JP2015106678A - Al RIBBON FOR BONDING AND MANUFACTURING METHOD THEREFOR - Google Patents

Al RIBBON FOR BONDING AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2015106678A
JP2015106678A JP2013249086A JP2013249086A JP2015106678A JP 2015106678 A JP2015106678 A JP 2015106678A JP 2013249086 A JP2013249086 A JP 2013249086A JP 2013249086 A JP2013249086 A JP 2013249086A JP 2015106678 A JP2015106678 A JP 2015106678A
Authority
JP
Japan
Prior art keywords
ribbon
bonding
rolling
thickness
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013249086A
Other languages
Japanese (ja)
Inventor
栄治 村瀬
Eiji Murase
栄治 村瀬
徹志 仲田
Tetsushi Nakada
徹志 仲田
井関 隆士
Takashi Izeki
隆士 井関
久仁江 高木
Kunie Takagi
久仁江 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013249086A priority Critical patent/JP2015106678A/en
Publication of JP2015106678A publication Critical patent/JP2015106678A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85455Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent

Abstract

PROBLEM TO BE SOLVED: To provide an Al ribbon for bonding used for bonding an electronic component built in various devices using a semiconductor and a substrate, which is inexpensive and has high dimensional accuracy, in which oxide films or residual impurities are reduced, and with which stabilized bonding can be achieved, and to provide a manufacturing method therefor.SOLUTION: An Al alloy material principally composed of Al is rolled in the thickness direction and width direction by using a reduction roll set combining a thickness direction reduction roll and a width direction reduction roll in series, and then subjected to wire drawing by means of a variant dice immediately thereafter. An Al ribbon thus obtained contains 800 ppm or less of at least one kind of Ni, Si and P, in total, has an average crystal grain size of 2-250 μm, surface roughness Ra of 2.0 μm or less, and the thickness of the oxide film of 4.0 nm or less.

Description

本発明は、半導体を用いた各種装置等に内蔵される電子部品と基板との接合等に使用されるボンディング用Alリボン及びその製造方法に関する。   The present invention relates to an Al ribbon for bonding used for bonding an electronic component incorporated in various devices using a semiconductor and a substrate and a manufacturing method thereof.

半導体を用いた各種装置においては、半導体素子上に設けられた接続電極(ボンディングパッド)と半導体パッケージに設けられた外部引き出し用端子(リード)とを接続するため、配線材としてAlやCuなどのワイヤを用いた超音波ワイヤボンディングが一般的に行われている。このワイヤボンディングによる接続方法は、ワイヤの接続部を加圧したり超音波の振動エネルギーを加えたりすることによってワイヤのごく薄い酸化膜(例えば数nm)を破り、金属同士の接合を可能にするボンディング方法である。   In various devices using a semiconductor, a wiring material such as Al or Cu is used to connect a connection electrode (bonding pad) provided on a semiconductor element and an external lead terminal (lead) provided on a semiconductor package. Ultrasonic wire bonding using a wire is generally performed. This connection method by wire bonding is a bonding method that breaks a very thin oxide film (for example, several nm) of a wire by pressurizing the connection portion of the wire or applying ultrasonic vibration energy, thereby enabling bonding of metals. Is the method.

このようなワイヤボンディングが広く行われている状況下において、最近では半導体技術の急速な進歩に伴って、大容量の素子においてもボンディングにより接合する技術が求められている。このようなニーズに応える技術として、例えばリボン形状の配線材によるボンディングが提案されている。即ち、配線材をワイヤ形状(断面が円形)からリボン形状(断面が長方形)にすることによって断面積を格段に大きくでき、大電流を流すことが可能となるため、ハイパワーの半導体の接続にも十分耐えることができる。このようなボンディングに用いるAlリボンについて、以下に述べるような技術が開示されている。   Under the circumstances where such wire bonding is widely performed, recently, with the rapid progress of semiconductor technology, a technology for bonding even a large capacity element by bonding is required. As a technique that meets such needs, for example, bonding using a ribbon-shaped wiring material has been proposed. That is, by changing the wiring material from a wire shape (circular cross section) to a ribbon shape (rectangular cross section), the cross-sectional area can be remarkably increased, and a large current can be flown. Can withstand well. As for the Al ribbon used for such bonding, the following techniques are disclosed.

特許文献1には、同等の電流容量を備え、同等若しくは同等以上であってより安定した接合強度を実現できるボンディング用リボン、及びこれを用いたボンディング方法について、複数の凸部を接合側の一方の面に備えたボンディングリボン及びこれを用いたボンディング方法が開示されている。この特許文献1によれば、「ボンディングの初期に被接合面に接触する複数の凸部の頂部が形成され、その位置、大きさを所望のものとすることにより、ボンディング時の原子間結合によって接合される新生面の広がりを容易にすることができる。また、複数の凸部の頂部の面積を小さくすることにより、リボンと被着物との摩擦が発生し易くなって、表面に形成されている酸化膜を容易に破ることが可能となる。初期の塑性流動を発生させやすいため、比較的小さな荷重および超音波エネルギーにより、接合面が平坦なリボンと比べて安定した接合強度の確保を実現できる」と記載されている。   Patent Document 1 discloses a bonding ribbon that has an equivalent current capacity, is equal to or equal to or higher and can realize more stable bonding strength, and a bonding method using the bonding ribbon. A bonding ribbon provided on the surface and a bonding method using the same are disclosed. According to Patent Document 1, “the top portions of a plurality of convex portions that contact the surface to be joined are formed at the initial stage of bonding, and the positions and sizes thereof are set as desired. The spread of the new surface to be joined can be facilitated, and by reducing the area of the tops of the plurality of convex portions, friction between the ribbon and the adherend is easily generated and formed on the surface. It is possible to easily break the oxide film, and it is easy to generate the initial plastic flow, so a relatively small load and ultrasonic energy can ensure stable bonding strength compared to a ribbon with a flat bonding surface. Is described.

また特許文献2には、ボンディングリボンと比較して、何万回接合しても毎回接合面の全面にわたって均質に接合することができ、より安定した接合強度を実現できるボンディングリボンについて、以下の特徴を有する技術が記載されている。即ち、特許文献2による超音波ボンディング用アルミニウムリボンは、添加元素及び残部がアルミニウムからなる純度99質量%以上のアルミニウム合金から構成されている超音波ボンディング用アルミニウムリボンであって、このリボンは多段伸線後ロール圧延された極薄テープ構造であり、このリボンの断面内における結晶粒径の平均値が5〜200マイクロメートル(μm)であり、この極薄テープの表面は表面粗さがRz≦2マイクロメートル(μm)の鏡面仕上げがされていることを特徴としている。   Further, Patent Document 2 discloses the following characteristics of a bonding ribbon that can be uniformly bonded over the entire bonding surface every time even if bonded tens of thousands of times compared to the bonding ribbon, and can realize more stable bonding strength. A technique having In other words, the aluminum ribbon for ultrasonic bonding according to Patent Document 2 is an aluminum ribbon for ultrasonic bonding composed of an aluminum alloy having a purity of 99% by mass or more, in which the additive element and the balance are made of aluminum. It is an ultrathin tape structure that has been roll-rolled after wire drawing, the average value of the crystal grain size in the cross section of the ribbon is 5 to 200 micrometers (μm), and the surface roughness of the ultrathin tape has a surface roughness of Rz ≦ It is characterized by a mirror finish of 2 micrometers (μm).

上記したように配線材であるAlなどのワイヤの一部代替品としてAlリボンが実用化され且つ広まりつつあるが、以下に述べるような多くの問題点も存在するため、これが配線材としてのAlリボンの市場拡大にとって足枷となっている。   As described above, Al ribbons are being put into practical use and becoming widespread as partial substitutes for wires such as Al, which are wiring materials. However, since there are many problems as described below, this is the reason for Al ribbons as wiring materials. It is a hindrance to the ribbon market expansion.

即ち、半導体分野は激しいコスト競争にさらされており、市場からのコストダウンの要請は強く、この要求に応えることができれなければ、その技術自体が生き残れない状況であり、Alリボンについても同様である。しかも、Alリボンは車載用などの一般的な製品に使われていることから、特にコスト低減の要求が強いため、Alリボンの市場拡大にはコスト低減が必要とされている。   In other words, the semiconductor field is exposed to intense cost competition, and there is a strong demand for cost reduction from the market, and if the demand cannot be met, the technology itself cannot survive, and the same applies to Al ribbons. It is. In addition, since Al ribbons are used in general products such as in-vehicle use, the demand for cost reduction is particularly strong, and thus cost reduction is required for the expansion of the Al ribbon market.

また、Alリボンの品質にも高いレベルが求められている。例えば、Alリボンの幅や厚みの寸法精度が低い場合、Alリボンの許容電流にもバラツキが生じることになるため好ましくない。例えば、厚みが変わることによって接合時に十分な接合強度を得るための荷重や超音波エネルギーが変わってしまい、また幅が変わることによって接合面積も変わってしまう。このような寸法バラツキに合わせて接合条件を変えることは現実的には不可能であることから、良好な接合性や高い接合信頼性を得るために寸法精度の高いAlリボンが求められている。   Also, a high level is required for the quality of the Al ribbon. For example, when the dimensional accuracy of the width and thickness of the Al ribbon is low, the allowable current of the Al ribbon also varies, which is not preferable. For example, when the thickness changes, the load and ultrasonic energy for obtaining sufficient bonding strength at the time of bonding change, and when the width changes, the bonding area also changes. Since it is practically impossible to change the joining conditions in accordance with such dimensional variations, an Al ribbon with high dimensional accuracy is required to obtain good joining properties and high joining reliability.

更に、Alリボンでは、ボンディングする際に酸化膜が厚かったり、リボン洗浄時の油が残っていたりすると、ワイヤ以上に接合性を大きく低下させたり、接合強度がばらついたりしてしまう。この現象はワイヤでも問題になることであるが、特にAlリボンの場合は1本あたりの接合面積が広いため顕著に現れることから、酸化膜や油などの不純物の低減も強く要求されている。   Furthermore, with an Al ribbon, if the oxide film is thick at the time of bonding or if oil remains during ribbon cleaning, the bondability will be greatly reduced or the bonding strength will vary more than the wire. This phenomenon becomes a problem even in the case of a wire, but particularly in the case of an Al ribbon, since the bonding area per one is large and it appears remarkably, reduction of impurities such as an oxide film and oil is strongly demanded.

上記したように配線材としてのAlリボンには、低コスト化、高い寸法精度、及び酸化膜や不純物の低減などが要求されており、これらの問題を解決することによってAlリボンは更に工業的に重要な製品となり得る。しかし、上記した各特許文献の技術によっても、これらの要求を十分に満たすAlリボンは提供されていない現状である。   As described above, the Al ribbon as a wiring material is required to be reduced in cost, high in dimensional accuracy, and reduced in oxide film and impurities. By solving these problems, the Al ribbon is further industrialized. It can be an important product. However, even with the technologies of the above-mentioned patent documents, an Al ribbon that sufficiently satisfies these requirements is not provided.

例えば上記特許文献1には、ボンディングリボンに複数の凸部を接合側の一方の面に備えることにより、安定した接合強度を実現する技術が開示されている。しかし、ボンディングリボンに複数の凸部を設けることは容易ではない。即ち、板厚が厚いものに凸部を設ける場合と異なり、配線材として使われるボンディング用Alリボンは一般的に厚みが50〜100μm程度と非常に薄いく、200μmを超えることはほとんどない。このような薄いAlリボンに凸部を形成するには相当に高度な技術を要し、従って相当なコストアップになることは避けられない。圧延は多くの分野で使われている一般的な技術であるが、100μm程度の薄い金属箔に複数の凸部を設けるという圧延技術は一般的には行われていないからである。   For example, Patent Document 1 discloses a technique for realizing a stable bonding strength by providing a bonding ribbon with a plurality of convex portions on one surface on the bonding side. However, it is not easy to provide a plurality of convex portions on the bonding ribbon. That is, unlike the case where the convex portion is provided on the thick plate, the bonding Al ribbon used as the wiring material is generally very thin with a thickness of about 50 to 100 μm and hardly exceeds 200 μm. In order to form a convex part on such a thin Al ribbon, a considerably advanced technique is required, and therefore a considerable increase in cost is inevitable. This is because rolling is a general technique used in many fields, but the rolling technique of providing a plurality of convex portions on a thin metal foil of about 100 μm is not generally performed.

また、上記特許文献1によれば、凸部を接合側の面に設けて安定した接合強度を実現させていることから、凸部には接合時の圧着力やエネルギーが集中し、酸化膜等を破り易くなり、部分的な単位面積当りの強度は向上するとしている。しかし、逆に凹部では押し付ける応力が低くなるため凹部の接合強度は低下し、接合部全体としての強度は必ずしも上がるとは言えない。更に、部分的な応力集中によってリボンの変形が著しい箇所においては、逆に強度が低下したりリボンの断面積が小さくなったりして、リボン自身の接合強度を下げてしまうことが推測される。しかも、凸部を有していることにより、接合の際にループ状に変形させたとき、凸部を有していないものに比較して応力集中が起きやすくなる。その結果、この応力集中の位置や応力の大きさによっては、クラック発生の原因になったり、ループがきれいに曲がらないため十分な接合強度が得られなかったり、接合面の接合強度に大きなバラツキが発生するなどの問題が発生してしまうと考えられる。   Further, according to the above-mentioned Patent Document 1, since the convex portion is provided on the surface on the joining side to achieve a stable joining strength, the pressure force and energy at the time of joining are concentrated on the convex portion, and the oxide film or the like It is said that the strength per part area is improved. However, on the contrary, since the stress to be pressed becomes low in the concave portion, the joint strength of the concave portion is lowered, and it cannot be said that the strength of the whole joint portion is necessarily increased. Further, at locations where the deformation of the ribbon is remarkable due to partial stress concentration, it is conjectured that, on the contrary, the strength decreases or the cross-sectional area of the ribbon decreases, thereby reducing the bonding strength of the ribbon itself. In addition, since the protrusions are provided, stress concentration is more likely to occur when deformed into a loop shape during bonding as compared to those having no protrusions. As a result, depending on the position of the stress concentration and the magnitude of the stress, it may cause cracking, the loop will not bend properly, and sufficient bonding strength will not be obtained, or the bonding strength of the bonding surface will vary greatly It is thought that problems such as doing will occur.

上記特許文献2では、添加元素や伸線条件等を特定範囲内とすることにより、何万回接合しても毎回接合面の全面にわたって均質に接合することができ、より安定した接合強度を実現できるボンディングリボンの製造方法において、伸線は多段伸線を行うことが必須の条件とされている。しかし、多段伸線を行うと、その段数が増えれば増えるほど作業時間や手間がかかり、必要な治具なども増加する。また、1台の装置で多段伸線を行おうとすると、ダイスを交換したり、交換のため掃除等を行ったり、ワイヤの張力をその径に応じて毎回調整したりしなければならず、極めて非効率的である。このような手間を省き、効率的に多段伸線する方法として、多段の分だけ伸線装置を揃え、各装置で伸線するワイヤ径を変えることが考えられる。このようにすることによって伸線作業は大幅に簡略化できるが、多くの装置の導入にコストがかかり、設備の設置場所を広げる必要があるなど、コストの増加を招くことが明白である。   In the above-mentioned Patent Document 2, by making the additive element and the wire drawing condition within a specific range, even if tens of thousands of times are joined, it can be joined uniformly over the entire joint surface every time, and more stable joint strength is realized. In the manufacturing method of the bonding ribbon which can be performed, it is indispensable conditions for wire drawing to perform multistage wire drawing. However, when multi-stage drawing is performed, as the number of stages increases, work time and labor are required, and necessary jigs and the like increase. In addition, when trying to perform multi-stage drawing with one device, it is necessary to change the die, perform cleaning etc. for replacement, and adjust the tension of the wire according to its diameter each time. Inefficient. As a method for efficiently performing multi-stage wire drawing without such trouble, it is conceivable to prepare wire drawing devices corresponding to the multi-stage wire, and to change the diameter of the wire drawn by each device. By doing so, the wire drawing work can be greatly simplified, but it is obvious that the introduction of many apparatuses is costly, and it is necessary to widen the installation location of the equipment.

更に上記特許文献2によれば、Ni、Si、Mg、Cuの添加で結晶粒径を整えることにより、ボンディング強度のバラツキが小さくなり、安定した接合強度が得られるとされている。しかし、結晶粒径を整えても表面には接合性を下げる一番の原因である酸化膜は存在しているから、酸化膜除去の手段が示されていない上記特許文献2の方法では接合強度向上の効果は小さいと言わざるを得ない。例えば実施例等には、アルミリボン材を200〜400℃で熱処理するとの記載がある。熱処理条件に関する詳しい記載はないが、例えばターボ分子ポンプを備えた超高真空炉による熱処理であったとしても還元性の強いAlの酸化膜を増加させないことは不可能であり、200℃以上に加熱すればAlリボンの酸化膜は薄くとも数〜10nm、部分的に見れば数10nm以上の厚さに形成されていると考えられる。このような厚い酸化膜が形成されていては、結晶粒径がいかに揃っていても接合強度向上の効果がほとんど現れないことは明白である。   Further, according to Patent Document 2, it is said that by adjusting the crystal grain size by adding Ni, Si, Mg, and Cu, variation in bonding strength is reduced and stable bonding strength can be obtained. However, even if the crystal grain size is adjusted, there is an oxide film which is the main cause of lowering the bonding property on the surface. It must be said that the improvement effect is small. For example, in the examples, there is a description that the aluminum ribbon material is heat-treated at 200 to 400 ° C. Although there is no detailed description on the heat treatment conditions, it is impossible to increase the Al oxide film having a strong reducing property even if the heat treatment is performed in an ultra-high vacuum furnace equipped with a turbo molecular pump, for example. In this case, it is considered that the oxide film of the Al ribbon is formed to a thickness of several tens to 10 nm, or a few tens of nanometers or more when viewed partially. If such a thick oxide film is formed, it is apparent that the effect of improving the bonding strength hardly appears no matter how the crystal grain sizes are uniform.

また、上記特許文献2によれば、多段伸線後にロール圧延することで断面が円状のものを板状に変形させるわけであるから、幅方向において塑性変形量が大きく異なり、残留応力が大きくなって強度がでなかったり、端部にクラックが発生して収率が低下したり、断線してしまったり、結晶粒径が幅方向で大きく異なって接合強度のバラツキの原因になったりしてしまう。このようなAlリボンでは、強度を十分に有する安定した接合は不可能であるうえ、収率も悪いことからコスト面でも不利になってしまう。   Further, according to the above-mentioned Patent Document 2, since the circular cross section is deformed into a plate shape by roll rolling after multi-stage drawing, the amount of plastic deformation is greatly different in the width direction, and the residual stress is large. The strength is not good, cracks occur at the end, the yield decreases, the wire breaks, or the crystal grain size varies greatly in the width direction, causing variations in the bonding strength. End up. With such an Al ribbon, stable joining with sufficient strength is impossible, and the yield is poor, which is disadvantageous in terms of cost.

特開2007−194270号公報JP 2007-194270 A 特許第4212641号公報Japanese Patent No. 4212641

上記したように、ボンディング用Alリボンにはコストダウンが強く要求されている。即ち、半導体分野は激しいコスト競争にさらされており、年率で数%程度の値下げは当たり前の状況にある。このコスト低減要求に応えきれない技術は生き残ることができない状況であり、Alリボンについても全く同じ状況が当てはまる。更にAlリボンは車載用などの一般的な製品に使われているため、特にコスト低減の要求が強い。   As described above, there is a strong demand for cost reduction for the Al ribbon for bonding. In other words, the semiconductor field is exposed to intense cost competition, and price reductions of several percent per year are natural. A technology that cannot meet this cost reduction requirement cannot survive, and the same situation applies to Al ribbons. Furthermore, since the Al ribbon is used in general products such as in-vehicle use, there is a strong demand for cost reduction.

また、Alリボンには幅や厚みなどに高い寸法精度が要求されている。即ち、Alリボンは車載用など高い信頼性が求められる電子部品に多用されていることから、高い接合信頼性が要求されている。高い接合信頼性を得るために必要な要件は多くあるが、高い寸法精度は必須且つ重要な要件である。例えば、寸法精度が低いAlリボンでは許容電流にもバラつきが生じるため、断面積の小さい箇所では電気抵抗が高くなって発熱し、周囲の部材に損傷を与え、Alリボン自体の断線にも繋がりかねない。また、Alリボンの厚みや幅が変わることによって、接合時に十分な接合強度を得るための最適な荷重や超音波エネルギーが変わるが、このような寸法のバラツキに合わせて接合条件を変えることは現実的には不可能である。従って、良好な接合性や高い接合信頼性を得るために、寸法精度の高いAlリボンが求められている。   In addition, Al ribbons are required to have high dimensional accuracy in terms of width and thickness. In other words, Al ribbons are frequently used in electronic parts that require high reliability such as in-vehicle use, and therefore high bonding reliability is required. There are many requirements necessary to obtain high joint reliability, but high dimensional accuracy is an essential and important requirement. For example, Al ribbons with low dimensional accuracy also vary in allowable current, so that electrical resistance increases and heat is generated at locations with a small cross-sectional area, which may damage surrounding members and lead to disconnection of the Al ribbon itself. Absent. Also, changing the thickness and width of the Al ribbon changes the optimum load and ultrasonic energy for obtaining sufficient bonding strength during bonding, but it is a reality to change the bonding conditions according to such dimensional variations. Is impossible. Therefore, in order to obtain good bondability and high bonding reliability, an Al ribbon with high dimensional accuracy is required.

更に、Alリボンには、表面の酸化膜や油などの残留不純物の低減が求められている。即ち、表面の酸化膜が厚かったり、リボン洗浄時の油や不純物が表面に残っていたりすると、ボンディング時の接合性を大きく低下させたり接合強度がばらついたりしてしまう。この酸化膜や残留不純物はワイヤでも問題になるが、リボンの場合は配線材1本あたりの接合面積が広く且つ1本あたりに流れる電流が大きくなる傾向があるため、その低減が特に重要である。   Furthermore, Al ribbons are required to reduce residual impurities such as oxide films on the surface and oil. That is, if the oxide film on the surface is thick, or if oil or impurities at the time of ribbon cleaning remain on the surface, the bondability at the time of bonding is greatly reduced or the bonding strength varies. This oxide film and residual impurities are also a problem with wires, but in the case of ribbons, since the bonding area per wiring material is large and the current flowing per wire tends to increase, the reduction is particularly important. .

本発明は、このようなボンディング用Alリボンにおける問題に鑑みてなされたものであり、安価であると共に寸法精度が高く、しかも表面の酸化膜や残留不純物などが低減されていて、安定した接合を実現できるボンディング用Alリボン、及びその製造方法を提供することを目的とする。   The present invention has been made in view of the problem of such an Al ribbon for bonding, and is inexpensive, has high dimensional accuracy, and has reduced surface oxide film, residual impurities, etc., so that stable bonding can be achieved. An object of the present invention is to provide an Al ribbon for bonding that can be realized and a method for manufacturing the same.

上記目的を達成するため、本発明が提供するボンディング用Alリボンの製造方法は、厚み方向圧延ロールと幅方向圧延ロールが直列に組み込まれた圧延用ロールセットと、異形状ダイスとで構成された加工装置を使用して、Alを主成分とするAl合金材を圧延用ロールセットで厚み方向と幅方向に圧延加工し、その直後に異形状ダイスで伸線することを特徴とする。   In order to achieve the above object, a method for producing an Al ribbon for bonding provided by the present invention comprises a roll set for rolling in which a thickness direction rolling roll and a width direction rolling roll are incorporated in series, and an irregularly shaped die. A processing apparatus is used to roll an Al alloy material containing Al as a main component in a thickness direction and a width direction with a roll set for rolling, and thereafter, the Al alloy material is drawn with an irregularly shaped die.

また、本発明が提供するボンディング用Alリボンは、Alを主成分とし、Ni、Si及びPの少なくとも1種を合計で800ppm以下含有すると共に、平均結晶粒径が2〜250μmであり、表面粗さRaが2.0μm以下であって、且つ酸化膜の厚さが4.0nm以下であることを特徴とする。   In addition, the Al ribbon for bonding provided by the present invention contains Al as a main component, contains at least one of Ni, Si and P in a total of 800 ppm or less, has an average crystal grain size of 2 to 250 μm, and has a surface roughness. The thickness Ra is 2.0 μm or less, and the thickness of the oxide film is 4.0 nm or less.

本発明によれば、幅や厚みなどの寸法精度が高く、表面の酸化膜や残留不純物が低減されたボンディング用Alリボンを、安価に提供することができる。従って、本発明のボンディング用Alリボンを用いることにより、優れた接合強度と高い接合信頼性が得られ、安定した接合を実現することができるため、車載用など高い信頼性が求められる電子部品に特に有用である。   According to the present invention, an Al ribbon for bonding with high dimensional accuracy such as width and thickness and reduced surface oxide film and residual impurities can be provided at low cost. Therefore, by using the bonding Al ribbon of the present invention, excellent bonding strength and high bonding reliability can be obtained, and stable bonding can be realized. Therefore, for electronic parts that require high reliability such as in-vehicle use. It is particularly useful.

圧延用ロールセットの一具体例を示す概略図であって、(イ)は側面図及び(ロ)は平面図である。It is the schematic which shows one specific example of the roll set for rolling, Comprising: (A) is a side view, (B) is a top view. 異形状ダイスのダイス孔を模式的に示す正面図であり、(イ)は長方形のダイス孔、(ロ)は長方形の角部が円弧をなすダイス孔、(ハ)は長方形の短辺部分が円弧をなすダイス孔である。It is a front view schematically showing a die hole of an irregularly shaped die, (A) is a rectangular die hole, (B) is a die hole in which a rectangular corner forms an arc, and (C) is a rectangular short side portion. A die hole forming an arc. 接合強度試験においてNiメッキCu基板にボンディングしたAlリボンを示す概略図であって、(イ)は断面図及び(ロ)は平面図である。It is the schematic which shows the Al ribbon bonded to the Ni plating Cu board | substrate in a joining strength test, (A) is sectional drawing and (B) is a top view.

本発明のAlリボンは、厚み方向圧延ロールと幅方向圧延ロールが組み込まれた圧延用ロールセットによる圧延加工と、この圧延加工直後の異形状ダイスによる伸線加工とによって製造される。即ち、原材料のAl合金材を、圧延用ロールセットを用いて厚み方向と幅方向に同時に圧延加工し、その直後に異形状ダイスで伸線することによって、本発明のAlリボンを製造することができる。   The Al ribbon of the present invention is manufactured by a rolling process using a rolling roll set in which a thickness direction rolling roll and a width direction rolling roll are incorporated, and a wire drawing process using an irregularly shaped die immediately after the rolling process. That is, the Al ribbon material of the present invention can be produced by simultaneously rolling the raw material Al alloy material in the thickness direction and the width direction using a rolling roll set, and then drawing with an irregularly shaped die immediately thereafter. it can.

上記圧延用ロールセットによる圧延について、圧延用ロールセットの一具体例を示す図1を参照しながら、厚み圧延方向ロールAと幅方向圧延ロールBとを直列に1セット組み込んだ圧延用ロールセットを用いて、圧延用のAl合金材1を圧延する場合について説明する。尚、図1はAl合金材1が円柱状である場合を示している。また、複数の圧延用ロールセットを使用して、Al合金材1の厚み方向と幅方向の圧延加工を複数回繰り返すこともできる。 Regarding the rolling by the above rolling roll set, a rolling roll set in which one set of thickness rolling direction roll A and width direction rolling roll B is incorporated in series with reference to FIG. 1 showing a specific example of the rolling roll set. with, a case is described in which rolling an Al alloy material 1 0 for rolling. Incidentally, FIG. 1 shows a case where Al alloy material 1 0 is cylindrical. Also, using multiple rolling roll sets may be repeated a plurality of times rolling in the thickness direction and width direction of the Al alloy material 1 0.

まず、直列に組み込まれた厚み方向圧延ロールAと幅方向圧延ロールBの隙間を要求寸法に合わせて調整する。次に、圧延用のAl合金材1を、厚み方向圧延ロールAを通して挟み、続いて幅方向圧延ロールBに通した後、幅方向圧延ロールBを通したAl合金材1の端部を巻取機(図示せず)に取り付けた巻取用スプールにセットする。その後、巻取機を自動で回転させて巻き取ることにより、Al合金材1は厚み方向圧延ロールAと幅方向圧延ロールBの2つの圧延ロールを通って、1回の圧延作業で所定の寸法に圧延される。 First, the gap between the thickness direction rolling roll A and the width direction rolling roll B incorporated in series is adjusted according to the required dimension. Then, an Al alloy material 1 0 for rolling, scissors through the thickness direction rolling rolls A, passed through a widthwise rolling rolls B subsequently, the ends of the Al alloy material 1 0 through the widthwise rolling rolls B Set on a take-up spool attached to a take-up machine (not shown). Thereafter, the wound by rotating the winding machine automatic, Al alloy material 1 0 through the two rolling rolls in the thickness direction rolling rolls A and widthwise rolling rolls B, given in a single rolling operation Rolled to dimensions.

上記厚み圧延方向ロールAと幅方向圧延ロールBとを直列に組み込んだ圧延用ロールセットを使用してAl合金材1を圧延することによって、Al合金材1に対して厚み方向と幅方向の2方向の圧延を1回の作業で行うことができるので、高い寸法精度を得ることができると共に生産効率も非常に高くなり、格段に低コストで寸法精度の高いAlリボンを製造することができる。 By rolling the Al alloy material 1 0 using a rolling roll set incorporating the above thickness rolling direction rolls A and widthwise rolling rolls B in series, the thickness and width directions with respect to Al alloy material 1 0 The two-direction rolling can be performed in one operation, so that high dimensional accuracy can be obtained and the production efficiency is very high, and it is possible to manufacture an Al ribbon with extremely low cost and high dimensional accuracy. it can.

上記のごとく圧延用ロールセットにより厚み方向と幅方向とが1回の圧延作業で圧延されたAl合金材は、その直後に異形状ダイスによって伸線される。異形状ダイスによる伸線は、上記圧延用ロールセットの後に異形状ダイスを取り付けて、上記圧延作業の直後に連続して伸線すると効率よくAlリボンを製造できるため好ましい。圧延装置に異形状ダイスを取り付けることができない場合には、圧延の直後に伸線機を使って伸線することも可能である。   As described above, the Al alloy material rolled in one rolling operation in the thickness direction and the width direction by the rolling roll set is drawn by an irregularly shaped die immediately after that. Drawing with an irregularly shaped die is preferable because an Al ribbon can be efficiently produced by attaching an irregularly shaped die after the rolling roll set and continuously drawing immediately after the rolling operation. When the irregularly shaped die cannot be attached to the rolling device, it is possible to perform wire drawing using a wire drawing machine immediately after rolling.

また、異形状ダイスによる伸線は2段以上で行ってもよい。複数段で伸線することによって、寸法精度を更に上げることができる。ダイスの材質としては、超鋼ダイスやダイヤモンドダイスを用いることができるが、特にダイヤモンドダイスは硬く、摩耗等も少ないことから、伸線時の発熱が少なく酸化が進行し難いため好ましい。   Further, the wire drawing by the irregularly shaped die may be performed in two or more stages. The dimensional accuracy can be further increased by drawing in multiple stages. As the material of the die, a super steel die or a diamond die can be used. Particularly, the diamond die is preferable because it is hard and has little wear and the like.

上記異形状ダイスのダイス孔の形状、即ちAl合金材が伸線されるダイス孔の形状は、円形以外であればよいが、図2に示すように概略長方形であることが好ましい。例えば、図2(イ)に示すようにダイス孔が長方形(長辺a≠短辺b)のダイスのほか、(ロ)に示すように上記(イ)のダイス孔の長方形の4つの角部cが円弧をなすダイス、及び(ハ)に示すように上記(イ)のダイス孔の長方形の両側の短辺部分dが円弧をなすダイスを好適に使用することができる。   The shape of the die hole of the irregularly shaped die, that is, the shape of the die hole in which the Al alloy material is drawn may be other than a circle, but is preferably a substantially rectangular shape as shown in FIG. For example, as shown in FIG. 2A, in addition to a die having a rectangular die hole (long side a ≠ short side b), as shown in FIG. 2B, four corners of the rectangle of the die hole shown in FIG. A die in which c forms an arc and a die in which short side portions d on both sides of the rectangle of the die hole in (a) form an arc as shown in (c) can be preferably used.

以下、本発明によるAlリボンの製造方法について更に詳しく説明する。
<圧延用のAl合金材>
原材料として用いる圧延用のAl合金材は、Alを主成分とするものであれば、その組成は特に限定されるものではなく、従来からAlリボンとして通常使用されているものであってもよい。ただし、Ni、Si及びPの少なくとも1種を合わせて800ppm以下含有し、残部がAlと不可避的不純物からなるAl合金材の使用が特に好ましい。
Hereinafter, the Al ribbon production method according to the present invention will be described in more detail.
<Al alloy material for rolling>
The Al alloy material for rolling used as a raw material is not particularly limited as long as it has Al as a main component, and may be one conventionally used as an Al ribbon. However, it is particularly preferable to use an Al alloy material containing 800 ppm or less in combination of at least one of Ni, Si and P, with the balance being Al and inevitable impurities.

また、圧延用のAl合金材の形状については、特に限定されるものではなく、従来と同様に板状や箔状、円柱状やワイヤ状であってよい。例えば、ワイヤ状のAl合金材は伸線によって製造してよく、そのダイス孔の材質は超鋼材よりもダイヤモンドが好ましい。このようなダイスを用いることにより、ワイヤ表面の凸凹を軽減でき、傷なども入り難くなる。品質を重視する場合は、生産性があまり落ちない程度まで伸線速度を遅くすることが好ましい。伸線速度が速いとAl合金材の表面が傷などで荒れるため、圧延や伸線の際に蛇行などが起こりやすくなり、得られるAlリボンが長さ方向で塑性加工の程度が異なったり、傷の発生が多くなったりするため好ましくない。   In addition, the shape of the Al alloy material for rolling is not particularly limited, and may be a plate shape, a foil shape, a columnar shape, or a wire shape as in the conventional case. For example, a wire-like Al alloy material may be manufactured by wire drawing, and the material of the die hole is preferably diamond rather than a super steel material. By using such a die, unevenness on the surface of the wire can be reduced, and scratches and the like are difficult to enter. When emphasizing quality, it is preferable to slow the wire drawing speed to such an extent that productivity does not drop so much. If the wire drawing speed is high, the surface of the Al alloy material becomes rough due to scratches, etc., so that meandering or the like is likely to occur during rolling or wire drawing, and the resulting Al ribbon has a different degree of plastic working in the length direction. This is not preferable because of the increased occurrence of

また、添加元素を多めに含むAl合金材の場合には、材質が硬くなる傾向があるため、伸線用のダイスにはテーパーダイスを用いることが好ましい。テーパーダイスを用いることによって、伸線速度を遅くすることができるため、Al合金材にかかる応力が高くなりすぎず、伸線方向に均一な品質のAlワイヤが得られやすくなり、また、ダイス先端部のみ応力が高くなって硬いものでも加工しやすくなるからである。   In the case of an Al alloy material containing a large amount of additive elements, the material tends to be hard, and therefore it is preferable to use a taper die for the wire drawing die. By using a taper die, the wire drawing speed can be reduced, so that the stress applied to the Al alloy material does not become too high, and it becomes easy to obtain an Al wire of uniform quality in the wire drawing direction. This is because only the portion has a high stress, and it is easy to process even a hard material.

本発明のAlリボンの製造に用いるAl合金材の製造方法は、特に限定されるものではなく、従来と同様に製造し準備することができる。例えば、Alと各添加元素を不活性ガス中にて高周波溶解した後、鋳型に鋳込むことにより又は連続鋳造機によってAl合金を製造する。高周波溶解式の連続鋳造炉は、多量に安定した品質の合金を溶解鋳造することができるため、溶解鋳造方法として好ましい。得られたAl合金は、そのまま若しくは更に伸線加工などを行って、板状や円柱状など所定形状のAl合金材とすることができる。   The method for producing the Al alloy material used for producing the Al ribbon of the present invention is not particularly limited, and can be produced and prepared in the same manner as in the past. For example, Al and each additive element are melted at a high frequency in an inert gas, and then cast into a mold or an Al alloy is produced by a continuous casting machine. A high frequency melting type continuous casting furnace is preferable as a melting casting method because it can melt and cast a stable quality alloy in a large amount. The obtained Al alloy can be made into an Al alloy material having a predetermined shape such as a plate shape or a columnar shape as it is or after further drawing.

以下に、Alリボン製造に用いるAl合金材の製造方法を、高周波溶解式の連続鋳造炉を用いた場合を例に具体的に説明する。まず、原料として純度99.995質量%以上のAlと、純度の高い添加元素、例えば純度99.95質量%以上のNi、Si、Pを準備する。各原料を目標組成に合わせ所定量秤量し、溶解用グラファイト坩堝に投入する。グラファイト坩堝の底付近の側面には横穴が開いており、ここにAl合金のダミー材(目標組成のAl合金)を詰めて蓋の役割をさせる。Pを添加する場合は溶解時に蒸気として飛んでしまいやすいため、目標組成より10〜30%程度多めに入れるとよい。   Below, the manufacturing method of Al alloy material used for Al ribbon manufacture is concretely demonstrated to the case where the high frequency melt type continuous casting furnace is used as an example. First, Al having a purity of 99.995% by mass or more and additive elements having a high purity, for example, Ni, Si, and P having a purity of 99.95% by mass or more are prepared as raw materials. A predetermined amount of each raw material is weighed according to the target composition and put into a melting graphite crucible. A side hole is opened in the side surface near the bottom of the graphite crucible, and an aluminum alloy dummy material (aluminum alloy having a target composition) is packed therein to serve as a lid. When P is added, it tends to fly as a vapor at the time of dissolution, so it is better to add about 10 to 30% more than the target composition.

次に、上記原料の入ったグラファイト坩堝を高周波溶解方式の連続鋳造炉にセットし、不活性ガスを原料1kgあたり0.5〜2リットル/分程度の流速で流しながら連続鋳造炉の電源を入れ、昇温速度の設定値を2〜4℃/秒として自動で昇温する。その後、自動運転で融点よりも80〜200℃程度高い温度で保持し、各原料が溶けた後、溶け残りや偏析がないように撹拌翼を挿入して撹拌する。原料が十分に混ざったことを確認した後、坩堝の底付近の横穴から熔融原料を一定速度でゆっくり引き出して、所定の径の棒状(断面が円形や長方形など)のAl合金を製造する。得られたAl合金は、そのまま又は所望に応じて伸線加工などによりAl合金材とする。   Next, the graphite crucible containing the above raw materials is set in a high frequency melting type continuous casting furnace, and the continuous casting furnace is turned on while flowing an inert gas at a flow rate of about 0.5 to 2 liters / minute per kg of the raw material. The temperature is raised automatically by setting the temperature rise rate to 2 to 4 ° C./second. Then, it hold | maintains at about 80-200 degreeC higher than melting | fusing point by automatic operation, and after each raw material melt | dissolves, it stirs by inserting a stirring blade so that there may be no melt | dissolution residue and segregation. After confirming that the raw materials are sufficiently mixed, the molten raw material is slowly pulled out from the lateral hole near the bottom of the crucible at a constant speed to produce a rod-shaped Al alloy having a predetermined diameter (such as a circular or rectangular cross section). The obtained Al alloy is made into an Al alloy material as it is or by wire drawing as required.

<圧延用ロールセットによる圧延>
本発明における圧延用ロールセットによる圧延は、上記Al合金材を1回の圧延作業で厚み方向と幅方向とに同時に圧延するものである。使用する圧延用ロールセットは、図1に示すように、厚み方向圧延ロールAと幅方向圧延ロールBを1セットとし、厚み方向圧延ロールAと幅方向圧延ロールBとが直列に組み込まれた構造を備えている。厚み方向圧延ロールAと幅方向圧延ロールBからなる圧延用ロールセットは少なくとも1セットあればよいが、圧延用ロールセットを複数セット設置して、Al合金材1の厚み方向と幅方向の圧延加工を複数回繰り返すこともできる。
<Rolling with a roll set for rolling>
Rolling by a rolling roll set in the present invention is a method in which the Al alloy material is rolled simultaneously in the thickness direction and the width direction by a single rolling operation. As shown in FIG. 1, the roll set for rolling to be used has a structure in which the thickness direction rolling roll A and the width direction rolling roll B are set in one set, and the thickness direction rolling roll A and the width direction rolling roll B are incorporated in series. It has. Rolling rolls set of thickness direction rolling rolls A and widthwise rolling rolls B may be at least one set, but the rolling rolls set with multiple sets installed in the thickness direction and width direction of the Al alloy material 1 0 rolling Processing can be repeated multiple times.

また、厚み方向圧延ロールAと幅方向圧延ロールBは、どちらを圧延の入口側に配置してもよい。厚み方向圧延ロールAと幅方向圧延ロールBの間にはガイドを設けてよく、Al合金材1がロールに入り又は出る際のロール出入口にもガイドを設けてよい。更に、厚み方向圧延ロールAと幅方向圧延ロールBの各ロールは動力で駆動してもよいし、動力を用いない単なる回転のみのロールであってもよい。ロールの隙間は調整できないものでもよいが、可動式で調整できるものであってもよく、サイズや精度、作業性等に応じて適宜使い分ければよい。 Moreover, you may arrange | position either the thickness direction rolling roll A and the width direction rolling roll B in the entrance side of rolling. Often between thickness direction rolling rolls A and widthwise rolling rolls B are provided with a guide, Al alloy material 1 0 may be a guide to roll doorway upon departing enter or roll. Furthermore, each roll of the thickness direction rolling roll A and the width direction rolling roll B may be driven by power, or may be a simple roll that does not use power. The gap between the rolls may not be adjustable, but may be adjustable and may be appropriately used depending on the size, accuracy, workability, and the like.

上記圧延用ロールセットを用いて2方向の圧延を同時に行うことにより、単に厚み方向又は幅方向だけを圧延する場合と比較して高い寸法精度で、特に幅方向の寸法精度を高く圧延することができる。即ち、一般的な圧延では幅方向の調整を行えないため、幅方向の寸法が大きくばらついてしまう。特にワイヤ状のAl合金材を圧延してAlリボンとする場合、幅方向の寸法精度が非常に悪いだけでなく、Alリボンの幅方向の中心部と端部とで圧延の割合が違うため、クラック等が発生しやすくなる。また、クラックの発生を抑制しようとすると、圧延回数が非常に多くなって効率的な生産ができない。本発明では2方向の圧延を1回の作業で行うことにより、上記の一般的な圧延における問題を解決して、高い寸法精度を得ることができると共に、生産効率も非常に高くなるため、格段に低コストのAlリボンを製造することができる。   By simultaneously rolling in two directions using the above-mentioned roll set for rolling, it is possible to roll with high dimensional accuracy, particularly with high dimensional accuracy in the width direction, compared to the case of rolling only in the thickness direction or width direction. it can. That is, since the width direction cannot be adjusted in general rolling, the width direction dimension greatly varies. In particular, when a wire-like Al alloy material is rolled into an Al ribbon, not only the dimensional accuracy in the width direction is very bad, but also the rolling ratio is different at the center and the end in the width direction of the Al ribbon. Cracks are likely to occur. Moreover, if it is going to suppress generation | occurrence | production of a crack, the frequency | count of rolling will increase very much and efficient production cannot be performed. In the present invention, by performing the two-way rolling in one operation, the above-mentioned general rolling problems can be solved, high dimensional accuracy can be obtained, and the production efficiency can be greatly increased. In addition, a low-cost Al ribbon can be manufactured.

尚、金属材料を圧延加工する際には金属粉(スラグ)が発生することが一般的であり、圧延加工によって発生した金属粉は圧延ロールに付着しやすい。このように表面に金属粉の付着した圧延ロールや、表面粗さが大きい、即ち表面に凹凸が多く、その高低差が大きい圧延ロールを用いると、圧延されたAlリボンは表面に打痕や曇りを伴うという問題がある。表面に打痕等を伴うAlリボンは、接合強度がバラついたり、断面積が減少して局部的に許容電流が小さくなったりする。そのため、可能な限り打痕等の無いAlリボンを製造するためには、表面粗さの小さいロールを用いることと共に、圧延時に供給した潤滑油を拭き取りながら作業することが重要である。   In addition, when rolling a metal material, it is common that metal powder (slag) generate | occur | produces, and the metal powder generated by the rolling process tends to adhere to a rolling roll. Thus, when a rolling roll with metal powder adhered to the surface or a rolling roll with a large surface roughness, that is, with many irregularities on the surface and a large difference in height, the rolled Al ribbon has dents or cloudiness on the surface. There is a problem that involves. Al ribbons with dents or the like on the surface may have different bonding strength, or the cross-sectional area may be reduced and the allowable current may be locally reduced. Therefore, in order to produce an Al ribbon with as few dents as possible, it is important to use a roll with a small surface roughness and to work while wiping off the lubricating oil supplied during rolling.

<異形状ダイスによる伸線>
本発明においては、上記のごとく圧延用ロールセットにより厚み方向と幅方向を1回の圧延作業で圧延し、その直後に異形状ダイスによって伸線する。即ち、図2に示すような異形状ダイスを上記圧延用ロールセットの後に取り付けて、圧延作業の直後に伸線作業を行うことによって、効率よくAlリボンを製造することができる。ただし、圧延用ロールセットの後に異形状ダイスを取り付けることができない場合には、圧延作業の直後に伸線機を使って伸線を行ってもよい。
<Wire drawing with irregularly shaped dies>
In the present invention, as described above, the thickness direction and the width direction are rolled by a single rolling operation by the rolling roll set, and the wire is drawn by an irregularly shaped die immediately thereafter. That is, an Al ribbon can be efficiently manufactured by attaching a deformed die as shown in FIG. 2 after the rolling roll set and performing a wire drawing operation immediately after the rolling operation. However, when the irregularly shaped die cannot be attached after the rolling roll set, the wire drawing may be performed using a wire drawing machine immediately after the rolling operation.

上記ダイス孔の形状が円形以外である異形状ダイスを用いた伸線によって、Al合金材を断面形状が長方形などの扁平な形状のAlリボンにすることができ、圧延のみの場合よりも高い寸法精度でAlリボンを製造することができる。そして、1回の作業で圧延と伸線とを同時に行うことによって、製造コストも大幅に低減することができる。   The Al alloy material can be made into an Al ribbon having a flat cross-sectional shape such as a rectangular shape by drawing using an irregularly shaped die whose shape of the die hole is other than circular, and the dimensions are higher than in the case of only rolling. An Al ribbon can be manufactured with high accuracy. And manufacturing cost can also be reduced significantly by performing rolling and wire drawing simultaneously by one operation | work.

上記した圧延及び伸線の際には、Alリボンに生じる傷等を少なくし、表面がきれいになるように、潤滑油を供給しながら潤滑性を持たせて加工する。潤滑油としては、鉱物油や植物油などを用いることができ、鉱物油と植物油を重量比で1:2.5の割合で混合したものを用いてよい。   In the above rolling and wire drawing, processing is performed with lubricity while supplying lubricating oil so that scratches and the like generated on the Al ribbon are reduced and the surface is clean. As lubricating oil, mineral oil, vegetable oil, etc. can be used, and what mixed mineral oil and vegetable oil in the ratio of 1: 2.5 by weight ratio may be used.

また、上記圧延と伸線の前後、若しくは途中において、Al合金材あるいはAlリボンが硬かったり、柔軟性が不足気味であったりする場合には、熱処理(アニール)を行ってもよく、必要に応じて熱間圧延を行ってもよい。熱処理は金属組織の制御によって強度や伸び率、あるいは柔軟性や加工性等を調整することを目的としており、その温度は50〜400℃程度が好ましく、120〜380℃であると効果が大きくなるため更に好ましい。ただし、熱処理を行う際には、熱処理温度や酸素濃度等に十分注意を払う必要がある。その理由は、熱処理温度を上げ過ぎたり、酸素濃度が高過ぎたりすると、Alリボン表面の酸化膜が4.0nmを超えて厚くなり、条件によっては数100nm以上の厚みになって接合できなくなるからである。   Further, before, during or during the rolling and wire drawing, or when the Al alloy material or the Al ribbon is hard or lacks flexibility, a heat treatment (annealing) may be performed as necessary. Hot rolling may be performed. The purpose of the heat treatment is to adjust strength, elongation, flexibility, workability, etc. by controlling the metal structure, and the temperature is preferably about 50 to 400 ° C., and the effect becomes great when it is 120 to 380 ° C. Therefore, it is more preferable. However, when performing heat treatment, it is necessary to pay sufficient attention to the heat treatment temperature, oxygen concentration, and the like. The reason is that if the heat treatment temperature is raised too much or the oxygen concentration is too high, the oxide film on the surface of the Al ribbon becomes thicker than 4.0 nm, and depending on the conditions, the thickness becomes several hundreds of nm or more and bonding becomes impossible. It is.

上記圧延と伸線の終了後に、得られたAlリボンの表面から潤滑油を除去するために、自動洗浄機などにより有機溶剤を用いて洗浄する。使用する有機溶剤としては、潤滑油を溶解しやすく、潤滑油がリボン材に残り難いものが好ましい。具体的には、メチルアルコール、エチルアルコール、イソプロピルアルコール、メチルエチルケトン、アセトン、塩化メチレン、ベンゼン、トルエンなどが挙げられるが、特にメチルアルコールは潤滑油をよく溶解するうえ、揮発性が高く、潤滑油や溶剤がリボン材に残り難いため好ましい。   After the rolling and wire drawing, in order to remove the lubricating oil from the surface of the obtained Al ribbon, it is washed with an organic solvent by an automatic washing machine or the like. As the organic solvent to be used, an organic solvent that can easily dissolve the lubricating oil and that does not easily remain in the ribbon material is preferable. Specific examples include methyl alcohol, ethyl alcohol, isopropyl alcohol, methyl ethyl ketone, acetone, methylene chloride, benzene, and toluene. In particular, methyl alcohol dissolves lubricating oil well and has high volatility. A solvent is preferable because it hardly remains in the ribbon material.

上記のごとくAlリボンから潤滑油を洗浄除去した後、必要に応じて、Alリボンにスリット加工を行ってもよい。スリット加工の際には、柔らかいAlリボンの場合はバリが出やすくなるため、十分手入れの行き届いたきれいに切断できるスリッターを用いる必要がある。   As described above, after the lubricating oil is washed and removed from the Al ribbon, the Al ribbon may be slit if necessary. When slitting, a soft Al ribbon tends to generate burrs, so it is necessary to use a slitter that can be cut well and is well-maintained.

次に、本発明のAlリボンについて詳しく説明する。
<Alリボンの組成>
本発明のAlリボンは、Ni、Si及びPの少なくとも1種を合わせて800ppm以下含有しており、好ましくはNiの含有量が1ppm以上150ppm以下であって、残部が不可避的に含まれる不純物元素を除いて主成分のAlから構成されている。
Next, the Al ribbon of the present invention will be described in detail.
<Composition of Al ribbon>
The Al ribbon of the present invention contains at least one of Ni, Si and P in an amount of 800 ppm or less, preferably an Ni content of 1 ppm or more and 150 ppm or less, with the remainder inevitably contained. Except for Al.

まず、本発明のAlリボンの主成分であるAlは、電気伝導性に優れ且つ非常に軽い元素であることから、配線材として非常に優れている。そのため、Alは従来から配線材料として一般的に使用されている。しかし、Alのみではボンディング性、接合性及び耐候性などに劣るため、実用性の高い配線材とするべく以下のNi、Si及びPのうち少なくとも1種を含有させる。   First, Al, which is the main component of the Al ribbon of the present invention, is an excellent electrical conductor and is a very light element, and is therefore very excellent as a wiring material. For this reason, Al has been conventionally used as a wiring material. However, since Al alone is inferior in bonding property, bonding property, weather resistance, and the like, at least one of the following Ni, Si, and P is contained in order to obtain a highly practical wiring material.

NiとSiは似たよう効果を有し、その最も大きな効果がAlより劣る還元性にある。即ち、NiとSiはAlより酸化され難いため、Alリボンに含有させるとAlリボン自体が酸化され難くなり酸化防止に役立つ。更に、NiとSiはAlに比べて酸などとの反応性が低いため、耐腐食性の向上にも寄与する。既に述べたように接合部の酸化膜が接合性を落とす大きな原因となっているため、NiとSiを含有する効果は大きい。実際にボンディングの際は発熱して酸化が進行し易くなることから、添加元素であるNiとSiの酸化防止効果が益々発揮され、しかも接合後の耐腐食性も向上することから、高い信頼性を有する接合が可能となる。   Ni and Si have effects similar to each other, and the greatest effect is in the reducibility inferior to that of Al. In other words, since Ni and Si are less likely to be oxidized than Al, if included in the Al ribbon, the Al ribbon itself is less likely to be oxidized and helps prevent oxidation. Furthermore, since Ni and Si are less reactive with acids and the like than Al, they contribute to improving corrosion resistance. As described above, since the oxide film at the joint is a major cause of deterioration of the bondability, the effect of containing Ni and Si is great. In fact, during bonding, heat is generated and oxidation easily proceeds, so the additive elements Ni and Si are more effective in preventing oxidation, and the corrosion resistance after bonding is improved, resulting in high reliability. It becomes possible to have a joint.

NiとSiの第2の効果は、Alリボンの結晶組織の制御にある。これらの元素を適量含有させることにより結晶粒径や形状を制御でき、強度及び伸びのバラツキが少ないAlリボンを製造することが可能となる。Alリボンへの特性要求はユーザーによりさまざまであり、個別に合わせ込む必要がある。例えば、Alリボンが硬すぎる場合、ボンディング時にループ状に曲げた際の反発力が強く、特に接合面の酸化膜にバラツキがあったりすると均一な接合はできず、場合によっては接合できなくなる。逆にループ性ばかりに注目して柔らかい材料とした場合には、リボン切断面にバリが発生したり、切りカスが多く発生して異物混入したりする問題を引き起こす可能性が高くなる。そのため、ユーザー各々のニーズに対応するため、接合強度、伸び、更にはループやそれらのバラツキなどを調整する必要があり、このためNiとSiのいずれか1種以上を含有させ、結晶粒径等を制御することが有効である。   The second effect of Ni and Si is in the control of the crystal structure of the Al ribbon. By containing appropriate amounts of these elements, the crystal grain size and shape can be controlled, and an Al ribbon with less variation in strength and elongation can be produced. The characteristic requirements for the Al ribbon vary from user to user and must be tailored individually. For example, if the Al ribbon is too hard, the repulsive force when bent in a loop shape during bonding is strong, and in particular, if the oxide film on the bonding surface varies, uniform bonding cannot be achieved, and in some cases, bonding cannot be performed. On the other hand, when the soft material is focused only on the loop property, there is a high possibility that burrs will be generated on the ribbon cutting surface, or a problem that a large amount of cutting waste will be generated and foreign matter will be mixed. Therefore, in order to meet the needs of each user, it is necessary to adjust the bonding strength, elongation, and further, loops and variations thereof. For this reason, at least one of Ni and Si is contained, the crystal grain size, etc. It is effective to control.

また、本発明のAlリボンはPを含有することができる。一般に、金属は特殊な場合を除き表面が酸化膜で覆われている。Alのような酸化し易い金属は、当然に表面が酸化膜で覆われており、熱間圧延されたり、熱処理を施したりした場合には、条件によって数10nm以上の酸化膜になることがある。一方、基板の外部引き出し端子などはCuであったり、その接合面はNiメッキされていたりするが、同様に酸化膜を有していることに違いはない。この酸化膜や場合によって洗浄不足による残留油等を破って、安定した接合強度を得ることは容易ではない。   Moreover, the Al ribbon of the present invention can contain P. In general, the surface of metal is covered with an oxide film except in special cases. A metal that easily oxidizes, such as Al, is naturally covered with an oxide film, and when hot-rolled or heat-treated, an oxide film of several tens nm or more may be formed depending on conditions. . On the other hand, the external lead terminal of the substrate is Cu or the joint surface thereof is Ni-plated, but there is no difference in having an oxide film as well. It is not easy to break down the oxide film or the residual oil due to insufficient cleaning, and obtain a stable bonding strength.

この問題を解決するために大きな役割を果たすのがPである。Pを含有するAlリボンは、接合時にPの持つ強い還元性により接合面を還元するため、酸素等の不純物が無い状態で接合でき、接合強度を格段に向上させることができる。Pは接合面を還元した後、自らは気体の酸化物となって飛散するため、接合面に残留して問題を起こすことがなく、この点においても非常に優れた元素と言える。残留油等の不純物に対しても、上記したPの効果はあると推測される。また、不純物の成分に依存するが、Pで還元できない酸化物は稀であり、ほとんどの元素を還元でき、更には還元後にPが気化する際に不純物もいっしょに飛散させる効果もある。以上の効果により、Pを含有したAlリボンは非常に優れた性能を発揮することができる。   P plays a major role in solving this problem. Since the Al ribbon containing P reduces the bonding surface due to the strong reducibility of P during bonding, it can be bonded without impurities such as oxygen, and the bonding strength can be significantly improved. After reducing the bonding surface, P itself becomes a gaseous oxide and scatters. Therefore, P remains on the bonding surface and does not cause a problem. In this respect, P can be said to be a very excellent element. It is presumed that the above-described effect of P is also present against impurities such as residual oil. Although it depends on the component of impurities, oxides that cannot be reduced by P are rare, and most elements can be reduced. Further, when P is vaporized after reduction, there is an effect that impurities are scattered together. Due to the above effects, the Al ribbon containing P can exhibit very excellent performance.

<平均結晶粒径・表面粗さ・酸化膜>
本発明のAlリボンは、平均結晶粒径が2〜250μmであり、平均表面粗さRaが2.0μm以下であり、且つ酸化膜の厚さが4.0nm以下である。
<Average crystal grain size, surface roughness, oxide film>
The Al ribbon of the present invention has an average crystal grain size of 2 to 250 μm, an average surface roughness Ra of 2.0 μm or less, and an oxide film thickness of 4.0 nm or less.

Alリボンの平均結晶粒径を2μm〜250μmとする理由は、強度や伸び率等を適正な値にするためである。即ち、上記したNiとSiを添加して結晶の粒径や形状を制御することによって、強度及び伸びが適正な値となり、且つそのバラツキが少ないAlリボンを製造することが可能となる。Alリボンへの特性要求はユーザーによりさまざまであり、個別に合わせ込む必要があることから、結晶の粒径や形状の制御を行うことは必要であり且つ重要なことである。   The reason why the average crystal grain size of the Al ribbon is set to 2 μm to 250 μm is to set the strength, the elongation rate, and the like to appropriate values. That is, by adding Ni and Si as described above and controlling the grain size and shape of the crystal, it is possible to produce an Al ribbon having appropriate values for strength and elongation and less variation. Since the characteristic requirements for the Al ribbon vary depending on the user and must be adjusted individually, it is necessary and important to control the grain size and shape of the crystal.

例えば、Alリボンが硬すぎる場合、ボンディング時にループ状に曲げた際の反発力が強くなり、特に接合面の酸化膜にバラツキがあったりすると、均一な接合が難しく、場合によっては接合できなかったりする。逆にループ性ばかりに注目して柔らかい材料とした場合には、リボン切断面にバリが発生したり、切りカスが多く発生して異物混入したりする等の問題を引き起こす可能性が高くなる。このような問題が起きないようユーザー各々のニーズに対応するために、接合強度や伸び、ループやそれらのバラツキなどを調整する必要があり、そのために結晶の粒径や形状の制御は重要なことである。   For example, if the Al ribbon is too hard, the repulsive force when bending into a loop shape during bonding will be strong, especially if there is variation in the oxide film on the bonding surface, uniform bonding will be difficult, and in some cases it will not be possible to bond To do. On the other hand, when the soft material is focused on only the loop property, there is a high possibility that burrs will be generated on the ribbon cut surface, or that a large amount of cutting residue will be generated and foreign matter will be mixed. In order to prevent such problems from occurring, it is necessary to adjust the bonding strength, elongation, loops, and variations of these in order to respond to each user's needs. For this reason, it is important to control the crystal grain size and shape. It is.

また、Alリボンの平均表面粗さRaを2.0μm以下とする理由は、平均表面粗さRaが2.0μmを超えると、接合の際に実質的に接合している面積が小さくなってしまい、接合強度が低くなったり、そのバラツキが大きくなったりするためである。平均表面粗さRaが2.0μm以下であれば、安定して高い接合強度の接合が可能となり、1.0μm以下であればより一層良好な接合が可能となるため更に好ましい。   Moreover, the reason why the average surface roughness Ra of the Al ribbon is set to 2.0 μm or less is that when the average surface roughness Ra exceeds 2.0 μm, the area which is substantially bonded becomes small at the time of bonding. This is because the bonding strength is lowered or the variation thereof is increased. If the average surface roughness Ra is 2.0 μm or less, it is possible to stably bond with high bonding strength. If the average surface roughness Ra is 1.0 μm or less, even better bonding is possible.

酸化膜の厚さがを4.0nm以下とする理由は、基板の接合面とAlリボンとの間に接合される金属以外のものが存在すると、金属同士が直接接することができず、接合強度が低下してしまうためである。この酸化膜を破るために超音波の振動エネルギーによってボンディングするが、それでも酸化膜の厚さが4.0nmを超えると良好な接合ができなくなってしまう。酸化膜の厚さが3.0nm以下であれば、より一層良好な接合が可能になるため更に好ましい。   The reason why the thickness of the oxide film is 4.0 nm or less is that when there is something other than the metal bonded between the bonding surface of the substrate and the Al ribbon, the metals cannot directly contact each other, and the bonding strength This is because of the decrease. In order to break the oxide film, bonding is performed by vibration energy of ultrasonic waves. However, if the thickness of the oxide film exceeds 4.0 nm, good bonding cannot be performed. If the thickness of the oxide film is 3.0 nm or less, it is more preferable because better bonding is possible.

以下、具体的な実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples.

まず、原料として純度99.995質量%以上のAlと、純度99.95質量%以上のNi、Si、Pを準備し、高周波溶解式の連続鋳造炉を用いて以下の手順で溶解鋳造した。即ち、各原料を目標組成に合わせ所定量秤量し、溶解用グラファイト坩堝に投入した。原料の入ったグラファイト坩堝を高周波溶解方式の連続鋳造炉にセットし、窒素ガスを原料1kgあたり約0.8リットル/分の流速で流した。窒素ガスを流した状態で連続鋳造炉の電源を入れ、昇温速度の設定値を3℃/秒として自動で昇温した。   First, Al having a purity of 99.995% by mass or more and Ni, Si, and P having a purity of 99.95% by mass or more were prepared as raw materials, and melt cast by the following procedure using a high-frequency melting type continuous casting furnace. That is, a predetermined amount of each raw material was weighed according to the target composition and put into a melting graphite crucible. The graphite crucible containing the raw material was set in a high frequency melting type continuous casting furnace, and nitrogen gas was allowed to flow at a flow rate of about 0.8 liter / min per kg of the raw material. With the nitrogen gas flowing, the continuous casting furnace was turned on, and the temperature was raised automatically by setting the heating rate to 3 ° C./second.

その後、自動運転で約850℃を保持する状態にして、各原料が溶けた後、各元素の溶け残りや偏析がないように撹拌翼を挿入して撹拌した。原料が十分に混ざったことを確認した後、撹拌した状態で坩堝の底付近の横穴から一定速度でゆっくり溶融原料を引き出し、直径4.0mmの棒状のAl合金を得た。   Thereafter, the temperature was maintained at about 850 ° C. by automatic operation, and after each raw material was melted, a stirring blade was inserted and stirred so that there was no undissolved residue or segregation of each element. After confirming that the raw materials were sufficiently mixed, the molten raw material was slowly pulled out from the lateral hole near the bottom of the crucible at a constant speed with stirring, to obtain a rod-shaped Al alloy having a diameter of 4.0 mm.

上記各原料のグラファイト坩堝への投入量を変えた以外は上記の作業を繰り返すことにより、本発明の実施例である試料1〜25のAl合金と、比較例である試料26〜43の各Al合金を準備した。これら試料1〜43の各Al合金の組成を、ICP発光分光分析器(SHIMAZU S−8100)を用いて分析した。得られた分析結果を、試料1〜25のAl合金については下記表1に、試料26〜43の各Al合金については下記表2に示した。   By repeating the above operation except changing the input amount of each raw material into the graphite crucible, the Al alloys of Samples 1 to 25 which are examples of the present invention and the Al alloys of Samples 26 to 43 which are comparative examples. An alloy was prepared. The composition of each Al alloy of Samples 1 to 43 was analyzed using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). The obtained analysis results are shown in Table 1 below for the Al alloys of Samples 1 to 25 and in Table 2 below for each of the Al alloys of Samples 26 to 43.

Figure 2015106678
Figure 2015106678

Figure 2015106678
Figure 2015106678

上記表1及び表2に示す試料1〜43の各Al合金(直径4.0mm×長さ20m)を、伸線機により直径2.0mmと直径0.8mmの2個のテーパーダイスを用いて2段伸線することにより、直径0.80mmのワイヤ状に伸線して圧延用のAl合金材とした。即ち、鉱物油と植物油を重量比で1:2.5の割合(体積比)で混ぜた潤滑油を準備し、この潤滑油をかけた各試料のAl合金を伸線機にセットし、ダイスに通して巻取ロールに固定した後、自動運転によって一定速度で引っ張りながら伸線した。伸線時にはダイスにワイヤ状のAl合金が引っ掛かったり、傷等が入ったりしないように、潤滑油を適宜適量供給しながら伸線した。   Each Al alloy (diameter: 4.0 mm × length: 20 m) of Samples 1 to 43 shown in Table 1 and Table 2 above is used with two taper dies having a diameter of 2.0 mm and a diameter of 0.8 mm by a wire drawing machine. By drawing in two stages, the wire was drawn into a wire shape having a diameter of 0.80 mm to obtain an Al alloy material for rolling. That is, a lubricating oil in which mineral oil and vegetable oil were mixed at a weight ratio of 1: 2.5 (volume ratio) was prepared, and the Al alloy of each sample to which this lubricating oil was applied was set in a wire drawing machine. After being fixed to the take-up roll through the wire, the wire was drawn while being pulled at a constant speed by automatic operation. During drawing, the wire was drawn while supplying an appropriate amount of lubricating oil so that a wire-like Al alloy would not get caught or scratched.

得られた試料1〜43の圧延用の各Al合金材(直径0.80mm)を、厚み方向圧延ロールと幅方向圧延ロールが直列に組み込まれた圧延用ロールセットか、若しくは通常の圧延用ロールを用いて圧延加工した。更にその直後に、異形状ダイスを用いて伸線加工するか、若しくは通常のスリッターを用いてスリット加工することにより、Alリボンを製造した。尚、全ての試料について、圧延及び伸線の際には傷等が入らないように上記潤滑油をかけながら行い、圧延は酸化が進行しないように冷間圧延とした。   Each of the obtained Al alloy materials (diameter 0.80 mm) for rolling of Samples 1 to 43 is a rolling roll set in which a thickness direction rolling roll and a width direction rolling roll are incorporated in series, or a normal rolling roll. Was rolled using. Immediately thereafter, an Al ribbon was manufactured by drawing using an irregularly shaped die or slitting using a normal slitter. Note that all the samples were subjected to the above-described lubricating oil so as not to cause scratches or the like during rolling and wire drawing, and the rolling was cold rolling so that oxidation did not proceed.

更に具体的には、上記圧延加工の際に、試料1〜21、25及び29は圧延用ロールセットを1セット、試料22では同2セット、試料23では同3セット、試料24と30では同4セット用いて、それぞれ圧延を行った。目標寸法は厚さ0.100mm及び幅0.500mmとし、多段のロールセットでの圧延の場合は徐々に圧延を行った。一方、試料26〜28及び試料31〜43については、圧延用ロールセットを使用せず、通常の圧延用ロール1個を用いて厚さ方向のみ目標値0.100mmで圧延加工を行った。   More specifically, at the time of the rolling process, Samples 1 to 21, 25, and 29 are one set of rolling roll sets, Sample 22 is the same two sets, Sample 23 is the same three sets, and Samples 24 and 30 are the same. Four sets were used for rolling. The target dimensions were a thickness of 0.100 mm and a width of 0.500 mm. In the case of rolling with a multi-stage roll set, rolling was performed gradually. On the other hand, for Samples 26 to 28 and Samples 31 to 43, a rolling roll set was not used, and rolling was performed with a target value of 0.100 mm only in the thickness direction using one normal rolling roll.

また、上記伸線加工の際には、試料1〜30は、圧延機に異形状ダイス(図2(ロ)に示すダイス孔)を予め取り付けておき、その異形状ダイスで目標寸法が厚さ0.100mm及び幅0.500mmの形状に伸線した。一方、試料31〜43については、異形状ダイスを使用せず、スリッターで幅の目標寸法0.500mmでスリット加工した。   Moreover, in the case of the said wire-drawing process, the sample 1-30 attaches the unusually shaped die (die hole shown to FIG. 2 (b)) to the rolling mill beforehand, and a target dimension is thickness with the unusually shaped die. The wire was drawn into a shape of 0.100 mm and a width of 0.500 mm. On the other hand, Samples 31 to 43 were slit using a slitter with a target width of 0.500 mm without using an irregularly shaped die.

以上の圧延加工及び伸線加工により製造した試料1〜43の各Alリボンについて、電気炉でのアニール及び研磨紙での研磨を各試料に合わせて行うことにより、平均結晶粒径、表面粗さRa、酸化膜の厚さを調整した。例えば、平均結晶粒径は電気炉での熱処理により制御した。特に試料4〜6、31〜33については、注意を払って目標とする平均粒径になるように熱処理した。具体的には、各試料のAlリボンを、真空引きのできる密閉性のバッチ式電気炉に入れ、温度120〜350℃でアニールした。アニール時間は目標温度に達してから30分とした。   About each Al ribbon of the samples 1-43 manufactured by the above rolling process and wire drawing process, annealing with an electric furnace and polishing with abrasive paper are performed according to each sample, thereby obtaining an average crystal grain size and surface roughness. Ra and the thickness of the oxide film were adjusted. For example, the average crystal grain size was controlled by heat treatment in an electric furnace. In particular, Samples 4 to 6, 31 to 33 were heat-treated so as to obtain a target average particle diameter with care. Specifically, the Al ribbon of each sample was put in a hermetic batch electric furnace capable of evacuation and annealed at a temperature of 120 to 350 ° C. The annealing time was 30 minutes after reaching the target temperature.

また、表面粗さRaは研磨紙により研磨して調整した。特に試料7〜9、34〜36については、注意を払って目標とする平均表面粗さになるように研磨した。具体的には、#220〜#5000の研磨紙を準備し、目標の平均表面粗さに合わせて研磨を行った。酸化膜の厚さは、各試料のAlリボンの表面を酸処理によって酸化膜を可能な限り除去した後、熱処理時の雰囲気によって調整した。特に試料10〜12、37〜39については、注意を払って酸化膜が目標とする膜厚となるように混合ガスの割合の調整等を行った。具体的には熱処理する際に、試料を電気炉の中に入れた後、真空引きを行い、その後、目標とする酸化膜の厚さに合わせて純窒素ガスと純酸素ガスを混合し、その混合ガスを流しながら熱処理を行った。   The surface roughness Ra was adjusted by polishing with abrasive paper. In particular, samples 7 to 9 and 34 to 36 were polished with care so as to achieve the target average surface roughness. Specifically, polishing papers of # 220 to # 5000 were prepared and polished according to the target average surface roughness. The thickness of the oxide film was adjusted by the atmosphere during the heat treatment after removing the oxide film as much as possible from the surface of the Al ribbon of each sample by acid treatment. In particular, for Samples 10 to 12 and 37 to 39, the ratio of the mixed gas was adjusted so that the oxide film has a target film thickness with care. Specifically, when the heat treatment is performed, the sample is placed in an electric furnace and then evacuated, and then pure nitrogen gas and pure oxygen gas are mixed according to the target oxide film thickness, Heat treatment was performed while flowing a mixed gas.

得られた試料1〜43の各Alリボンについて、平均結晶粒径、表面粗さRa及び酸化膜の厚さを測定すると共に、幅と厚みの寸法バラツキ、外観検査(クラック、バリ等の検査)、ボンディング後の接合強度の評価、伸び率の評価を行った。以下に、平均結晶粒径、表面粗さRa、酸化膜の厚さの各測定方法、並びに、Alリボンの幅と厚みの寸法バラツキ、外観検査、ボンディング後の接合強度、伸び率の測定と評価について詳しく説明する。   About each Al ribbon of the obtained samples 1-43, while measuring an average crystal grain diameter, surface roughness Ra, and the thickness of an oxide film, the width | variety and thickness dimension variation, an external appearance inspection (inspection of a crack, a burr | flash, etc.) The bonding strength after bonding and the elongation rate were evaluated. Below, each measurement method of average crystal grain size, surface roughness Ra, thickness of oxide film, dimensional variation of width and thickness of Al ribbon, appearance inspection, bonding strength after bonding, measurement and evaluation of elongation rate Will be described in detail.

<平均結晶粒径の測定>
試料のAlリボンを2%硝酸と5%弗酸を用いてエッチング処理した後、マイクロスコープ(キーエンス社製、型式:VHX−900)を用いて任意に20個の結晶粒径を測定した。結晶粒は必ずしも球状ではなく、ほとんどは多角形や複雑な形状をしているが、その最も長い径と最も短い径の平均値を求めて試料の平均結晶粒径とした。
<Measurement of average crystal grain size>
After etching the sample Al ribbon using 2% nitric acid and 5% hydrofluoric acid, 20 crystal grain sizes were arbitrarily measured using a microscope (manufactured by Keyence Corporation, model: VHX-900). The crystal grains are not necessarily spherical, and most of them have a polygonal shape or a complicated shape, but the average value of the longest diameter and the shortest diameter is obtained and used as the average crystal grain diameter of the sample.

<表面粗さRaの測定>
平均表面粗さRaの測定は、表面粗さ測定装置(東京精密株式会社製、型式:サーフコム470A)を用いて行った。試料のAlリボンにおける圧延方向及び圧延方向と直角の方向に各3点ずつ表面粗さRaを測定し、計6点の平均値を求めて試料の表面粗さRaとした。
<Measurement of surface roughness Ra>
The average surface roughness Ra was measured using a surface roughness measuring device (manufactured by Tokyo Seimitsu Co., Ltd., model: Surfcom 470A). The surface roughness Ra was measured at three points in each of the rolling direction and the direction perpendicular to the rolling direction of the Al ribbon of the sample, and the average value of a total of 6 points was obtained to obtain the surface roughness Ra of the sample.

<酸化膜の厚さの測定>
酸化膜の厚さの測定は、電界放射型オージェ電子分光装置(ULVAC−PHI製、型式:SAM−4300)を用いて行った。試料のAlリボンについて、酸化膜の厚さを任意の3点で測定し、3点の平均値を求めて試料の酸化膜の厚さとした。
<Measurement of oxide film thickness>
The thickness of the oxide film was measured using a field emission Auger electron spectrometer (manufactured by ULVAC-PHI, model: SAM-4300). With respect to the Al ribbon of the sample, the thickness of the oxide film was measured at three arbitrary points, and the average value of the three points was obtained as the thickness of the oxide film of the sample.

<寸法バラツキの測定>
試料のAlリボンについて、光学顕微鏡によって厚さと幅の寸法を任意に各5点測定し、それぞれの平均値を求めた。得られた厚さ及び幅の各平均値と厚さ及び幅の目標値(厚さの目標値=0.100mm、幅の目標値=0.500mm)との差(絶対値)を試料の寸法バラツキとした。
<Measurement of dimensional variation>
With respect to the Al ribbon of the sample, the thickness and width were arbitrarily measured with an optical microscope at five points, and the average value of each was obtained. The difference (absolute value) between the average value of the obtained thickness and width and the target value of thickness and width (target value of thickness = 0.100 mm, target value of width = 0.500 mm) is the dimension of the sample. It was uneven.

<外観検査(クラック・バリの有無の検査)>
試料のAlリボンについて、クラックやバリの有無を外観検査した。外観検査は、まず何も用いずに目視で行い、目視での判断が難しい場合に光学顕微鏡(株式会社 キーエンス製 VHX−900)を用いて検査した。Alリボンの長さ10m当りにクラックやバリが無かった場合を○、1〜3個あった場合を△、4個以上の場合を×と評価した。
<Appearance inspection (inspection for cracks and burrs)>
The appearance of the Al ribbon of the sample was inspected for cracks and burrs. The appearance inspection was first performed without using anything, and when it was difficult to visually determine, the appearance was inspected using an optical microscope (VHX-900 manufactured by Keyence Corporation). The case where there were no cracks or burrs per 10 m length of the Al ribbon was evaluated as ◯, the case of 1 to 3 was evaluated as Δ, and the case of 4 or more was evaluated as ×.

<接合強度試験>
試料のAlリボンについて、接合強度を確認するためボンディングを行った後、その接合部のシェア試験を行った。即ち、図3に示すように、Niメッキ4を施したCu基板3にAlリボン1を押し当てて加圧し、超音波振動を85ms加えて接続した。尚、半導体素子にAlリボンを接合した試料ではシェア試験機にセットできず、精度の高い評価ができないためNiメッキCu基板を用いた。このようにして作製した測定試料(Alリボン1が接続されたCu基板3)をシェア試験機に固定し、Alリボン1の先端部を冶具に引っかけて接合部2が剥離するときの接合強度を測定した。接合強度は試料1を100%として各試料の相対評価で示した。
<Joint strength test>
The sample Al ribbon was bonded in order to confirm the bonding strength, and then a shear test of the bonded portion was performed. That is, as shown in FIG. 3, the Al ribbon 1 was pressed against the Cu substrate 3 on which the Ni plating 4 was applied, and the connection was made by applying ultrasonic vibration for 85 ms. Note that a sample in which an Al ribbon was bonded to a semiconductor element could not be set in a shear tester and could not be evaluated with high accuracy, so a Ni plated Cu substrate was used. The measurement sample (Cu substrate 3 to which the Al ribbon 1 is connected) thus prepared is fixed to a shear tester, and the bonding strength when the bonding portion 2 is peeled off by hooking the tip of the Al ribbon 1 with a jig. It was measured. The bonding strength was shown by the relative evaluation of each sample with Sample 1 as 100%.

<伸び率>
試料のAlリボンについて、ループ性や柔らかさの指標として伸び率を測定した。即ち、Alリボンを100mmの長さに切断し、引張試験機(A&D株式会社製、型式:RTG−1240)を用いて伸び率を測定した。各試料を5点準備して伸び率を測定し、計5点の平均を求めて伸び率とした。伸び率は試料1を100%として各試料の相対評価で示した。
<Elongation>
For the sample Al ribbon, the elongation was measured as an index of loop property and softness. That is, the Al ribbon was cut into a length of 100 mm, and the elongation was measured using a tensile tester (A & D Corporation, model: RTG-1240). Five points of each sample were prepared and the elongation rate was measured, and the average of a total of 5 points was obtained to obtain the elongation rate. Elongation was shown by relative evaluation of each sample with sample 1 as 100%.

上記試料1〜43の各Alリボンについて、上記した方法により求めた平均結晶粒径、表面粗さRa、及び酸化膜の厚さを、その製造に用いた圧延手段及び伸線手段と共に、下記表3〜4に示した。また、上記方法により求めた寸法バラツキ、外観検査、接合強度及び伸び率の評価結果を、試料1を100%として相対評価した各試料の作業時間と共に、下記表5〜6に示した。尚、試料1〜25のAl合金については下記表3及び表5に、試料26〜43の各Al合金については下記表4及び表6に示した。   For each of the Al ribbons of Samples 1 to 43, the average crystal grain size, surface roughness Ra, and thickness of the oxide film obtained by the above method are shown in the following table together with the rolling means and wire drawing means used for the production thereof. Shown in 3-4. The evaluation results of dimensional variation, appearance inspection, bonding strength and elongation obtained by the above method are shown in Tables 5 to 6 below together with the working time of each sample evaluated relative to Sample 1 as 100%. The Al alloys of Samples 1 to 25 are shown in Tables 3 and 5 below, and the Al alloys of Samples 26 to 43 are shown in Tables 4 and 6 below.

Figure 2015106678
Figure 2015106678

Figure 2015106678
Figure 2015106678

Figure 2015106678
Figure 2015106678

Figure 2015106678
Figure 2015106678

上記表3及び表5から分るように、本発明の実施例である試料1〜25の各Alリボンは全ての評価項目において良好な結果を示している。具体的には、試料1〜25の全てにおいて、寸法バラツキは小さく、作業時間は比較例の各試料に比べて短く、外観検査ではクラックやバリは確認されず、接合強度及び伸び率も全て比較例に比べ高い値が得られた。   As can be seen from Tables 3 and 5, the Al ribbons of Samples 1 to 25, which are examples of the present invention, show good results in all evaluation items. Specifically, in all of the samples 1 to 25, the dimensional variation is small, the working time is short compared to each sample of the comparative example, no cracks or burrs are confirmed in the appearance inspection, and the bonding strength and elongation are all compared. High values were obtained compared to the examples.

上記のごとく試料1〜25のAlリボンについて、寸法バラツキが小さかった理由は、圧延時に厚さ方向と幅方向を同時に圧延し、その直後に異形状ダイスによって伸線したことにより、高い寸法精度が得られたものと考えられる。このように厚さ方向と幅方向を同時に圧延し、且つ圧延と伸線もほぼ同時に行うことによって、位置ずれや歪みなどが無くなり、蛇行や反り、シワ等の発生も軽減され、精度の高い加工ができる。尚、上記実施例の試料1〜25では、圧延の際に蛇行したり、反りやシワが発生したりすることなどがなく、圧延作業を容易に実施して効率的な製造ができた。   As described above, the reason why the dimensional variation was small for the Al ribbons of Samples 1 to 25 was that the thickness direction and the width direction were simultaneously rolled at the time of rolling, and the wire was drawn with an irregularly shaped die immediately thereafter. It is thought that it was obtained. By rolling in the thickness direction and width direction at the same time and performing rolling and wire drawing at the same time in this way, positional deviation and distortion are eliminated, and the occurrence of meandering, warping, wrinkles, etc. is reduced, and high-precision processing is achieved. Can do. In the samples 1 to 25 of the above examples, there was no meandering during the rolling, no warping or wrinkles were generated, and the rolling operation was easily performed and efficient production was possible.

また、試料1〜25のAlリボンについて、作業時間が短かった理由は、1回の作業での圧延と伸線を可能にしたことが最も大きな要因である。クラックやバリが発生しなかった理由は、2方向から圧延することによって最大応力を小さくでき、しかも柔らかすぎず且つ脆くもなく、適度な硬さと延性を有する材料を選定しているためと考えられる。接合強度や伸び率が高い理由も、上記のごとくクラックやバリが無いことに加え、平均結晶粒径、平均粗さRa、酸化膜の厚さが本発明の要件を満たしているためと考えられる。   Moreover, the reason why the working time was short for the Al ribbons of Samples 1 to 25 was that the biggest factor was that the rolling and wire drawing in one operation were possible. The reason why cracks and burrs did not occur is that the maximum stress can be reduced by rolling from two directions, and it is not too soft and not brittle, and it is considered that a material having appropriate hardness and ductility is selected. . The reason why the bonding strength and elongation rate are high is considered that the average crystal grain size, the average roughness Ra, and the thickness of the oxide film satisfy the requirements of the present invention in addition to the absence of cracks and burrs as described above. .

一方、比較例である試料26〜43のAlリボンは、表4及び表6から分るように、少なくともいずれかの特性において好ましくない結果となった。具体的には、試料26〜28及び試料31〜43につては、作業時間が180%を超えてしまい、コストが高くなる要因となっている。また、試料31〜43は、接合強度や伸び率が60%以下と極めて悪い評価結果となった。更に、試料29〜30では、寸法バラツキがやや大きく、外観検査においてクラックやバリが若干多く認められた。   On the other hand, as can be seen from Tables 4 and 6, the Al ribbons of Samples 26 to 43, which are comparative examples, showed undesirable results in at least one of the characteristics. Specifically, for the samples 26 to 28 and the samples 31 to 43, the working time exceeds 180%, which is a factor that increases the cost. Samples 31 to 43 had extremely bad evaluation results with a bonding strength and elongation of 60% or less. Further, in Samples 29 to 30, the dimensional variation was slightly large, and some cracks and burrs were recognized in the appearance inspection.

A 厚み方向圧延ロールA
B 幅方向圧延ロール
Al合金材
1 Alリボン
2 接合部
3 Cu基板
4 Niメッキ
A Thickness direction rolling roll A
B widthwise rolling rolls 1 0 Al alloy material 1 Al ribbon 2 junction 3 Cu substrate 4 Ni plating

Claims (5)

厚み方向圧延ロールと幅方向圧延ロールが直列に組み込まれた圧延用ロールセットと、異形状ダイスとで構成された加工装置を使用して、Alを主成分とするAl合金材を圧延用ロールセットで厚み方向と幅方向に圧延し、その直後に異形状ダイスで伸線することを特徴とするボンディング用Alリボンの製造方法。   Using a rolling roll set in which a thickness direction rolling roll and a width direction rolling roll are incorporated in series, and a processing device constituted by a deformed die, a roll set for rolling an Al alloy material mainly composed of Al A method for producing an Al ribbon for bonding, comprising: rolling in the thickness direction and width direction, and drawing with an irregularly shaped die immediately thereafter. 前記圧延用ロールセットを複数セット使用して、Al合金材の厚み方向と幅方向の圧延を複数回繰り返すことを特徴とする、請求項1に記載のボンディング用Alリボンの製造方法。   The method for producing an Al ribbon for bonding according to claim 1, wherein a plurality of sets of rolling rolls are used and rolling in the thickness direction and width direction of the Al alloy material is repeated a plurality of times. 前記異形状ダイスとして、ダイス孔の形状が長方形であるか若しくは長方形の角部又は短辺が円弧をなしているダイスを使用することを特徴とする、請求項1又は2に記載のボンディング用Alリボンの製造方法。   3. The bonding Al according to claim 1, wherein a die having a rectangular die shape or a rectangular corner or short side forming an arc is used as the irregularly shaped die. Ribbon manufacturing method. Alを主成分とし、Ni、Si及びPの少なくとも1種を合計で800ppm以下含有すると共に、平均結晶粒径が2〜250μmであり、表面粗さRaが2.0μm以下であって、且つ酸化膜の厚さが4.0nm以下であることを特徴とするボンディング用Alリボン。   It contains Al as a main component, contains at least one of Ni, Si and P in a total of 800 ppm or less, has an average crystal grain size of 2 to 250 μm, has a surface roughness Ra of 2.0 μm or less, and is oxidized. An Al ribbon for bonding, wherein the thickness of the film is 4.0 nm or less. Niの含有量が1ppm以上150ppm以下であることを特徴とする、請求項4に記載のボンディング用Alリボン。   The Al ribbon for bonding according to claim 4, wherein the Ni content is 1 ppm or more and 150 ppm or less.
JP2013249086A 2013-12-02 2013-12-02 Al RIBBON FOR BONDING AND MANUFACTURING METHOD THEREFOR Pending JP2015106678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013249086A JP2015106678A (en) 2013-12-02 2013-12-02 Al RIBBON FOR BONDING AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013249086A JP2015106678A (en) 2013-12-02 2013-12-02 Al RIBBON FOR BONDING AND MANUFACTURING METHOD THEREFOR

Publications (1)

Publication Number Publication Date
JP2015106678A true JP2015106678A (en) 2015-06-08

Family

ID=53436627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013249086A Pending JP2015106678A (en) 2013-12-02 2013-12-02 Al RIBBON FOR BONDING AND MANUFACTURING METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2015106678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512779A (en) * 2018-06-01 2021-03-16 福姆实验室公司 Improved stereolithography techniques and related systems and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512779A (en) * 2018-06-01 2021-03-16 福姆实验室公司 Improved stereolithography techniques and related systems and methods
US11878467B2 (en) 2018-06-01 2024-01-23 Formlabs, Inc. Techniques for producing a flat film surface in additive fabrication and related systems and methods

Similar Documents

Publication Publication Date Title
JP5506959B2 (en) Bonding wire for semiconductor
JP6499159B2 (en) Copper alloy wire and method for producing the same
CN111033706B (en) Cu alloy bonding wire for semiconductor device
CN101828257B (en) Aluminum ribbon for ultrasonic bonding
JP6639908B2 (en) Copper alloy wire and method of manufacturing the same
JP2016152316A (en) Aluminum wiring material for bonding and electronic component
JP2014024082A (en) Solder alloy
KR101719889B1 (en) Copper-alloy wire rod and manufacturing method therefor
JP5840234B2 (en) Copper alloy wire and method for producing the same
CN105023902A (en) Bonding wire for semiconductor
JP4722576B2 (en) Manufacturing method of bonding wire for semiconductor mounting
JP5345162B2 (en) Bonding wire for semiconductor mounting
JP5721021B2 (en) Fine metal wire for saw wire core and method for producing the same
JP2015106678A (en) Al RIBBON FOR BONDING AND MANUFACTURING METHOD THEREFOR
KR20200039714A (en) Cu alloy bonding wire for semiconductor devices
JP6410692B2 (en) Copper alloy bonding wire
JP2016029691A (en) Structure of surface property-modified silver palladium alloy wire
JP2008174779A (en) Wire material and its manufacturing method
JP2014232827A (en) Al RIBBON FOR BONDING, AND METHOD FOR MANUFACTURING THE SAME
JP2014086488A (en) Al RIBBON FOR BONDING AND METHOD FOR MANUFACTURING THE SAME
JP2003059964A (en) Bonding wire and manufacturing method therefor
JP2015037111A (en) Aluminum ribbon and method for manufacturing the same
JP2014151329A (en) Au-BASED SOLDER ALLOY FOR ENCAPSULATION MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2014070277A (en) Wire for etching cut, and cutting method of inorganic brittle material using the same
JP2001308134A (en) Bonding wire for semiconductor mounting