sをクランプ式変流器18で検出することにより、簡易な手段により活線状態で、構内高圧電路12の絶縁劣化状態について地絡抵抗Rgを計測することで監視する安価な装置を実現できる。 As described above, the zero-phase current I 0S flowing through the shield wire 14 of the power cable 13 in the event of a ground fault is detected by the clamp-type current transformer 18, so that the on-site high voltage can be maintained in a live state by simple means. An inexpensive device that monitors the grounding resistance Rg for the insulation deterioration state of the electric circuit 12 can be realized.

また、計測開始時に零相電流I0の変動分ΔI0が0に近似する場合、構内対地間アドミタンスYを−Y={(I02−If)/I0S2}・Y0Sあるいは−Y={(I02−I01)/I0S2}・Y0Sの関係式でもって算出することにより、構内対地間アドミタンスYの実数部Yrの逆数1/Yrを暫定モードでの地絡抵抗Rgとして計測することができる。このようにして、暫定モードでの地絡抵抗Rgを計測することで、計測開始時における構内高圧電路12の絶縁劣化状態を的確に判定することができる。 Further, when the variation ΔI 0 of the zero-phase current I 0 approximates to 0 at the start of measurement, the premises-to-ground admittance Y is set to −Y = {(I 02 −If ) / I 0S2 } · Y 0S or −Y = { By calculating with the relational expression of (I 02 −I 01 ) / I 0S2 } · Y 0S , the reciprocal 1 / Yr of the real part Yr of the premises premises admittance Y is measured as the ground fault resistance Rg in the provisional mode. be able to. In this way, by measuring the ground fault resistance Rg in the provisional mode, it is possible to accurately determine the insulation deterioration state of the campus high piezoelectric path 12 at the start of measurement.

さらに、計測開始後に零相電流I0の変動分ΔI0が0よりも大きくなった場合、構内対地間アドミタンスYを−Y=(ΔI0/ΔI0S)・Y0Sの関係式でもって算出することにより、構内対地間アドミタンスYの実数部Yrの逆数1/Yrを確定モードでの地絡抵抗Rgとして計測することができる。このようにして、確定モードでの地絡抵抗Rgを計測することで、計測開始後における構内高圧電路12の絶縁劣化状態を的確に判定することができる。 Further, when the variation ΔI 0 of the zero-phase current I 0 becomes larger than 0 after the measurement is started, the premises-to-ground admittance Y is calculated by a relational expression of −Y = (ΔI 0 / ΔI 0S ) · Y 0S. Thus, the reciprocal 1 / Yr of the real part Yr of the premises-to-ground admittance Y can be measured as the ground fault resistance Rg in the definite mode. In this way, by measuring the ground fault resistance Rg in the definite mode, it is possible to accurately determine the insulation deterioration state of the campus high piezoelectric path 12 after the start of measurement.

以上で説明した地絡電流Igは、電力ケーブル13に接続された構内電気設備の投入などにより増加することがある。このような地絡電流Igの増加が発生すると、地絡事故の誤検出となる。一方、抵抗性地絡電流Igrは、電力ケーブル13に接続された構内電気設備の投入などにより増加することがない。そこで、この抵抗性地絡電流Igrに基づいて地絡抵抗Rgを計測することにより、地絡事故を正確に検出することができる。また、地絡事故が微小地絡(例えば、20mA以下)の場合、抵抗性地絡電流Igrに基づいて地絡抵抗Rgを計測する必要があることも判明した。   The ground fault current Ig described above may increase due to the on-site electrical equipment connected to the power cable 13 or the like. When such an increase in the ground fault current Ig occurs, a ground fault accident is erroneously detected. On the other hand, the resistive ground fault current Igr does not increase due to the on-site electrical equipment connected to the power cable 13 or the like. Therefore, by measuring the ground fault resistance Rg based on this resistive ground fault current Igr, it is possible to accurately detect a ground fault. It has also been found that when the ground fault is a micro ground fault (for example, 20 mA or less), it is necessary to measure the ground fault resistance Rg based on the resistive ground fault current Igr.

この抵抗性地絡電流Igrは、図4および図5に示す高圧絶縁監視装置25により、以下の要領でもって算出される。なお、図4および図5において、図1および図2と同一部分には同一参照符号を付して重複説明は省略する。図4は、高圧電路12に設置された零相変流器ZCT15により、地絡事故の発生時に構内高圧電路12に流れる零相電流I0を検出する構成を例示する(図1参照)。図5は、地絡保護継電器16が接続された既設の零相変流器ZCT15の二次側にクランプ式変流器17を接続し、このクランプ式変流器17により、地絡事故の発生時に構内高圧電路12に流れる零相電流I0を検出する構成を例示する(図2参照)。 This resistive ground fault current Igr is calculated by the high voltage insulation monitoring device 25 shown in FIGS. 4 and 5 in the following manner. 4 and 5, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description is omitted. FIG. 4 illustrates a configuration in which a zero-phase current transformer ZCT 15 installed in the high-voltage path 12 detects a zero-phase current I 0 flowing in the local high-voltage path 12 when a ground fault occurs (see FIG. 1). FIG. 5 shows that a clamp-type current transformer 17 is connected to the secondary side of an existing zero-phase current transformer ZCT15 to which a ground-fault protective relay 16 is connected. A configuration for detecting the zero-phase current I 0 that sometimes flows through the local high-voltage path 12 is illustrated (see FIG. 2).

構内高圧電路12の構内電気設備で発生した地絡電流Igから抵抗性地絡電流Igrを計測する機能を追加するためには、構内高圧電路12の対地電圧Va,Vb,Vcの基準位相を特定する必要がある。構内高圧電路12の対地電圧Va,Vb,Vcの基準位相を特定するために、電力供給側の変電所では接地形計器用変圧器(EVT)を使用する。しかしながら、高圧受電設備規程(JEAC8011−2008)では、自家用構内電気設備で接地形計器用変圧器(EVT)を使用することが認められていない。   In order to add a function of measuring the resistive ground fault current Igr from the ground fault current Ig generated in the local electrical equipment of the local high piezoelectric path 12, the reference phases of the ground voltages Va, Vb, and Vc of the local high piezoelectric path 12 are specified. There is a need to. In order to specify the reference phase of the ground voltages Va, Vb, and Vc of the campus high piezoelectric path 12, a grounded instrument transformer (EVT) is used at the substation on the power supply side. However, the high voltage power receiving equipment regulations (JEAC8011-2008) do not allow the use of grounded-type instrument transformers (EVT) in private electrical equipment for private use.

そこで、図4および図5に示す構内高圧電路12の自家用構内電気設備では、接地用計器用変圧器(EVT)を使用せず、対地電圧Va,Vb,Vcの基準位相を特定するために、トリプレックス型電力ケーブル(CVTケーブル)13のシールド線14に流れる零相電流I0Sを利用する。この電力ケーブル13は、3本の単相ケーブル13a,13b,13cが撚り合わさった構造を有する。図4および図5の高圧絶縁監視装置25では、電力ケーブル13の各相ケーブル13a,13b,13cのシールド線14a,14b,14cに流れる零相電流I0SA,I0SB,I0SCを、クランプ式変流器18a,18b,18cでもって検出する構成を例示する。 In order to identify the reference phase of the ground voltages Va, Vb, and Vc without using the grounding instrument transformer (EVT) in the private electric equipment for private use of the private high-voltage path 12 shown in FIGS. 4 and 5, A zero-phase current I 0S flowing in the shield wire 14 of the triplex type power cable (CVT cable) 13 is used. The power cable 13 has a structure in which three single-phase cables 13a, 13b, and 13c are twisted together. 4 and 5, the zero-phase currents I 0SA , I 0SB , I 0SC flowing through the shield wires 14a, 14b, 14c of the phase cables 13a, 13b, 13c of the power cable 13 are clamped. The structure detected with current transformer 18a, 18b, 18c is illustrated.

なお、各相ケーブル13a,13b,13cのシールド線14a,14b,14cに流れる零相電流I0SA,I0SB,I0SCをベクトル加算することにより、シールド線14に流れる零相電流I0Sが得られる。このような演算処理を実行することにより、シールド線14に流れる零相電流I0Sを計測値として検出するクランプ式変流器18を省略することができる。また、三相一括シールド構造の電力ケーブル(CVケーブル)のみが敷設されている場合には、そのCVケーブルとは別に、短いトリプレックス型電力ケーブル(CVTケーブル)を付設すればよい。 The zero-phase current I 0S flowing in the shield wire 14 is obtained by vector addition of the zero-phase currents I 0SA , I 0SB , I 0SC flowing in the shield wires 14a, 14b, 14c of the phase cables 13a, 13b, 13c. It is done. By executing such arithmetic processing, the clamp-type current transformer 18 that detects the zero-phase current I 0S flowing through the shield wire 14 as a measurement value can be omitted. In addition, when only a power cable (CV cable) having a three-phase shield structure is laid, a short triplex type power cable (CVT cable) may be attached separately from the CV cable.

また、各相ケーブル13a,13b,13cの長さが短い場合、シールド線14a,14b,14cに流れる零相電流I0SA,I0SB,I0SCが小さくなるため、クランプ式変流器18a,18b,18cによる零相電流I0SA,I0SB,I0SCの検出が困難となる。このような場合には、クランプ式変流器18a,18b,18cにおける巻数(ターン数)をn倍することにより、クランプ式変流器18a,18b,18cの検出感度を高くすることで零相電流I0SA,I0SB,I0SCの検出を容易にすることができる。高圧絶縁監視装置25では、クランプ式変流器18a,18b,18cにより検出された零相電流I0SA,I0SB,I0SCの計測値を1/n倍することにより、演算処理時、巻数のn倍に対する補正を行う。この補正は、シールド線14に流れる零相電流I0Sをクランプ式変流器18により検出する場合についても同様である。 In addition, when the lengths of the respective phase cables 13a, 13b, and 13c are short, the zero-phase currents I 0SA , I 0SB , and I 0SC flowing through the shield wires 14a, 14b, and 14c become small, so that the clamp-type current transformers 18a and 18b , 18c makes it difficult to detect zero-phase currents I 0SA , I 0SB , I 0SC . In such a case, the number of turns (number of turns) in the clamp-type current transformers 18a, 18b, and 18c is multiplied by n to increase the detection sensitivity of the clamp-type current transformers 18a, 18b, and 18c. The detection of the currents I 0SA , I 0SB , I 0SC can be facilitated. The high-voltage insulation monitoring device 25 multiplies the measured values of the zero-phase currents I 0SA , I 0SB , I 0SC detected by the clamp-type current transformers 18a, 18b, 18c by 1 / n, so Correction for n times is performed. This correction is the same when the zero-phase current I 0S flowing through the shield wire 14 is detected by the clamp type current transformer 18.

高圧絶縁監視装置25では、前述した−Y=(I02−I01)/(V02−V01)の関係式に基づいて、現在値の零相電圧V02が、V02=I0S2/ωC0Sであり、計測開始時の零相電圧V01が、V01=I0S1/ωC0Sであることから、構内高圧電路12の健全時の構内対地間アドミタンスY0(以下、単に構内対地間アドミタンスY0と称す)を、−Y0=(I02−I01)ωC0S/(I0S2−I0S1)の関係式でもって演算部26により算出する。ここで、現在値の零相電流I02と計測開始時の零相電流I01には、地絡電流Igが含まれない。 In high-pressure insulation monitoring device 25, based on the relational expression -Y described above = (I 02 -I 01) / (V 02 -V 01), the zero-phase voltage V 02 of the current value, V 02 = I 0S2 / Since ωC 0S and the zero-phase voltage V 01 at the start of measurement is V 01 = I 0S1 / ωC 0S , the campus-to-ground admittance Y 0 (hereinafter simply referred to as campus-to-ground) when the campus high- piezoelectric path 12 is healthy. ( Referred to as admittance Y 0 ) is calculated by the calculation unit 26 with a relational expression of −Y 0 = (I 02 −I 01 ) ωC 0S / (I 0S2 −I 0S1 ). Here, the current zero-phase current I 02 and the zero-phase current I 01 at the start of measurement do not include the ground fault current Ig.

一方、構内対地間アドミタンスYは、−Y=Yr+jYiで表される。構内対地間アドミタンスY0は、地絡電流Igを含まないことから、この構内対地間アドミタンスYの虚数部Yiに相当する。地絡事故が発生すると、零相変圧器ZCT15あるいはクランプ式変流器17により検出された零相電流I0は、地絡電流Igが含まれた電流(I0=I01+IgあるいはI0=I02+Ig)になる。 On the other hand, the campus-to-ground admittance Y is represented by -Y = Yr + jYi. The premises-to-ground admittance Y 0 does not include the ground fault current Ig, and therefore corresponds to the imaginary part Yi of the premises-to-ground admittance Y. When a ground fault occurs, the zero-phase current I 0 detected by the zero-phase transformer ZCT15 or the clamp-type current transformer 17 is a current including the ground fault Ig (I 0 = I 01 + Ig or I 0 = I 02 + Ig).

そこで、零相電流I01,I0S1を基準とした場合、構内対地間アドミタンスYを、−Y=(I0−I01)ωC0S/(I0S−I0S1)の関係式でもって演算部27により算出する。また、零相電流I02,I0S2を基準とした場合、構内対地間アドミタンスYを、−Y=(I0−I02)ωC0S/(I0S−I0S2)の関係式でもって演算部27により算出する。構内対地間アドミタンスYの実数部Yrを、Yr=Y−Y0の関係式でもって演算部28により算出する。その結果、この構内対地間アドミタンスYの実数部Yrは、Yr=(Ig・ωC0S)/(I0S2−I0S1)となり、地絡電流Igは、Ig=Yr(I0S2−I0S1)/ωC0Sとなる。なお、構内対地間アドミタンスYの虚数部Yiは、Yi=1/ω(CA2+CB2+CC2)であることから、構内電気設備の構内全体の対地間静電容量を監視することができる。 Therefore, when the zero-phase currents I 01 and I 0S1 are used as a reference, the premises-to-ground admittance Y is calculated by a relational expression of −Y = (I 0 −I 01 ) ωC 0S / (I 0S −I 0S1 ). 27. Further, when the zero-phase currents I 02 and I 0S2 are used as a reference, the premises-to-ground admittance Y is calculated by a relational expression of −Y = (I 0 −I 02 ) ωC 0S / (I 0S −I 0S2 ). 27. The real part Yr of the premises-to-ground admittance Y is calculated by the calculation unit 28 using the relational expression of Yr = Y−Y 0 . As a result, the real part Yr of the premises-to-ground admittance Y is Yr = (Ig · ωC 0S ) / (I 0S2 −I 0S1 ), and the ground fault current Ig is Ig = Yr (I 0S2 −I 0S1 ) / ωC 0S . Since the imaginary part Yi of the premises admittance Y is Yi = 1 / ω (C A2 + C B2 + C C2 ), the ground-to-ground capacitance of the entire premises electrical equipment can be monitored.

図6は一線地絡事故が発生した場合の等価回路を示す。この地絡電流Igは、図7に示すように、対地電圧Va,Vb,Vc(Va=Ea−V0,Vb=Eb−V0,Vc=Ec−V0)を基準とした各相成分Iga,Igb,Igc(以下、各相地絡電流と称す)からなる。そこで、電力ケーブル13の各相ケーブル13a,13b,13cのシールド線14a,14b,14cに流れる零相電流I0SA,I0SB,I0SCをクランプ式変流器18a,18b,18cでもって検出する。 FIG. 6 shows an equivalent circuit when a one-line ground fault occurs. As shown in FIG. 7, this ground fault current Ig is a component of each phase with reference to ground voltages Va, Vb, Vc (Va = Ea−V 0 , Vb = Eb−V 0 , Vc = Ec−V 0 ). Iga, Igb, Igc (hereinafter referred to as each phase ground fault current). Therefore, the zero-phase currents I 0SA , I 0SB , I 0SC flowing in the shield wires 14a, 14b, 14c of the phase cables 13a, 13b, 13c of the power cable 13 are detected by the clamp type current transformers 18a, 18b, 18c. .

この電力ケーブル13の各相ケーブル13a,13b,13cのシールド線14a,14b,14cに流れる各相の零相電流I0SA,I0SB,I0SCは、各相の構内対地間アドミタンスY0A,Y0B,Y0Cから、I0SA=Va・Y0A、I0SB=Vb・Y0B、I0SC=Vc・Y0Cとなる。この零相電流I0SA,I0SB,I0SCは、対地静電容量に流れる電流なので、対地電圧Va,Vb,Vcを基準にして、進み90°位相差を持っている。 The zero-phase currents I 0SA , I 0SB , I 0SC of the phases flowing in the shielded wires 14a, 14b, 14c of the phase cables 13a, 13b, 13c of the power cable 13 are the premises-to-ground admittances Y 0A , Y of each phase. From 0B and Y 0C , I 0SA = Va · Y 0A , I 0SB = Vb · Y 0B , and I 0SC = Vc · Y 0C . These zero-phase currents I 0SA , I 0SB , I 0SC are currents flowing through the ground capacitance, and therefore have a leading 90 ° phase difference with respect to the ground voltages Va, Vb, Vc.

構内高圧電路12の構内電気設備で発生した地絡電流Igから抵抗性地絡電流Igrを計測する機能を追加するため、構内高圧電路12の対地電圧Va,Vb,Vcの基準位相を特定する。つまり、この高圧絶縁監視装置25では、クランプ式変流器18a,18b,18cにより検出された各相シールド線14a,14b,14cの零相電流I0SA,I0SB,I0SCの進み90°位相差を演算部32で補正する。 In order to add a function of measuring the resistive ground fault current Igr from the ground fault current Ig generated in the local electrical equipment of the local high voltage path 12, the reference phases of the ground voltages Va, Vb, and Vc of the local high voltage path 12 are specified. That is, in this high voltage insulation monitoring device 25, the leading phase currents I 0SA , I 0SB , I 0SC of the phase shield wires 14a, 14b, 14c detected by the clamp type current transformers 18a, 18b, 18c are about 90 °. The calculation unit 32 corrects the phase difference.

この補正処理としては、簡易的に遅延回路(50Hzまたは60Hzの1/4サイクル時間遅延)を設ける方法、電源同期したPLL回路により電源周波数の逓倍の高周波を生成し、ロジックカウンタで遅延する方法、零相電流をADC変換してフーリエ変換した複素数に遅れ90°の単位ベクトルを乗算する方法、シールド線に流れる各相の零相電流を各相の対地間アドミタンスで除算する方法などがある。このように、零相電流I0SA,I0SB,I0SCを演算部32で位相補正することにより、対地電圧Va,Vb,Vcが得られる。 As this correction processing, a method of simply providing a delay circuit (1/4 cycle time delay of 50 Hz or 60 Hz), a method of generating a high frequency multiplied by the power supply frequency by a PLL circuit synchronized with the power supply, and delaying by a logic counter, There are a method of multiplying a complex number obtained by ADC conversion of a zero-phase current and a Fourier transform by a unit vector having a delay of 90 °, a method of dividing the zero-phase current of each phase flowing through a shield wire by the ground-to-ground admittance of each phase, and the like. In this way, the ground voltages Va, Vb, and Vc are obtained by correcting the phases of the zero-phase currents I 0SA , I 0SB , and I 0SC by the calculation unit 32.

この対地電圧Va,Vb,Vcに基づいて、地絡電流Igを演算部29で位相検波(フーリエ変換)することにより、各相地絡電流Iga,Igb,Igcを得る。図7に示すように、対地電圧Va,Vb,Vcを基準とした場合、地絡抵抗Rgに流れる各相地絡電流Iga,Igb,Igcは対地電圧Va,Vb,Vcと同位相となる。   Based on the ground voltages Va, Vb, and Vc, the ground fault current Ig is subjected to phase detection (Fourier transform) by the calculation unit 29 to obtain the respective phase ground fault currents Iga, Igb, and Igc. As shown in FIG. 7, when the ground voltages Va, Vb, and Vc are used as a reference, the respective phase ground fault currents Iga, Igb, and Igc flowing through the ground fault resistance Rg are in phase with the ground voltages Va, Vb, and Vc.

ここで、抵抗性地絡Rg(図11参照)の場合、図8(A)(B)に示すように、地絡電流Igについて、A相地絡電流Igaを+1.0puとした場合、B相地絡電流Igbは、−0.5puとなり、C相地絡電流Igcは、−0.5puとなる。また、誘導性地絡Lg(図11参照)の場合、図9(A)(B)に示すように、地絡電流IgLについて、A相地絡電流Igaは、0.0puとなり、B相地絡電流Igbは、+0.866puとなり、C相地絡電流Igcは、−0.866puとなる。さらに、容量性地絡Cg(図11参照)の場合、図10(A)(B)に示すように、地絡電流IgCについて、A相地絡電流Igaは、0.0puとなり、B相地絡電流Igbは、−0.866puとなり、C相地絡電流Igcは、+0.866puとなる。   Here, in the case of the resistive ground fault Rg (see FIG. 11), as shown in FIGS. 8A and 8B, when the A-phase ground fault current Iga is +1.0 pu for the ground fault current Ig, Phase ground fault current Igb is -0.5 pu, and C phase ground fault current Igc is -0.5 pu. In the case of the inductive ground fault Lg (see FIG. 11), as shown in FIGS. 9A and 9B, for the ground fault current IgL, the A-phase ground fault current Iga becomes 0.0pu, and the B-phase ground The fault current Igb is +0.866 pu, and the C-phase ground fault current Igc is -0.866 pu. Further, in the case of the capacitive ground fault Cg (see FIG. 11), as shown in FIGS. 10A and 10B, the A-phase ground fault current Iga is 0.0 pu for the ground fault current IgC, and the B-phase ground The fault current Igb is −0.866 pu, and the C-phase ground fault current Igc is +0.866 pu.

前述したように、特定の一相(A相)に一線地絡が発生し、他の二相(B相、C相)が健全である場合を想定している。この高圧絶縁監視装置25では、三相の対地電圧Va,Vb,Vcを基準にして位相検波することにより、各相地絡電流Iga,Igb,Igcを得ている。従って、A相が地絡した場合、A相地絡電流Igaは、地絡監視する上で意味があるが、他のB相地絡電流IgbおよびC相地絡電流Igcは、地絡監視する上で意味を持たない。   As described above, it is assumed that a single-line ground fault occurs in a specific one phase (A phase) and the other two phases (B phase and C phase) are healthy. The high voltage insulation monitoring device 25 obtains the respective phase ground fault currents Iga, Igb, and Igc by performing phase detection based on the three-phase ground voltages Va, Vb, and Vc. Therefore, when the A phase has a ground fault, the A phase ground fault current Iga is meaningful in monitoring the ground fault, but the other B phase ground fault current Igb and the C phase ground fault current Igc are monitored in the ground fault. It has no meaning above.

しかしながら、前述したように、抵抗性地絡Rgだけでなく、誘導性地絡Lgや容量性地絡Cgを考慮すると、地絡している相(A相)と、地絡していない他の二相(B相、C相)とを検出してしまう。この高圧絶縁監視装置25では、各相地絡電流Iga,Igb,Igcを得た段階でA相地絡、B相地絡あるいはC相地絡を区別して判定することができない。そのため、各相地絡電流Iga,Igb,Igcから、構内高圧電路12の対地間絶縁劣化で生じた抵抗性地絡電流Igrを求める必要がある。   However, as described above, in consideration of not only the resistive ground fault Rg but also the inductive ground fault Lg and the capacitive ground fault Cg, the ground fault phase (A phase) and other faults that are not ground faults. Two phases (B phase and C phase) are detected. The high voltage insulation monitoring device 25 cannot distinguish and determine the A phase ground fault, the B phase ground fault, or the C phase ground fault at the stage where the respective phase ground fault currents Iga, Igb, and Igc are obtained. Therefore, it is necessary to obtain the resistive ground fault current Igr generated by the insulation degradation between the ground high-voltage path 12 and the ground from each phase ground fault current Iga, Igb, Igc.

そこで、高圧絶縁監視装置25の演算部30では、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3=Iga3+Igb3+Igc3を算出する。つまり、基本的に三角関数を二乗すると周波数は二倍になり、同様に、三角関数を三乗すると周波数は三倍になる。このことから、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の波形が、三相の対地電圧Va,Vb,Vcと同期することにより、抵抗性地絡電流Igrを得ることが可能となる。 Therefore, the arithmetic unit 30 of the high voltage insulation monitoring device 25 calculates the sum of squares ΣIg 3 = Iga 3 + Igb 3 + Igc 3 of each phase ground fault currents Iga, Igb, Igc. That is, when the trigonometric function is squared, the frequency is doubled. Similarly, when the trigonometric function is cubed, the frequency is tripled. From this, it is possible to obtain the resistive ground fault current Igr by synchronizing the waveform of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc with the three-phase ground voltages Va, Vb, Vc. It becomes possible.

ここで、三乗和ΣIg3の最大値nは、図11に示すように1.0よりも小さくなる。つまり、この三乗和ΣIg3の最大値nは、(1/π∫i3dθ)1/3=(Imax3/π∫sin3θdθ)1/3=Imax(4/π)1/3=0.75となる(i=Imax・sinθ、i=Iga,Igb,Igc)。演算部30では、三乗和ΣIg3の最大値nを1.0にするため、三乗和ΣIg3をその最大値nの逆数倍(1/n)で補正することにより、三乗和ΣIg3の真値(ΣIg3)/nが得られる。この三乗和ΣIg3の真値(ΣIg3)/nの立方根{(ΣIg3)/n}1/3を算出することにより、構内高圧電路12の対地間絶縁劣化で生じた抵抗性地絡電流Igrが得られる。 Here, the maximum value n of the cube sum ΣIg 3 is smaller than 1.0 as shown in FIG. That is, the maximum value n of the cube sum ΣIg 3 is (1 / π∫i 3 dθ) 1/3 = (Imax 3 / π∫sin 3 θdθ) 1/3 = Imax (4 / π) 1/3 = 0.75 (i = Imax · sin θ, i = Iga, Igb, Igc). The arithmetic unit 30 corrects the cube sum ΣIg 3 by a reciprocal multiple (1 / n) of the maximum value n in order to make the maximum value n of the cube sum ΣIg 3 1.0. true value of ΣIg 3 (ΣIg 3) / n is obtained. By calculating the cube root {(ΣIg 3 ) / n} 1/3 of the true value (ΣIg 3 ) / n of the cube sum ΣIg 3 , the resistance ground fault caused by the insulation degradation between the high voltage path 12 on the premises and the ground A current Igr is obtained.

この実施形態では、三乗和について説明したが、奇数乗和を用いることも可能である。この奇数乗和の次数が大きくなると、5乗和では0.9375、7乗和では0.9844、9乗和では0.9961、11乗和では0.9990のように1.0に近づくことになる。このように、奇数乗和を用いる場合には、抵抗性地絡電流Igrを得るため、奇数乗和の奇数乗根を算出する必要がある。しかしながら、正規化した値で奇数乗和を用いる場合には、奇数乗根の演算は省略することも可能である。   In this embodiment, the sum of cubes has been described, but it is also possible to use an odd sum of powers. As the order of this odd sum of power increases, it approaches 0.9375 for the fifth sum, 0.9844 for the seventh sum, 0.9961 for the ninth sum, 0.9990 for the eleventh sum. become. Thus, when using the odd-numbered sum of power, it is necessary to calculate the odd-numbered root of the odd-numbered sum of power to obtain the resistive ground fault current Igr. However, in the case of using an odd power sum with a normalized value, it is possible to omit the operation of the odd power root.

なお、本出願人が先に提案した高圧絶縁監視装置(特開平11−271384号公報参照)から算出される地絡電流Ig{=I0−(−YV0+If)}を用いて、同一の演算により抵抗性地絡電流Igrとして算出することができる。また、この実施形態では、基本調波に基づいて抵抗性地絡電流Igrを算出しているが、例えば、第3調波あるいは第9調波を含む奇数調波からなる高調波成分を用いて抵抗性地絡電流Igrを算出するようにしてもよい。 It is to be noted that the ground fault current Ig {= I 0 − (− YV 0 + If)} calculated from the high voltage insulation monitoring device previously proposed by the present applicant (see Japanese Patent Application Laid-Open No. 11-271384) is used to obtain the same The resistance ground fault current Igr can be calculated by calculation. In this embodiment, the resistive ground fault current Igr is calculated based on the fundamental harmonic. For example, a harmonic component including an odd harmonic including the third harmonic or the ninth harmonic is used. The resistive ground fault current Igr may be calculated.

この地絡検出時に地絡抵抗が大きい時(Rg>約10kΩ)は、実数部|Yr|≪虚数部|Yi|となる。従って、相電圧Ea,Eb,Ecと対地電圧Va,Vb,Vcとはほぼ等しい。相電圧=線間電圧/√3=6600V/√3=3810Vであることから、この相電圧Ea,Eb,Ecとほぼ等しい対地電圧Va,Vb,Vcを用いて地絡抵抗Rgが次の式で求められる。つまり、地絡抵抗RgをRg=対地電圧/Igrの関係式でもって演算部31で算出する。   When the ground fault resistance is large when this ground fault is detected (Rg> about 10 kΩ), the real part | Yr | << the imaginary part | Yi | Therefore, the phase voltages Ea, Eb, Ec and the ground voltages Va, Vb, Vc are substantially equal. Since phase voltage = line voltage / √3 = 6600 V / √3 = 3810 V, ground fault resistance Rg is expressed by the following equation using ground voltages Va, Vb, Vc substantially equal to phase voltages Ea, Eb, Ec. Is required. That is, the ground fault resistance Rg is calculated by the calculation unit 31 with the relational expression of Rg = ground voltage / Igr.

本出願人は、模擬電気室(一線地絡電流=7.89A)を用いて以下の試験条件で抵抗性地絡の人工地絡試験を行った。   The present applicant conducted an artificial ground fault test for a resistive ground fault under the following test conditions using a simulated electric room (single wire ground fault current = 7.89 A).

・電力ケーブル:公称断面積22mm2、長さ20m=0.0162[μF](1相当たり)電源周波数60Hz
・地絡抵抗Rg:200[kΩ]
・構内の対地静電容量C:0.5[μF]
・残留電圧:約100[V]
-Power cable: Nominal cross-sectional area 22mm 2 , length 20m = 0.0162 [μF] (per phase) power supply frequency 60Hz
・ Ground fault resistance Rg: 200 [kΩ]
・ Ground capacitance C on ground: 0.5 [μF]
・ Residual voltage: about 100 [V]

[抵抗性地絡](A相で地絡した場合)
構内対地間アドミタンスY0を演算するための各計測値は、以下のとおりである。
01:5.57[mA]∠178.18[deg]
02:21.55[mA]∠217.96[deg]
0S1:0.69[mA]∠36.12[deg]
0S2:1.77[mA]∠45.00[deg]
ωC0S:2×π×60×3×0.607×10-6
=4.574×10-3[S-1]∠90.0[deg](電源周波数:60Hz)
[Resistant ground fault] (When grounding in phase A)
Each measurement for calculating the premises ground between admittance Y 0 is as follows.
I 01 : 5.57 [mA] ∠ 178.18 [deg]
I 02 : 21.55 [mA] ∠ 217.96 [deg]
I 0S1 : 0.69 [mA] ∠ 36.12 [deg]
I 0S2 : 1.77 [mA] ∠ 45.00 [deg]
ωC 0S : 2 × π × 60 × 3 × 0.607 × 10 −6
= 4.574 × 10 −3 [S −1 ] ∠90.0 [deg] (power supply frequency: 60 Hz)

前述の各計測値を用いた構内対地間アドミタンスY0の演算は、以下のとおりである。
−Y0=(I02−I01)ωC0S/(I0S2−I0S1
=(21.55[mA]∠217.96[deg]−5.57[mA]∠178.18[deg])×4.574×10-3[S]∠90.0[deg]/(1.77[mA]∠45.00[deg]−0.69[mA]∠36.12[deg])
=0.739×10-3[S-1]∠269.00[deg]
The calculation of the premises-to-ground admittance Y 0 using the above-described measured values is as follows.
−Y 0 = (I 02 −I 01 ) ωC 0S / (I 0S2 −I 0S1 )
= (21.55 [mA] ∠217.96 [deg] −5.57 [mA] ∠178.18 [deg]) × 4.574 × 10 −3 [S] ∠90.0 [deg] / ( 1.77 [mA] ∠45.00 [deg] −0.69 [mA] ∠36.12 [deg])
= 0.739 × 10 −3 [S −1 ] ∠269.00 [deg]

構内対地間アドミタンスYを演算するための各計測値は、以下のとおりである。
0(=I02+Ig):9.64[mA]∠75.80[deg](I0は、I02にIgが加算された値で計測される。)
0S:1.06[mA]∠41.52[deg]
Each measurement value for calculating the premises admittance Y between the premises is as follows.
I 0 (= I 02 + Ig): 9.64 [mA] ∠75.80 [deg] (I 0 is measured by adding Ig to I 02 )
I 0S : 1.06 [mA] ∠41.52 [deg]

前述の各計測値を用いた構内対地間アドミタンスYの演算は、以下のとおりである。
−Y=(I0−I01)ωC0S/(I0S−I0S1
=(9.64[mA]∠75.80[deg]−5.57[mA]∠178.18[deg])×4.574×10-3[S-1]∠90.0[deg]/(1.06[mA]∠41.52[deg]−0.69[mA]∠36.12[deg])
=1.897×10-3[S-1]∠269.00[deg]
The calculation of the premises-to-ground admittance Y using the above-described measured values is as follows.
-Y = (I 0 -I 01 ) ωC 0S / (I 0S -I 0S1 )
= (9.64 [mA] ∠75.80 [deg] −5.57 [mA] ∠178.18 [deg]) × 4.574 × 10 −3 [S −1 ] ∠90.0 [deg] /(1.06 [mA] ∠41.52 [deg] −0.69 [mA] ∠36.12 [deg])
= 1.897 × 10 −3 [S −1 ] ∠269.00 [deg]

この構内対地間アドミタンスYの実数部Yrの演算は、以下のとおりである。
Yr=Y−Y0
=1.897×10-3[S-1]∠269.00[deg]−0.739×10-3[S-1]∠269.00[deg]
=1.158×10-3[S-1]∠269.47[deg]
The calculation of the real part Yr of this premises-to-ground admittance Y is as follows.
Yr = Y−Y 0
= 1.897 × 10 −3 [S −1 ] ∠269.00 [deg] −0.739 × 10 −3 [S −1 ] ∠269.00 [deg]
= 1.158 × 10 −3 [S −1 ] ∠269.47 [deg]

地絡電流Igの演算は、以下のとおりである。
Ig=Yr(I0S2−I0S1)/ωC0S
=1.158×10-3[S-1]∠269.47[deg]×(1.77[mA]∠45.00[deg]−0.69[mA]∠36.12[deg])/4.574×10-3[S-1]∠90.0[deg]
=18.16[mA]∠49.6[deg]
The calculation of the ground fault current Ig is as follows.
Ig = Yr (I 0S2 −I 0S1 ) / ωC 0S
= 1.158 × 10 −3 [S −1 ] ∠269.47 [deg] × (1.77 [mA] ∠45.00 [deg] −0.69 [mA] ∠36.12 [deg]) /4.574×10 −3 [S −1 ] ∠90.0 [deg]
= 18.16 [mA] ∠ 49.6 [deg]

ここで、各相ケーブル13a,13b,13cのシールド線14a,14b,14cに流れる零相電流I0SA,I0SB,I0SCから得た位相を90°補正して得られた高圧電路12の対地電圧Va,Vb,Vcの基準位相は、電源電圧AC100Vの電圧位相から、次の位相差を持っていた。
A相:49.5[deg]
B相:289.5[deg]
C相:169.5[deg]
Here, the ground of the high piezoelectric path 12 obtained by correcting the phase obtained from the zero-phase currents I 0SA , I 0SB , I 0SC flowing through the shield wires 14a, 14b, 14c of the phase cables 13a, 13b, 13c by 90 ° The reference phases of the voltages Va, Vb, and Vc have the following phase difference from the voltage phase of the power supply voltage AC100V.
Phase A: 49.5 [deg]
Phase B: 289.5 [deg]
Phase C: 169.5 [deg]

前述の各位相を基準にして位相検波した結果、各相地絡電流Iga,Igb,Igcは、以下のとおりである。
Iga=(18.17+j0.03)×10-3[A]
Igb=(−9.11+j15.73)×10-3[A]
Igc=(−9.05−j15.73)×10-3[A]
As a result of phase detection based on each of the aforementioned phases, the respective phase ground fault currents Iga, Igb, Igc are as follows.
Iga = (18.17 + j0.03) × 10 −3 [A]
Igb = (− 9.11 + j15.73) × 10 −3 [A]
Igc = (− 9.05−j15.73) × 10 −3 [A]

この各相地絡電流Iga,Igb,Igcの実数部を使用して三乗和ΣIg3の演算は、以下のとおりである。
ΣIg3=Iga3+Igb3+Igc3
=18.173+(−9.11)3+(−9.05)3
=4497.5
The calculation of the cube sum ΣIg 3 using the real part of each phase ground fault current Iga, Igb, Igc is as follows.
ΣIg 3 = Iga 3 + Igb 3 + Igc 3
= 18.17 3 + (− 9.11) 3 + (− 9.05) 3
= 4497.5

この各相地絡電流Iga,Igb,Igcの三乗和ΣIg3をその最大値n=0.75の逆数倍で補正することにより、三乗和ΣIg3の真値(ΣIg3)/n=5996.7が得られる。この三乗和ΣIg3の真値(ΣIg3)/nの立方根{(ΣIg3)/n}1/3を算出することにより、抵抗性地絡電流Igr=18.17[mA]が得られる。その結果、地絡抵抗Rg=Eg/Igr=3810[V]/18.17[mA]=209.7[kΩ]となる。

Figure 2015108618
By correcting the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc by a reciprocal multiple of the maximum value n = 0.75, the true value (ΣIg 3 ) / n of the cube sum ΣIg 3 = 5996.7 is obtained. By calculating the cube root {(ΣIg 3 ) / n} 1/3 of the true value (ΣIg 3 ) / n of the cube sum ΣIg 3 , the resistive ground fault current Igr = 18.17 [mA] is obtained. . As a result, the ground fault resistance Rg = Eg / Igr = 3810 [V] /18.17 [mA] = 209.7 [kΩ].
Figure 2015108618

上表のように、抵抗性地絡では、A相で地絡した場合、抵抗性地絡電流Igrが18.17mAで、その時の地絡抵抗Rgが209.7kΩという結果が得られた。また、B相で地絡した場合、抵抗性地絡電流Igrが19.60mAで、その時の地絡抵抗Rgが194.2kΩという結果が得られた。さらに、C相で地絡した場合、抵抗性地絡電流Igrが19.89mAで、その時の地絡抵抗Rgが191.2kΩという結果が得られた。このようにして、抵抗性地絡の場合には、抵抗性地絡電流Igrおよび地絡抵抗Rgを計測することが可能であることが判明した。   As shown in the above table, in the case of the ground fault in the resistive ground fault, the result that the ground fault current Igr was 18.17 mA and the ground fault resistance Rg at that time was 209.7 kΩ when the ground fault occurred in the A phase. Moreover, when the ground fault occurred in the B phase, the result that the resistive ground fault current Igr was 19.60 mA and the ground fault resistance Rg at that time was 194.2 kΩ was obtained. Further, when a ground fault occurred in the C phase, the result was that the resistive ground fault current Igr was 19.89 mA and the ground fault resistance Rg at that time was 191.2 kΩ. In this way, in the case of a resistive ground fault, it has been found that the resistive ground fault current Igr and the ground fault resistance Rg can be measured.

以上では、抵抗性地絡の人工地絡試験について説明したが、本出願人は、模擬電気室(一線地絡電流=7.89A)を用いて以下の試験条件で誘導性地絡の人工地絡試験も行った。   In the above description, the artificial ground fault test for the resistive ground fault has been described. However, the applicant of the present invention uses the simulated electric room (one-line ground fault current = 7.89 A) and the artificial ground for the inductive ground fault under the following test conditions. A tangle test was also performed.

・電力ケーブル:公称断面積22mm2、長さ20m=0.0162[μF](1相当たり)電源周波数60Hz
・地絡抵抗Lg:68[kΩ]{空芯コイル200mH、210V(Tr6300/210Vタップ)}
・構内の対地静電容量1C:0.5[μF]/相
-Power cable: Nominal cross-sectional area 22mm 2 , length 20m = 0.0162 [μF] (per phase) power supply frequency 60Hz
・ Ground fault resistance Lg: 68 [kΩ] {Air-core coil 200 mH, 210 V (Tr6300 / 210 V tap)}
・ Ground ground capacitance 1C: 0.5 [μF] / phase

[誘導性地絡](A相で地絡した場合)
構内対地間アドミタンスY0を演算するための各計測値は、以下のとおりである。
01:5.57[mA]∠178.18[deg]
02:21.55[mA]∠217.96[deg]
0S1:0.69[mA]∠36.12[deg]
0S2:1.77[mA]∠45.00[deg]
ωC0S:2×π×60×3×0.607×10-6
=4.574×10-3[S-1]∠90.0[deg](電源周波数:60Hz)
[Inductive ground fault] (When grounding in phase A)
Each measurement for calculating the premises ground between admittance Y 0 is as follows.
I 01 : 5.57 [mA] ∠ 178.18 [deg]
I 02 : 21.55 [mA] ∠ 217.96 [deg]
I 0S1 : 0.69 [mA] ∠ 36.12 [deg]
I 0S2 : 1.77 [mA] ∠ 45.00 [deg]
ωC 0S : 2 × π × 60 × 3 × 0.607 × 10 −6
= 4.574 × 10 −3 [S −1 ] ∠90.0 [deg] (power frequency: 60 Hz)

前述の各計測値を用いた構内対地間アドミタンスY0の演算は、以下のとおりである。
−Y0=(I02−I01)ωC0S/(I0S2−I0S1
=(21.55[mA]∠217.96[deg]−5.57[mA]∠178.18[deg])×4.574×10-3[S]∠90.0[deg]/(1.77[mA]∠45.00[deg]−0.69[mA]∠36.12[deg])
=0.739×10-3[S-1]∠269.00[deg]
The calculation of the premises-to-ground admittance Y 0 using the above-described measured values is as follows.
−Y 0 = (I 02 −I 01 ) ωC 0S / (I 0S2 −I 0S1 )
= (21.55 [mA] ∠217.96 [deg] −5.57 [mA] ∠178.18 [deg]) × 4.574 × 10 −3 [S] ∠90.0 [deg] / ( 1.77 [mA] ∠45.00 [deg] −0.69 [mA] ∠36.12 [deg])
= 0.739 × 10 −3 [S −1 ] ∠269.00 [deg]

構内対地間アドミタンスYを演算するための各計測値は、以下のとおりである。
0(=I02+Ig):32.01[mA]∠323.39[deg](I0は、I02にIgが加算された値で計測される。)
0S:1.45[mA]∠339.79[deg]
Each measurement value for calculating the premises admittance Y between the premises is as follows.
I 0 (= I 02 + Ig): 32.01 [mA] ∠ 323.39 [deg] (I 0 is measured by a value obtained by adding Ig to I 02 )
I 0S : 1.45 [mA] ∠ 339.79 [deg]

前述の計測値を用いた構内対地間アドミタンスYの演算は、以下のとおりである。
−Y=(I0−I01)ωC0S/(I0S−I0S1
=(32.01[mA]∠323.39[deg]−5.57[mA]∠178.18[deg])×4.574×10-3[S-1]∠90.0[deg]/(1.45[mA]∠339.79[deg]−1.77[mA]∠45.00[deg])
=1.121×10-3[S-1]∠168.75[deg]
The calculation of the premises-to-ground admittance Y using the above measured values is as follows.
-Y = (I 0 -I 01 ) ωC 0S / (I 0S -I 0S1 )
= (32.01 [mA] ∠ 323.39 [deg]-5.57 [mA] ∠ 178.18 [deg]) x 4.574 x 10 -3 [S -1 ] ∠ 90.0 [deg] /(1.45 [mA] ∠339.79 [deg] -1.77 [mA] ∠45.00 [deg])
= 1.121 × 10 −3 [S −1 ] ∠168.75 [deg]

この構内対地間アドミタンスYの実数部Yrの演算は、以下のとおりである。
Yr=Y−Y0
=1.121×10-3[S-1]∠168.75[deg]−0.739×10-3[S-1]∠269.00[deg]
=1.448×10-3[S-1]∠138.62[deg]
The calculation of the real part Yr of this premises-to-ground admittance Y is as follows.
Yr = Y−Y 0
= 1.121 × 10 −3 [S −1 ] ∠168.75 [deg] −0.739 × 10 −3 [S −1 ] ∠269.00 [deg]
= 1.448 × 10 −3 [S −1 ] ∠138.62 [deg]

地絡電流Igの演算は、以下のとおりである。
Ig=Yr(I0S2−I0S1)/ωC0S
=1.448×10-3[S-1]∠138.62[deg]×(1.77[mA]∠45.00[deg]−0.69[mA]∠36.12[deg])/4.574×10-3[S-1]∠90.0[deg]
=55.64[mA]∠322.09[deg]
The calculation of the ground fault current Ig is as follows.
Ig = Yr (I 0S2 −I 0S1 ) / ωC 0S
= 1.448 × 10 −3 [S −1 ] ∠138.62 [deg] × (1.77 [mA] ∠45.00 [deg] −0.69 [mA] ∠36.12 [deg]) /4.574×10 −3 [S −1 ] ∠90.0 [deg]
= 55.64 [mA] ∠322.09 [deg]

ここで、各相ケーブル13a,13b,13cのシールド線14a,14b,14cに流れる零相電流I0SA,I0SB,I0SCから得た位相を90°補正して得られた高圧電路12の対地電圧Va,Vb,Vcの基準位相は、電源電圧AC100Vの電圧位相から、次の位相差を持っていた。
A相:49.5[deg]
B相:289.5[deg]
C相:169.5[deg]
Here, the ground of the high piezoelectric path 12 obtained by correcting the phase obtained from the zero-phase currents I 0SA , I 0SB , I 0SC flowing through the shield wires 14a, 14b, 14c of the phase cables 13a, 13b, 13c by 90 ° The reference phases of the voltages Va, Vb, and Vc have the following phase difference from the voltage phase of the power supply voltage AC100V.
Phase A: 49.5 [deg]
Phase B: 289.5 [deg]
Phase C: 169.5 [deg]

前述の各位相を基準にして位相検波した結果、各相地絡電流Iga,Igb,Igcは、以下のとおりである。
Iga=(2.52−j55.6)×10-3[A]
Igb=(46.9+j30.0)×10-3[A]
Igc=(−49.6+j25.6)×10-3[A]
As a result of phase detection based on each of the aforementioned phases, the respective phase ground fault currents Iga, Igb, Igc are as follows.
Iga = (2.52-j55.6) × 10 −3 [A]
Igb = (46.9 + j30.0) × 10 −3 [A]
Igc = (− 49.6 + j25.6) × 10 −3 [A]

この各相地絡電流Iga,Igb,Igcの実数部を使用して三乗和ΣIg3の演算は、以下のとおりである。
ΣIg3=Iga3+Igb3+Igc3
=2.523+46.93+(−49.4)3
=−17483.8
The calculation of the cube sum ΣIg 3 using the real part of each phase ground fault current Iga, Igb, Igc is as follows.
ΣIg 3 = Iga 3 + Igb 3 + Igc 3
= 2.52 3 +46.9 3 + (− 49.4) 3
= -17483.8

この各相地絡電流Iga,Igb,Igcの三乗和ΣIg3をその最大値n=0.75の逆数倍で補正することにより、三乗和ΣIg3の真値(ΣIg3)/n=−23311.8が得られる。この三乗和ΣIg3の真値(ΣIg3)/nの立方根{(ΣIg3)/n}1/3を算出することにより、抵抗性地絡電流Igr=−28.56[mA]が得られる。このように、抵抗性地絡電流Igrがマイナス値となることから、地絡抵抗Rgの演算は不能となる。

Figure 2015108618
By correcting the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc by a reciprocal multiple of the maximum value n = 0.75, the true value (ΣIg 3 ) / n of the cube sum ΣIg 3 = −23311.8 is obtained. By calculating the cube root {(ΣIg 3 ) / n} 1/3 of the true value (ΣIg 3 ) / n of the cube sum ΣIg 3 , the resistive ground fault current Igr = −28.56 [mA] is obtained. It is done. Thus, since the resistive ground fault current Igr becomes a negative value, the ground fault resistance Rg cannot be calculated.
Figure 2015108618

上表のように、誘導性地絡では、A相で地絡した場合、抵抗性地絡電流Igrが−28.56mAで、その時の地絡抵抗Rgが計測不能という結果が得られた。また、B相で地絡した場合、抵抗性地絡電流Igrが−43.89mAで、その時の地絡抵抗Rgが計測不能という結果が得られた。さらに、C相で地絡した場合、抵抗性地絡電流Igrおよび地絡抵抗Rgの両方が計測不能という結果が得られた。このようにして、誘導性地絡の場合には、抵抗性地絡電流Igrがマイナス値あるいは計測不能となるので、地絡抵抗Rgが計測されることはない。   As shown in the above table, with the inductive ground fault, when the ground fault occurred in the A phase, the result was that the resistive ground fault current Igr was -28.56 mA and the ground fault resistance Rg at that time could not be measured. Moreover, when a ground fault occurred in the B phase, the result was that the resistance ground fault current Igr was −43.89 mA and the ground fault resistance Rg at that time could not be measured. Furthermore, when a ground fault occurred in the C phase, it was found that both the resistive ground fault current Igr and the ground fault resistance Rg could not be measured. Thus, in the case of an inductive ground fault, since the resistive ground fault current Igr is a negative value or cannot be measured, the ground fault resistance Rg is not measured.

以上では、誘導性地絡の人工地絡試験について説明したが、本出願人は、模擬電気室(一線地絡電流=7.89A)を用いて以下の試験条件で容量性地絡の人工地絡試験も行った。   In the above, the artificial ground fault test of the inductive ground has been described. However, the applicant of the present invention uses a simulated electric room (single wire ground fault current = 7.89 A) to create a capacitive ground fault artificial ground under the following test conditions. A tangle test was also performed.

・地絡抵抗Cg:0.2[μF](構内対地間インピーダンスZ0S=132.6[kΩ]、定格電圧6600V、0.2[μF])
・構内の対地静電容量1C:0.5[μF]/相
・ Ground fault resistance Cg: 0.2 [μF] (Internal to ground impedance Z 0S = 132.6 [kΩ], rated voltage 6600 V, 0.2 [μF])
・ Ground ground capacitance 1C: 0.5 [μF] / phase

[容量性地絡](A相で地絡した場合)
構内対地間アドミタンスY0を演算するための各計測値は、以下のとおりである。
01:5.57[mA]∠178.18[deg]
02:21.55[mA]∠217.96[deg]
0S1:0.69[mA]∠36.12[deg]
0S2:1.77[mA]∠45.00[deg]
ωC0S:2×π×60×3×0.607×10-6
=4.574×10-3[S-1]∠90.0[deg](電源周波数:60Hz)
[Capacitive ground fault] (When a ground fault occurs in phase A)
Each measurement for calculating the premises ground between admittance Y 0 is as follows.
I 01 : 5.57 [mA] ∠ 178.18 [deg]
I 02 : 21.55 [mA] ∠ 217.96 [deg]
I 0S1 : 0.69 [mA] ∠ 36.12 [deg]
I 0S2 : 1.77 [mA] ∠ 45.00 [deg]
ωC 0S : 2 × π × 60 × 3 × 0.607 × 10 −6
= 4.574 × 10 −3 [S −1 ] ∠90.0 [deg] (power frequency: 60 Hz)

前述の各計測値を用いた構内対地間アドミタンスY0の演算は、以下のとおりである。
−Y0=(I02−I01)ωC0S/(I0S2−I0S1
=(21.55[mA]∠217.96[deg]−5.57[mA]∠178.18[deg])×4.574×10-3[S]∠90.0[deg]/(1.77[mA]∠45.00[deg]−0.69[mA]∠36.12[deg])
=0.739×10-3[S-1]∠269.00[deg]
The calculation of the premises-to-ground admittance Y 0 using the above-described measured values is as follows.
−Y 0 = (I 02 −I 01 ) ωC 0S / (I 0S2 −I 0S1 )
= (21.55 [mA] ∠217.96 [deg] −5.57 [mA] ∠178.18 [deg]) × 4.574 × 10 −3 [S] ∠90.0 [deg] / ( 1.77 [mA] ∠45.00 [deg] −0.69 [mA] ∠36.12 [deg])
= 0.739 × 10 −3 [S −1 ] ∠269.00 [deg]

構内対地間アドミタンスYを演算するための各計測値は、以下のとおりである。
0(=I02+Ig):23.53[mA]∠146.80[deg](I0は、I02にIgが加算された値で計測される。)
0S=0.78[mA]∠87.78[deg]
Each measurement value for calculating the premises admittance Y between the premises is as follows.
I 0 (= I 02 + Ig): 23.53 [mA] ∠146.80 [deg] (I 0 is measured by adding Ig to I 02 )
I 0S = 0.78 [mA] ∠87.78 [deg]

前述の計測値を用いた構内対地間アドミタンスYの演算は、以下のとおりである。
−Y=(I0−I01)ωC0S/(I0S−I0S1
=(23.53[mA]∠146.80[deg]−5.57[mA]∠178.18[deg])×4.574×10-3[S-1]∠90.0[deg]/(0.78[mA]∠87.78[deg]−1.77[mA]∠45.00[deg])
=0.917×10-3[S-1]∠344.9[deg]
The calculation of the premises-to-ground admittance Y using the above measured values is as follows.
-Y = (I 0 -I 01 ) ωC 0S / (I 0S -I 0S1 )
= (23.53 [mA] ∠146.80 [deg] −5.57 [mA] ∠178.18 [deg]) × 4.574 × 10 −3 [S −1 ] ∠90.0 [deg] /(0.78 [mA] ∠ 87.78 [deg]-1.77 [mA] ∠ 45.00 [deg])
= 0.917 × 10 −3 [S −1 ] ∠344.9 [deg]

この構内対地間アドミタンスYの実数部Yrの演算は、以下のとおりである。
Yr=Y−Y0
=0.917×10-3[S-1]∠344.9[deg]−0.739×10-3[S-1]∠269.00[deg]
=1.021×10-3[S-1]∠29.05[deg]
The calculation of the real part Yr of this premises-to-ground admittance Y is as follows.
Yr = Y−Y 0
= 0.917 × 10 −3 [S −1 ] ∠344.9 [deg] −0.739 × 10 −3 [S −1 ] ∠269.00 [deg]
= 1.021 × 10 −3 [S −1 ] ∠29.05 [deg]

地絡電流Igの演算は、以下のとおりである。
Ig=Yr(I0S2−I0S1)/ωC0S
=1.021×10-3[S-1]∠29.05[deg]×(1.77[mA]∠45.00[deg]−0.69[mA]∠36.12[deg])/4.574×10-3[S-1]∠90.0[deg]
=29.45[mA]∠140.1[deg]
The calculation of the ground fault current Ig is as follows.
Ig = Yr (I 0S2 −I 0S1 ) / ωC 0S
= 1.021 × 10 −3 [S −1 ] ∠29.05 [deg] × (1.77 [mA] ∠45.00 [deg] −0.69 [mA] ∠36.12 [deg]) /4.574×10 −3 [S −1 ] ∠90.0 [deg]
= 29.45 [mA] ∠ 140.1 [deg]

ここで、各相ケーブル13a,13b,13cのシールド線14a,14b,14cに流れる零相電流I0SA,I0SB,I0SCから得た位相を90°補正して得られた高圧電路12の対地電圧Va,Vb,Vcの基準位相は、電源電圧AC100Vの電圧位相から、次の位相差を持っていた。
A相:49.5[deg]
B相:289.5[deg]
C相:169.5[deg]
Here, the ground of the high piezoelectric path 12 obtained by correcting the phase obtained from the zero-phase currents I 0SA , I 0SB , I 0SC flowing through the shield wires 14a, 14b, 14c of the phase cables 13a, 13b, 13c by 90 ° The reference phases of the voltages Va, Vb, and Vc have the following phase difference from the voltage phase of the power supply voltage AC100V.
Phase A: 49.5 [deg]
Phase B: 289.5 [deg]
Phase C: 169.5 [deg]

前述の各位相を基準にして位相検波した結果、各相地絡電流Iga,Igb,Igcは、以下のとおりである。
Iga=(−0.29+j29.44)×10-3[A]
Igb=(−25.35−j14.98)×10-3[A]
Igc=(25.65−j14.47)×10-3[A]
As a result of phase detection based on each of the aforementioned phases, the respective phase ground fault currents Iga, Igb, Igc are as follows.
Iga = (− 0.29 + j29.44) × 10 −3 [A]
Igb = (− 25.35−j14.98) × 10 −3 [A]
Igc = (25.65−j14.47) × 10 −3 [A]

この各相地絡電流Iga,Igb,Igcの実数部を使用して三乗和ΣIg3の演算は、以下のとおりである。
ΣIg3=Iga3+Igb3+Igc3
=(−0.29)3+(−25.35)3+25.653
=−5580.46
The calculation of the cube sum ΣIg 3 using the real part of each phase ground fault current Iga, Igb, Igc is as follows.
ΣIg 3 = Iga 3 + Igb 3 + Igc 3
= (−0.29) 3 + (− 25.35) 3 +25.65 3
= -5580.46

この各相地絡電流Iga,Igb,Igcの三乗和ΣIg3をその最大値n=0.75の逆数倍で補正することにより、三乗和ΣIg3の真値(ΣIg3)/n=−773.95が得られる。この三乗和ΣIg3の真値(ΣIg3)/nの立方根{(ΣIg3)/n}1/3を算出することにより、抵抗性地絡電流Igr=−9.18[mA]が得られる。このように、抵抗性地絡電流Igrがマイナス値となることから、地絡抵抗Rgの演算は不能となる。

Figure 2015108618
By correcting the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc by a reciprocal multiple of the maximum value n = 0.75, the true value (ΣIg 3 ) / n of the cube sum ΣIg 3 = -773.95 is obtained. By calculating the cubic root {(ΣIg 3 ) / n} 1/3 of the true value (ΣIg 3 ) / n of the cube sum ΣIg 3 , the resistive ground fault current Igr = −9.18 [mA] is obtained. It is done. Thus, since the resistive ground fault current Igr becomes a negative value, the ground fault resistance Rg cannot be calculated.
Figure 2015108618

上表のように、容量性地絡では、A相で地絡した場合、地絡電流Igrが−9.18mAで、その時の地絡抵抗Rgが計測不能という結果が得られた。また、B相で地絡した場合、地絡電流Igrが−8.83mAで、その時の地絡抵抗Rgが計測不能という結果が得られた。さらに、C相で地絡した場合、地絡電流Igrが−15.3mAで、その時の地絡抵抗Rgが計測不能という結果が得られた。このようにして、容量性地絡の場合には、地絡電流Igrがマイナス値となるので、地絡抵抗Rgが計測されることはない。   As shown in the above table, in the case of the ground fault in the capacitive ground fault, the ground fault current Igr was −9.18 mA and the ground fault resistance Rg at that time could not be measured. Moreover, when the ground fault occurred in the B phase, the ground fault current Igr was −8.83 mA, and the ground fault resistance Rg at that time could not be measured. Furthermore, when a ground fault occurred in the C phase, the ground fault current Igr was −15.3 mA, and the ground fault resistance Rg at that time could not be measured. Thus, in the case of a capacitive ground fault, since the ground fault current Igr becomes a negative value, the ground fault resistance Rg is not measured.

次に、図12は、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の波形(図11参照)を極座標表示したものである。図12に示すように、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の値は、各相対地電圧Va,Vb、Vcの位相から若干でもずれると、急激に減少する傾向にある。つまり、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の波形では、各相対地電圧Va,Vb,Vcの位相近傍での曲率が大きな曲線をなす。 Next, FIG. 12 is a polar coordinate display of the waveform of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc (see FIG. 11). As shown in FIG. 12, the value of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc tends to decrease sharply even if it slightly deviates from the phase of each relative ground voltage Va, Vb, Vc. is there. In other words, in the waveform of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc, the curvature in the vicinity of the phase of each relative ground voltage Va, Vb, Vc forms a large curve.

そこで、この各相地絡電流Iga,Igb,Igcの三乗和ΣIg3を監視レベル(例えば、20mAを1とする)で正規化し、その平方根を複数回演算することにより、位相検出角度φを広角度化することができる。このように、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3を監視レベルで正規化し、その平方根を複数回演算することにより、各相対地電圧Va,Vb,Vcからの位相ずれがあっても、その三乗和ΣIg3の値の減少を小さくすることができるので、抵抗性地絡電流Igrを正確に算出することができる。なお、位相検出角度φとは、各相での最大値の80%の値が各相となす角度を意味する。 Therefore, the phase sum angle ΣIg 3 of each phase ground fault current Iga, Igb, Igc is normalized with a monitoring level (for example, 20 mA is set to 1), and the square root is calculated a plurality of times to obtain the phase detection angle φ. Wide angle can be achieved. In this way, the phase deviation from each relative ground voltage Va, Vb, Vc is obtained by normalizing the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc with the monitoring level and calculating the square root a plurality of times. Even if there is, the decrease in the value of the cube sum ΣIg 3 can be reduced, so that the resistive ground fault current Igr can be accurately calculated. The phase detection angle φ means an angle formed by 80% of the maximum value in each phase.

つまり、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の波形では、図13および図14に示すように、各相対地電圧Va,Vb,Vcの位相近傍での曲率を小さくすることができる。正規化した三乗和ΣIg3の平方根を複数回演算すると、三乗和ΣIg3の波形では、各相対地電圧Va,Vb,Vcの位相近傍での曲線を平坦に近づけることができ、位相検出角度φを広角度化することができる。 In other words, in the waveform of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc, the curvature in the vicinity of the phase of each relative ground voltage Va, Vb, Vc is reduced as shown in FIGS. be able to. When the square root of the normalized cube sum ΣIg 3 is calculated a plurality of times, the waveform near the phase of each of the relative ground voltages Va, Vb, Vc can be made closer to a flat shape in the waveform of the cube sum ΣIg 3. The angle φ can be widened.

例えば、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3を正規化すると、その位相検出角度φ(0.8値)が±12°となり、その平方根を3回繰り返すと、位相検出角度φは、1回目の平方根(ΣIg31/2で±16°、2回目の平方根(ΣIg31/4で±20°、3回目の平方根(ΣIg31/8で±24°となる。このように、平方根を3回繰り返すと、位相検出角度φを正規化の2倍に広角度化することができる。 For example, when the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc is normalized, the phase detection angle φ (0.8 value) becomes ± 12 °, and when the square root is repeated three times, the phase detection The angle φ is ± 16 ° at the first square root (ΣIg 3 ) 1/2 , ± 20 ° at the second square root (ΣIg 3 ) 1/4 , ± 24 at the third square root (ΣIg 3 ) 1/8 °. As described above, when the square root is repeated three times, the phase detection angle φ can be widened to twice the normalization.

なお、演算部30では、三乗和ΣIg3の最大値nを1.0にするため、三乗和ΣIg3にその最大値nの逆数倍(1/n)を乗算することにより、抵抗性地絡電流Igrを補正するようにしている。また、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3を正規化することにより、抵抗性地絡電流Igrの位相角度を補正するようにしている。なお、健全相と地絡相の境界は、地絡相の対地電圧位相を基準に±90°位相差で区別している。この位相境界には6°以下程度の位相余裕を設けてもよい。 In order to set the maximum value n of the cube sum ΣIg 3 to 1.0, the arithmetic unit 30 multiplies the cube sum ΣIg 3 by a reciprocal multiple (1 / n) of the maximum value n to thereby reduce the resistance. The ground fault current Igr is corrected. Further, the phase angle of the resistive ground fault current Igr is corrected by normalizing the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc. The boundary between the healthy phase and the ground fault phase is distinguished by a ± 90 ° phase difference based on the ground voltage phase of the ground fault phase. A phase margin of about 6 ° or less may be provided at this phase boundary.

このような手段以外に、図15および図16に示すように、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3をDCバイアスによりオフセットすることにより、抵抗性地絡電流Igrの補正および位相角度の補正を実現することが可能である。 In addition to such means, as shown in FIG. 15 and FIG. 16, correction of the resistive ground fault current Igr is performed by offsetting the sum of squares ΣIg 3 of each phase ground fault currents Iga, Igb, Igc by a DC bias. And it is possible to realize phase angle correction.

図17は、一般的に普及している地絡継電器(GR/DGR)と、本出願人が先に提案した高圧絶縁監視装置(特開平11−271384号公報)と、本発明の実施形態における高圧絶縁監視装置25について、例えばA相が地絡した場合における各装置の監視感度を比較したものである。   FIG. 17 shows a ground fault relay (GR / DGR) that has been widely used, a high-voltage insulation monitoring device previously proposed by the present applicant (Japanese Patent Laid-Open No. 11-271384), and an embodiment of the present invention. For the high voltage insulation monitoring device 25, for example, the monitoring sensitivity of each device when the A phase is grounded is compared.

同図に示すように、地絡継電器(GR/DGR)では、零相電流が100mA程度より大きな領域S1で監視可能であり、特開平11−271384号公報を開示された高圧絶縁監視装置では、零相電流が20mAより大きな領域S2で監視可能である。これに対して、本発明の実施形態における高圧絶縁監視装置25では、零相電流が20mA以下の領域S3で監視可能であることから、微小地絡を検出することができる。 As shown in the figure, in the ground fault relay (GR / DGR), the zero-phase current can be monitored in a region S 1 larger than about 100 mA. In the high voltage insulation monitoring apparatus disclosed in Japanese Patent Laid-Open No. 11-271384 The zero-phase current can be monitored in a region S 2 where the current is larger than 20 mA. In contrast, in the high-pressure insulation monitoring apparatus 25 according to an embodiment of the present invention, since the zero-phase current can be monitored in the following areas S 3 20 mA, it is possible to detect a small ground fault.

以上で説明した実施形態では、各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の真値(ΣIg3)/nの立方根{(ΣIg3)/n}1/3を算出することにより得られた抵抗性地絡電流Igrを用いて地絡抵抗Rgを算出するようにしている。これ以外に、演算部32で位相補正することにより得られた対地電圧Va,Vb,Vcを用いることも可能である。つまり、各相対地電圧Va,Vb,Vcを各相地絡電流Iga,Igb,Igcで除算することにより、各相地絡抵抗Rga(=Va/Iga),Rgb(=Vb/Igb),Rgc(=Vc/Igc)を算出し、この各相地絡抵抗Rga,Rgb,Rgcの三乗和の立方根を算出することにより、正確な地絡抵抗Rgを得ることもできる。 In the embodiment described above, the cube root {(ΣIg 3 ) / n} 1/3 of the true value (ΣIg 3 ) / n of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc is calculated. The ground fault resistance Rg is calculated using the resistive ground fault current Igr obtained by the above. In addition to this, it is also possible to use the ground voltages Va, Vb, and Vc obtained by correcting the phase by the calculation unit 32. That is, by dividing each relative ground voltage Va, Vb, Vc by each phase ground fault current Iga, Igb, Igc, each phase ground fault resistance Rga (= Va / Iga), Rgb (= Vb / Igb), Rgc. By calculating (= Vc / Igc) and calculating the cube root of the cube sum of each phase ground fault resistance Rga, Rgb, Rgc, an accurate ground fault resistance Rg can also be obtained.

また、この高圧絶縁監視装置25では、対地電圧Va,Vb,Vcが得られることにより、接地形計器用変圧器(EVT)と同様に対地電圧Va,Vb,Vcの監視が可能になる。構内電気設備が正常に稼働している時は、対地電圧Va,Vb,Vcは平衡している(Va≒Vb≒Vc)。この対地電圧Va,Vb,Vcは、高圧電路12の絶縁劣化やその他の異常要因の発生により不平衡となる。従って、対地電圧Va,Vb,Vcを監視することにより、高圧電路12の異常を判定することができる。   In addition, the high-voltage insulation monitoring device 25 can monitor the ground voltages Va, Vb, and Vc in the same manner as the grounded instrument transformer (EVT) by obtaining the ground voltages Va, Vb, and Vc. When the on-site electrical equipment is operating normally, the ground voltages Va, Vb, and Vc are balanced (Va≈Vb≈Vc). The ground voltages Va, Vb, and Vc are unbalanced due to insulation deterioration of the high piezoelectric path 12 and other abnormal factors. Therefore, the abnormality of the high piezoelectric path 12 can be determined by monitoring the ground voltages Va, Vb, and Vc.

ここで、各相の対地電圧Va(=Ea−V0),Vb(=Eb−V0),Vc(=Ec−V0)を演算部33でベクトル加算することにより零相電圧V0を算出することができる(Va+Vb+Vc=Ea+Eb+Ec−3V0、但し、Ea+Eb+Ec=0であることから、Va+Vb+Vc=−3V0)。この零相電圧V0を用いることにより、特別高圧の受電設備における非接地系電路の地絡監視を実現することができる。 Here, the ground voltage Va (= Ea−V 0 ), Vb (= Eb−V 0 ), Vc (= Ec−V 0 ) of each phase is vector-added by the calculation unit 33 to obtain the zero phase voltage V 0 . (Va + Vb + Vc = Ea + Eb + Ec−3V 0 , where Ea + Eb + Ec = 0, so Va + Vb + Vc = −3V 0 ). By using this zero-phase voltage V 0 , it is possible to realize ground fault monitoring of an ungrounded electric circuit in an extra-high voltage power receiving facility.

また、この高圧絶縁監視装置25では、零相電圧V0および構内対地間アドミタンスY0Sを算出している。一方、電力ケーブル13のシールド線14に流れる零相電流I0Sをクランプ式変流器18により検出するようにしている。従って、計測値である零相電流I0Sと、演算値である零相電圧V0および構内対地間アドミタンスY0Sとが、Y0S・V0=I0Sの条件を満足すれば、電力ケーブル13のシールド線14が健全であると判定することができる。また、Y0S・V0=I0Sの条件を満足しない場合、電力ケーブル13のシールド線14の絶縁劣化が生じていると判定することができる。 Further, the high voltage insulation monitoring device 25 calculates the zero-phase voltage V 0 and the premises admittance Y 0S . On the other hand, the zero-phase current I 0S flowing through the shield wire 14 of the power cable 13 is detected by a clamp type current transformer 18. Therefore, if the zero-phase current I 0S that is the measured value, the zero-phase voltage V 0 that is the calculated value, and the premises admittance Y 0S satisfy the condition of Y 0S · V 0 = I 0S , the power cable 13 It can be determined that the shield wire 14 is healthy. When the condition of Y 0S · V 0 = I 0S is not satisfied, it can be determined that the insulation deterioration of the shield wire 14 of the power cable 13 has occurred.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

12 (構内)高圧電路
13 電力ケーブル
14 電力ケーブルのシールド線
15 零相変流器ZCT
18 変流器(クランプ式変流器)
19 高圧絶縁監視装置
21〜24 演算部
25 高圧絶縁監視装置
26〜32 演算部
C 構内の対地静電容量
0 構内高圧電路に流れる零相電流
0S 電力ケーブルのシールド線に流れる零相電流
If 構内対地間アドミタンスの不平衡による零相電流
Ig 地絡電流
Iga,Igb,Igc 各相地絡電流
Rg 地絡抵抗
Y 構内高圧電路の健全時および地絡時の構内対地間アドミタンス
0 構内高圧電路の健全時の構内対地間アドミタンス
0S 電力ケーブルの構内対地間アドミタンス
Yr 構内対地間アドミタンスの実数部
Yi 構内対地間アドミタンスの虚数部
ω 電源周波数の角速度
12 (on-site) high piezoelectric path 13 power cable 14 shield cable of power cable 15 zero-phase current transformer ZCT
18 Current transformer (clamp-type current transformer)
19 High Voltage Insulation Monitoring Device 21 to 24 Arithmetic Unit 25 High Voltage Insulation Monitoring Device 26 to 32 Arithmetic Unit C Ground Ground Capacitance I 0 Zero Phase Current Flowing in High Voltage Piezoelectric Path I 0S Zero Phase Current Flowing in Shield Wire of Power Cable Zero-phase current due to imbalance of premises-to-ground admittance Ig Ground fault current Iga, Igb, Igc Each phase ground fault current Rg Ground fault resistance Y When the campus high-voltage road is healthy and when ground fault occurs, the ground-to-ground admittance Y 0 Premises-to-ground admittance Y 0S power cable premises-to-ground admittance Yr real-time part of premises-to-ground admittance Yi imaginary part of premises-to-ground admittance ω Angular velocity of power frequency

Claims (8)

非接地系電路での地絡事故の発生時、その非接地系電路に接続された構内高圧電路に流れる零相電流I0、および構内高圧電路に設置された電力ケーブルのシールド線に流れる零相電流I0Sを変流器で検出し、構内高圧電路に流れる零相電流I0と、電力ケーブルのシールド線に流れる零相電流I0Sに基づいて地絡抵抗を計測する高圧絶縁監視方法であって、
計測開始時に零相電流I0の変動分ΔI0が0に近似する場合、構内対地間アドミタンスYを−Y={(I02−If)/I0S2}・Y0Sあるいは−Y={(I02−I01)/I0S2}・Y0Sの関係式でもって算出することにより、前記構内対地間アドミタンスYの実数部Yrの逆数1/Yrを暫定モードでの地絡抵抗Rgとして計測し、計測開始後に前記零相電流I0の変動分ΔI0が0よりも大きくなった場合、構内対地間アドミタンスYを−Y=(ΔI0/ΔI0S)・Y0Sの関係式でもって算出することにより、前記構内対地間アドミタンスYの実数部Yrの逆数1/Yrを確定モードでの地絡抵抗Rgとして計測することを特徴とする高圧絶縁監視方法。
When a ground fault occurs in a non-grounded circuit, the zero-phase current I 0 that flows through the high-voltage yard connected to the non-grounded circuit, and the zero-phase that flows through the shield line of the power cable installed in the high-voltage yard This is a high voltage insulation monitoring method in which the current I 0S is detected by a current transformer, and the ground fault resistance is measured based on the zero phase current I 0 flowing in the high voltage path on the premises and the zero phase current I 0S flowing in the shield line of the power cable. And
When the variation ΔI 0 of the zero-phase current I 0 approximates 0 at the start of measurement, the premises-to-ground admittance Y is set to −Y = {(I 02 −If ) / I 0S2 } · Y 0S or −Y = {(I 02 −I 01 ) / I 0S2 } · Y 0S , and the reciprocal 1 / Yr of the real part Yr of the premises-to-ground admittance Y is measured as the ground fault resistance Rg in the provisional mode. When the variation ΔI 0 of the zero-phase current I 0 becomes larger than 0 after the measurement is started, the premises-to-ground admittance Y is calculated by the relational expression of −Y = (ΔI 0 / ΔI 0S ) · Y 0S Thus, the high voltage insulation monitoring method is characterized in that the inverse 1 / Yr of the real part Yr of the premises-to-ground admittance Y is measured as the ground fault resistance Rg in the definite mode.
前記構内高圧電路に設置された零相変流器ZCTにより、地絡事故の発生時に前記構内高圧電路に流れる零相電流I0を検出するようにした請求項1に記載の高圧絶縁監視方法。 The high-voltage insulation monitoring method according to claim 1, wherein a zero-phase current transformer ZCT installed in the campus high-voltage path detects a zero-phase current I 0 flowing through the campus high-voltage path when a ground fault occurs. 前記構内高圧電路に設置された零相変流器ZCTの二次側に変流器を接続し、前記変流器により地絡事故の発生時に前記構内高圧電路に流れる零相電流I0を検出するようにした請求項1に記載の高圧絶縁監視方法。 A current transformer is connected to the secondary side of the zero-phase current transformer ZCT installed in the campus high-voltage path, and the current transformer detects the zero-phase current I 0 flowing in the campus high-voltage path when a ground fault occurs. The high voltage insulation monitoring method according to claim 1, wherein the high voltage insulation is monitored. 前記構内対地間アドミタンスYの虚数部Yiを電源周波数の角速度ωで除算することにより、構内の対地静電容量Cを計測するようにした請求項1〜3のいずれか一項に記載の高圧絶縁監視方法。   The high-voltage insulation according to any one of claims 1 to 3, wherein the ground capacitance C is measured by dividing the imaginary part Yi of the ground-to-ground admittance Y by an angular velocity ω of a power supply frequency. Monitoring method. 非接地系電路での地絡事故の発生時、その非接地系電路に接続された構内高圧電路に流れる零相電流I0、および構内高圧電路に設置された電力ケーブルのシールド線に流れる零相電流I0Sを変流器で検出し、構内高圧電路に流れる零相電流I0と、電力ケーブルのシールド線に流れる零相電流I0Sに基づいて地絡抵抗を計測する高圧絶縁監視装置であって、
前記構内高圧電路の健全時および地絡時の構内対地間アドミタンスY0を−Y0=(I02−I01)ωC0S/(I0S2−I0S1)の関係式で算出すると共に、構内高圧電路の健全時の構内対地間アドミタンスYを−Y=(I0−I01)ωC0S/(I0S−I0S1)あるいは−Y=(I0−I02)ωC0S/(I0S−I0S2)の関係式で算出し、構内対地間アドミタンスYと構内対地間アドミタンスY0との差分である構内対地間アドミタンスYの実数部Yrから算出される地絡電流Igについて、対地電圧を基準位相として各相地絡電流Iga,Igb,Igcを算出し、それら各相地絡電流Iga,Igb,Igcの三乗和ΣIg3の立方根(ΣIg31/3を抵抗性地絡電流Igrとして算出することにより地絡抵抗を計測する演算部を具備したことを特徴とする高圧絶縁監視装置。
When a ground fault occurs in a non-grounded circuit, the zero-phase current I 0 that flows through the high-voltage yard connected to the non-grounded circuit, and the zero-phase that flows through the shield line of the power cable installed in the high-voltage yard A high-voltage insulation monitoring device that detects current I 0S with a current transformer and measures the ground fault resistance based on the zero-phase current I 0 flowing through the high voltage path on the premises and the zero-phase current I 0S flowing through the shield wire of the power cable. And
The on-site high-voltage road is sound and ground-to-ground admittance Y 0 is calculated by a relational expression of −Y 0 = (I 02 −I 01 ) ωC 0S / (I 0S2 −I 0S1 ) and on-site high pressure The yard-to-ground admittance Y when the electric circuit is healthy is set to -Y = (I 0 -I 01 ) ωC 0S / (I 0S −I 0S1 ) or −Y = (I 0 −I 02 ) ωC 0S / (I 0S −I 0S2 ), and the ground voltage Ig is calculated from the real part Yr of the ground-to-ground admittance Y which is the difference between the ground-to-ground admittance Y and the ground-to-ground admittance Y 0. The ground fault currents Iga, Igb, Igc are calculated as follows, and the cube root (ΣIg 3 ) 1/3 of the cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc is calculated as the resistive ground fault current Igr. To provide a calculation unit that measures the ground fault resistance. A high voltage insulation monitoring device characterized by
前記各相地絡電流Iga,Igb,Igcの三乗和ΣIg3をその最大値nの逆数倍で補正することにより、前記三乗和ΣIg3の真値(ΣIg3)/nを算出し、前記三乗和ΣIg3の真値(ΣIg3)/nの立方根{(ΣIg3)/n}1/3を抵抗性地絡電流Igrとして算出するようにした請求項5に記載の高圧絶縁監視装置。 The phase ground fault current Iga, Igb, by correcting the cube sum ShigumaIg 3 of Igc in reciprocal of the maximum value n, the true value (ΣIg 3) of said cube sum ΣIg 3 / n to calculate the The high-voltage insulation according to claim 5, wherein a cube root {(ΣIg 3 ) / n} 1/3 of a true value (ΣIg 3 ) / n of the cube sum ΣIg 3 is calculated as a resistive ground fault current Igr. Monitoring device. 前記各相地絡電流Iga,Igb,Igcの三乗和ΣIg3を監視レベルで正規化し、その正規化された三乗和の平方根を複数回算出するようにした請求項5又は6に記載の高圧絶縁監視装置。 The cube sum ΣIg 3 of each phase ground fault current Iga, Igb, Igc is normalized at the monitoring level, and the square root of the normalized cube sum is calculated a plurality of times. High voltage insulation monitoring device. 前記各相地絡電流Iga,Igb,Igcの三乗和ΣIg3をDCバイアスによりオフセットするようにした請求項5〜7のいずれか一項に記載の高圧絶縁監視装置。 The phase ground fault current Iga, Igb, high insulation monitoring device according to any one of claims 5-7 for the cube sum ShigumaIg 3 of Igc was to offset the DC bias.
JP2014217430A 2013-10-25 2014-10-24 High voltage insulation monitoring method and high voltage insulation monitoring device Active JP5889992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014217430A JP5889992B2 (en) 2013-10-25 2014-10-24 High voltage insulation monitoring method and high voltage insulation monitoring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013222207 2013-10-25
JP2013222207 2013-10-25
JP2014217430A JP5889992B2 (en) 2013-10-25 2014-10-24 High voltage insulation monitoring method and high voltage insulation monitoring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015141235A Division JP6328591B2 (en) 2013-10-25 2015-07-15 High voltage insulation monitoring method and high voltage insulation monitoring device

Publications (2)

Publication Number Publication Date
JP2015108618A true JP2015108618A (en) 2015-06-11
JP5889992B2 JP5889992B2 (en) 2016-03-22

Family

ID=53439052

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014217430A Active JP5889992B2 (en) 2013-10-25 2014-10-24 High voltage insulation monitoring method and high voltage insulation monitoring device
JP2015141235A Active JP6328591B2 (en) 2013-10-25 2015-07-15 High voltage insulation monitoring method and high voltage insulation monitoring device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015141235A Active JP6328591B2 (en) 2013-10-25 2015-07-15 High voltage insulation monitoring method and high voltage insulation monitoring device

Country Status (1)

Country Link
JP (2) JP5889992B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445357A (en) * 2018-12-17 2019-03-08 江苏久创电气科技有限公司 High voltage cable smart grounding box device
CN113848429A (en) * 2021-10-15 2021-12-28 国网陕西省电力公司电力科学研究院 Power distribution network single-phase line break fault protection method and system
CN114089137A (en) * 2021-11-30 2022-02-25 广东电网有限责任公司 Cable core alignment and pressure resistance test auxiliary device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548814B (en) * 2016-01-13 2019-01-08 国网浙江省电力有限公司 A kind of distribution line ground fault judgment method and system
CN111343033B (en) * 2020-05-22 2020-08-11 中国人民解放军国防科技大学 Network management system for multi-layer difference

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128471A (en) * 1989-07-31 1991-05-31 Mitsui Petrochem Ind Ltd Monitoring device for insulation deterioration of electric equipment
JP2001095149A (en) * 1999-09-17 2001-04-06 Chubu Denki Hoan Kyokai Method and device for discriminating ground section for private substation
JP2001218360A (en) * 2000-02-03 2001-08-10 Koichi Tsuji One-line ground protection system for non-grounded system transmission/distribution line
EP1870717A1 (en) * 2006-06-20 2007-12-26 ABB Technology AG System and method for determining phase-to-earth admittances of a three-phase electric line
JP2009095125A (en) * 2007-10-09 2009-04-30 Mitsubishi Electric Corp Power supply circuit and earth leakage breaker using the same
JP2011137718A (en) * 2009-12-28 2011-07-14 Gs Yuasa Corp Device for monitoring high voltage insulation
JP2011227020A (en) * 2010-04-23 2011-11-10 Chugoku Electric Power Co Inc:The Ground fault detecting system for distribution transformer secondary side
EP2490311A1 (en) * 2011-02-15 2012-08-22 ABB Technology AG Method and apparatus for detecting earth fault

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331666A (en) * 1993-05-21 1994-12-02 Yazaki Corp Diagnostic method for insulation deterioration of triplex power cable
JPH0720171A (en) * 1993-06-30 1995-01-24 Mitsubishi Denki Bill Techno Service Kk Insulation diagnosis/monitor system for power cable

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128471A (en) * 1989-07-31 1991-05-31 Mitsui Petrochem Ind Ltd Monitoring device for insulation deterioration of electric equipment
JP2001095149A (en) * 1999-09-17 2001-04-06 Chubu Denki Hoan Kyokai Method and device for discriminating ground section for private substation
JP2001218360A (en) * 2000-02-03 2001-08-10 Koichi Tsuji One-line ground protection system for non-grounded system transmission/distribution line
EP1870717A1 (en) * 2006-06-20 2007-12-26 ABB Technology AG System and method for determining phase-to-earth admittances of a three-phase electric line
JP2009095125A (en) * 2007-10-09 2009-04-30 Mitsubishi Electric Corp Power supply circuit and earth leakage breaker using the same
JP2011137718A (en) * 2009-12-28 2011-07-14 Gs Yuasa Corp Device for monitoring high voltage insulation
JP2011227020A (en) * 2010-04-23 2011-11-10 Chugoku Electric Power Co Inc:The Ground fault detecting system for distribution transformer secondary side
EP2490311A1 (en) * 2011-02-15 2012-08-22 ABB Technology AG Method and apparatus for detecting earth fault

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445357A (en) * 2018-12-17 2019-03-08 江苏久创电气科技有限公司 High voltage cable smart grounding box device
CN113848429A (en) * 2021-10-15 2021-12-28 国网陕西省电力公司电力科学研究院 Power distribution network single-phase line break fault protection method and system
CN114089137A (en) * 2021-11-30 2022-02-25 广东电网有限责任公司 Cable core alignment and pressure resistance test auxiliary device

Also Published As

Publication number Publication date
JP2015227884A (en) 2015-12-17
JP5889992B2 (en) 2016-03-22
JP6328591B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6328591B2 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
RU2416804C2 (en) Device and method for definition of ground short circuit
CN103080757B (en) Device and method for detecting a ground fault
US10288688B2 (en) Systems and methods for monitoring and protecting an electric power generator
WO2019139973A1 (en) Temporary overvoltage and ground fault overvoltage protection based on arrester current measurement and analysis
JP5996709B1 (en) High voltage insulation monitoring device
JP2009058234A (en) Leak current measuring instrument and measuring method
US20140309953A1 (en) Method for Locating of Single-Phase-to-Ground Faults of Ungrounded Power Distribution Systems
JP4599120B2 (en) Electrical installation insulation monitoring device and method
CN108919026B (en) Live detection method for leakage current of lightning arrester
US10819261B1 (en) Security improvements for electric power generator protection
CN105403808B (en) A kind of localization method and device of DC line earth fault
KR20090056686A (en) Method and apparatus for detecting a leakage current and determining a phase of the leakage current using phase comparison between a net current and phase currents
CN113109662A (en) Method and system for determining relative aging degree of cable based on interphase relative dielectric loss
CN110146780B (en) Ferromagnetic resonance distinguishing method for neutral point ungrounded flexible power distribution network system
JP5529300B1 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
Shuin et al. Comparison of electrical variables of transient process for earth-to ground fault location in medium voltage cable networks
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JP2008309681A (en) Insulation deterioration monitoring device and its method
CN109617017B (en) Generator stator grounding protection system, method and device
RU2305293C1 (en) METHOD OF DETECTING FAULT IN 6( 10 )-35 kV ELECTRIC CIRCUIT WITH ISOLATED OR COMPENSATED NEUTRAL POINT
JP6736454B2 (en) Ground voltage detector
Dán et al. Towards a more reliable operation of compensated networks in case of single phase to ground faults
Shuin et al. Complex of technical solutions for protection and selective signaling of single-phase earth faults in 6-10 kV distribution cable networks
JP2003344476A (en) Insulation monitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160217

R150 Certificate of patent or registration of utility model

Ref document number: 5889992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250