JP2009065794A - Apparatus for detecting isolated operation for distributed power supply - Google Patents

Apparatus for detecting isolated operation for distributed power supply Download PDF

Info

Publication number
JP2009065794A
JP2009065794A JP2007232269A JP2007232269A JP2009065794A JP 2009065794 A JP2009065794 A JP 2009065794A JP 2007232269 A JP2007232269 A JP 2007232269A JP 2007232269 A JP2007232269 A JP 2007232269A JP 2009065794 A JP2009065794 A JP 2009065794A
Authority
JP
Japan
Prior art keywords
order
susceptance
injection
distributed power
isolated operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007232269A
Other languages
Japanese (ja)
Other versions
JP4430702B2 (en
Inventor
Fumio Yamamoto
文雄 山本
Reishi Uda
怜史 宇田
Soji Nishimura
荘治 西村
Giko Haneda
儀宏 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2007232269A priority Critical patent/JP4430702B2/en
Publication of JP2009065794A publication Critical patent/JP2009065794A/en
Application granted granted Critical
Publication of JP4430702B2 publication Critical patent/JP4430702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for detecting an isolated operation of a distributed power supply capable of surely detecting the isolated operation of the distributed power supply at high speed. <P>SOLUTION: This apparatus for detecting the isolated operation 30 comprises: a current injector 32; and an isolated operation monitor 34. The current injector 32 injects an injection current J<SB>m1</SB>which has a low-order injection degree less than four degrees and an injection current J<SB>m2</SB>which has a high-order injection degree of four or more degrees. Based on an AND condition between determination by admittance or susceptance of the low-order injection degree and determination by admittance or susceptance of the high-order injection degree by using the change amount prior to a predetermined time, the isolated operation monitor 34 detects the isolated operation of the distributed power supply 28. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、上位系統に変電所を介して配電線が接続され、この配電線に、分散電源を有する分散電源保有設備が接続された構成の配電系統に適用されるものであって、分散電源の単独運転を検出する単独運転検出装置に関する。   The present invention is applied to a distribution system having a configuration in which a distribution line is connected to a host system via a substation, and a distributed power source holding facility having a distributed power source is connected to the distribution line. The present invention relates to an isolated operation detection device that detects an isolated operation.

分散電源の単独運転を検出する装置の一例として、上位系統に変電所を介して配電線が接続され、この配電線に、分散電源を有する分散電源保有設備が接続された構成の配電系統に適用される単独運転検出装置であって、前記配電線から前記分散電源保有設備への引込線に、当該配電系統の基本波の1倍よりも大きい非整数倍の注入次数(例えば2.4次、2.5次等)の注入電流を注入する電流注入装置と、前記分散電源保有設備の受電点から眺めた前記配電系統の前記注入次数のアドミタンスまたはサセプタンスを計測して、当該アドミタンスまたはサセプタンスの変化から、前記分散電源が単独運転になったことを検出して単独運転検出信号を出力する単独運転監視装置とを備えている単独運転検出装置が既に提案されている(例えば特許文献1参照)。   As an example of a device that detects the independent operation of a distributed power supply, it is applied to a power distribution system with a configuration in which a distribution line is connected to the upper system via a substation, and a distributed power supply facility with a distributed power supply is connected to this distribution line. A non-integer multiple injection order (for example, 2.4th order, 2nd order, 2nd order) larger than 1 time of the fundamental wave of the power distribution system. .5th order injection current injection device for injecting an injection current, and measuring the admittance or susceptance of the injection order of the distribution system as viewed from the power receiving point of the distributed power supply facility, and from the change of the admittance or susceptance An isolated operation detection device having an isolated operation monitoring device that detects that the distributed power source has been operated independently and outputs an isolated operation detection signal has already been proposed (for example, Patent reference 1).

また、単独運転検出装置の検出速度を高速化(換言すれば、検出時間を短縮。以下同様)することによって、地絡過電圧継電器(OVGR)の代替として、単独運転検出装置を用いることができ(即ち、単独運転検出装置による地絡事故の間接検出)、それによって地絡過電圧継電器およびそれ用の接地形計器用変圧器(GPT)を省略することのできることが、非特許文献1および2に記載されている。   In addition, by increasing the detection speed of the isolated operation detection device (in other words, reducing the detection time. The same applies hereinafter), the isolated operation detection device can be used as an alternative to the ground fault overvoltage relay (OVGR) ( That is, it is described in Non-Patent Documents 1 and 2 that the ground fault overvoltage relay and the grounded instrument transformer (GPT) can be omitted. Has been.

特に、配電系統が特別高圧(以下これを特高と略称する)の場合は、接地形計器用変圧器は電気絶縁のために大型、高価になるので、それを省略することによる効果は大きい。なお、この明細書では、電気設備技術基準と同じく、電圧が7kV超を特高と呼び、600V超7kV以下を高圧と呼ぶ。   In particular, when the distribution system has an extra high voltage (hereinafter abbreviated as “extra high”), the grounding-type instrument transformer becomes large and expensive for electrical insulation, and thus the effect of omitting it is great. In this specification, as in the electrical equipment technical standard, a voltage exceeding 7 kV is called an extra high, and a voltage exceeding 600 V and 7 kV or less is called a high voltage.

更に、非特許文献2には、検出時間の短縮(例えば50m秒以下にする。これにする理由は後述)を目的として、上記特許文献1に記載のような単独運転検出装置を改良して、(a)電流注入装置から低次注入次数(例えば2.25次または2.5次等)および高次注入次数(例えば15.75次または17.5次等)の注入電流を同時に注入し、(b)単独運転検出装置において、上記低次注入次数のサセプタンスおよび高次注入次数のサセプタンスをそれぞれ所定の判定値と比較して、両者の判定結果のAND条件で単独運転を検出するようにした単独運転検出装置が提案されている。   Further, in Non-Patent Document 2, for the purpose of shortening the detection time (for example, 50 ms or less, the reason for this will be described later), the isolated operation detection device as described in Patent Document 1 is improved, (A) Simultaneously injecting injection currents of a low-order injection order (for example, 2.25th order or 2.5th order) and a high-order injection order (for example, 15.75th order or 17.5th order) from the current injection device, (B) In the isolated operation detection device, the susceptance of the low-order injection order and the susceptance of the high-order injection order are compared with predetermined determination values, respectively, and the isolated operation is detected with the AND condition of both determination results. An islanding detection device has been proposed.

特開2001−251767号公報(段落0009、0035−0037、図1)JP 2001-251767 (paragraphs 0009, 0035-0037, FIG. 1) 系統連系専門部会編集、「系統連系規程(電気技術規程系統連系編)JEAC 9701−2006」、第4版、社団法人日本電気協会、平成18年8月30日、頁332−333Edited by the Grid Connection Special Committee, “Grid Connection Regulations (Electrical Technical Regulations Grid Connection Edition) JEAC 9701-2006”, 4th edition, NEC Corporation, August 30, 2006, pages 332-333 山本文雄、他4名「高速検出型次数間高調波注入方式単独運転検出装置の検証試験」、平成19年電気学会全国大会講演論文集、社団法人電気学会、平成19年3月15日、第6分冊、頁146−147Fumio Yamamoto and four others “Verification test of high-speed detection type interharmonic injection method independent operation detection device”, Proceedings of National Conference of the Institute of Electrical Engineers of Japan, The Institute of Electrical Engineers of Japan, March 15, 2007, No. 1 6 volumes, pages 146-147

前述したように、単独運転検出装置によって地絡事故の間接検出を行うためには、単独運転の検出時間を短縮する(例えば前述したように50m秒以下にする)必要がある。その一手段として、単独運転監視装置を構成していて注入次数の電圧、電流を抽出する離散フーリエ変換器における計測時間を短縮することが挙げられる。   As described above, in order to indirectly detect a ground fault by the isolated operation detection device, it is necessary to shorten the detection time of the isolated operation (for example, 50 ms or less as described above). One means for this is to shorten the measurement time in a discrete Fourier transformer that constitutes an isolated operation monitoring device and extracts the voltage and current of the injection order.

しかし、離散フーリエ変換器における計測時間を短縮すると、低次注入次数の電圧計測のSN比が低下し、アドミタンスやサセプタンスの監視結果が不安定になる。これは簡単に言うと、注入電流Jm によって発生する注入次数電圧Vm は(数字のmは注入次数を表している)、次式で表され、注入次数mが小さいと注入次数電圧Vm が小さくなってSN比が低下するからである。ωは角周波数、Lは配電系統のインダクタンスである。 However, if the measurement time in the discrete Fourier transformer is shortened, the SN ratio of the voltage measurement of the low-order injection order is lowered, and the monitoring result of admittance and susceptance becomes unstable. In short, the injection order voltage V m generated by the injection current J m (the number m represents the injection order) is expressed by the following equation, and when the injection order m is small, the injection order voltage V m. This is because the SN ratio decreases and the SN ratio decreases. ω is the angular frequency, and L is the inductance of the distribution system.

[数1]
m =jωL・Jm ∝jmL・Jm
[Equation 1]
V m = jωL · J m ∝jmL · J m

その結果、系統の過渡変動(例えば、瞬時電圧低下、容量の大きな力率改善用コンデンサの投入、容量の大きなモータの並列・解列等)の影響によってアドミタンスやサセプタンスの変動が大きくなり、不要動作(即ち、本来検出すべきでないのに誤検出すること)を起こしやすくなる。   As a result, admittance and susceptance fluctuations increase due to the effects of system transients (for example, instantaneous voltage drop, insertion of large capacity power factor correction capacitors, parallel / disconnection of large capacity motors, etc.) and unnecessary operation. (That is, erroneous detection even though it should not be detected originally) is likely to occur.

これに対して、上記数1からも分かるように、高次注入次数の注入電流Jm によって発生する注入次数電圧Vm は、注入次数mが大きいぶん大きくなるので、低次注入次数の場合に比べてSN比が高くなる。従って、SN比の観点からは、高次注入次数を使用することが有効であり、それによって、過渡変動時の不要動作を防止することができる。 In contrast, as can be seen from Equation 1, the injection order voltage V m generated by the injection current J m of higher infusion orders, since the injection order m sentence increases greater, in the case of low-order infusion order Compared with the SN ratio. Therefore, it is effective to use a high-order injection order from the viewpoint of the S / N ratio, thereby preventing unnecessary operations during transient fluctuations.

このような観点から、上記非特許文献2に記載の単独運転検出装置は、検出時間の短縮に伴って発生する不要動作を防止するために、低次注入次数の判定結果と高次注入次数の判定結果とのAND条件で単独運転を検出するようにしている。   From such a point of view, the isolated operation detection device described in Non-Patent Document 2 has a low-order injection order determination result and a high-order injection order in order to prevent unnecessary operations that occur with a reduction in detection time. An isolated operation is detected based on an AND condition with the determination result.

ところが、例えば特高配電系統を例に取ると、特高配電系統には、通常、図1に示す例のように、高圧配電用変電所の変圧器44と、それに直列接続された高圧需要家の力率改善用コンデンサ(SC)48とが設けられており、両者44、48によって、4次以上の次数において直列共振が発生する場合がある(これと同様のことは、例えば特許第3367371号公報の段落0022−0024にも記載されている)。   However, taking the extra high power distribution system as an example, the extra high power distribution system usually includes the transformer 44 of the substation for high voltage distribution and the high voltage consumer connected in series thereto, as in the example shown in FIG. The power factor improving capacitor (SC) 48 is provided, and both 44 and 48 may cause series resonance in the fourth or higher order (similar to this, for example, Japanese Patent No. 3367371). (It is also described in paragraphs 0022-0024 of the publication).

図1は、図5に示す配電系統と同様の(但し、単独運転検出装置30はこの発明の実施形態に係る特有のものである)配電系統を簡略化して示す回路モデルであり、両図において同一または相当する部分には同一符号を付している。上位系統2に特高配電用変電所の遮断器8を介して特高の配電線10が接続されており、この配電線10に、高圧配電用変電所の変圧器44を介して高圧需要家負荷46および高圧需要家の力率改善用コンデンサ48が接続されている。配電線10には、特高需要家負荷12が接続されており、かつ、受電点Pに電流注入装置32aから注入電流Jm が注入される。受電点Pから眺めた配電系統のサセプタンスをBとしている。 FIG. 1 is a circuit model showing a simplified distribution system similar to the distribution system shown in FIG. 5 (however, the isolated operation detection device 30 is specific to the embodiment of the present invention). The same or corresponding parts are denoted by the same reference numerals. An extra-high distribution line 10 is connected to the upper system 2 via a circuit breaker 8 of an extra high-voltage distribution substation, and a high-voltage consumer is connected to the distribution line 10 via a transformer 44 of the high-voltage distribution substation. A load 46 and a capacitor 48 for power factor improvement of a high voltage consumer are connected. An extra high customer load 12 is connected to the distribution line 10, and an injection current J m is injected into the power receiving point P from the current injection device 32 a. The susceptance of the power distribution system viewed from the power receiving point P is B.

この図1の回路モデルにおいて、上位系統2のインピーダンス(正確には、10MVAベースのパーセントインピーダンス。以下同様)を0.1+j2%、変圧器44のインピーダンスを0.33+j2.67%、高圧需要家負荷46のインピーダンスを1000%、力率改善用コンデンサ48のインピーダンスを−j166.7%、配電線10のインピーダンスをj0.01%として、力率改善用コンデンサ48がない場合(換言すれば力率改善用コンデンサ48による直列共振がない場合)のサセプタンスBの周波数特性を図2に示し、力率改善用コンデンサ48があり直列共振がある場合のサセプタンスBの周波数特性を図3に示す。   In the circuit model of FIG. 1, the impedance of the upper system 2 (to be precise, the percentage impedance based on 10 MVA, the same applies hereinafter) is 0.1 + j2%, the impedance of the transformer 44 is 0.33 + j2.67%, and the high voltage consumer load When the impedance of 46 is 1000%, the impedance of the power factor improving capacitor 48 is -j166.7%, the impedance of the distribution line 10 is j 0.01%, and there is no power factor improving capacitor 48 (in other words, the power factor improving FIG. 2 shows the frequency characteristics of the susceptance B when there is no series resonance due to the capacitor 48 for use, and FIG. 3 shows the frequency characteristics of the susceptance B when there is the power factor improving capacitor 48 and there is series resonance.

この図2、図3から分かるように、力率改善用コンデンサ48による直列共振がない場合(図2)と、ある場合(図3)とでは、単独運転時のサセプタンスBが大きく異なる。一般的に、高圧需要家の力率改善用コンデンサの量は、高圧需要家負荷46の状態によって変化する(例えば、単独運転検出装置の設置後に、負荷の増大に伴って力率改善用コンデンサ48の量が増大する)ことが多いので、単独運転を判定する判定値をうまく定めることができない。   As can be seen from FIGS. 2 and 3, the susceptance B during single operation differs greatly between the case where there is no series resonance due to the power factor improving capacitor 48 (FIG. 2) and the case where there is (FIG. 3). Generally, the amount of the power factor improving capacitor of the high voltage consumer varies depending on the state of the high voltage consumer load 46 (for example, after the installation of the stand-alone operation detection device, the power factor improving capacitor 48 increases with the load. In many cases, the determination value for determining the isolated operation cannot be determined well.

即ち、低次注入次数を例えば2.5次とすると、低次注入次数の判定値Ju3は、力率改善用コンデンサ48による直列共振の有無に拘わらず、所定の値(例えば−0.2S(ジーメンス))に設定しておけば良く、それによって、力率改善用コンデンサ48による直列共振の有無に拘わらず、分散電源の単独運転を検出することができる。これは、連系運転から単独運転に移行すると、サセプタンスBは、実線で示す状態から一点鎖線で示す状態に、判定値Ju3を超えて容量性方向(即ち正方向)に変化するので、単独運転になったことを判定値Ju3によって判定することができるからである(図2、図3参照)。 That is, the low when the next injection orders example 2.5 order to low order infusion order determination value J u3, with or without series resonance by the power factor improving capacitor 48, a predetermined value (e.g. -0.2S (Siemens)), and it is possible to detect the isolated operation of the distributed power source regardless of the presence or absence of series resonance by the power factor improving capacitor 48. This is because the susceptance B changes from the state indicated by the solid line to the state indicated by the alternate long and short dash line in the capacitive direction (that is, the positive direction) exceeding the judgment value Ju3 when the operation is switched from the interconnection operation to the single operation. This is because it can be determined by the determination value Ju3 that the vehicle has started driving (see FIGS. 2 and 3).

しかし、高次注入次数を例えば17.5次とすると、力率改善用コンデンサ48による直列共振がない場合を想定して高次注入次数の判定値Ju4を所定の値(例えば−0.03S)に設定しておいた場合、(a)力率改善用コンデンサ48による直列共振がない場合は、連系運転から単独運転に移行すると、サセプタンスBは、判定値Ju4を超えて容量性方向に変化するので、単独運転になったことを判定値Ju4によって判定することができるけれども(図2参照)、(b)力率改善用コンデンサ48による直列共振がある場合は、連系運転から単独運転に移行しても、サセプタンスBは、容量性方向に変化するけれども判定値Ju4を超えないので、単独運転になったことを判定値Ju4によって判定することはできない(図3参照)。 However, when the high-order infusion orders example 17.5 order, higher injection order determination value J u4 a predetermined value on the assumption that there is no series resonance by the power factor improving capacitor 48 (e.g. -0.03S (A) When there is no series resonance due to the power factor improving capacitor 48, the susceptance B exceeds the judgment value Ju4 in the capacitive direction when shifting from the grid operation to the single operation. Therefore, it can be determined by the determination value Ju4 (see FIG. 2) that, however, (b) when there is a series resonance by the power factor improving capacitor 48, from the interconnected operation Even after shifting to the single operation, the susceptance B changes in the capacitive direction, but does not exceed the determination value Ju4. Therefore, it cannot be determined by the determination value Ju4 that the single operation has been performed (see FIG. 3). .

仮に、力率改善用コンデンサ48による直列共振がある場合を想定して高次注入次数の判定値Ju5を所定の値(例えば−0.1S程度)に設定しておくと、(a)力率改善用コンデンサ48による直列共振がある場合は、連系運転から単独運転に移行すると、サセプタンスBは、判定値Ju5を超えて容量性方向に変化するので、単独運転になったことを判定値Ju5によって判定することはできるけれども(図3参照)、(b)力率改善用コンデンサ48による直列共振がない場合は、連系運転時にサセプタンスBは既に判定値Ju5を容量性方向に超えているので単独運転と判定してしまい、初めから不要検出を起こしているので単独運転を検出することはできない(図2参照)。 Assuming that there is a series resonance due to the power factor improving capacitor 48, the determination value Ju5 of the high-order injection order is set to a predetermined value (for example, about -0.1S). If there is a series resonance due to the capacitor 48 for improving the rate, the susceptance B changes in the capacitive direction beyond the judgment value Ju5 when shifting from the interconnected operation to the isolated operation. Although it can be determined by the value J u5 (see FIG. 3), (b) when there is no series resonance by the power factor improving capacitor 48, the susceptance B has already set the determination value J u5 in the capacitive direction during the interconnected operation. Since it has exceeded, it is determined that the vehicle is operating alone, and since unnecessary detection has occurred from the beginning, it cannot be detected (see FIG. 2).

従って、非特許文献2に記載のように低次注入次数のサセプタンスおよび高次注入次数のサセプタンスをそれぞれ所定の判定値と比較して、両者のAND条件で単独運転を検出するようにしても、単独運転を高速で検出することはできても、確実に(即ち、不検出や不要検出を起こさずに)検出することができない場合があるという点になお改善の余地がある。これを表1にまとめて示す。   Therefore, as described in Non-Patent Document 2, the susceptance of the low-order injection order and the susceptance of the high-order injection order are compared with the predetermined determination values, respectively, and the isolated operation is detected under the AND condition of both. Although isolated operation can be detected at high speed, there is still room for improvement in that it may not be detected reliably (that is, without non-detection or unnecessary detection). This is summarized in Table 1.

Figure 2009065794
Figure 2009065794

以上は、サセプタンスで判定する場合を例に説明したが、配電系統のアドミタンスは殆どがサセプタンスであるので、アドミタンスで判定する場合も上記と同様のことが言える。   In the above, the case of determining by susceptance has been described as an example. However, since most of the admittance of the power distribution system is susceptance, the same can be said for the case of determining by admittance.

そこでこの発明は、非特許文献2に記載の単独運転検出装置を更に改良して、分散電源の単独運転を高速で、しかも確実に検出することができるようにした単独運転検出装置を提供することを主たる目的としている。   In view of this, the present invention provides an isolated operation detection device that further improves the isolated operation detection device described in Non-Patent Document 2 so that the isolated operation of a distributed power source can be detected at high speed and reliably. Is the main purpose.

この発明に係る単独運転検出装置は、前記配電線から前記分散電源保有設備への引込線に、当該配電系統の基本波の1倍よりも大きい非整数倍の注入次数の注入電流を注入する電流注入装置と、前記分散電源保有設備の受電点から眺めた前記配電系統の前記注入次数のアドミタンスまたはサセプタンスを計測して、当該アドミタンスまたはサセプタンスの変化から、前記分散電源が単独運転になったことを検出して単独運転検出信号を出力する単独運転監視装置とを備えている単独運転検出装置において、(1)前記電流注入装置は、4次未満の低次注入次数の注入電流および4次以上の高次注入次数の注入電流を注入するものであり、(2)前記単独運転監視装置は、(a)前記低次注入次数の前記アドミタンスまたはサセプタンスを計測する低次側計測手段と、(b)前記低次側計測手段で計測したアドミタンスまたはサセプタンスを所定の低次側判定値と比較することによって、前記分散電源が単独運転になったことを検出して低次側検出信号を出力する低次側判定手段と、(c)前記高次注入次数の前記アドミタンスまたはサセプタンスを計測する高次側計測手段と、(d)前記高次側計測手段で計測したアドミタンスまたはサセプタンスの、所定時間前からの変化分を検出する変化分検出手段と、(e)前記変化分検出手段で検出したアドミタンスまたはサセプタンスの変化分を所定の高次側判定値と比較することによって、前記分散電源が単独運転になったことを検出して高次側検出信号を出力する高次側判定手段と、(f)前記低次側判定手段からの出力および前記高次側判定手段からの出力の論理積を取り、前記低次側検出信号および高次側検出信号が共に出力されているときに前記単独運転検出信号を出力する論理積手段とを備えている、ことを特徴としている。   The islanding operation detection device according to the present invention injects an injection current having an injection order of a non-integer multiple larger than 1 times the fundamental wave of the distribution system into a lead-in line from the distribution line to the distributed power supply facility. Measures the admittance or susceptance of the injection order of the power distribution system as viewed from the power receiving point of the apparatus and the distributed power supply facility, and detects that the distributed power supply has become an independent operation from the change in the admittance or susceptance In the isolated operation detection device comprising the isolated operation monitoring device that outputs the isolated operation detection signal, (1) the current injection device includes an injection current of a low-order injection order less than the fourth order and a high value of the fourth order or higher. (2) The islanding operation monitoring device measures (a) the admittance or susceptance of the low-order injection order. And (b) comparing the admittance or susceptance measured by the low-order side measurement means with a predetermined low-order side determination value to detect that the distributed power supply is in an independent operation. A lower order determination means for outputting a lower order detection signal, (c) a higher order measurement means for measuring the admittance or susceptance of the higher order injection order, and (d) a measurement by the higher order measurement means. (E) a change in the admittance or susceptance detected by the change detection means is compared with a predetermined higher-order determination value. And (f) an output from the low-order side determination means and Logical product of taking the logical product of the outputs from the secondary determination means, and outputting the isolated operation detection signal when both the low-order detection signal and the high-order detection signal are output, It is characterized by that.

配電系統について検討したところ、分散電源保有設備の受電点から眺めた配電系統のアドミタンスまたはサセプタンスの、所定時間(例えば1秒程度)前からの変化分は、力率改善用コンデンサの有無や量に依らずに、換言すれば力率改善用コンデンサによる直列共振の影響を受けずに、安定していることが分かった。   When we examined the power distribution system, the amount of change in the admittance or susceptance of the power distribution system viewed from the receiving point of the facility with the distributed power supply from the predetermined time (for example, about 1 second) depends on the presence and amount of the power factor improvement capacitor. In other words, in other words, it was found that the power factor correction capacitor is stable without being affected by the series resonance.

従って、上記のように高次注入次数側はアドミタンスまたはサセプタンスの変化分を計測し判定することによって、力率改善用コンデンサによる直列共振の影響を受けずに、分散電源の単独運転を確実に検出することができる。   Therefore, as described above, the high-order injection order side can reliably detect the isolated operation of the distributed power supply without being affected by the series resonance caused by the power factor correction capacitor by measuring and judging the change in admittance or susceptance. can do.

また、過渡変動に対しては、前述したようにSN比の高い高次注入次数のアドミタンスまたはサセプタンスの変化分を計測し判定することによって、計測結果が安定しているので、計測時間を短くして検出を高速化しても、不要検出を防止することができる。   For transient fluctuations, as described above, the measurement result is stable by measuring and determining the change in admittance or susceptance of the higher order injection order with a high S / N ratio. Even if the detection speed is increased, unnecessary detection can be prevented.

更に、論理積手段において、低次側判定手段からの出力と高次側判定手段からの出力の論理積(AND)を取り、両出力のAND条件で単独運転検出信号を出力するようにしたことによって、一つの上位系統から他の上位系統へ系統を切り替える系統切り替えの際の不要検出を防止することができる。   Furthermore, in the logical product means, the logical product (AND) of the output from the low order side determination means and the output from the high order side determination means is taken, and the isolated operation detection signal is output under the AND condition of both outputs. Therefore, it is possible to prevent unnecessary detection at the time of system switching for switching the system from one upper system to another upper system.

これらの結果、分散電源の単独運転を高速で、しかも不検出や不要検出を防止して確実に検出することができる。   As a result, it is possible to reliably detect a single operation of the distributed power supply at a high speed while preventing non-detection and unnecessary detection.

この発明によれば、低次注入次数のアドミタンスまたはサセプタンスの判定と、高次注入次数のアドミタンスまたはサセプタンスの変化分の判定とのAND条件による判定を採用しているので、分散電源の単独運転を高速で、しかも確実に検出することができる。   According to the present invention, the determination based on the AND condition between the determination of the admittance or susceptance of the low-order injection order and the determination of the change in the admittance or susceptance of the high-order injection order is adopted. It can be detected at high speed and reliably.

従って例えば、この発明に係る単独運転検出装置を、地絡事故の間接検出(換言すれば、単独運転検出装置による地絡過電圧継電器の代替)に用いることが可能になる。それに用いることによって、変電所の地絡事故検出感度の低下を防止することができる。しかも、分散電源保有設備側において、地絡過電圧継電器およびそれ用の接地形計器用変圧器を省略することが可能になり、設備コストを低減することができる。   Therefore, for example, the isolated operation detection device according to the present invention can be used for indirect detection of a ground fault accident (in other words, replacement of the ground fault overvoltage relay by the isolated operation detection device). By using it, it is possible to prevent a decrease in the ground fault detection sensitivity of the substation. Moreover, the grounded overvoltage relay and the grounded instrument transformer for the grounded overvoltage relay can be omitted on the side of the distributed power supply facility, and the facility cost can be reduced.

図5は、この発明に係る分散電源の単独運転検出装置を備える配電系統の一例を示す単線接続図である。この配電系統は、配電線10が特高の配電線の場合の例であるが、それに限られるものではなく、配電線10は高圧の配電線でも良い。   FIG. 5 is a single-line connection diagram showing an example of a distribution system including the distributed power supply isolated operation detection device according to the present invention. This distribution system is an example in the case where the distribution line 10 is an extraordinary distribution line, but is not limited thereto, and the distribution line 10 may be a high-voltage distribution line.

この配電系統は、上位系統2に特高配電用変電所4を介して特高配電線10が接続された構成をしている。変電所4は、変圧器6と、その2次側と配電線10とを接続する遮断器8とを備えている。なお、電圧が7kVを超える特高の場合の配電線は、特高電線路と呼ばれるが、この明細書では、この場合も統一して配電線と呼ぶことにしている。   This distribution system has a configuration in which an extra high distribution line 10 is connected to an upper system 2 via an extra high power distribution substation 4. The substation 4 includes a transformer 6 and a circuit breaker 8 that connects the secondary side of the transformer 6 and the distribution line 10. In addition, although the distribution line in the case of a special height whose voltage exceeds 7 kV is referred to as a special distribution line, in this specification, this case is also referred to as a distribution line.

配電線10は、上記のようにこの例では、特高(即ち電圧が7kV超)の配電線であり、その電圧は、例えば11kV、22kV、33kV、66kV、77kVである。但し配電線10は、高圧(即ち電圧が7kV以下)の配電線でも良く、その場合の電圧は、例えば3.3kV、6.6kVである。   As described above, the distribution line 10 is a distribution line having a special height (that is, the voltage exceeds 7 kV), and the voltage is, for example, 11 kV, 22 kV, 33 kV, 66 kV, and 77 kV. However, the distribution line 10 may be a high-voltage distribution line (that is, a voltage of 7 kV or less), and the voltages in this case are, for example, 3.3 kV and 6.6 kV.

配電線10には、この例では特高需要家負荷12、分散電源28を有する分散電源保有設備14および高圧配電用変電所42が接続されている。   In this example, the distribution line 10 is connected to an extra-high customer load 12, a distributed power supply facility 14 having a distributed power supply 28, and a high-voltage distribution substation 42.

高圧配電用変電所42は、前述したように、変圧器44および遮断器45を有している。この高圧配電用変電所42には、前述したように、高圧需要家負荷46および力率改善用コンデンサ48が接続されている。   As described above, the high voltage distribution substation 42 includes the transformer 44 and the circuit breaker 45. As described above, the high voltage distribution substation 42 is connected to the high voltage consumer load 46 and the power factor improving capacitor 48.

この例では、配電線10に受電点Pで接続された分散電源保有設備14内に、以下に説明するような単独運転検出装置30を設けている。   In this example, an isolated operation detection device 30 as described below is provided in the distributed power supply facility 14 connected to the distribution line 10 at the power receiving point P.

分散電源保有設備14においては、その受電点Pに引込線18および変圧器19を介して構内母線22が接続されている。この構内母線22に、遮断器20および変圧器26を介して分散電源28が接続されており、分散電源28から当該配電系統の基本波に同期した電力を構内母線22に供給するようにしている。これを連系運転と呼ぶ。   In the distributed power supply facility 14, a local bus 22 is connected to the power receiving point P via a lead-in line 18 and a transformer 19. A distributed power source 28 is connected to the local bus 22 via a circuit breaker 20 and a transformer 26, and power synchronized with the fundamental wave of the distribution system is supplied from the distributed power source 28 to the local bus 22. . This is called “interconnection operation”.

系統事故等の際には、特高配電用変電所4の遮断器8が開放される。その際、前述したように、分散電源28が運転(即ち単独運転)していると、感電事故等が発生する恐れがあるので、分散電源28の単独運転を確実に検出し、更には遮断器20を開放して分散電源28を配電系統から切り離す(解列する)必要がある。   In the event of a grid fault or the like, the circuit breaker 8 of the extra high-voltage distribution substation 4 is opened. At that time, as described above, when the distributed power source 28 is operating (ie, isolated operation), an electric shock accident or the like may occur. It is necessary to disconnect (disconnect) the distributed power source 28 from the distribution system by opening 20.

そのために、この実施形態ではこの分散電源保有設備14内に、分散電源28の単独運転を検出する単独運転検出装置30を設けている。この単独運転検出装置30は、電流注入装置32と、単独運転監視装置34とを備えている。   Therefore, in this embodiment, an isolated operation detection device 30 for detecting the isolated operation of the distributed power supply 28 is provided in the distributed power supply facility 14. The isolated operation detection device 30 includes a current injection device 32 and an isolated operation monitoring device 34.

引込線18には、当該引込線18に流れる電流を計測する計器用変流器40が接続されており、構内母線22にはその電圧を計測する計器用変圧器38が接続されており、これら38、40で計測して得られる計測電圧Vt および計測電流It が単独運転監視装置34に供給される。なお、計器用変流器40は変圧器19の二次側(低圧側)に設けても良い。計器用変圧器38は、この例のように変圧器19の二次側に設ける方が、絶縁が簡単になるので好ましい。 A current transformer 40 for measuring the current flowing through the lead-in line 18 is connected to the lead-in line 18, and an instrument transformer 38 for measuring the voltage is connected to the local bus 22. measurement voltage V t and obtained by measuring at 40 measuring current I t is supplied to the independent operation monitoring device 34. The instrument current transformer 40 may be provided on the secondary side (low voltage side) of the transformer 19. The instrument transformer 38 is preferably provided on the secondary side of the transformer 19 as in this example because insulation is simplified.

電流注入装置32は、この例では電圧整合用の変圧器36等を介して、引込線18ひいては受電点Pおよび配電線10に、当該配電系統の基本波の1倍よりも大きい非整数倍(即ち帯小数倍)の注入次数の注入電流を注入するものである。より具体的には、電流注入装置32は、4次未満の注入次数m1の注入電流Jm1および4次以上の注入次数m2の注入電流Jm2の両方を同時に注入するものである。この注入電流Jm1、Jm2、後述する電圧V、電流I等に付した添字のm1、m2は、上記注入次数を表している。 In this example, the current injection device 32 is supplied to the lead-in wire 18 and the power receiving point P and the distribution line 10 via a voltage matching transformer 36 and the like, which is a non-integer multiple (that is, greater than 1 times the fundamental wave of the distribution system). An injection current having an injection order of a fractional number is injected. More specifically, the current injection device 32 simultaneously injects both an injection current J m1 having an injection order m1 of less than the fourth order and an injection current J m2 having an injection order m2 of the fourth order or more. The subscripts m1 and m2 attached to the injection currents J m1 and J m2 , voltage V and current I, which will be described later, represent the above injection orders.

電流注入装置32のより具体例を図6に示す。この電流注入装置32は、上記注入次数m1(例えば2.3次、2.5次等)の方形波電圧RVm1を発生する方形波電源50と、その出力ラインに直列に挿入された二つの直列共振回路(直列LC共振回路)52、54とを備えている。方形波電源50は例えばインバータである。直列共振回路52は上記低次注入次数m1の共振周波数を有しており、直列共振回路54は上記高次注入次数m2の共振周波数を有している。高次注入次数m2は、例えば、低次注入次数m1の3以上の奇数(即ち、3、5、7、・・・)倍の次数である。より具体例を挙げると、低次注入次数m1は2.5次、高次注入次数m2は17.5次である。但しこれらに限られるものではない。 A more specific example of the current injection device 32 is shown in FIG. The current injection device 32 includes a square wave power supply 50 for generating a square wave voltage RV m1 of the injection order m1 (for example, 2.3 order, 2.5 order, etc.), and two in series inserted in its output line. Series resonance circuits (series LC resonance circuits) 52 and 54 are provided. The square wave power supply 50 is an inverter, for example. The series resonance circuit 52 has a resonance frequency of the low-order injection order m1, and the series resonance circuit 54 has a resonance frequency of the high-order injection order m2. The high-order injection order m2 is, for example, an order that is an odd number (ie, 3, 5, 7,...) Times 3 or more times the low-order injection order m1. More specifically, the low-order injection order m1 is 2.5th, and the high-order injection order m2 is 17.5th. However, it is not limited to these.

このような1台の電流注入装置32によって、上記二つの注入次数m1およびm2の正弦波状の注入電流Jm1およびJm2を同時に注入することができる。換言すれば、これら二つの注入電流Jm1およびJm2を含む注入電流を注入することができる。従って、電流注入装置32の構成の簡素化および小型化が可能になる。 With such a single current injection device 32, the two injection orders m1 and m2 of sinusoidal injection currents J m1 and J m2 can be injected simultaneously. In other words, an injection current including these two injection currents J m1 and J m2 can be injected. Accordingly, the configuration of the current injection device 32 can be simplified and downsized.

単独運転監視装置34のより具体例を図7に示す。一点鎖線110から上側が上記低次注入次数m1用の回路であり、下側が上記高次注入次数m2用の回路である。この単独運転監視装置34は、上記計測電圧Vt 、計測電流It を受けて、配電系統の基本波およびその整数倍次数の高調波を除去するフィルタ60〜63と、それらから出力されるアナログの電圧、電流をディジタルに変換して電圧Vd1、Vd2、電流Id1、Id2をそれぞれ出力するAD変換器66〜69とを備えている。ディジタル形のフィルタを用いる場合は、その前段にAD変換器を設ければ良い。上記電圧Vd1、電流Id1、電圧Vd2、電流Id2は、離散フーリエ変換器70〜73にそれぞれ供給される。 A more specific example of the isolated operation monitoring device 34 is shown in FIG. The upper side from the one-dot chain line 110 is a circuit for the lower order injection order m1, and the lower side is a circuit for the higher order injection order m2. The isolated operation monitoring device 34, analog the measurement voltage V t, it receives a measured current I t, the filter 60 to 63 to remove the fundamental and harmonics of an integral multiple orders of the distribution system, which is output therefrom AD converters 66 to 69 for converting the voltages and currents into digital signals and outputting voltages V d1 and V d2 and currents I d1 and I d2 , respectively. When a digital filter is used, an AD converter may be provided in the preceding stage. The voltage V d1 , current I d1 , voltage V d2 , and current I d2 are supplied to discrete Fourier transformers 70 to 73, respectively.

離散フーリエ変換器70は、上記電圧Vd1を離散フーリエ変換して、上記低次注入次数m1の電圧Vm1を抽出して出力する。 The discrete Fourier transformer 70 performs a discrete Fourier transform on the voltage V d1 to extract and output the voltage V m1 of the low-order injection order m1.

離散フーリエ変換器71は、上記電流Id1を離散フーリエ変換して、上記低次注入次数m1の電流Im1を抽出して出力する。 The discrete Fourier transformer 71 performs a discrete Fourier transform on the current I d1 to extract and output the current I m1 of the low-order injection order m1.

離散フーリエ変換器72は、上記電圧Vd2を離散フーリエ変換して、上記高次注入次数m2の電圧Vm2を抽出して出力する。 The discrete Fourier transformer 72 performs discrete Fourier transform on the voltage V d2 to extract and output the voltage V m2 of the higher order injection order m2.

離散フーリエ変換器73は、上記電流Id2を離散フーリエ変換して、上記高次注入次数m2の電流Im2を抽出して出力する。 The discrete Fourier transformer 73 performs a discrete Fourier transform on the current I d2 to extract and output the current I m2 of the higher-order injection order m2.

上記電圧Vm1および電流Im1は演算器76に供給される。演算器76は、供給された電圧Vm1、電流Im1を用いて、低次注入次数m1のアドミタンスYm1を次式に従って演算し、更に当該アドミタンスYm1の虚部であるサセプタンスBm1を取り出して出力する。 The voltage V m1 and the current I m1 are supplied to the calculator 76. The calculator 76 uses the supplied voltage V m1 and current I m1 to calculate the admittance Y m1 of the low-order injection order m1 according to the following equation, and further extracts the susceptance B m1 that is the imaginary part of the admittance Y m1. Output.

[数2]
m1=Im1/Vm1
[Equation 2]
Y m1 = I m1 / V m1

なお、上記電圧Vm1、Vm2、電流Im1、Im2、後述するサセプタンスBm1、Bm2、アドミタンスYm1、Ym2は、いずれも複素数の形で表される。 The voltages V m1 and V m2 , currents I m1 and I m2 , susceptances B m1 and B m2 , which will be described later, and admittances Y m1 and Y m2 are all expressed in complex numbers.

上記電圧Vm2および電流Im2は演算器78に供給される。演算器78は、供給された電圧Vm2、電流Im2を用いて、高次注入次数m2のアドミタンスYm2を次式に従って演算し、更に当該アドミタンスYm2の虚部であるサセプタンスBm2を取り出して出力する。 The voltage V m2 and the current I m2 are supplied to the calculator 78. The calculator 78 uses the supplied voltage V m2 and current I m2 to calculate the admittance Y m2 of the higher-order injection order m2 according to the following equation, and further extracts the susceptance B m2 that is the imaginary part of the admittance Y m2 Output.

[数3]
m2=Im2/Vm2
[Equation 3]
Y m2 = I m2 / V m2

上記フィルタ60、61、AD変換器66、67、離散フーリエ変換器70、71および演算器76が低次側計測手段を構成しており、上記フィルタ62、63、AD変換器68、69、離散フーリエ変換器72、73および演算器78が高次側計測手段を構成している。   The filters 60 and 61, the AD converters 66 and 67, the discrete Fourier transformers 70 and 71, and the arithmetic unit 76 constitute a low-order measurement unit. The filters 62 and 63, the AD converters 68 and 69, the discrete The Fourier transformers 72 and 73 and the computing unit 78 constitute a higher-order measurement unit.

上記サセプタンスBm1は判定器80に供給される。判定器80は、当該サセプタンスBm1を所定の低次側判定値Ju1と比較することによって、分散電源28(図5参照)が単独運転になったことを検出して低次側検出信号S1 を出力する。この判定器80が低次側判定手段を構成している。 The susceptance B m1 is supplied to the determination device 80. The determiner 80 compares the susceptance B m1 with a predetermined lower-order determination value Ju 1 to detect that the distributed power source 28 (see FIG. 5) has become an independent operation, and detects the lower-order detection signal S. 1 is output. The determiner 80 constitutes a low-order determination unit.

判定器80は、この例ではより具体的には、図9Aに示す例のように、サセプタンスBm1が容量性方向(即ち正方向)に低次側判定値Ju1を超えて変化したときに、低次側検出信号S1 を出力する。なお、図9は、時刻t1 で単独運転が発生したときの例を示す。低次側判定値Ju1は、例えば、連系運転時のサセプタンスBm1の50%程度に設定しておけば良く、図9Aの例ではそのようにしている。 Determiner 80, and more specifically in this example, as in the example shown in FIG. 9A, when the susceptance B m1 is changed beyond the low-order side determination value J u1 capacitive direction (or positive direction) , and outputs the low-order side detection signal S 1. FIG. 9 shows an example when an isolated operation occurs at time t 1 . Low-order side decision value J u1, for example, it is sufficient to set to about 50% of the susceptance B m1 during interconnected operation, in the example of FIG. 9A is so.

再び図7を参照して、上記サセプタンスBm2は変化分検出回路90に供給される。変化分検出回路90は、当該サセプタンスBm2の、所定時間前からの変化分ΔBm2を検出する。この変化分検出回路90が、変化分検出手段を構成している。 Referring to FIG. 7 again, the susceptance B m2 is supplied to the change detection circuit 90. The change detection circuit 90 detects a change ΔB m2 of the susceptance B m2 from a predetermined time before. This change detection circuit 90 constitutes a change detection means.

変化分検出回路90は、この例では、演算器78からのサセプタンスBm2を所定時間T遅延させて出力する遅延回路92と、演算器78からのサセプタンスBm2から遅延回路92からのサセプタンスBm2を減算してサセプタンスBm2の変化分ΔBm2を出力する減算器94とを有している。所定時間Tは、例えば1秒とか2秒であるが、それに限られるものではない。 Variation detecting circuit 90, in this example, a delay circuit 92 to a susceptance B m @ 2 for a predetermined time T delay outputs from the arithmetic unit 78, the susceptance B m @ 2 from the delay circuit 92 from the susceptance B m @ 2 from the calculator 78 and a subtracter 94 for outputting a variation .DELTA.B m @ 2 susceptance B m @ 2 by subtracting. The predetermined time T is, for example, 1 second or 2 seconds, but is not limited thereto.

前述したように、配電系統について検討したところ、分散電源保有設備14の受電点Pから眺めた配電系統のアドミタンスまたはサセプタンスの、所定時間T(例えば1秒程度)前からの変化分は、力率改善用コンデンサ48の有無や量に依らずに、換言すれば力率改善用コンデンサ48による直列共振の影響を受けずに、安定していることが分かった。   As described above, when the distribution system is examined, the change in the admittance or susceptance of the distribution system viewed from the power receiving point P of the distributed power holding facility 14 from the predetermined time T (for example, about 1 second) is the power factor. It has been found that, regardless of the presence / absence and amount of the improvement capacitor 48, in other words, without being affected by the series resonance caused by the power factor improvement capacitor 48, it is stable.

その理由を、サセプタンスを例に説明すると、サセプタンスを変化させる要因が発生しても、例えば力率改善用コンデンサ48の有無や量に変化があっても、サセプタンスの変化分ΔBが変化するのは所定時間Tの間だけであり、所定時間Tが経過した後は、サセプタンスを変化させる要因は既に収まってサセプタンスは安定しているので、サセプタンスの変化分ΔBは実質的に0の状態に戻るからである。   The reason for this will be described by taking susceptance as an example. Even if a factor that changes susceptance occurs, for example, even if there is a change in the presence or amount of power factor improving capacitor 48, the amount of change in susceptance ΔB changes. Since the susceptance change factor is already settled and the susceptance is stable after the predetermined time T has elapsed, the susceptance change ΔB returns to a substantially zero state. It is.

なお、単独運転発生時も、所定時間Tの間だけサセプタンスの変化分ΔBが0でなくなる。図4は、所定時間Tの間の変化分ΔBを図示したものである。所定時間Tの経過後に変化分ΔBは0に戻るけれども、所定時間Tの間に単独運転を検出するようにしておけば、支障はない。例えば、所定時間Tを1秒にしておいても、後述するように単独運転を50m秒以内で検出することができるので、支障はない。勿論、所定時間Tを1秒より長くしても良い。   Even when the single operation occurs, the susceptance change ΔB is not zero for the predetermined time T. FIG. 4 illustrates the change ΔB during the predetermined time T. Although the change ΔB returns to 0 after the lapse of the predetermined time T, there is no problem if the isolated operation is detected during the predetermined time T. For example, even if the predetermined time T is set to 1 second, the isolated operation can be detected within 50 milliseconds as described later, so that there is no problem. Of course, the predetermined time T may be longer than 1 second.

図2、図3に示したサセプタンスBの上記変化分ΔBの周波数特性を図4に示す。実線で示す連系運転時はもちろんのこと、一点鎖線で示す単独運転発生時においても、サセプタンスの変化分ΔBは、どの次数においても、力率改善用コンデンサ48の有り無しで同じであり、力率改善用コンデンサ48による直列共振の影響を受けずに安定していることが分かる。従って例えば、高次注入次数m2に着目すると、当該高次注入次数m2用の後述する高次側判定値Ju2を、力率改善用コンデンサ48の有無や量に依らずに一定値にしておくことができる。 FIG. 4 shows the frequency characteristics of the change ΔB of the susceptance B shown in FIGS. The susceptance change ΔB is the same regardless of the presence or absence of the power factor improving capacitor 48 in any order, not only during the continuous operation indicated by the solid line but also when the single operation indicated by the alternate long and short dash line occurs. It turns out that it is stable without being influenced by the series resonance by the capacitor 48 for improving the rate. Therefore, for example, focusing on the high-order injection order m2, a high-order side determination value Ju2 to be described later for the high-order injection order m2 is set to a constant value regardless of the presence / absence or amount of the power factor improving capacitor 48. be able to.

変化分検出回路90は、図7に示す例のものに限られるものではなく、例えば図8に示す例のように、上記遅延回路92の代わりに移動平均算出回路96を有するものでも良い。移動平均算出回路96は、上記サセプタンスBm2を第1の所定時間T1 (例えば1秒間)遅延して出力する遅延回路98と、上記サセプタンスBm2を第2の所定時間T2 (例えば2秒間)遅延して出力する遅延回路100と、両遅延回路98、100からの出力を加算する加算器102と、加算器102からの出力を1/2にする増幅器104とを有している。また、上記遅延回路92や移動平均算出回路96の代わりに、時定数の非常に長い(例えば10秒程度の)ローパスフィルタを設けても良い。 The change detection circuit 90 is not limited to the example shown in FIG. 7, and may include a moving average calculation circuit 96 instead of the delay circuit 92, as in the example shown in FIG. 8, for example. The moving average calculation circuit 96 delays and outputs the susceptance B m2 for a first predetermined time T 1 (for example, 1 second), and outputs the susceptance B m2 for a second predetermined time T 2 (for example, 2 seconds). ) A delay circuit 100 that outputs after delay, an adder 102 that adds outputs from both delay circuits 98 and 100, and an amplifier 104 that halves the output from the adder 102. Further, instead of the delay circuit 92 and the moving average calculation circuit 96, a low-pass filter having a very long time constant (for example, about 10 seconds) may be provided.

再び図7を参照して、変化分検出回路90から出力されるサセプタンスの変化分ΔBm2は判定器82に供給される。 Referring to FIG. 7 again, the susceptance change ΔB m2 output from the change detection circuit 90 is supplied to the determiner 82.

判定器82は、当該変化分ΔBm2を所定の高次側判定値Ju2と比較することによって、分散電源28(図5参照)が単独運転になったことを検出して高次側検出信号S2 を出力する。この判定器82が高次側判定手段を構成している。 The determiner 82 detects that the distributed power source 28 (see FIG. 5) has become an independent operation by comparing the change ΔB m2 with a predetermined higher-order determination value J u2 and detects a higher-order detection signal. and it outputs the S 2. This determination device 82 constitutes higher-order determination means.

判定器82は、この例ではより具体的には、図9Bに示す例のように、サセプタンスの変化分ΔBm2が容量性方向(即ち正方向)に高次側判定値Ju2を超えて変化したときに、高次側検出信号S2 を出力する。高次側判定値Ju2は、例えば、連系運転から単独運転に移行したときのサセプタンスの変化分ΔBm2の50%程度に設定しておけば良く、図9Bの例ではそのようにしている。 More specifically, in this example, the determiner 82 changes the susceptance change ΔB m2 in the capacitive direction (that is, the positive direction) exceeding the higher-order determination value Ju2 as in the example shown in FIG. 9B. when, and outputs the high-order side detection signal S 2. Higher side decision value J u2, for example, it is sufficient to set to about 50% of the interconnected operation change of susceptance component when the transition to the single operation from .DELTA.B m @ 2, in the example of FIG. 9B are that way .

なお、上記判定値Ju1、Ju2は、例えば、適用対象の配電系統のシミュレーションや実測試験を行うこと等によって、適切な値を予め比較的簡単に求めることができるので、その値を上記判定器80、82に設定しておけば良い。 Note that the determination values J u1 and J u2 can be determined relatively easily in advance by, for example, performing simulation or measurement test of the distribution system to be applied. What is necessary is just to set to the container 80,82.

上記低次側検出信号S1 および高次側検出信号S2 はAND回路84に供給される。AND回路84は、両検出信号S1 、S2 の論理積(AND)を取り、両検出信号S1 、S2 が共に出力されているときに検出信号S3 を出力する。このAND回路84が論理積手段を構成している。 The low order detection signal S 1 and the high order detection signal S 2 are supplied to the AND circuit 84. AND circuit 84 calculates the logical product of the two detection signals S 1, S 2 (AND) , and outputs a detection signal S 3 when both detection signals S 1, S 2 are output together. The AND circuit 84 constitutes a logical product means.

上記検出信号S3 を単独運転検出信号として単独運転監視装置34からそのまま出力するよりも、この例のように、継続時間判定器86によって、検出信号S3 が所定の継続確認時間T3 継続していることを判定して継続したときに単独運転検出信号S4 を出力するようにするのが好ましい。そのようにすると、単独運転以外の何らかの原因による電圧Vt 等の瞬時の変動による誤検出を防止することができる。この継続確認時間T3 は、それを長くすると、その分、単独運転検出が遅くなるので、例えば30m秒程度にすれば良い。この例では、この単独運転検出信号S4 の出力によって、単独運転監視装置34は、最終的に、それが設けられている分散電源保有設備14内の分散電源28が単独運転になったことを検出したことになる。 Rather than outputting the detection signal S 3 as an isolated operation detection signal from the isolated operation monitoring device 34 as it is, the detection signal S 3 is continued for a predetermined continuation confirmation time T 3 by the duration determination unit 86 as in this example. and it is preferable to outputs a islanding detection signal S 4 when continuing to determine the are. In so doing, it is possible to prevent erroneous detection due to instantaneous variation such as voltage V t from any cause other than the isolated operation. The continuation confirmation time T 3 is the longer it, correspondingly, since the islanding detection becomes slow, for example may be about 30m sec. In this example, by the output of the isolated operation detection signal S 4 , the isolated operation monitoring device 34 finally confirms that the distributed power supply 28 in the distributed power supply facility 14 in which the isolated operation monitoring device 34 is provided has been operated independently. It will be detected.

単独運転監視装置34による単独運転検出後に分散電源28の解列を行うには、例えば、図5に示す例のように、上記単独運転検出信号S4 によって遮断器20を開放すれば良い。 Islanding To do disconnecting the islanding detection after dispersing power source 28 by the monitoring device 34, for example, as in the example shown in FIG. 5 may be opened breaker 20 by the independent operation detecting signal S 4.

この単独運転検出装置30によれば、高次注入次数m2側はサセプタンスの変化分ΔBm2を計測し判定することによって、力率改善用コンデンサ48による直列共振の影響を受けずに、分散電源28の単独運転を確実に検出することができる。 According to this isolated operation detection device 30, the high-order injection order m2 side measures and determines the susceptance change ΔB m2 , so that it is not affected by the series resonance by the power factor correction capacitor 48 and is distributed. Can be reliably detected.

また、過渡変動に対しては、前述したようにSN比の高い高次注入次数m2のサセプタンスの変化分ΔBm2を計測し判定することによって、計測結果が安定しているので、離散フーリエ変換器70〜73における計測時間を短くして検出を高速化しても、不要検出を防止することができる。 For transient fluctuations, as described above, the measurement result is stable by measuring and determining the susceptance change ΔB m2 of the high-order injection order m2 having a high S / N ratio. Even if the measurement time in 70 to 73 is shortened to increase the detection speed, unnecessary detection can be prevented.

更に、AND回路84において、低次側の判定器80からの出力S1 と高次側の判定器82からの出力S2 の論理積(AND)を取り、両出力S1 、S2 のAND条件で検出信号S3 ひいては単独運転検出信号S4 を出力するようにしたことによって、一つの上位系統から他の上位系統へ系統を切り替える系統切り替えの際の不要検出を防止することができる。 Further, the AND circuit 84 takes the low-order side of the output S 1 and the higher side of the output S 2 of the logical product from the decision unit 82 from the judging unit 80 (AND), AND between the output S 1, S 2 by which is adapted to output a detection signal S 3 thus islanding detection signal S 4 under the condition, it is possible to prevent an unnecessary detection of the time of system switching to switch the system from one of the top line to the other higher strains.

この系統切り替えについて説明する。図10に示すように、上位系統が2a、2bの2系統あり、これらに、特高配電用変電所の遮断器8a、8bをそれぞれ介して、上記配電線10が接続され、この配電線10に、単独運転検出装置30を有する分散電源保有設備14が接続されている場合を考える。   This system switching will be described. As shown in FIG. 10, there are two higher systems, 2a and 2b, to which the distribution line 10 is connected via the circuit breakers 8a and 8b of the extra high-voltage distribution substation, respectively. Further, consider a case where a distributed power supply facility 14 having an isolated operation detection device 30 is connected.

上位系統2aから上位系統2bへの系統切り替えの際は、表2に示す手順によって、遮断器8a、8bを開閉することによって行われる。逆方向に切り替える場合は逆の手順によって行われる。ループ状態を作るのは停電を防止するためである。   When the system is switched from the upper system 2a to the upper system 2b, the circuit breakers 8a and 8b are opened and closed according to the procedure shown in Table 2. When switching in the reverse direction, the reverse procedure is used. The reason for creating a loop state is to prevent a power outage.

Figure 2009065794
Figure 2009065794

表2に示す系統切り替え時の低次注入次数m1のサセプタンスBm1および高次注入次数m2のサセプタンスの変化分ΔBm2の変化の様子を簡略化して図11に示す。 FIG. 11 shows a simplified state of changes in the change ΔB m2 of the susceptance B m1 of the low-order injection order m1 and the susceptance of the high-order injection order m2 at the time of system switching shown in Table 2.

図11Aに示すように、低次注入次数m1のサセプタンスBm1は、ループ状態時に負方向に(即ち誘導性方向に)増大する。二つの上位系統2a、2bのインピーダンスが並列になるからである。しかし、上記低次側判定値Ju1を超えることはないので、不要検出は生じない。 As shown in FIG. 11A, the susceptance B m1 of the low-order injection order m1 increases in the negative direction (that is, in the inductive direction) in the loop state. This is because the impedances of the two higher systems 2a and 2b are in parallel. However, since the lower order determination value Ju1 is not exceeded, unnecessary detection does not occur.

一方、図11Bに示すように、高次注入次数m2のサセプタンスの変化分ΔBm2は、(a)ループ状態に移行(時刻t2 )直後の所定時間(上記所定時間T)だけ負方向に増大し、更に(b)系統2b連系に移行(時刻t3 )直後の所定時間(上記所定時間T)だけ正方向に増大する。いずれも所定時間Tが経過すると、前述したように、変化分ΔBm は0に戻る。 On the other hand, as shown in FIG. 11B, the susceptance change ΔB m2 of the higher-order injection order m2 increases in the negative direction for a predetermined time (the predetermined time T) immediately after the transition to the loop state (time t 2 ). Furthermore, (b) it increases in the positive direction only for a predetermined time (the predetermined time T) immediately after the transition to the system 2b interconnection (time t 3 ). In any case, when the predetermined time T elapses, the change ΔB m returns to 0 as described above.

上記(a)の増大は、二つの上位系統2a、2bのインピーダンスが並列になったからであり、上記(b)の増大は、二つの並列だったインピーダンスが一つのインピーダンスになったからである。従って増大方向は互いに逆である。上記(a)の増大では、変化分ΔBm2は上記高次側判定値Ju2を超えないけれども、上記(b)の増大では、変化分のΔBm2は上記高次側判定値Ju2を超えるので、不要検出が生じる。しかし、上述したように(図11A参照)、低次注入次数m1側では不要検出は生じないので、上記AND条件による判定を採用したことによって、系統切り替えの際の不要検出を防止することができる。 The increase in (a) is because the impedances of the two higher systems 2a and 2b are in parallel, and the increase in (b) is because the two parallel impedances become one impedance. Accordingly, the increasing directions are opposite to each other. In the increase in (a), the change ΔB m2 does not exceed the higher-order determination value J u2 , but in the increase in (b), the change ΔB m2 exceeds the higher-order determination value J u2 . Therefore, unnecessary detection occurs. However, as described above (see FIG. 11A), unnecessary detection does not occur on the low-order injection order m1 side. Therefore, by employing the determination based on the AND condition, unnecessary detection at the time of system switching can be prevented. .

配電系統における現象と、上記単独運転検出装置30における上記判定結果とを、表3にまとめて示す。   Table 3 summarizes the phenomena in the power distribution system and the determination results in the isolated operation detection device 30.

Figure 2009065794
Figure 2009065794

この表3と、先の表1とを比べれば明らかなように、上記単独運転検出装置30によれば、低次注入次数のサセプタンスBm1の判定と、高次注入次数のサセプタンスの変化分ΔBm2の判定とのAND条件による判定を採用しているので、分散電源28の単独運転を高速で、しかも不検出や不要検出を防止して確実に検出することができる。 As is apparent from comparison between Table 3 and Table 1 above, according to the single operation detection device 30, the determination of the susceptance B m1 of the low-order injection order and the change ΔB of the susceptance of the high-order injection order. Since the determination based on the AND condition with the determination of m2 is adopted, the isolated operation of the distributed power source 28 can be detected reliably at high speed while preventing non-detection and unnecessary detection.

従って例えば、この単独運転検出装置30を、地絡事故の間接検出(換言すれば、単独運転検出装置30による地絡過電圧継電器の代替)に用いることが可能になる。それに用いることによって、変電所4の地絡事故検出感度の低下を防止することができる。しかも、分散電源保有設備14側において、地絡過電圧継電器(OVGR)およびそれ用の接地形計器用変圧器(GPT)を省略することが可能になり、設備コストを低減することができる。特に、配電線10が特高配電線の場合は、前述したように、特高用の接地形計器用変圧器は大型で高価であるため、これを省略することができる経済上等の効果は大きい。   Therefore, for example, this isolated operation detection device 30 can be used for indirect detection of a ground fault accident (in other words, replacement of the ground fault overvoltage relay by the isolated operation detection device 30). By using it, the fall of the ground fault detection sensitivity of the substation 4 can be prevented. In addition, the ground fault overvoltage relay (OVGR) and the grounded instrument transformer (GPT) for the ground fault overvoltage relay (OVGR) can be omitted on the distributed power supply facility 14 side, and the equipment cost can be reduced. In particular, when the distribution line 10 is an extra high distribution line, as described above, the extra high-voltage grounding type instrument transformer is large and expensive, so that it is possible to omit this and the economic effect is great. .

次に、特高配電系統のモデルを用いて、単独運転検出のシミュレーションを行った結果の例を説明する。   Next, the example of the result of having performed the simulation of isolated operation detection using the model of the extra high distribution system will be described.

図12は、時刻t4 で単独運転を発生させた場合の例である。図12Aに示すように、低次注入次数m1のサセプタンスBm1は、時刻t4 から約5m秒後の時刻t5 で低次側判定値Ju1を超えた。図12Bに示すように、高次注入次数m2のサセプタンスの変化分ΔBm2は、時刻t4 から約20m秒後の時刻t6 で高次側判定値Ju2を超えた。単独運転検出装置30は両者のAND条件で判定するので、単独運転発生時刻t4 から約20m秒後の時刻t6 に上記検出信号S3 が出力された。最終的な単独運転検出は、即ち上記単独運転検出信号S4 の出力は、30m秒に設定している上記継続時間T3 の経過後に行われた。 FIG. 12 shows an example in which an isolated operation is generated at time t 4 . As shown in FIG. 12A, the susceptance B m1 lower order infusion order m1 is greater than a low-order side determination value J u1 at time t 5 after about 5m seconds from time t 4. As shown in FIG. 12B, variation .DELTA.B m2 of susceptance of higher infusion order m2 is exceeded higher side determination value J u2 at time t 6 of about 20m seconds after the time t 4. Since independent operation detecting apparatus 30 is determined by both the AND condition, the detection signal S 3 is output at time t 6 after approximately 20m seconds isolated operation occurrence time t 4. The final isolated operation detection, that is, the output of the isolated operation detection signal S 4 was performed after the lapse of the duration T 3 set to 30 milliseconds.

単独運転発生から最終的な単独運転検出までの時間T4 は次式で表されるので、約50m秒以下の高速検出を行うことができた。 Since the time T 4 from the occurrence of the isolated operation until the final detected independent operation is expressed by the following equation, high-speed detection of about 50 milliseconds or less could be performed.

[数4]
4 =(t6 −t4 )+T3
≒20+30
≒50[m秒]
[Equation 4]
T 4 = (t 6 −t 4 ) + T 3
≒ 20 + 30
≒ 50 [msec]

単独運転検出時間の目標を50m秒以内にする理由は次のとおりである。上記非特許文献1にも記載されているように、特高や高圧の配電系統においては、地絡事故発生から1秒以内に、地絡過電圧継電器による分散電源の解列または単独運転検出装置による分散電源の解列が求められている。地絡事故発生から特高配電用変電所4の遮断器8が開放されて単独運転が発生するまでに、通常は約0.9秒かかる。単独運転検出後に分散電源保有設備14内の遮断器20を開放して分散電源28を解列するまでに、大きめにみると通常は約50m秒かかる。従って、単独運転検出に残された時間は約50m秒であるので、それ以下が検出時間の目標となる。   The reason for setting the isolated operation detection time target within 50 milliseconds is as follows. As described in Non-Patent Document 1 above, in an extra high or high voltage distribution system, within one second from the occurrence of a ground fault, a distributed power source is disconnected by a ground fault overvoltage relay or by an independent operation detection device. Disaggregation of distributed power sources is required. It usually takes about 0.9 seconds from the occurrence of a ground fault to the time when the circuit breaker 8 of the extra high-voltage distribution substation 4 is opened and the single operation occurs. Normally, it takes about 50 milliseconds to open the circuit breaker 20 in the distributed power supply facility 14 and disconnect the distributed power supply 28 after detecting the isolated operation. Accordingly, since the time remaining for the isolated operation detection is about 50 milliseconds, the time less than that is the detection time target.

図13は、時刻t7 で力率改善用コンデンサ48を投入して過渡変動を発生させた場合の例である。図13Aに示すように、低次注入次数m1のサセプタンスBm1は、時刻t8 〜t9 間の約20m秒間に低次側判定値Ju1を超えており、その間は不要検出が生じている。しかし、図13Bに示すように、高次注入次数m2のサセプタンスの変化分ΔBm2は、高次側判定値Ju2を超えていないので、不要検出は生じていない。単独運転検出装置30は両者のAND条件で判定するので、不要検出を防止することができた。 FIG. 13 shows an example in which the power factor improving capacitor 48 is turned on at time t 7 to generate a transient fluctuation. As shown in FIG. 13A, the susceptance B m1 lower order infusion order m1 is about 20m seconds between time t 8 ~t 9 exceeds the low-order side decision value J u1, during which occurs unnecessary detection . However, as shown in FIG. 13B, the susceptance change ΔB m2 of the higher-order injection order m2 does not exceed the higher-order determination value Ju2, and therefore unnecessary detection does not occur. Since the independent operation detection device 30 makes a determination based on the AND condition of both, unnecessary detection can be prevented.

以上は、サセプタンスで判定する場合を例に説明したが、配電系統のアドミタンスは殆どがサセプタンスであり両者は似ているので、サセプタンスの代わりにアドミタンスで判定するようにしても良い。   In the above description, the case of determining by susceptance has been described as an example. However, since most of the admittances of the distribution system are susceptances and they are similar, the determination may be made by using admittance instead of susceptance.

例えば、図7に示す演算器76において低次注入次数m1のアドミタンスYm1を求め、演算器78において高次注入次数m2のアドミタンスYm2を求め、変化分検出回路90においてアドミタンスYm2の変化分ΔYm2を求め、判定器80においてアドミタンスYm1用の低次側判定値Ju1と比較し、判定器82においてアドミタンスの変化分ΔYm2用の高次側判定値Ju2と比較するようにしても良い。 For example, the computing unit 76 shown in FIG. 7 obtains the admittance Y m1 of the low-order injection order m1, the computing unit 78 obtains the admittance Y m2 of the high-order injection order m2, and the change detection circuit 90 changes the admittance Y m2 . ΔY m2 is obtained and compared with the lower-order determination value J u1 for the admittance Y m1 in the determiner 80, and compared with the higher-order determination value J u2 for the admittance change ΔY m2 in the determiner 82. Also good.

あるいは、低次注入次数m1側および高次注入次数m2側の内の一方はサセプタンスで判定し、他方はアドミタンスで判定するようにしても良い。   Alternatively, one of the low-order injection order m1 side and the high-order injection order m2 side may be determined by susceptance, and the other may be determined by admittance.

特高配電系統を簡略化した回路モデルの一例を示す図である。It is a figure which shows an example of the circuit model which simplified the extra high power distribution system. 図1の回路において力率改善用コンデンサによる直列共振がない場合の、受電点から眺めたサセプタンスの周波数特性の一例を示す図である。FIG. 2 is a diagram illustrating an example of frequency characteristics of susceptance viewed from a power receiving point when there is no series resonance due to a power factor correction capacitor in the circuit of FIG. 1. 図1の回路において力率改善用コンデンサによる直列共振がある場合の、受電点から眺めたサセプタンスの周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of a susceptance seen from the receiving point in the case of the series resonance by the capacitor for power factor improvement in the circuit of FIG. サセプタンスの変化分の周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic for the change of a susceptance. この発明に係る分散電源の単独運転検出装置を備える配電系統の一例を示す単線接続図である。It is a single line connection figure which shows an example of a power distribution system provided with the isolated operation detection apparatus of the distributed power source which concerns on this invention. 図5中の電流注入装置の一例を示す回路図である。It is a circuit diagram which shows an example of the current injection apparatus in FIG. 図5中の単独運転監視装置の一例を示すブロック図である。It is a block diagram which shows an example of the independent operation monitoring apparatus in FIG. サセプタンスの変化分検出回路の他の例を示すブロック図である。It is a block diagram which shows the other example of the variation detection circuit of a susceptance. 単独運転発生時の低次注入次数のサセプタンスおよび高次注入次数のサセプタンスの変化分の変化の様子を簡略化して示す図である。It is a figure which simplifies and shows the mode of the change of the susceptance of the low order injection order and the susceptance of the high order injection order at the time of single operation generation | occurrence | production. 系統切り替えを説明するための回路モデルの一例を示す図である。It is a figure which shows an example of the circuit model for demonstrating system | strain switching. 系統切り替え時の低次注入次数のサセプタンスおよび高次注入次数のサセプタンスの変化分の変化の様子を簡略化して示す図である。It is a figure which simplifies and shows the mode of the change of the susceptance of the low order injection order at the time of system | strain change, and the susceptance of a high order injection order. 単独運転発生時の低次注入次数のサセプタンスおよび高次注入次数のサセプタンスの変化分の変化をシミュレーションした結果の一例を示す図である。It is a figure which shows an example of the result of having simulated the change of the susceptance of the low order injection order and the susceptance of the high order injection order at the time of single operation generation | occurrence | production. 過渡変動発生時の低次注入次数のサセプタンスおよび高次注入次数のサセプタンスの変化分の変化をシミュレーションした結果の一例を示す図である。It is a figure which shows an example of the result of having simulated the change of the susceptance of the low order injection order and the susceptance of the high order injection order at the time of transient fluctuation generation | occurrence | production.

符号の説明Explanation of symbols

2 上位系統
4 特高配電用変電所
10 配電線
14 分散電源保有設備
18 引込線
28 分散電源
30 単独運転検出装置
32 電流注入装置
34 単独運転監視装置
70〜73 離散フーリエ変換器
76、78 演算器
80、82 判定器
84 AND回路
90 変化分検出回路
m1 低次注入次数
m2 高次注入次数
m1、Jm2 注入電流
m1 サセプタンス
ΔBm2 サセプタンスの変化分
4 単独運転検出信号
2 Upper system 4 Substation for extra high distribution 10 Distribution line 14 Distributed power supply equipment 18 Service line 28 Distributed power supply 30 Isolated operation detection device 32 Current injection device 34 Isolated operation monitoring device 70 to 73 Discrete Fourier Transform 76, 78 Calculator 80 , 82 determiner 84 the AND circuit 90 variation detecting circuit m1 lower order infusion orders m2 higher infusion orders J m1, J m2 injected current B m1 susceptance .DELTA.B m2 susceptance variation S 4 islanding detection signal

Claims (1)

上位系統に変電所を介して配電線が接続され、この配電線に、分散電源を有する分散電源保有設備が接続された構成の配電系統に適用されるものであって、
前記配電線から前記分散電源保有設備への引込線に、当該配電系統の基本波の1倍よりも大きい非整数倍の注入次数の注入電流を注入する電流注入装置と、
前記分散電源保有設備の受電点から眺めた前記配電系統の前記注入次数のアドミタンスまたはサセプタンスを計測して、当該アドミタンスまたはサセプタンスの変化から、前記分散電源が単独運転になったことを検出して単独運転検出信号を出力する単独運転監視装置とを備えている単独運転検出装置において、
(1)前記電流注入装置は、4次未満の低次注入次数の注入電流および4次以上の高次注入次数の注入電流を注入するものであり、
(2)前記単独運転監視装置は、
(a)前記低次注入次数の前記アドミタンスまたはサセプタンスを計測する低次側計測手段と、
(b)前記低次側計測手段で計測したアドミタンスまたはサセプタンスを所定の低次側判定値と比較することによって、前記分散電源が単独運転になったことを検出して低次側検出信号を出力する低次側判定手段と、
(c)前記高次注入次数の前記アドミタンスまたはサセプタンスを計測する高次側計測手段と、
(d)前記高次側計測手段で計測したアドミタンスまたはサセプタンスの、所定時間前からの変化分を検出する変化分検出手段と、
(e)前記変化分検出手段で検出したアドミタンスまたはサセプタンスの変化分を所定の高次側判定値と比較することによって、前記分散電源が単独運転になったことを検出して高次側検出信号を出力する高次側判定手段と、
(f)前記低次側判定手段からの出力および前記高次側判定手段からの出力の論理積を取り、前記低次側検出信号および高次側検出信号が共に出力されているときに前記単独運転検出信号を出力する論理積手段とを備えている、ことを特徴とする分散電源の単独運転検出装置。
A distribution line is connected to a host system via a substation, and this distribution line is applied to a distribution system having a configuration in which a distributed power supply facility having a distributed power source is connected,
A current injection device for injecting an injection current of a non-integer multiple greater than 1 times the fundamental wave of the distribution system into a lead-in line from the distribution line to the distributed power supply holding facility;
Measures the admittance or susceptance of the injection order of the power distribution system as viewed from the power receiving point of the distributed power supply facility, and detects that the distributed power supply is in an independent operation from the change in the admittance or susceptance. In an isolated operation detection device comprising an isolated operation monitoring device that outputs an operation detection signal,
(1) The current injection device injects an injection current of a low-order injection order lower than the fourth order and an injection current of a higher-order injection order of the fourth order or higher,
(2) The isolated operation monitoring device
(A) low-order measurement means for measuring the admittance or susceptance of the low-order injection order;
(B) By comparing the admittance or susceptance measured by the low-order side measurement means with a predetermined low-order side determination value, it is detected that the distributed power source has become an independent operation, and a low-order detection signal is output. Lower order side determination means to
(C) high-order measuring means for measuring the admittance or susceptance of the high-order injection order;
(D) a change detection unit that detects a change in admittance or susceptance measured by the higher-order measurement unit from a predetermined time;
(E) By comparing the change in admittance or susceptance detected by the change detection means with a predetermined higher-order determination value, it is detected that the distributed power source has become an independent operation, and a higher-order detection signal Higher-order side determination means for outputting
(F) The logical product of the output from the low-order side determination means and the output from the high-order side determination means is taken, and when both the low-order detection signal and the high-order detection signal are output, the single An isolated operation detection device for a distributed power source, comprising: AND means for outputting an operation detection signal.
JP2007232269A 2007-09-07 2007-09-07 Single operation detector for distributed power supply Active JP4430702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232269A JP4430702B2 (en) 2007-09-07 2007-09-07 Single operation detector for distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232269A JP4430702B2 (en) 2007-09-07 2007-09-07 Single operation detector for distributed power supply

Publications (2)

Publication Number Publication Date
JP2009065794A true JP2009065794A (en) 2009-03-26
JP4430702B2 JP4430702B2 (en) 2010-03-10

Family

ID=40559859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232269A Active JP4430702B2 (en) 2007-09-07 2007-09-07 Single operation detector for distributed power supply

Country Status (1)

Country Link
JP (1) JP4430702B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033312A (en) * 2013-08-07 2015-02-16 日新電機株式会社 Power conditioner system for photovoltaic power generation
JP2015107033A (en) * 2013-12-02 2015-06-08 山洋電気株式会社 Parallel-off control device, parallel-off control method and power conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033312A (en) * 2013-08-07 2015-02-16 日新電機株式会社 Power conditioner system for photovoltaic power generation
JP2015107033A (en) * 2013-12-02 2015-06-08 山洋電気株式会社 Parallel-off control device, parallel-off control method and power conditioner

Also Published As

Publication number Publication date
JP4430702B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
CN105322528A (en) Injection current two-point calculation method during small-current grounding fault active arc extinguishing
CN203276027U (en) Digital dynamic closed-loop test system of electricity smooth and steady supply device
Rangarajan et al. Smart PV and SmartPark inverters as suppressors of TOV phenomenon in distribution systems
Li et al. High-speed directional pilot protection for MVDC distribution systems
Rahman et al. HVDC over HVAC power transmission system: Fault current analysis and effect comparison
Seo New adaptive reclosing technique using second-order difference of THD in distribution system with BESS used as uninterruptible power supply
Milanović et al. Influence of distributed wind generation and load composition on voltage sags
Lei et al. A protection method based on feature cosine and differential scheme for microgrid
Abo‐Khalil et al. A modified active frequency islanding detection method based on load frequency and chopping fraction changes
JP4430702B2 (en) Single operation detector for distributed power supply
Meral et al. Power quality improvement with an extended custom power park
Sati et al. Harmonic dual-setting directional overcurrent protection for inverter-based islanded microgrids
JP2015180174A (en) Isolated operation detection apparatus for distributed power supply
Burstein et al. Effect of Network Protection Requirements on the Design of a Flexible AC/DC‐link
Abdolrasol et al. Three phase grid connected anti-islanding controller based on distributed generation interconnection
Suwanasri et al. Multi-step back-to-back capacitor bank switching in a 115 kV substation
Thattai et al. Teager energy operator based fault detection and classification technique for converter dominated autonomous AC microgrid
Sena et al. An Approach to Detect Islanding in Photovoltaic Based Distributed Generation Systems using Sequence Components of Voltage
JP2008029065A (en) Islanding detection system of distributed power supply
Bayati et al. A high-impedance fault detection scheme for DC aircrafts based on comb filter and second derivative of voltage
JP2011015565A (en) Method and device for detection of single operation in distributed power supply
CN105510731A (en) Parallel resonance detection alarming method and system for medium-voltage side power grid of power transformer
Meral et al. Overview of an extended custom power park
JP2007174742A (en) Single operation detection method of distributed power supply and device
El Azzaoui Islanding detection method for distributed generation with wavelet based nuisance tripping suppression

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4430702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250