JP2015107033A - Parallel-off control device, parallel-off control method and power conditioner - Google Patents

Parallel-off control device, parallel-off control method and power conditioner Download PDF

Info

Publication number
JP2015107033A
JP2015107033A JP2013249465A JP2013249465A JP2015107033A JP 2015107033 A JP2015107033 A JP 2015107033A JP 2013249465 A JP2013249465 A JP 2013249465A JP 2013249465 A JP2013249465 A JP 2013249465A JP 2015107033 A JP2015107033 A JP 2015107033A
Authority
JP
Japan
Prior art keywords
power supply
supply system
disconnection
unit
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013249465A
Other languages
Japanese (ja)
Other versions
JP6109050B2 (en
Inventor
裕之 花岡
Hiroyuki Hanaoka
裕之 花岡
昭洋 塚田
Akihiro Tsukada
昭洋 塚田
和也 西澤
Kazuya Nishizawa
和也 西澤
拓雄 西山
Takuo Nishiyama
拓雄 西山
康樹 田所
Yasuki Tadokoro
康樹 田所
環樹 水野
Kanki Mizuno
環樹 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Eneos Corp
Original Assignee
Sanyo Electric Co Ltd
JX Nippon Oil and Energy Corp
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, JX Nippon Oil and Energy Corp, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013249465A priority Critical patent/JP6109050B2/en
Publication of JP2015107033A publication Critical patent/JP2015107033A/en
Application granted granted Critical
Publication of JP6109050B2 publication Critical patent/JP6109050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a parallel-off control device capable of performing parallel-off of a distributed power source and a commercial power supply system during single operation without affecting detection of single operation in another distributed power supply system.SOLUTION: The parallel-off control device includes: a single operation determination part 27 for determining occurrence of single operation of a distributed power supply system 1 which is operated while being interconnected with a commercial power supply system 11; a phase detection part 26 for detecting a phase of an AC voltage of the commercial power supply system 11; a delay part 28 in which, when it is determined by the single operation determination part 27 that the single operation occurs, while defining the phase of the AC voltage at the time of the determination as a reference, a delay signal is generated that is delayed by a half cycle of the phase or more; and an instruction part 29 in which, when the delay signal is received, a parallel-off signal instructing the parallel-off of the commercial power supply system and the distributed power supply system is generated.

Description

本発明は、解列制御装置、解列制御方法およびパワーコンディショナーに関する。   The present invention relates to a disconnection control device, a disconnection control method, and a power conditioner.

商用電源に比べて比較的小規模な発電装置(電源)を電力需要家の近くに分散配置して電力の供給を行う分散型電源システムが知られている。工事や事故等の種々の原因で、商用電源による電力供給を停止する場合がある。商用電源による電力供給が停止している状態(停電状態)で分散型電源システムから系統負荷に電力が供給される状態を、単独運転という。単独運転が発生すると、本来、無電圧であるべき商用電源系統が充電されることとなり、当該系統での作業に保安面等の問題が生じる虞がある。したがって、分散型電源システムの単独運転を検出して、単独運転を解消する等の措置が必要になる。   2. Description of the Related Art A distributed power supply system that supplies electric power by distributing power generators (power supplies) that are relatively small compared to commercial power supplies near power consumers is known. There are cases where the power supply by the commercial power supply is stopped due to various causes such as construction and accidents. A state in which power is supplied from the distributed power supply system to the system load in a state where power supply by the commercial power supply is stopped (power failure state) is referred to as single operation. When the isolated operation occurs, the commercial power supply system that should be essentially non-voltage is charged, and there is a possibility that problems such as security will occur in the operation of the system. Accordingly, it is necessary to take measures such as detecting the isolated operation of the distributed power supply system and eliminating the isolated operation.

分散型電源システムの単独運転を検出する方式として、受動的方式と能動的方式が知られている。受動的方式は、系統電圧を監視して、系統停電の場合に単独運転時に現れる変化を検出する方式である。能動的方式は、分散型電源システム側から系統電圧に変動を与えるために外乱信号(能動信号)を印加して、系統停電の場合に単独運転時に現れる周波数の変化を検出する方式である。   As a method for detecting the isolated operation of the distributed power supply system, a passive method and an active method are known. The passive method is a method of monitoring a system voltage and detecting a change appearing during an independent operation in the case of a system power failure. In the active method, a disturbance signal (active signal) is applied from the side of the distributed power supply system in order to change the system voltage, and a frequency change that appears during an isolated operation in the case of a system power failure is detected.

また、単独運転を解消する方法としては、分散型電源システムと商用電源系統とを並列または解列させるための連系リレーを設け、単独運転の検出時に連系リレーを遮断して、分散型電源システムと商用電源系統とを解列させる方法が知られている。連系リレーは、例えば、特許文献1に開示されている。   In addition, as a method of eliminating the isolated operation, an interconnection relay for paralleling or disconnecting the distributed power supply system and the commercial power supply system is provided. A method of disconnecting a system from a commercial power supply system is known. The interconnection relay is disclosed in Patent Document 1, for example.

特開2009−44910号公報JP 2009-44910 A

近年では分散型電源システムの普及が進み、比較的近い地域や範囲で複数の分散型電源システムが並列されるケースが多くなっている。ここで、商用電源系統に停電が発生した際に、各分散型電源システムにおいて単独運転を検出して連系リレーを遮断する場合、次のような問題が発生する。   In recent years, the spread of distributed power supply systems has progressed, and there are many cases where a plurality of distributed power supply systems are arranged in parallel in a relatively close region and range. Here, when a power failure occurs in the commercial power supply system, the following problems occur when the isolated operation is detected and the interconnection relay is shut off in each distributed power supply system.

近隣の複数の分散型電源システム同士は、同期されているとは限らず、能動方式による単独運転の検出タイミングが複数の分散型電源システム間においてずれる可能性がある。このように、単独運転の検出タイミングがずれている場合、ある分散型電源システムが他のシステムよりも先に単独運転を検出し、連系リレーを遮断してしまうと、系統の変動や信号の相互干渉により、まだ系統に接続されている分散型システムに影響を与える可能性がある。たとえば、まだ系統に接続されている分散型システムにおいて、検出している電圧の周波数が変化し、単独運転時に現れる変化が検出できなくなってしまう場合がある。これでは、停電時に、分散型電源システムにおいて、単独運転が発生してしまう。   The plurality of neighboring distributed power systems are not necessarily synchronized, and the detection timing of the independent operation by the active method may be shifted between the plurality of distributed power systems. In this way, when the detection timing of isolated operation is shifted, if a distributed power supply system detects isolated operation before other systems and shuts off the interconnection relay, system fluctuations and signal Mutual interference can affect distributed systems that are still connected to the grid. For example, in a distributed system that is still connected to the grid, the frequency of the detected voltage may change, making it impossible to detect changes that appear during isolated operation. In this case, an isolated operation occurs in the distributed power supply system during a power failure.

本発明は、上記事情に鑑みてなされたものであり、単独運転発生時に、他の分散型電源システムにおける単独運転の検出に影響を与えず、分散型電源システムと商用電源系統との解列を行える解列制御装置、解列制御方法、および、パワーコンディショナーを提供することを目的とする。   The present invention has been made in view of the above circumstances, and when isolated operation occurs, it does not affect the detection of isolated operation in other distributed power systems, and disconnects the distributed power system from the commercial power system. An object of the present invention is to provide a disconnection control device, a disconnection control method, and a power conditioner.

上記目的を達成するために、解列制御装置は、単独運転判定部と、位相検出部と、遅延部と、指示部を備える。単独運転判定部は、商用電源系統と連系して運転する分散型電源システムの単独運転の発生有無を判定し、単独運転が発生する場合に判定信号を発生する。位相検出部は、商用電源の交流電圧または前記分散電源システムが出力する交流電圧を位相に変換する。遅延部は、単独運転判定部から単独運転有りの判定信号を受信すると、位相検出部から送信される位相情報に基づき、その判定時点の交流電圧の位相を基準として少なくとも半周期以上の遅延処理(待機)後に、指示部に遅延信号を発生する。指示部は、遅延部から遅延信号を受信すると、商用電源系統から分散型電源システムを解列させるための解列信号を発生する。   In order to achieve the above object, the disconnection control device includes an isolated operation determination unit, a phase detection unit, a delay unit, and an instruction unit. The isolated operation determination unit determines whether or not an isolated operation of the distributed power supply system that operates in conjunction with the commercial power supply system is generated, and generates a determination signal when the isolated operation occurs. The phase detection unit converts an AC voltage of a commercial power supply or an AC voltage output from the distributed power supply system into a phase. When the delay unit receives the determination signal indicating that there is an isolated operation from the isolated operation determination unit, the delay unit is based on the phase information transmitted from the phase detection unit and performs delay processing (at least a half cycle or more based on the phase of the AC voltage at the determination time). After waiting), a delay signal is generated in the instruction unit. When the instruction unit receives the delay signal from the delay unit, the instruction unit generates a disconnection signal for disconnecting the distributed power supply system from the commercial power supply system.

また、解列制御方法は、単独運転判定ステップと、位相検出ステップと、解列指示ステップと、を含む。単独運転判定ステップにおいては、商用電源系統と連系して運転する分散型電源システムの単独運転の発生有無を判定する。位相検出ステップにおいては、商用電源系統の交流電圧の位相を検出する。解列指示ステップにおいては、単独運転判定ステップにおいて単独運転の発生有りと判定されると、当該判定時の交流電圧の位相を基準として、当該位相の半周期以上経過後に商用電源系統と分散電源システムとの解列を指示する。   The disconnection control method includes an isolated operation determination step, a phase detection step, and a disconnection instruction step. In the isolated operation determination step, it is determined whether or not an isolated operation of the distributed power supply system that operates in conjunction with the commercial power supply system is generated. In the phase detection step, the phase of the AC voltage of the commercial power supply system is detected. In the disconnection instruction step, when it is determined in the isolated operation determination step that the isolated operation has occurred, the commercial power supply system and the distributed power supply system are used after a half cycle or more of the phase has elapsed with reference to the phase of the AC voltage at the time of the determination. Instructing the disconnection with.

以上の解列制御装置、解列制御方法およびパワーコンディショナーによれば、単独運転の発生有りと判定した場合、その判定時点の交流電圧の位相を基準として少なくとも半周期以上経過後に分散型電源システムと商用電源系統とが解列される。したがって、複数の分散型電源システムが並列され、各分散型電源システムにおける単独運転検出のタイミングがずれていても、実際に解列が実行されるのは、全ての分散型電源システムにおける単独運転発生の判定後になる。つまり、先行して単独運転の発生有りとした分散型電源システムが実行する解列動作が、他の分散型電源システムの単独運転検知に影響を与えることがなくなる。これにより、並列されている全ての分散型電源システムにおいて、停電時において確実に単独運転検知および解列を実行することができる。   According to the disconnection control device, the disconnection control method, and the power conditioner described above, when it is determined that there is an isolated operation, the distributed power supply system and the distributed power supply system after at least half a cycle have elapsed with reference to the phase of the AC voltage at the time of determination The commercial power system is disconnected. Therefore, even if a plurality of distributed power supply systems are arranged in parallel and the timing of the isolated operation detection in each distributed power system is shifted, the actual disconnection is executed only in all the distributed power systems. After the determination. In other words, the disconnection operation executed by the distributed power supply system that has been preceded by the occurrence of isolated operation does not affect the isolated operation detection of other distributed power supply systems. Thereby, in all the distributed power supply systems arranged in parallel, the isolated operation detection and the disconnection can be reliably executed at the time of a power failure.

複数の分散型電源システムが商用電源系統に接続されている様子を示す概念図である。It is a conceptual diagram which shows a mode that the some distributed power supply system is connected to the commercial power supply system. 本発明に係る分散型電源システムの系統連系概略構成を示す図である。It is a figure which shows the grid connection schematic structure of the distributed power supply system which concerns on this invention. 複数のパワーコンディショナーが商用電源系統に接続される様子を示す概念図である。It is a conceptual diagram which shows a mode that several power conditioners are connected to a commercial power supply system. 各パワーコンディショナーにおける単独運転の検出タイミングを示す図である。It is a figure which shows the detection timing of the independent driving | operation in each power conditioner. 単独運転の誤検知が発生する原理を説明する図である。It is a figure explaining the principle which the misdetection of a single operation generate | occur | produces. 本発明に係る他の分散型電源システムの系統連系概略構成を示す図である。It is a figure which shows the grid connection schematic structure of the other distributed power supply system which concerns on this invention.

以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明に置いて同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from the actual ratios.

図1は、複数の分散型電源システムが商用電源系統に接続されている様子を示す概念図である。   FIG. 1 is a conceptual diagram showing a state in which a plurality of distributed power supply systems are connected to a commercial power supply system.

図1では、各需要家に分散型電源システム1が設けられている例を示す。本実施形態に係る分散型電源システム1は、電源10の電力を、商用電源系統11と連系して負荷12に供給可能なシステムである。図1に示す通り、電源10とパワーコンディショナー13と、を備える。分散型電源システム1は、電源10と商用電源系統11の間に、パワーコンディショナー13が接続される。   FIG. 1 shows an example in which a distributed power supply system 1 is provided for each consumer. The distributed power supply system 1 according to the present embodiment is a system that can supply power from a power supply 10 to a load 12 in conjunction with a commercial power supply system 11. As shown in FIG. 1, a power source 10 and a power conditioner 13 are provided. In the distributed power system 1, a power conditioner 13 is connected between a power supply 10 and a commercial power supply system 11.

電源10は、電力の供給を受けて使用する者(以下では、「需要家」と称する)の受電設備近隣に分散して配置される中小規模の発電装置である。例えば、電源10は、太陽電池、燃料電池、エンジン発電機、または蓄電池である。図1では、電源10として太陽光パネルに接続された太陽電池を用いる形態を示す。   The power supply 10 is a small-scale power generation device that is distributed in the vicinity of a power receiving facility of a person who uses the power supplied (hereinafter referred to as a “customer”). For example, the power supply 10 is a solar cell, a fuel cell, an engine generator, or a storage battery. In FIG. 1, the form which uses the solar cell connected to the solar panel as the power supply 10 is shown.

商用電源系統11は、電力を需要家の受電設備に供給するための、発電、変電、送電、配電を統合したシステムである。すなわち、電力会社から工場や一般家庭などに電力を供給するシステムである。   The commercial power supply system 11 is a system that integrates power generation, power transformation, power transmission, and power distribution for supplying power to a power receiving facility of a consumer. That is, it is a system that supplies electric power from a power company to factories, ordinary homes, and the like.

負荷12は、商用電源系統11から需要家の受電設備に供給された電力を消費する機器である。   The load 12 is a device that consumes the electric power supplied from the commercial power supply system 11 to the power receiving facility of the customer.

パワーコンディショナー13は、電源10において発電された電力(直流電力)を、商用電源系統11および負荷12において利用可能な電力(交流電力)に変換する。パワーコンディショナー13は、電源10において発電された電力が負荷12の需要電力よりも小さい場合、商用電源系統11から負荷12へ不足電力を供給する。逆に、たとえば太陽電池システムの場合は、電源10において発電された電力が負荷12の需要電力よりも大きい場合、余剰電力を商用電源系統11に供給する。   The power conditioner 13 converts power (DC power) generated by the power source 10 into power (AC power) that can be used by the commercial power system 11 and the load 12. The power conditioner 13 supplies insufficient power from the commercial power supply system 11 to the load 12 when the power generated by the power supply 10 is smaller than the demand power of the load 12. Conversely, in the case of a solar cell system, for example, if the power generated by the power supply 10 is larger than the demand power of the load 12, surplus power is supplied to the commercial power supply system 11.

一般に、商用電源系統11の配電線において地絡または短絡事故、計画停電などによって変電所から配電線への電力の送電が停止した時には(以下では「停電」と称する)、当該配電線での作業の安全性が確保されなければならない。そのため、分散型電源システム1は、商用電源系統11が停電した時には、少なくとも作業中の配電線から解列し、分散型電源システム1からの電力供給を停止する必要がある。そこで、パワーコンディショナー13は、後述する解列制御装置によって、分散電源システム1が単独で運転していること(以下では「単独運転」と称する)、つまり、商用電源系統11の停電を検知し、分散型電源システム1を商用電源系統11から解列する。   In general, when power transmission from a substation to a distribution line is stopped due to a ground fault or a short-circuit accident, a planned power outage, etc. in a distribution line of the commercial power system 11 (hereinafter referred to as “power failure”), work on the distribution line Safety must be ensured. Therefore, when the commercial power supply system 11 fails, the distributed power supply system 1 needs to be disconnected from at least the distribution line in operation and stop the power supply from the distributed power supply system 1. Therefore, the power conditioner 13 detects that the distributed power supply system 1 is operating alone (hereinafter referred to as “single operation”), that is, a power failure of the commercial power supply system 11 by a disconnection control device described later. The distributed power system 1 is disconnected from the commercial power system 11.

パワーコンディショナー13の構成をより詳細に説明する。   The configuration of the power conditioner 13 will be described in more detail.

図2は、第1実施形態に係る分散型電源システムの概略構成例であって、特にパワーコンディショナー13の詳細な構成を示す。   FIG. 2 is a schematic configuration example of the distributed power supply system according to the first embodiment, and particularly shows a detailed configuration of the power conditioner 13.

パワーコンディショナー13は、インバーター部20、連系リレー21、計測部22、電流指令値生成部23、電流制御部24、ゲート制御部25、位相検出部26、単独運転判定部27、遅延部28、および指示部29を含んで構成される。   The power conditioner 13 includes an inverter unit 20, an interconnecting relay 21, a measurement unit 22, a current command value generation unit 23, a current control unit 24, a gate control unit 25, a phase detection unit 26, an isolated operation determination unit 27, a delay unit 28, And an instruction unit 29.

インバーター部20は、電源10と商用電源系統11との間に接続され、電源10から出力された直流電力を交流電力に変換するインバーター回路を有している。インバーター回路は、主に、スイッチング回路(図示せず)、周波数制御回路(図示せず)、フィルター回路(図示せず)を含んで構成される。スイッチング回路は、ブリッジ接続された複数のスイッチング素子を含み、各スイッチング素子をスイッチング(オン/オフ)して直流電力を交流電力に変換する。なお、スイッチング素子には、IGBT(Insulated Gate Bipolar Transistor)等が用いられる。ただし、これ
に限らず、FET(Field Effect Transistor)等のモノポーラトランジスタや、IGBT以外のバイポーラトランジスタが用いられてもよい。周波数制御回路は、パワーコンディショナー13の出力電流周波数をコントロールする。フィルター回路は、スイッチング回路により交流化された電流波形を商用電源系統11の交流波形に近い曲線に鈍らせる。また、インバーター部20は、インバーター回路の前段側に、電源10から出力された直流電力から所望(た3とえば300〜400V)の直流電圧を作りインバーター回路に供給するDC/DCコンバーターを有していてもよい。
The inverter unit 20 is connected between the power supply 10 and the commercial power supply system 11, and has an inverter circuit that converts DC power output from the power supply 10 into AC power. The inverter circuit mainly includes a switching circuit (not shown), a frequency control circuit (not shown), and a filter circuit (not shown). The switching circuit includes a plurality of bridge-connected switching elements, and switches each switching element (ON / OFF) to convert DC power into AC power. An IGBT (Insulated Gate Bipolar Transistor) or the like is used as the switching element. However, the present invention is not limited to this, and a monopolar transistor such as an FET (Field Effect Transistor) or a bipolar transistor other than an IGBT may be used. The frequency control circuit controls the output current frequency of the power conditioner 13. The filter circuit blunts the current waveform converted to AC by the switching circuit into a curve close to the AC waveform of the commercial power supply system 11. Further, the inverter unit 20 has a DC / DC converter on the front stage side of the inverter circuit that generates a desired DC voltage (for example, 300 to 400 V) from the DC power output from the power supply 10 and supplies the DC voltage to the inverter circuit. It may be.

連系リレー21は、インバーター部20と商用電源系統11の間に接続され、分散型電源システム1を商用電源系統11に並列または解列させる開閉器である。   The interconnection relay 21 is a switch that is connected between the inverter unit 20 and the commercial power supply system 11 and that causes the distributed power supply system 1 to be parallel or disconnected from the commercial power supply system 11.

計測部22は、少なくともインバーター部20から出力された交流電圧を計測する。例えば、計測部22は、交流電圧計を用いてインバーター部20から出力された交流電圧を計測する。   The measurement unit 22 measures at least the AC voltage output from the inverter unit 20. For example, the measurement unit 22 measures the AC voltage output from the inverter unit 20 using an AC voltmeter.

電流指令値生成部23は、計測部22で計測した商用電源系統11の交流電圧に同期した正弦波を作成し、必要に応じて単独運転判定部の指示に基づき無効電流分を加えた電流指令値を生成する。   The current command value generation unit 23 creates a sine wave synchronized with the AC voltage of the commercial power supply system 11 measured by the measurement unit 22, and adds a reactive current component based on an instruction from the isolated operation determination unit as necessary. Generate a value.

電流制御部24は、インバーター部20から出力される交流電流が、電流指令値生成部23で生成した電流指令値に従うように、後述のゲート制御部25を介して、インバーター部20を制御する。   The current control unit 24 controls the inverter unit 20 via the gate control unit 25 described later so that the alternating current output from the inverter unit 20 follows the current command value generated by the current command value generation unit 23.

ゲート制御部25は、直流電流を交流電流に変換するためにインバーター部20内に備えられたスイッチング素子をオン/オフするための制御信号を出力する。具体的には、ゲート制御部25は、後述する指示部29が発生する解列信号を受信して、インバーター部20の出力を制御するための全てのスイッチング素子をオフにする。インバーター部20の出力を制御するための全てのスイッチング素子をオフにすることで(ゲートブロック)、電源10から分散電源システム1外への電力供給を停止することができる。   The gate control unit 25 outputs a control signal for turning on / off a switching element provided in the inverter unit 20 in order to convert a direct current into an alternating current. Specifically, the gate control unit 25 receives a disconnection signal generated by an instruction unit 29 described later, and turns off all switching elements for controlling the output of the inverter unit 20. The power supply from the power supply 10 to the outside of the distributed power supply system 1 can be stopped by turning off all switching elements for controlling the output of the inverter unit 20 (gate block).

位相検出部26は、計測部22が計測した交流電圧を位相に変換し、後述する遅延部28に位相情報を送信する。なお、ここで検出される位相は、商用電源系統11が正常である場合には商用電源系統11の交流電圧に支配され、商用電源系統11が停電している場合は、インバーター部20からの交流電圧に支配されるため、説明の便宜上、商用電源系統11の交流電圧位相とインバーター部20の交流電圧位相を同義に扱う場合がある。   The phase detection unit 26 converts the AC voltage measured by the measurement unit 22 into a phase, and transmits phase information to a delay unit 28 described later. The phase detected here is governed by the AC voltage of the commercial power system 11 when the commercial power system 11 is normal, and the AC from the inverter unit 20 when the commercial power system 11 is out of power. Since it is dominated by voltage, for convenience of explanation, the AC voltage phase of the commercial power supply system 11 and the AC voltage phase of the inverter unit 20 may be treated synonymously.

単独運転判定部27は、計測部22による計測値を監視して、分散型電源システム1の単独運転の発生の有無を判定する。単独運転の発生有りと判定すると、単独運転が発生したことを知らせる判定信号を発生する。   The isolated operation determination unit 27 monitors the measurement value by the measurement unit 22 to determine whether or not the isolated operation of the distributed power supply system 1 has occurred. If it is determined that an isolated operation has occurred, a determination signal is generated to notify that an isolated operation has occurred.

遅延部28は、単独運転判定部27と後述する指示部29の間に配置される。遅延部28は、単独運転判定部27から単独運転有りの判定信号を受信すると、位相検出部26から送信される位相情報に基づき、その判定時点の交流電圧の位相を基準として少なくとも半周期以上の遅延処理(待機)後に、後述する指示部29に遅延信号を送信する。例えば、交流電圧が50Hzの場合、1周期が20ミリ秒であるため、遅延部28は、判定信号を受信してから10ミリ秒以上経過後に、指示部29に遅延信号を送信する。   The delay unit 28 is disposed between the isolated operation determination unit 27 and an instruction unit 29 described later. When the delay unit 28 receives a determination signal indicating that there is an isolated operation from the isolated operation determination unit 27, the delay unit 28 is based on the phase information transmitted from the phase detection unit 26 and is at least a half cycle or more based on the phase of the AC voltage at the determination time. After the delay process (standby), a delay signal is transmitted to the instruction unit 29 described later. For example, when the AC voltage is 50 Hz, since one cycle is 20 milliseconds, the delay unit 28 transmits a delay signal to the instruction unit 29 after 10 milliseconds or more have elapsed since the determination signal was received.

指示部29は、遅延部28から遅延信号を受信すると、連系リレー21に、商用電源系統11から分散型電源システム1を解列させるために連系リレーを遮断させる解列信号を送信する。または、指示部29は、遅延部28から遅延信号を受信すると、ゲート制御部
25に、インバーター部20の出力を制御するための全てのスイッチング素子をオフにしてインバーター部20の出力を停止させるゲート制御の実行を指示する解列信号を送信する。指示部29は、連系リレー21およびゲート制御部25のどちらか一方あるいは両方に解列信号を送信してもよい。
When the instruction unit 29 receives the delay signal from the delay unit 28, the instruction unit 29 transmits to the interconnection relay 21 a disconnection signal for disconnecting the interconnection relay in order to disconnect the distributed power supply system 1 from the commercial power supply system 11. Alternatively, when the instruction unit 29 receives the delay signal from the delay unit 28, the instruction unit 29 causes the gate control unit 25 to turn off all switching elements for controlling the output of the inverter unit 20 and stop the output of the inverter unit 20. A disconnect signal instructing execution of control is transmitted. The instruction unit 29 may transmit a disconnection signal to one or both of the interconnection relay 21 and the gate control unit 25.

なお、図6に示すように、遅延部28は指示部29の一部機能であってもよい。また、解列信号は、遅延部28が判定信号と位相情報に基づき遅延時間を決定し、その決定したタイミングで指示部29から送信されるものであってもよいし、ハードウェア回路によって遅延処理が施された判定信号を指示部29からの解列信号として利用してもよい。   As shown in FIG. 6, the delay unit 28 may be a partial function of the instruction unit 29. Further, the disconnection signal may be a signal that the delay unit 28 determines a delay time based on the determination signal and the phase information, and is transmitted from the instruction unit 29 at the determined timing, or may be delayed by a hardware circuit. The determination signal subjected to the above may be used as a disconnection signal from the instruction unit 29.

解列制御装置は、位相検出部26、単独運転判定部27、遅延部28、指示部29を少なくとも備えて構成される。この解列制御装置が動作するために用いられる各種値の取得機能や制御信号については、解列制御装置が備えていてもよいし、解列制御装置が搭載されるパワーコンディショナー13が備える機能と兼用してもよい。   The disconnection control device includes at least a phase detection unit 26, an isolated operation determination unit 27, a delay unit 28, and an instruction unit 29. With respect to various value acquisition functions and control signals used for the operation of the disconnection control device, the disconnection control device may be provided, and the function provided in the power conditioner 13 on which the disconnection control device is mounted. You may also use it.

本実施形態の分散型電源システム1によれば、以下の効果を奏する。   According to the distributed power supply system 1 of the present embodiment, the following effects can be obtained.

単独運転判定部27が分散型電源システム1の単独運転の発生有りと判定した場合、判定時点の交流電圧の位相を基準として少なくとも半周期以上経過後に、指示部29から連系リレー21および/またはゲート制御部25に、商用電源系統11から分散型電源システム1を解列させるための解列信号が送信される。これにより、図1に示すような複数の分散型電源システム1間において、能動的単独運転検出のタイミングがずれている場合でも、最初に単独運転の発生有りと判定した分散型電源システム1において実際に解列が実行されるのは、全ての分散型電源システム1が単独運転の発生の判定後になる。つまり、先行して単独運転の発生有りとした分散型電源システム1が実行する解列動作が、他の分散型電源システム1の単独運転検知に影響を与えることがなくなるため、停電時に、並列されているすべての分散型電源システム1において、確実に単独運転を検知し、商用電源系統11からの解列を実行することができる。   When the single operation determination unit 27 determines that the single operation of the distributed power supply system 1 has occurred, after at least a half cycle or more has elapsed from the phase of the AC voltage at the time of determination as a reference, the interconnection relay 21 and / or A disconnection signal for disconnecting the distributed power supply system 1 from the commercial power supply system 11 is transmitted to the gate control unit 25. As a result, even when the timing of the active isolated operation detection is shifted between the plurality of distributed power supply systems 1 as shown in FIG. Disconnection is executed after all the distributed power supply systems 1 have been determined to be isolated. In other words, since the disconnection operation executed by the distributed power supply system 1 that has been preceded by the occurrence of isolated operation does not affect the isolated operation detection of other distributed power supply systems 1, it is paralleled at the time of a power failure. In all of the distributed power supply systems 1 that are connected, it is possible to reliably detect the isolated operation and execute the disconnection from the commercial power supply system 11.

ここで、本実施形態の効果をより明確にするために、従来の分散型電源システム間において単独運転の発生の判定タイミングがずれる原因について説明する。さらに、判定タイミングがずれた場合に、単独運転に誤検知が発生する原因についても説明する。   Here, in order to clarify the effect of the present embodiment, the cause of the shift in the determination timing of the occurrence of isolated operation between the conventional distributed power systems will be described. Furthermore, the cause of erroneous detection occurring in isolated operation when the determination timing is shifted will be described.

図3は、複数の分散型電源システムにそれぞれ備えられた複数のパワーコンディショナーが商用電源系統に接続される様子を示す概念図を示す。図4は、各パワーコンディショナーにおける単独運転の検出タイミングを示す。図5は、単独運転の誤検知が発生する原理を説明する説明図を示す。   FIG. 3 is a conceptual diagram showing a state in which a plurality of power conditioners respectively provided in a plurality of distributed power systems are connected to a commercial power system. FIG. 4 shows the detection timing of isolated operation in each power conditioner. FIG. 5 is an explanatory diagram for explaining the principle of erroneous detection of isolated operation.

図3の概念図に示すように、4つの電源50a〜50dを運転する4つのパワーコンディショナー53a〜53dがそれぞれ商用電源系統11に接続されているとする。ここで、図中点線で囲って示すように、パワーコンディショナー53bだけが、パワーコンディショナー53a、53c、53dとは、U相およびV相が逆に商用電源系統11に接続されている。   As shown in the conceptual diagram of FIG. 3, it is assumed that four power conditioners 53 a to 53 d that operate the four power supplies 50 a to 50 d are connected to the commercial power supply system 11, respectively. Here, as shown by being surrounded by a dotted line in the figure, only the power conditioner 53b is connected to the commercial power supply system 11 with the U phase and the V phase being reversed with respect to the power conditioners 53a, 53c, 53d.

パワーコンディショナー53a〜53dにおいて、計測部は商用電源系統11側の電圧の周波数に同期して動作するため、パワーコンディショナー53bだけ、図4に示すように、計測タイミングが半周期ずれることになる。   In the power conditioners 53a to 53d, the measurement unit operates in synchronization with the frequency of the voltage on the commercial power supply system 11, so that only the power conditioner 53b has a measurement cycle shifted by a half cycle as shown in FIG.

計測タイミングが半周期ずれると、例えば、図5に示すように、計測部22によるインバーター部20からの交流電圧の計測は、パワーコンディショナー53bだけ、パワーコ
ンディショナー53a、53c、53dより半周期だけ早く行われることになる。
When the measurement timing is shifted by a half cycle, for example, as shown in FIG. 5, the measurement of the AC voltage from the inverter unit 20 by the measurement unit 22 is performed only for the power conditioner 53b and for the half cycle earlier than the power conditioners 53a, 53c, and 53d. It will be.

ここでは、一例として、商用電源系統11に無効電力を注入して単独運転の発生有無を判定する方式の分散型電源システム1において、計測部22による計測周波数の変化率が所定の閾値を3回連続で超えた場合に、単独運転が発生したと判定する形態の判定動作を説明する。なお、所定の閾値は、全回において共通でもよいし、測定回毎に異なる閾値を設定してもよい。例えば、1回目、2回目、3回目と徐々に閾値を大きく設定することができる。また、変化率に代えて変化量の閾値を設定してもよい。   Here, as an example, in the distributed power supply system 1 in which reactive power is injected into the commercial power supply system 11 to determine whether or not a single operation occurs, the change rate of the measurement frequency by the measurement unit 22 exceeds a predetermined threshold value three times. A determination operation in a form in which it is determined that an isolated operation has occurred when continuously exceeding will be described. The predetermined threshold value may be common to all times, or a different threshold value may be set for each measurement time. For example, the threshold value can be gradually set larger as the first time, the second time, and the third time. Further, a change amount threshold value may be set instead of the change rate.

停電が発生すると、計測部22によって計測される交流電圧の周波数の変化率(以下、「変化率」と称する)が増加する。パワーコンディショナー53bは、他のパワーコンディショナー53a、53c、53dより半周期早く、時間t2、t4、t6、t8で周波数を計測する。停電が発生している場合、図5に示すように、時間t2では変化率が閾値を超えず、時間t4、t6、t8での変化率C1、C2、C3が3回連続で閾値を超える。従来技術のパワーコンディショナー53bは、時間t8の時点で、商用電源系統11からの解列を実行する。   When a power failure occurs, the rate of change of the frequency of the AC voltage measured by the measurement unit 22 (hereinafter referred to as “change rate”) increases. The power conditioner 53b measures the frequency at times t2, t4, t6, and t8, half a cycle earlier than the other power conditioners 53a, 53c, and 53d. When a power failure has occurred, as shown in FIG. 5, the rate of change does not exceed the threshold at time t2, and the rates of change C1, C2, and C3 at times t4, t6, and t8 exceed the threshold for three consecutive times. The power conditioner 53b of the prior art executes disconnection from the commercial power supply system 11 at time t8.

パワーコンディショナー53bの解列は、近隣の他の分散型電源システムにおける変化率に影響を及ぼす場合がある。具体的には、時間t8以降の時間t9において、本来は閾値を超えるはずであるにもかかわらず、パワーコンディショナー53bの解列の影響を受けて、時間t9での変化率C6が閾値を超えない場合がある。これにより、パワーコンディショナー53a、53c、53dは、3回連続で変化率が閾値を超えないため、単独運転有りと判定されず、単独運転が継続してしまう。   The disconnection of the power conditioner 53b may affect the rate of change in other nearby distributed power systems. Specifically, at the time t9 after the time t8, the change rate C6 at the time t9 does not exceed the threshold value due to the influence of the disconnection of the power conditioner 53b, although it should originally exceed the threshold value. There is a case. As a result, the power conditioners 53a, 53c, and 53d do not exceed the threshold value for three consecutive times, and thus are not determined to be in isolated operation, and the isolated operation continues.

一方、本発明の実施形態におけるパワーコンディショナー13によれば、上記パワーコンディショナー53bのように、他のパワーコンディショナー53a、53c、53dよりも半周期早く時間t8で単独運転有りと判定しても、半周期以上後に分散型電源システム1を商用電源系統11から解列する。したがって、図5の時間t9の時点では、他のパワーコンディショナー53a、53c、53dは、パワーコンディショナー53bの解列による周波数の影響を受けないため、変化率が閾値を超えることになる。結果として、全てのパワーコンディショナー13において確実に単独運転有りと判定されることになり、商用電源系統11から分散型電源システム1を解列することができる。   On the other hand, according to the power conditioner 13 in the embodiment of the present invention, even if it is determined that there is an independent operation at the time t8 half a cycle earlier than the other power conditioners 53a, 53c, 53d, like the power conditioner 53b, The distributed power supply system 1 is disconnected from the commercial power supply system 11 after a period or more. Therefore, at time t9 in FIG. 5, the other power conditioners 53a, 53c, and 53d are not affected by the frequency due to the disconnection of the power conditioner 53b, and thus the rate of change exceeds the threshold value. As a result, all the power conditioners 13 are reliably determined as having an isolated operation, and the distributed power supply system 1 can be disconnected from the commercial power supply system 11.

以上、発明の一例として上記実施形態を説明したが、本発明は、上記実施形態に限定されない。本発明の技術的思想の範囲内において種々の変更が可能である。   As mentioned above, although the said embodiment was described as an example of invention, this invention is not limited to the said embodiment. Various modifications are possible within the scope of the technical idea of the present invention.

本発明は、上記のような判定タイミングのずれを吸収できればよく、三相の接続が逆である場合以外でも、いかなる原因により判定タイミングがずれる場合にも適用できる。また、いかなる場合でも、複数の分散型電源システム1間において単独運転の発生の判定タイミングが一周期以上ずれることはないため、より確実のためには、その判定時点の交流電圧の位相を基準として一周期以上経過後に、解列信号を送信するようにしてもよい。   The present invention only needs to be able to absorb such a shift in the determination timing, and can be applied to cases where the determination timing is shifted for any reason other than when the three-phase connection is reversed. In any case, the determination timing of the occurrence of isolated operation does not deviate by more than one cycle between the plurality of distributed power supply systems 1, and for more certainty, the phase of the AC voltage at the determination time is used as a reference. The disconnection signal may be transmitted after one or more cycles have elapsed.

また、解列指示を遅延させる下限を半周期としているが、上限については、電気事業者間の取り決め等によって定められる規格に準ずる。例えば、単独運転期間が0.2秒以下と規格に定められる場合、解列の指示を遅延させる上限は0.2秒以下である。   Moreover, although the lower limit for delaying the disconnection instruction is a half cycle, the upper limit conforms to a standard determined by an agreement between electric utilities. For example, when the isolated operation period is defined as 0.2 seconds or less in the standard, the upper limit for delaying the instruction for disconnection is 0.2 seconds or less.

以上の解列制御装置およびパワーコンディショナー13を構成する各機能部22〜29は、CPU(不図示)がストレージにインストールされているプログラムメモリーに読みだして実行することにより実現される。また、これに限らず、ASIC等のハードウェアにより実現されてもよい。   The functional units 22 to 29 constituting the disconnection control device and the power conditioner 13 are realized by a CPU (not shown) reading out and executing it in a program memory installed in the storage. Further, the present invention is not limited to this, and hardware such as ASIC may be used.

上記説明では、能動的方式により単独運転の発生を判定することを説明したが、単独運転判定部27は、受動的方式により単独運転の発生を判定する機能を含んでもよい。受動的方式の詳細についての説明は省略する。   In the above description, it has been described that the occurrence of an isolated operation is determined by an active method, but the isolated operation determination unit 27 may include a function of determining the occurrence of an isolated operation by a passive method. A detailed description of the passive method is omitted.

1 分散型電源システム、
10 電源、
11 商用電源系統、
12 負荷、
13 パワーコンディショナー、
20 インバーター部、
21 連系リレー、
22 計測部、
23 電流指令値生成部、
24 電流制御部、
25 ゲート制御部、
26 位相検出部、
27 単独運転判定部、
28 遅延部、
29 指示部。
1 Distributed power system,
10 power supply,
11 Commercial power system,
12 load,
13 Power conditioner,
20 Inverter part,
21 interconnected relay,
22 Measuring unit,
23 current command value generation unit,
24 current control unit,
25 Gate control unit,
26 phase detector,
27 Independent operation determination unit,
28 delay part,
29 Instruction unit.

Claims (9)

商用電源系統と連系して運転する分散型電源システムの単独運転の発生を判定し、単独運転が発生する場合に判定信号を発生する単独運転判定部と、
前記商用電源系統の交流電圧の位相または前記分散型電源システムが出力する交流電圧の位相を検出する位相検出部と、
前記単独運転判定部から前記判定信号を受信すると、当該受信時の前記交流電圧の位相を基準として、当該位相の半周期以上遅延した遅延信号を発生する遅延部と、
前記遅延信号を受信すると、前記商用電源系統と前記分散型電源システムとの解列を指示する解列信号を発生する指示部と、
を備える解列制御装置。
An isolated operation determination unit that determines the occurrence of isolated operation of a distributed power system that operates in conjunction with a commercial power supply system and generates a determination signal when an isolated operation occurs,
A phase detector for detecting the phase of the AC voltage of the commercial power supply system or the phase of the AC voltage output by the distributed power system;
When receiving the determination signal from the isolated operation determination unit, a delay unit that generates a delay signal delayed by a half cycle or more of the phase with reference to the phase of the AC voltage at the time of the reception,
When the delay signal is received, an instruction unit that generates a disconnection signal that instructs disconnection between the commercial power supply system and the distributed power supply system;
A disconnection control device comprising:
前記解列信号は、前記商用電源系統および前記分散型電源システムを並列または解列するための連系リレーに連系遮断を指示する信号である請求項1に記載の解列制御装置。   2. The disconnection control device according to claim 1, wherein the disconnection signal is a signal for instructing disconnection to a connection relay for paralleling or disconnecting the commercial power supply system and the distributed power supply system. 前記解列信号は、前記分散型電源システムが備える電源からの直流電力を交流電力に変換するインバーター部が有するスイッチング素子を操作して前記インバーター部の出力を制御するゲート制御部に、前記スイッチング素子をオフにしてインバーターの出力を停止させるゲート制御の実行を指示する信号である請求項1または2に記載の解列制御装置。   The disconnection signal is supplied to a gate control unit that controls an output of the inverter unit by operating a switching element included in an inverter unit that converts DC power from a power source included in the distributed power system into AC power. The disconnection control device according to claim 1, wherein the signal is an instruction to execute gate control to turn off the inverter and stop the output of the inverter. 商用電源系統と連系して運転する分散型電源システムの単独運転の発生を判定する単独運転判定ステップと、
前記商用電源系統の交流電圧の位相を検出する位相検出ステップと、
前記単独運転判定ステップにおいて前記単独運転の発生有りと判定されると、当該判定時の前記交流電圧の位相を基準として、当該位相の半周期以上経過後に、前記商用電源系統と前記分散型電源システムとの解列を指示する解列指示ステップと、
を有する解列制御方法。
An isolated operation determination step for determining the occurrence of isolated operation of the distributed power supply system operating in conjunction with the commercial power supply system;
A phase detection step for detecting the phase of the AC voltage of the commercial power supply system;
When it is determined in the isolated operation determination step that the isolated operation has occurred, the commercial power supply system and the distributed power supply system after the elapse of a half cycle or more of the phase with reference to the phase of the AC voltage at the time of the determination A sequence instruction step for instructing the sequence with
A disconnection control method.
前記指示ステップでは、前記商用電源系統および前記電源を並列または解列するための連系リレーに、解列を指示する解列信号を送信する請求項4に記載の解列制御方法。   5. The disconnection control method according to claim 4, wherein in the instructing step, a disconnection signal for instructing disconnection is transmitted to an interconnection relay for paralleling or disconnecting the commercial power supply system and the power supply. 前記指示ステップでは、前記解列信号を、前記分散型電源システムが備える電源からの電流を変換するインバーターを制御するゲート制御部に送信する請求項4または5に記載の解列制御方法。   6. The disconnection control method according to claim 4, wherein in the instruction step, the disconnection signal is transmitted to a gate control unit that controls an inverter that converts a current from a power source included in the distributed power supply system. 商用電源系統と連系して運転する分散型電源システムの単独運転の発生を判定する単独運転判定部と、
前記商用電源系統の交流電圧の位相または前記分散型電源システムが出力する交流電圧の位相を検出する位相検出部と、
前記商用電源系統および前記分散型電源システムを並列または解列する連系リレーと、
スイッチング素子を有し、前記分散型電源システムが備える電源からの直流電力を交流電力に変換するインバーター部と、
前記インバーター部のスイッチング素子を操作して前記インバーター部の出力を制御するゲート制御部と、
前記単独運転判定部が単独運転の発生有りと判定すると、当該判定時の前記交流電圧の位相を基準として、当該位相の半周期以上遅延した遅延信号を発生する遅延部と、
前記遅延信号を受信すると、前記商用電源系統と前記分散型電源システムとの解列を指示する解列信号を送信する指示部と、
を備えるパワーコンディショナー。
An isolated operation determination unit that determines the occurrence of isolated operation of a distributed power system that operates in conjunction with a commercial power supply system;
A phase detector for detecting the phase of the AC voltage of the commercial power supply system or the phase of the AC voltage output by the distributed power system;
An interconnected relay for paralleling or disconnecting the commercial power system and the distributed power system;
An inverter unit that has a switching element and converts DC power from a power source included in the distributed power system into AC power;
A gate control unit for controlling an output of the inverter unit by operating a switching element of the inverter unit;
When the single operation determination unit determines that there is an occurrence of single operation, with reference to the phase of the AC voltage at the time of the determination, a delay unit that generates a delay signal delayed by a half cycle or more of the phase;
When the delay signal is received, an instruction unit that transmits a disconnection signal that instructs disconnection between the commercial power system and the distributed power system;
Power conditioner with
前記解列信号は、前記連系リレーに連系遮断を指示する信号である請求項7に記載のパワーコンディショナー。   The power conditioner according to claim 7, wherein the disconnection signal is a signal that instructs the interconnection relay to cut off the interconnection. 前記解列信号は、前記ゲート制御部に前記インバーター部のスイッチング素子をオフにして、前記インバーター部からの出力を停止させるゲート制御の実行を指示する信号である請求項7または8に記載のパワーコンディショナー。   9. The power according to claim 7, wherein the disconnection signal is a signal that instructs the gate control unit to execute gate control that turns off a switching element of the inverter unit and stops output from the inverter unit. conditioner.
JP2013249465A 2013-12-02 2013-12-02 Disconnection control device, disconnection control method, and power conditioner Expired - Fee Related JP6109050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013249465A JP6109050B2 (en) 2013-12-02 2013-12-02 Disconnection control device, disconnection control method, and power conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013249465A JP6109050B2 (en) 2013-12-02 2013-12-02 Disconnection control device, disconnection control method, and power conditioner

Publications (2)

Publication Number Publication Date
JP2015107033A true JP2015107033A (en) 2015-06-08
JP6109050B2 JP6109050B2 (en) 2017-04-05

Family

ID=53436863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013249465A Expired - Fee Related JP6109050B2 (en) 2013-12-02 2013-12-02 Disconnection control device, disconnection control method, and power conditioner

Country Status (1)

Country Link
JP (1) JP6109050B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121149A (en) * 2015-12-29 2017-07-06 三菱電機株式会社 Electric power conversion device
JP2017229198A (en) * 2016-06-24 2017-12-28 アイシン精機株式会社 System interconnection control device
JP2019027384A (en) * 2017-08-01 2019-02-21 株式会社神戸製鋼所 Compressed air storage power generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271689A (en) * 1997-03-25 1998-10-09 Tokyo Electric Power Co Inc:The Detection method of single operation of synchronous generator
JP2007300720A (en) * 2006-04-28 2007-11-15 Chugoku Electric Power Co Inc:The Protective relay device for detecting single operation and method of detecting single system state
JP2009065794A (en) * 2007-09-07 2009-03-26 Kansai Electric Power Co Inc:The Apparatus for detecting isolated operation for distributed power supply
JP2011217442A (en) * 2010-03-31 2011-10-27 Daihen Corp Single operation detector, method of detecting single operation, and system-interconnected inverter system equipped with single operation detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271689A (en) * 1997-03-25 1998-10-09 Tokyo Electric Power Co Inc:The Detection method of single operation of synchronous generator
JP2007300720A (en) * 2006-04-28 2007-11-15 Chugoku Electric Power Co Inc:The Protective relay device for detecting single operation and method of detecting single system state
JP2009065794A (en) * 2007-09-07 2009-03-26 Kansai Electric Power Co Inc:The Apparatus for detecting isolated operation for distributed power supply
JP2011217442A (en) * 2010-03-31 2011-10-27 Daihen Corp Single operation detector, method of detecting single operation, and system-interconnected inverter system equipped with single operation detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121149A (en) * 2015-12-29 2017-07-06 三菱電機株式会社 Electric power conversion device
JP2017229198A (en) * 2016-06-24 2017-12-28 アイシン精機株式会社 System interconnection control device
JP2019027384A (en) * 2017-08-01 2019-02-21 株式会社神戸製鋼所 Compressed air storage power generator

Also Published As

Publication number Publication date
JP6109050B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
US20120283890A1 (en) Control Apparatus for Micro-grid Connect/Disconnect from Grid
JP5928736B2 (en) Inverter with AC interface for AC module connection
KR101804469B1 (en) UPS having 3 Phase 4 wire inverter with 3-leg
EP2980975B1 (en) Systems and methods for advanced diagnostics in modular power converters
JP5418079B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP4661856B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5347415B2 (en) Uninterruptible power supply system
JP6109050B2 (en) Disconnection control device, disconnection control method, and power conditioner
CA3081542A1 (en) Anti-islanding systems and methods using harmonics injected in a rotation opposite the natural rotation
CN115085367A (en) Island detection method and device
JP6494252B2 (en) Power conditioner, power system, and control method for power conditioner
JP6452331B2 (en) Power generation system control method, power generation system, and power generation apparatus
JP6082689B2 (en) Isolated operation detection device and isolated operation detection method
KR101642235B1 (en) A Management Apparatus for Regenerated Energy
JP6620937B2 (en) Power storage system, operation method
US7282813B2 (en) AC power backfeed protection based on phase shift
Lissandron et al. Impact of non-simultaneous P/f and Q/V grid code requirements on PV inverters on unintentional islanding operation in distribution network
JP6208573B2 (en) Power control apparatus and power control method
KR101032487B1 (en) Power conditioner for solar power generation
JPWO2019044979A1 (en) Distributed power supply device and distributed power supply device control method
JP6341791B2 (en) Isolated operation detection device, isolated operation detection method, isolated operation detection control device, and distributed power supply device
JP2011097731A (en) Method of detecting islanding of distributed power supply, distributed power supply system, and power conditioner
WO2016149926A1 (en) Anti-islanding method and device for distributed power source of direct-current electric distribution network
JP2016178709A (en) Charge/discharge system
CA3060181A1 (en) Method for detecting formation of a separate system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160121

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6109050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees