JP2015106470A - Positive electrode active material, positive electrode and lithium ion secondary battery - Google Patents

Positive electrode active material, positive electrode and lithium ion secondary battery Download PDF

Info

Publication number
JP2015106470A
JP2015106470A JP2013247300A JP2013247300A JP2015106470A JP 2015106470 A JP2015106470 A JP 2015106470A JP 2013247300 A JP2013247300 A JP 2013247300A JP 2013247300 A JP2013247300 A JP 2013247300A JP 2015106470 A JP2015106470 A JP 2015106470A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013247300A
Other languages
Japanese (ja)
Other versions
JP6197609B2 (en
Inventor
友彦 加藤
Tomohiko Kato
友彦 加藤
佐野 篤史
Atsushi Sano
篤史 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013247300A priority Critical patent/JP6197609B2/en
Publication of JP2015106470A publication Critical patent/JP2015106470A/en
Application granted granted Critical
Publication of JP6197609B2 publication Critical patent/JP6197609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material, a positive electrode and a lithium ion secondary battery, capable of obtaining sufficient discharge capacity and good in cycle characteristics.SOLUTION: A positive electrode active material is a compound represented by a composition formula: LiVOPO[where, x satisfies -0.15≤x≤0.15.], the compound having a pH of 3.0 or more and 6.8 or less.

Description

本発明は、正極活物質、正極及びリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material, a positive electrode, and a lithium ion secondary battery.

従来、リチウムイオン二次電池の活物質としてLiCoOやLiNi1/3Mn1/3Co1/3等の層状化合物やLiMn等のスピネル化合物が用いられてきた。近年では、LiFePOに代表されるオリビン型構造の化合物が注目されている。オリビン構造を有する活物質は高温での熱安定性が高く、安全性が高いことが知られている。しかし、LiFePOを用いたリチウムイオン二次電池は、その充放電電圧が3.5V程度と低く、エネルギー密度が低くなるという欠点を有する。 Conventionally, layered compounds such as LiCoO 2 and LiNi 1/3 Mn 1/3 Co 1/3 O 2 and spinel compounds such as LiMn 2 O 4 have been used as active materials for lithium ion secondary batteries. In recent years, compounds having an olivine type structure typified by LiFePO 4 have attracted attention. An active material having an olivine structure is known to have high thermal stability at high temperatures and high safety. However, the lithium ion secondary battery using LiFePO 4 has a drawback that its charge / discharge voltage is as low as about 3.5 V and the energy density is low.

そのため、オリビン構造を有する活物質の中でも4V級の充放電電圧を実現し得る化合物として、LiVOPOが提案されている(特許文献1)。 Therefore, LiVOPO 4 has been proposed as a compound that can realize a charge / discharge voltage of 4 V class among active materials having an olivine structure (Patent Document 1).

特開2004−303527号公報JP 2004-303527 A

しかしながら、特許文献1記載された方法により得られたLiVOPOを用いた正極を備える電池では、十分なサイクル特性を得られるものではなかった。 However, in a battery provided with a positive electrode using LiVOPO 4 obtained by the method described in Patent Document 1, sufficient cycle characteristics cannot be obtained.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、良好なサイクル特性が得られる正極活物質、正極およびリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a positive electrode active material, a positive electrode, and a lithium ion secondary battery that can obtain good cycle characteristics.

上記目的を達成するために本発明に係る正極活物質は、組成式Li1−xVOPO〔ただしxは、−0.15≦x≦0.15である。〕で表される化合物であって、前記化合物のpHが3.0以上、6.8以下であることを特徴とする。 In order to achieve the above object, the positive electrode active material according to the present invention has a composition formula Li 1-x VOPO 4 [where x is −0.15 ≦ x ≦ 0.15. The pH of the said compound is 3.0 or more and 6.8 or less, It is characterized by the above-mentioned.

本発明によれば、従来と比較して良好なサイクル特性を実現することができる。この理由については必ずしも明らかではないが、以下のように考えられる。正極活物質の組成や結晶性のバラツキが小さい場合、正極活物質からのバナジウムイオン等が溶出しにくくなることにより正極活物質のpHが3.0以上になりやすく、充放電に寄与する正極活物質量の減少を抑えることができ、サイクル特性が向上すると考えられる。また、正極活物質のpHが6.8以下であると、正極集電体の腐食が抑えられることで正極活物質層と正極集電体との密着性低下による剥離が抑えられ、良好なサイクル特性が実現できると考えられる。   According to the present invention, it is possible to realize better cycle characteristics as compared with the conventional case. Although this reason is not necessarily clear, it is considered as follows. When the composition of the positive electrode active material and the variation in crystallinity are small, the vanadium ions from the positive electrode active material are less likely to elute, so that the pH of the positive electrode active material is likely to be 3.0 or more, and the positive electrode active material contributing to charge / discharge It is considered that the decrease in the amount of substances can be suppressed and the cycle characteristics are improved. In addition, when the pH of the positive electrode active material is 6.8 or less, the corrosion of the positive electrode current collector is suppressed, so that peeling due to a decrease in adhesion between the positive electrode active material layer and the positive electrode current collector is suppressed, and a good cycle is achieved. It is considered that the characteristics can be realized.

本発明の正極活物質層は、そのpHが3.5以上、7.8以下であることが好ましい。これにより、より良好なサイクル特性が実現できることを見出した。正極活物質層のpHは、正極活物質以外の正極活物質層を構成する個々の導電助剤やバインダーの影響受けると考えられ、pH=3.5以上の時には、正極活物質からバナジウムイオン等の溶出を抑制しやすくなり、pH=7.8以下の時には、正極集電体の腐食を抑えることで正極活物質層と正極集電体との密着性低下による剥離が抑えられ、良好なサイクル特性が実現できると考えられる。   The positive electrode active material layer of the present invention preferably has a pH of 3.5 or more and 7.8 or less. As a result, it was found that better cycle characteristics can be realized. The pH of the positive electrode active material layer is considered to be affected by individual conductive assistants and binders constituting the positive electrode active material layer other than the positive electrode active material. When the pH is 3.5 or more, vanadium ions, etc. When the pH is 7.8 or lower, the corrosion due to the positive electrode current collector can be suppressed to prevent the peeling due to the decrease in the adhesion between the positive electrode active material layer and the positive electrode current collector. It is considered that the characteristics can be realized.

また、本発明に係るリチウムイオン二次電池は、上記正極を備えることにより、良好なサイクル特性を得ることができる。   Moreover, the lithium ion secondary battery which concerns on this invention can acquire favorable cycling characteristics by providing the said positive electrode.

本発明によれば、良好なサイクル特性が得られる正極活物質、正極及びリチウムイオン二次電池を提供することができる。   According to the present invention, it is possible to provide a positive electrode active material, a positive electrode, and a lithium ion secondary battery that can obtain good cycle characteristics.

本実施形態に係るリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery according to the present embodiment.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

<リチウムイオン二次電池>
本実施形態に係るリチウムイオン二次電池について図1を参照して簡単に説明する。
<Lithium ion secondary battery>
The lithium ion secondary battery according to this embodiment will be briefly described with reference to FIG.

リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.

積層体30は、正極10および負極20がセパレータ18を挟んで対向配置されたものである。正極10は、正極集電体12上に正極活物質層14が設けられた物である。負極20は、負極集電体22上に負極活物質層24が設けられた物である。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。
<正極活物質>
続いて、本実施形態に係る正極活物質について説明する。
The laminated body 30 is configured such that the positive electrode 10 and the negative electrode 20 are disposed to face each other with the separator 18 interposed therebetween. The positive electrode 10 is a product in which a positive electrode active material layer 14 is provided on a positive electrode current collector 12. The negative electrode 20 is a product in which a negative electrode active material layer 24 is provided on a negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.
<Positive electrode active material>
Then, the positive electrode active material which concerns on this embodiment is demonstrated.

本実施形態に係る正極活物質は、Li1−xVOPO〔ただしxは、−0.15≦x≦0.15である。〕で表される化合物(以下、「リチウムバナジウムホスフェート」と称すことがある。)である。この正極活物質のpHが3.0以上、6.8以下である。正極活物質の組成や結晶性のバラツキが小さい場合、正極活物質からのバナジウムイオン等が溶出しにくくなることにより正極活物質のpHが3.0以上になりやすく、充放電に寄与する正極活物質量の減少を抑えることができ、サイクル特性が向上すると考えられる。また、正極活物質のpHが6.8以下であると、正極集電体の腐食が抑えられることで正極活物質層と正極集電体との密着性低下による剥離が抑えられ、良好なサイクル特性が実現できると考えられる。さらに、pHは3.5以上、6.0以下であることがより好ましい。また、前記化合物の結晶系は特に限定されず、三斜晶系、斜方晶系や正方晶系のLiVOPOいずれでもよい。 The positive electrode active material according to this embodiment is Li 1-x VOPO 4 [where x is −0.15 ≦ x ≦ 0.15. ] (Hereinafter sometimes referred to as “lithium vanadium phosphate”). The positive electrode active material has a pH of 3.0 or more and 6.8 or less. When the composition of the positive electrode active material and the variation in crystallinity are small, the vanadium ions from the positive electrode active material are less likely to elute, so that the pH of the positive electrode active material is likely to be 3.0 or more, and the positive electrode active material contributing to charge / discharge It is considered that the decrease in the amount of substances can be suppressed and the cycle characteristics are improved. In addition, when the pH of the positive electrode active material is 6.8 or less, the corrosion of the positive electrode current collector is suppressed, so that peeling due to a decrease in adhesion between the positive electrode active material layer and the positive electrode current collector is suppressed, and a good cycle is achieved. It is considered that the characteristics can be realized. Furthermore, the pH is more preferably 3.5 or more and 6.0 or less. The crystal system of the compound is not particularly limited, and any of triclinic, orthorhombic and tetragonal LiVOPO 4 may be used.

また、正極活物質の一次粒子の平均粒子径は0.02μm以上、3μm以下であることが好ましい。このような活物質を用いたリチウムイオン二次電池では、高容量のものが得られる。一次粒子の平均粒子径が0.02μmより小さい活物質を用いた場合は、粉体の取扱いが難しくなる傾向があり、5μmより大きい活物質を用いた場合は、容量が小さくなる傾向がある。より好ましくは、平均粒子径は0.04μm以上、1μm以下である。   Moreover, it is preferable that the average particle diameter of the primary particle of a positive electrode active material is 0.02 micrometer or more and 3 micrometers or less. A lithium ion secondary battery using such an active material has a high capacity. When an active material having an average primary particle size of less than 0.02 μm is used, the powder tends to be difficult to handle, and when an active material of more than 5 μm is used, the capacity tends to be small. More preferably, the average particle size is 0.04 μm or more and 1 μm or less.

また、正極活物質粒子の体積基準での累積粒度分布の微粒子径側から累積10%および累積90%の粒子径をD10およびD90としたとき、D90をD10で除したD90/D10が23以下の粒度分布を有することが好ましい。D90/D10、つまりD10に対するD90の比は、累積粒度分布の細かい部分に対する粗い部分の割合を示しており、D90/D10の値が小さいときには粒子径のバラツキが小さくなり、正極活物質の組成や結晶性のバラツキが小さくなる傾向にある。さらに、D90/D10が20以下の粒度分布を有することがより好ましい。   Further, when the particle diameters of the cumulative particle size distribution of the positive electrode active material particles on the volume basis are 10% and 90% from the fine particle diameter side are D10 and D90, D90 / D10 obtained by dividing D90 by D10 is 23 or less. It preferably has a particle size distribution. D90 / D10, that is, the ratio of D90 to D10 indicates the ratio of the coarse portion to the fine portion of the cumulative particle size distribution. When the value of D90 / D10 is small, the variation in the particle diameter is small, There is a tendency for the variation in crystallinity to be reduced. Furthermore, it is more preferable that D90 / D10 has a particle size distribution of 20 or less.

<正極活物質の製造方法>
正極活物質の製造方法は特に限定されないが、固相合成、水熱合成、カーボサーマルリダクション法などにより合成できることが知られている。中でも水熱合成法で作製したリチウムバナジウムホスフェートは粒子径が小さく、レート特性に優れる傾向があり、水熱合成法で作製したリチウムバナジウムホスフェートは正極活物質として好ましい。水熱合成法により合成したリチウムバナジウムホスフェートは粒子径、結晶形状、結晶性などの要素がレート特性向上に適しているためであると考えられる。以下に、本実施形態に係る水熱合成法を用いた正極活物質の製造方法について説明する。
<Method for producing positive electrode active material>
Although the manufacturing method of a positive electrode active material is not specifically limited, It is known that it can synthesize | combine by a solid-phase synthesis, a hydrothermal synthesis, the carbothermal reduction method etc. Among them, lithium vanadium phosphate produced by a hydrothermal synthesis method tends to have a small particle size and excellent rate characteristics, and lithium vanadium phosphate produced by a hydrothermal synthesis method is preferable as a positive electrode active material. The lithium vanadium phosphate synthesized by the hydrothermal synthesis method is considered to be due to factors such as particle size, crystal shape, and crystallinity that are suitable for improving the rate characteristics. Below, the manufacturing method of the positive electrode active material using the hydrothermal synthesis method which concerns on this embodiment is demonstrated.

<水熱合成法による正極活物質の製造方法>
水熱合成法は、原料調製工程、水熱合成工程、乾燥工程及び焼成工程を備える。ただし、乾燥工程を行わずに焼成工程を実施しても良い。焼成工程後に必要に応じて粉砕工程を実施しても良い。さらに必要に応じて焼成工程により得た生成物あるいは粉砕工程により得た生成物を溶媒中で攪拌し、ろ過・乾燥することにより、溶媒溶出成分を除去する溶出成分除去工程を実施しても良い。
<Method for producing positive electrode active material by hydrothermal synthesis method>
The hydrothermal synthesis method includes a raw material preparation step, a hydrothermal synthesis step, a drying step, and a firing step. However, you may implement a baking process, without performing a drying process. You may implement a grinding | pulverization process as needed after a baking process. Furthermore, if necessary, the elution component removal step of removing the solvent elution component may be carried out by stirring the product obtained by the firing step or the product obtained by the pulverization step in a solvent, filtering and drying. .

原料調製工程では、リチウム源、バナジウム源、リン源及び水を攪拌、混合して、混合物(混合液)を調製する。原料調製工程では、リチウム源、バナジウム源、リン源及び水を同時に混合することが好ましい。また、必要に応じて還元剤を加えても良い。   In the raw material preparation step, a lithium source, a vanadium source, a phosphorus source, and water are stirred and mixed to prepare a mixture (mixed solution). In the raw material preparation step, it is preferable to mix a lithium source, a vanadium source, a phosphorus source and water at the same time. Moreover, you may add a reducing agent as needed.

リチウム源としては、例えば、LiCO、LiF、LiNO、LiOH、LiCl、LiBr、LiI、LiSO、LiPO及びCHCOOLiおよびこれらの水和物からなる群より選ばれる一種又は二種以上を用いることができる。特に、水溶性のリチウム塩を用いた場合、リチウムイオン二次電池の放電容量が向上する傾向がある。水溶性のリチウム塩としては、例えば、LiNO、LiOH、LiCl、LiI、LiSO及びCHCOOLiおよびこれらの水和物が挙げられる。 The lithium source is, for example, selected from the group consisting of Li 2 CO 3 , LiF, LiNO 3 , LiOH, LiCl, LiBr, LiI, Li 2 SO 4 , Li 3 PO 4, CH 3 COOLi, and hydrates thereof. One kind or two or more kinds can be used. In particular, when a water-soluble lithium salt is used, the discharge capacity of the lithium ion secondary battery tends to be improved. Examples of the water-soluble lithium salt include LiNO 3 , LiOH, LiCl, LiI, Li 2 SO 4 and CH 3 COOLi, and hydrates thereof.

リン源としては、例えば、HPO、NHPO及び(NHHPOからなる群より選ばれる少なくとも一種を用いることができる。なお、二種以上のリン源を併用してもよい。 As the phosphorus source, for example, at least one selected from the group consisting of H 3 PO 4 , NH 4 H 2 PO 4 and (NH 4 ) 2 HPO 4 can be used. Two or more phosphorus sources may be used in combination.

バナジウム源としては、例えば、金属バナジウム、V、V又はNHVOのいずれかを用いることができる。なお、二種以上のバナジウム源を併用してもよい。 As the vanadium source, for example, any of metal vanadium, V 2 O 3 , V 2 O 5, or NH 4 VO 3 can be used. Two or more vanadium sources may be used in combination.

リチウム源、バナジウム源及びリン源の配合比は、リチウム源に含まれるリチウムのモル数、バナジウム源に含まれるバナジウムのモル数、リン源に含まれるリンのモル数の比が、1:1:1となるように調整すればよい。つまり、混合物中のLi,V及びPのモル比を、LiVOPOの化学量論比(1:1:1)になるように調整すればよい。なお、配合比は、必ずしも上記の化学量論比を満たさなくてもよい。例えば、最終的に得られる活物質におけるLiの欠損を防止するために、リチウム源を多めに配合してもよい。つまり、混合物中のLi,V及びPのモル比を、敢えて上1:1:1からずらしてもよい。 The mixing ratio of the lithium source, the vanadium source and the phosphorus source is such that the ratio of the number of moles of lithium contained in the lithium source, the number of moles of vanadium contained in the vanadium source, and the number of moles of phosphorus contained in the phosphorus source is 1: 1: It may be adjusted to be 1. That is, the molar ratio of Li, V and P in the mixture may be adjusted so as to be the stoichiometric ratio of LiVOPO 4 (1: 1: 1). Note that the blending ratio does not necessarily satisfy the above stoichiometric ratio. For example, in order to prevent the loss of Li in the finally obtained active material, a large amount of lithium source may be blended. That is, the molar ratio of Li, V and P in the mixture may be deliberately shifted from 1: 1: 1.

還元剤としては特に限定されないが、例えば、ヒドラジン(NHNH・HO)又は過酸化水素(H)等を用いることができる。 No particular limitation is imposed on the reducing agent, for example, hydrazine (NH 2 NH 2 · H 2 O) or hydrogen peroxide (H 2 O 2) or the like can be used.

水熱合成工程では、まず、内部を加熱、加圧する機能を有する反応容器(例えば、オートクレーブ等)内に、上述したリチウム源、リン酸源、バナジウム源、水及び還元剤を投入して、これらが分散した混合物(水溶液)を調製する。続いて、反応容器を密閉して混合物を加圧しながら加熱することにより、混合物中で水熱反応を進行させる。なお、混合物を加圧しながら加熱する時間は、混合物の量に応じて適宜調整すればよい。   In the hydrothermal synthesis step, first, the above-described lithium source, phosphate source, vanadium source, water, and reducing agent are put into a reaction vessel (for example, an autoclave) having a function of heating and pressurizing the inside. A mixture (aqueous solution) in which is dispersed is prepared. Subsequently, the reaction vessel is sealed and heated while pressurizing the mixture, thereby causing a hydrothermal reaction to proceed in the mixture. In addition, what is necessary is just to adjust suitably the time which heats a mixture, pressurizing according to the quantity of a mixture.

乾燥工程では、80〜300℃程度で加熱すればよい。乾燥方法としては、オーブン乾燥、スプレードライヤー、フラッシュジェットドライヤーなどを用いることができる。   What is necessary is just to heat at about 80-300 degreeC in a drying process. As a drying method, oven drying, spray dryer, flash jet dryer or the like can be used.

焼成工程の加熱処理手法は任意であるが、例えば箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。加熱処理は、通常、昇温・最高温度保持・降温の三部分に分けられ、更に、昇温・最高温度保持・降温の工程を2回又はそれ以上繰り返し行なってもよい。また、加熱処理と加熱処理との間に、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程を挟んで行なってもよい。   The heat treatment method of the firing step is arbitrary, and for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln, or the like can be used. The heat treatment is usually divided into three parts of temperature rise, maximum temperature hold, and temperature drop, and the steps of temperature rise, maximum temperature hold, and temperature drop may be repeated twice or more. Further, a crushing step that means eliminating aggregation to such an extent that the secondary particles are not destroyed may be sandwiched between the heat treatments.

焼成工程の雰囲気は特に限定されないが、大気雰囲気であることが好ましい。   Although the atmosphere of a baking process is not specifically limited, It is preferable that it is an air atmosphere.

粉砕工程では、粉砕方法として例えば遊星ボールミル、ジェットミル等を用いることができる。粉砕により、一次粒子または二次粒子が微小化する。なお、粉砕工程は、リチウムイオン二次電池の正極活物質層を作製する時点で実施しても良い。正極活物質層14の作製工程では、活物質、導電助剤、バインダー及び溶媒等から調製したスラリーを正極集電体12上に塗布し、乾燥することにより正極活物質層14が形成される。この工程において、活物質と導電助剤との混合物を粉砕してもよい。また、スラリーそのものに粉砕処理を施してもよい。   In the pulverization step, for example, a planetary ball mill or a jet mill can be used as a pulverization method. By the pulverization, the primary particles or the secondary particles are micronized. In addition, you may implement a grinding | pulverization process at the time of producing the positive electrode active material layer of a lithium ion secondary battery. In the manufacturing process of the positive electrode active material layer 14, a slurry prepared from an active material, a conductive additive, a binder, a solvent, and the like is applied on the positive electrode current collector 12 and dried to form the positive electrode active material layer 14. In this step, a mixture of the active material and the conductive additive may be pulverized. Further, the slurry itself may be pulverized.

溶出成分除去工程では、焼成工程で得た生成物あるいは粉砕工程で得られた生成物を溶媒中で攪拌し、溶媒中に溶出した成分を除去するためにろ過を行い、ろ紙上に残った粉末を乾燥させることが好ましい。溶媒は溶出する成分によって選択され、例えば蒸留水やアセトン、エタノールなどの有機溶媒等が挙げられる。   In the eluted component removal step, the product obtained in the baking step or the product obtained in the pulverization step is stirred in a solvent, filtered to remove the components eluted in the solvent, and the powder remaining on the filter paper Is preferably dried. The solvent is selected depending on the components to be eluted, and examples thereof include distilled water, organic solvents such as acetone and ethanol.

正極活物質のpH測定には、正極活物質粉末の水性縣濁液、即ち正極活物質粉末5gを水100mlに縣濁させた試料を用いる。25℃で1時間から2時間程度よく攪拌した後、pH値が大きく変化しないことを確認して測定する。その他の測定の詳細はJIS Z8802に準拠する。   For the pH measurement of the positive electrode active material, an aqueous suspension of the positive electrode active material powder, that is, a sample in which 5 g of the positive electrode active material powder is suspended in 100 ml of water is used. After stirring well at 25 ° C. for about 1 to 2 hours, measurement is made after confirming that the pH value does not change significantly. The details of other measurements conform to JIS Z8802.

得られた正極活物質のpH=3.0以上の時には、正極活物質からバナジウムイオン等の溶出が抑制されており、またpH=6.8以下の時には、正極集電体12と正極活物質層14との密着性の低下を抑制しやくなり、サイクル特性が向上すると考えられる。
<正極>
続いて、本実施形態に係る正極10について説明する。
When pH of the obtained positive electrode active material is 3.0 or higher, elution of vanadium ions and the like from the positive electrode active material is suppressed, and when pH is 6.8 or lower, the positive electrode current collector 12 and the positive electrode active material are suppressed. It is considered that the deterioration of the adhesion with the layer 14 is easily suppressed, and the cycle characteristics are improved.
<Positive electrode>
Subsequently, the positive electrode 10 according to the present embodiment will be described.

正極10の正極集電体12としては、例えば、アルミニウム箔等を使用できる。正極活物質層14は、少なくとも上記本実施形態に係る正極活物質と導電助剤とを含有する。正極活物質層14は正極活物質及び導電助剤を結着するバインダーを含んでもよい。   As the positive electrode current collector 12 of the positive electrode 10, for example, an aluminum foil or the like can be used. The positive electrode active material layer 14 contains at least the positive electrode active material according to the present embodiment and a conductive additive. The positive electrode active material layer 14 may include a binder that binds the positive electrode active material and the conductive additive.

導電助剤としては、カーボンブラック類等の炭素材料、銅、ニッケル、ステンレス、鉄等の金属粉、炭素材料及び金属粉の混合物、ITOのような導電性酸化物が挙げられる。   Examples of the conductive aid include carbon materials such as carbon blacks, metal powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal powders, and conductive oxides such as ITO.

バインダーは、正極活物質と導電助剤とを正極集電体12に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体等のフッ素樹脂が挙げられる。   The binder is not particularly limited as long as the positive electrode active material and the conductive additive can be bound to the positive electrode current collector 12, and a known binder can be used. Examples thereof include fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and vinylidene fluoride-hexafluoropropylene copolymer.

正極活物質層14の正極活物質と導電助剤とバインダーの比率は特に限定されないが、正極活物質の比率が少ないと電極密度が小さくなる傾向にあり、正極活物質の比率は80重量%以上が好ましい。   The ratio of the positive electrode active material, the conductive additive, and the binder of the positive electrode active material layer 14 is not particularly limited, but the electrode density tends to decrease when the ratio of the positive electrode active material is small, and the ratio of the positive electrode active material is 80% by weight or more. Is preferred.

このような正極10は、公知の方法、例えば、正極活物質、導電助剤及びバインダーを、それらの種類に応じた溶媒、例えばPVDFの場合はN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の溶媒に添加したスラリーを、正極集電体12の表面に塗布し、乾燥させることにより製造できる。   Such a positive electrode 10 is prepared by a known method, for example, a positive electrode active material, a conductive additive and a binder, and a solvent corresponding to the type thereof, for example, N-methyl-2-pyrrolidone, N, N-dimethyl in the case of PVDF. The slurry can be produced by applying a slurry added to a solvent such as formamide on the surface of the positive electrode current collector 12 and drying it.

正極活物質層14のpH測定には、正極集電体12からスクレーパー等を用いて剥ぎ取った正極活物質層粉末の水性縣濁液、即ち正極活物質層粉末5gを水100mlに縣濁させた試料を用いる。25℃で1時間から2時間程度よく攪拌した後、pH値が大きく変化しないことを確認して測定する。その他の測定の詳細はJIS Z8802に準拠する。   To measure the pH of the positive electrode active material layer 14, an aqueous suspension of the positive electrode active material layer powder peeled off from the positive electrode current collector 12 using a scraper or the like, that is, 5 g of the positive electrode active material layer powder was suspended in 100 ml of water. The sample is used. After stirring well at 25 ° C. for about 1 to 2 hours, measurement is made after confirming that the pH value does not change significantly. The details of other measurements conform to JIS Z8802.

得られた正極活物質層14のpH=3.5以上の時には、正極活物質からバナジウムイオン等の溶出が抑制されており、またpH=7.8以下の時には、正極集電体12と正極活物質層14との密着性の低下を抑制しやくなり、サイクル特性が向上すると考えられる。   When the obtained positive electrode active material layer 14 has a pH of 3.5 or higher, elution of vanadium ions and the like from the positive electrode active material is suppressed, and when the pH is 7.8 or lower, the positive electrode current collector 12 and the positive electrode It is considered that it is easy to suppress a decrease in adhesion with the active material layer 14 and the cycle characteristics are improved.

<負極>
負極集電体22としては、銅箔等を使用できる。また、負極活物質層24としては、負極活物質、導電助剤、及び、バインダーを含むものを使用できる。導電助剤としては特に限定されず、炭素材料、金属粉などが使用できる。負極に用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂が使用できる。
<Negative electrode>
As the negative electrode current collector 22, a copper foil or the like can be used. Moreover, as the negative electrode active material layer 24, the thing containing a negative electrode active material, a conductive support agent, and a binder can be used. It does not specifically limit as a conductive support agent, A carbon material, a metal powder, etc. can be used. As the binder used for the negative electrode, fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) can be used.

負極活物質としては、黒鉛、難黒鉛化炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。 As the negative electrode active material, carbon materials such as graphite and non-graphitizable carbon, metals that can be combined with lithium such as Al, Si and Sn, and amorphous materials mainly composed of oxides such as SiO 2 and SnO 2 Examples thereof include particles containing a compound, lithium titanate (Li 4 Ti 5 O 12 ), and the like.

負極20の製造方法は、正極10の製造方法と同様にスラリーを調整して負極集電体22に塗布すればよい。   The negative electrode 20 may be manufactured by adjusting the slurry and applying it to the negative electrode current collector 22 in the same manner as the positive electrode 10.

<電解液>
電解液としては、特に限定されず、例えば、本実施形態では、有機溶媒にリチウム塩を含む電解液を使用することができる。リチウム塩としては、例えば、LiPF、LiClO、LiBF等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
<Electrolyte>
The electrolytic solution is not particularly limited. For example, in the present embodiment, an electrolytic solution containing a lithium salt in an organic solvent can be used. Examples of the lithium salt, LiPF 6, LiClO 4, salts of LiBF 4 or the like can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Preferable examples of the organic solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate. These may be used alone or in combination of two or more at any ratio.

また、セパレータ18は、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が使用できる。   The separator 18 is at least one component selected from the group consisting of a monolayer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or a group consisting of cellulose, polyester and polypropylene. The fiber nonwoven fabric which consists of can be used.

ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されず、例えば、金属ラミネートフィルムを利用できる。   The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the lithium ion secondary battery 100 from the outside. For example, a metal laminate film can be used. .

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

本活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(正極に本発明の複合粒子を含む電極を用い、負極に金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。   This active material can also be used as an electrode material for electrochemical elements other than lithium ion secondary batteries. As such an electrochemical element, a secondary battery other than a lithium ion secondary battery, such as a metal lithium secondary battery (an electrode including the composite particles of the present invention as a positive electrode and metal lithium as a negative electrode). And electrochemical capacitors such as lithium capacitors.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
[評価用セルの作製]
とLiOH・HOとHPOをモル比およそ1:2:2となるように秤量し、蒸留水中に投入し、これらをマグネチックスターラーにて1時間攪拌した。激しく攪拌しながらヒドラジン1水和物(NHNH・HO)を少量ずつ滴下し、さらに1時間攪拌した後、オートクレーブ用ガラス容器に混合液を移し替えた。容器を密閉し、攪拌しながら160℃で8時間加熱し、得られたペーストを100℃のオーブンにて12時間乾燥した。得られた乾燥粉末を乳鉢を用いて10分間解砕した後、箱型炉にて大気中600℃、4時間焼成した。
Example 1
[Production of evaluation cell]
V 2 O 5 , LiOH.H 2 O and H 3 PO 4 were weighed so as to have a molar ratio of about 1: 2: 2, poured into distilled water, and stirred with a magnetic stirrer for 1 hour. Hydrazine monohydrate (NH 2 NH 2 .H 2 O) was added dropwise little by little with vigorous stirring, and the mixture was further stirred for 1 hour, and then the mixed solution was transferred to a glass container for autoclave. The container was sealed, heated with stirring at 160 ° C. for 8 hours, and the obtained paste was dried in an oven at 100 ° C. for 12 hours. The obtained dry powder was crushed for 10 minutes using a mortar and then baked in a box furnace at 600 ° C. for 4 hours in the air.

このようにして得られた活物質について、誘導結合プラズマ法(以下、ICP法)による組成分析を行った結果、活物質組成はLiVOPOであることが確認された。 The active material thus obtained was subjected to composition analysis by an inductively coupled plasma method (hereinafter, ICP method), and as a result, it was confirmed that the active material composition was LiVOPO 4 .

得られた正極活物質のpHについては、前述の方法により測定した。結果はpH=3.0であった。   About the pH of the obtained positive electrode active material, it measured by the above-mentioned method. The result was pH = 3.0.

LiVOPO粒子と、pH=6.5のアセチレンブラックとを、80:10の重量比で秤量し、これに対して遊星型ボールミルによる10分間の粉砕処理を行った。遊星型ボールミルの回転数は530rpmに設定した。 LiVOPO 4 particles and acetylene black of pH = 6.5 were weighed at a weight ratio of 80:10, and subjected to a pulverization treatment for 10 minutes using a planetary ball mill. The rotation speed of the planetary ball mill was set to 530 rpm.

これにより得た混合物とバインダーであるポリフッ化ビニリデン(PVDF、呉羽化学製KF7305)とを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリー中における混合物とPVDFとの重量比を90:10に調整した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、正極活物質層が形成された正極を作製した。   A mixture of the obtained mixture and polyvinylidene fluoride (PVDF, Kureha Chemical KF7305) as a binder was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. The weight ratio of the mixture and PVDF in the slurry was adjusted to 90:10. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to produce a positive electrode on which a positive electrode active material layer was formed.

得られた正極より正極活物質層を剥ぎ取り、正極活物質層のpHを測定した。測定方法は前述の通り行い、結果はpH=3.8であった。   The positive electrode active material layer was peeled off from the obtained positive electrode, and the pH of the positive electrode active material layer was measured. The measurement method was performed as described above, and the result was pH = 3.8.

次に、負極として人造黒鉛(BTR社製FSN)とポリフッ化ビニリデン(PVdF)のNメチルピロリドン(NMP)5wt%溶液を人造黒鉛:ポリフッ化ビニリデン=93:7の割合になるように混合し、スラリー状の塗料を作製した。塗料を集電体である銅箔に塗布し、乾燥、圧延することによって負極を作製した。   Next, artificial graphite (FSN manufactured by BTR) and N methylpyrrolidone (NMP) 5 wt% solution of polyvinylidene fluoride (PVdF) as a negative electrode were mixed so that the ratio of artificial graphite: polyvinylidene fluoride = 93: 7 was obtained. A slurry paint was prepared. The negative electrode was produced by apply | coating a coating material to the copper foil which is a collector, and drying and rolling.

正極と、負極とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネートパックに入れた。電解液はエチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積比3:7で混合し、支持塩としてLiPFを1mol/Lになるよう溶解した。 A positive electrode and a negative electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was placed in an aluminum laminate pack. As the electrolytic solution, ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7, and LiPF 6 was dissolved as a supporting salt to a concentration of 1 mol / L.

積層体を入れたアルミラミネートパックに、上記電解液を注入した後、真空シールし、実施例1の評価用セルを作製した。   The above electrolyte was poured into an aluminum laminate pack containing the laminate, and then vacuum-sealed to produce an evaluation cell of Example 1.

[電池特性の測定]
実施例1の評価用セルを、25℃で、電流値18mA/gで4.3Vまで定電流で充電した後、電流値18mA/gで2.8Vまで定電流放電した。このとき、実施例1の放電容量は134mAh/gであった(初期放電容量)。この充放電サイクルを100サイクル繰返すサイクル試験を行った。実施例1の評価用セルの初期放電容量を100%とすると、100サイクル後の放電容量は91.8%であった。以下では、初期放電容量を100%としたときの、100サイクル後の放電容量の割合をサイクル特性という。サイクル特性が高いことは、電池が充放電サイクル耐久性に優れていることを示す。
[Measurement of battery characteristics]
The evaluation cell of Example 1 was charged at a constant current of up to 4.3 V at 25 ° C. with a current value of 18 mA / g and then discharged at a constant current of 2.8 V at a current value of 18 mA / g. At this time, the discharge capacity of Example 1 was 134 mAh / g (initial discharge capacity). A cycle test was repeated for 100 cycles of this charge / discharge cycle. Assuming that the initial discharge capacity of the evaluation cell of Example 1 is 100%, the discharge capacity after 100 cycles was 91.8%. Hereinafter, the ratio of the discharge capacity after 100 cycles when the initial discharge capacity is 100% is referred to as cycle characteristics. A high cycle characteristic indicates that the battery is excellent in charge / discharge cycle durability.

(実施例2)
得られた正極活物質を、1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 2)
The obtained positive electrode active material was stirred with a magnetic stirrer of 10 ml per 1 g of distilled water for 1 hour, then filtered, and the dried powder that had been subjected to the elution component removal step of drying the powder remaining on the filter paper was used as the positive electrode active material. The active material composition was measured, the pH was measured, the evaluation cell was prepared, and the battery characteristics were evaluated in the same manner as in Example 1 except that the material was used. The results are shown in Table 1.

(実施例3)
得られた正極活物質を、1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を3回行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 3)
The obtained positive electrode active material was stirred with a magnetic stirrer of 10 ml per 1 g of distilled water for 1 hour, then filtered, and the dried powder obtained by performing the elution component removing step of drying the powder remaining on the filter paper three times. The active material composition was measured, the pH was measured, the evaluation cell was prepared, and the battery characteristics were evaluated in the same manner as in Example 1, except that the positive electrode active material was used. The results are shown in Table 1.

(実施例4)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:1.8:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
Example 4
In the raw material adjustment step, V 2 O 5 , LiOH.H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 1.8: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. The mixture was stirred for 1 hour with an underwater magnetic stirrer, then filtered and the same as in Example 1 except that the dried powder that had been subjected to the elution component removal step of drying the powder remaining on the filter paper was used as the positive electrode active material. By the method, the active material composition was measured, the pH was measured, the evaluation cell was produced, and the battery characteristics were evaluated. The results are shown in Table 1.

(実施例5)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:2.2:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を3回行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 5)
In the raw material adjustment step, V 2 O 5 , LiOH.H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 2.2: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. After stirring for 1 hour with an underwater magnetic stirrer and filtering, the elution component removal step of drying the powder remaining on the filter paper was performed three times, except that the dry powder was used as the positive electrode active material. In the same manner, active material composition measurement, pH measurement, evaluation cell preparation and battery characteristic evaluation were performed. The results are shown in Table 1.

(実施例6)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:1.7:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて15分間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 6)
In the raw material adjustment step, V 2 O 5 , LiOH · H 2 O and H 3 PO 4 were weighed so as to have a molar ratio of about 1: 1.7: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. The mixture was stirred for 15 minutes with an underwater magnetic stirrer, then filtered and the same as in Example 1 except that the dried powder that had been subjected to the elution component removal step of drying the powder remaining on the filter paper was used as the positive electrode active material. By the method, the active material composition was measured, the pH was measured, the evaluation cell was produced, and the battery characteristics were evaluated. The results are shown in Table 1.

(実施例7)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:2.3:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 7)
In the raw material adjustment step, V 2 O 5 , LiOH · H 2 O and H 3 PO 4 were weighed so as to have a molar ratio of about 1: 2.3: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. The mixture was stirred for 1 hour with an underwater magnetic stirrer, then filtered and the same as in Example 1 except that the dried powder that had been subjected to the elution component removal step of drying the powder remaining on the filter paper was used as the positive electrode active material. By the method, the active material composition was measured, the pH was measured, the evaluation cell was produced, and the battery characteristics were evaluated. The results are shown in Table 1.

(実施例8)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:1.8:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて15分間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 8)
In the raw material adjustment step, V 2 O 5 , LiOH.H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 1.8: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. The mixture was stirred for 15 minutes with an underwater magnetic stirrer, then filtered and the same as in Example 1 except that the dried powder that had been subjected to the elution component removal step of drying the powder remaining on the filter paper was used as the positive electrode active material. By the method, the active material composition was measured, the pH was measured, the evaluation cell was produced, and the battery characteristics were evaluated. The results are shown in Table 1.

(実施例9)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:2.2:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を2回行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
Example 9
In the raw material adjustment step, V 2 O 5 , LiOH.H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 2.2: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. After stirring for 1 hour with an underwater magnetic stirrer, filtration was performed and the elution component removal step of drying the powder remaining on the filter paper was performed twice. In the same manner, active material composition measurement, pH measurement, evaluation cell preparation and battery characteristic evaluation were performed. The results are shown in Table 1.

(実施例10)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:1.8:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を3回行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 10)
In the raw material adjustment step, V 2 O 5 , LiOH.H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 1.8: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. After stirring for 1 hour with an underwater magnetic stirrer and filtering, the elution component removal step of drying the powder remaining on the filter paper was performed three times, except that the dry powder was used as the positive electrode active material. In the same manner, active material composition measurement, pH measurement, evaluation cell preparation and battery characteristic evaluation were performed. The results are shown in Table 1.

(実施例11)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:2.2:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて15分間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 11)
In the raw material adjustment step, V 2 O 5 , LiOH.H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 2.2: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. The mixture was stirred for 15 minutes with an underwater magnetic stirrer, then filtered and the same as in Example 1 except that the dried powder that had been subjected to the elution component removal step of drying the powder remaining on the filter paper was used as the positive electrode active material. By the method, the active material composition was measured, the pH was measured, the evaluation cell was produced, and the battery characteristics were evaluated. The results are shown in Table 1.

(実施例12)
pH=3.5のアセチレンブラックを用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 12)
The active material composition was measured, the pH was measured, the evaluation cell was prepared, and the battery characteristics were evaluated in the same manner as in Example 1 except that acetylene black having a pH of 3.5 was used. The results are shown in Table 1.

(実施例13)
得られた正極活物質を、1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を3回行った乾燥粉末を正極活物質として用い、pH=8.5のアセチレンブラックを用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Example 13)
The obtained positive electrode active material was stirred with a magnetic stirrer of 10 ml per 1 g of distilled water for 1 hour, then filtered, and the dried powder obtained by performing the elution component removing step of drying the powder remaining on the filter paper three times. The active material composition was measured, the pH was measured, the evaluation cell was prepared, and the battery characteristics were evaluated in the same manner as in Example 1 except that acetylene black having a pH of 8.5 was used as the positive electrode active material. It was. The results are shown in Table 1.

(比較例1)
オートクレーブ用ガラス容器に混合液を移し替え、容器を密閉し、攪拌しながら160℃で1時間加熱したこと以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Comparative Example 1)
The active material composition was measured, the pH was measured and evaluated in the same manner as in Example 1 except that the liquid mixture was transferred to a glass container for autoclave, the container was sealed, and heated at 160 ° C. for 1 hour with stirring. Cells were prepared and battery characteristics were evaluated. The results are shown in Table 1.

(比較例2)
得られた正極活物質について、遊星型ボールミルによる粉砕処理を30分間行い、1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を3回行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Comparative Example 2)
The obtained positive electrode active material was crushed with a planetary ball mill for 30 minutes, stirred for 1 hour with a magnetic stirrer in 10 ml of distilled water per gram, filtered, and the powder remaining on the filter paper was dried. The active material composition was measured, the pH was measured, the evaluation cell was prepared, and the battery characteristics were evaluated in the same manner as in Example 1 except that the dry powder obtained by performing the component removal step three times was used as the positive electrode active material It was. The results are shown in Table 1.

(比較例3)
得られた正極活物質について、遊星型ボールミルによる粉砕処理を30分間行い、1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を3回行い、pH=8.5のアセチレンブラックを用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Comparative Example 3)
The obtained positive electrode active material was crushed with a planetary ball mill for 30 minutes, stirred for 1 hour with a magnetic stirrer in 10 ml of distilled water per gram, filtered, and the powder remaining on the filter paper was dried. The component removal step was performed three times, and the same method as in Example 1 was used, except that acetylene black having a pH of 8.5 was used. Went. The results are shown in Table 1.

(比較例4)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:1.64:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Comparative Example 4)
In the raw material adjustment step, V 2 O 5 , LiOH · H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 1.64: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. The mixture was stirred for 1 hour with an underwater magnetic stirrer, then filtered and the same as in Example 1 except that the dried powder that had been subjected to the elution component removal step of drying the powder remaining on the filter paper was used as the positive electrode active material. By the method, the active material composition was measured, the pH was measured, the evaluation cell was produced, and the battery characteristics were evaluated. The results are shown in Table 1.

(比較例5)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:2.36:2となるように秤量し、さらに得られた正極活物質を1gあたり10mlの蒸留水中マグネチックスターラーにて1時間攪拌した後、ろ過し、ろ紙上に残った粉末を乾燥させるという溶出成分除去工程を行った乾燥粉末を正極活物質として用いた以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Comparative Example 5)
In the raw material adjustment step, V 2 O 5 , LiOH · H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 2.36: 2, and the obtained positive electrode active material was distilled at 10 ml per gram. The mixture was stirred for 1 hour with an underwater magnetic stirrer, then filtered and the same as in Example 1 except that the dried powder that had been subjected to the elution component removal step of drying the powder remaining on the filter paper was used as the positive electrode active material. By the method, the active material composition was measured, the pH was measured, the evaluation cell was produced, and the battery characteristics were evaluated. The results are shown in Table 1.

(比較例6)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:1.64:2となるように秤量した以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。
(Comparative Example 6)
The active material was prepared in the same manner as in Example 1, except that V 2 O 5 , LiOH.H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 1.64: 2. Measurement of composition, measurement of pH, preparation of evaluation cells and evaluation of battery characteristics were performed. The results are shown in Table 1.

(比較例7)
原料調整工程においてVとLiOH・HOとHPOをモル比およそ1:2.36:2となるように秤量した以外は、実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表1に示す。

Figure 2015106470
(Comparative Example 7)
The active material was prepared in the same manner as in Example 1 except that V 2 O 5 , LiOH · H 2 O and H 3 PO 4 were weighed so that the molar ratio was about 1: 2.36: 2 in the raw material adjustment step. Measurement of composition, measurement of pH, preparation of evaluation cells and evaluation of battery characteristics were performed. The results are shown in Table 1.
Figure 2015106470

表1に示すように、実施例1〜13の正極活物質のpHは、3.0以上6.8以下であり、実施例1〜11の正極活物質層のpHは、3.5以上7.8以下であることが確認された。さらに、実施例12および13正極活物質層のpHは、それぞれ3.4、7.9であることが確認された。また、実施例1〜13の評価用セルのサイクル特性は、全比較例のサイクル特性より良好な傾向があることが確認された。   As shown in Table 1, the positive electrode active materials of Examples 1 to 13 have a pH of 3.0 to 6.8, and the positive electrode active material layers of Examples 1 to 11 have a pH of 3.5 to 7. .8 or less was confirmed. Furthermore, it was confirmed that the pH of Examples 12 and 13 positive electrode active material layers was 3.4 and 7.9, respectively. Moreover, it was confirmed that the cycle characteristics of the evaluation cells of Examples 1 to 13 tend to be better than the cycle characteristics of all the comparative examples.

実施例1で得られた正極について断面加工を行い、走査型電子顕微鏡にて300個の正極活物質粒子を撮像し、得られた画像の粒子一つ一つの面積を算出した後、円相当径に換算して粒子径とし、累積粒度分布の累積10%および累積90%の粒径であるD10およびD90を求め、さらにD90をD10で除することによりD90/D10を求めた。結果を表2に示す。   The cross section of the positive electrode obtained in Example 1 was processed, 300 positive electrode active material particles were imaged with a scanning electron microscope, the area of each particle of the obtained image was calculated, and then the equivalent circle diameter D10 and D90, which are the particle sizes of 10% and 90% of the cumulative particle size distribution, were calculated, and D90 / D10 was calculated by dividing D90 by D10. The results are shown in Table 2.

(実施例14)
水熱合成工程により得られたペーストを100℃のオーブンにて12時間乾燥した乾燥粉末について、乳鉢を用いて20分間解砕した以外は、実施例1と同様の方法で活物質を作製した。前述の方法によりD90/D10を求め、さらに実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表2に示す。
(Example 14)
An active material was produced in the same manner as in Example 1 except that the paste obtained by the hydrothermal synthesis step was dried in an oven at 100 ° C. for 12 hours and pulverized for 20 minutes using a mortar. D90 / D10 was calculated | required by the above-mentioned method, and also by the method similar to Example 1, the active material composition measurement, pH measurement, preparation of the cell for evaluation, and battery characteristic evaluation were performed. The results are shown in Table 2.

(実施例15)
水熱合成工程により得られたペーストを100℃のオーブンにて12時間乾燥した乾燥粉末について、乳鉢を用いて30分間解砕した以外は、実施例1と同様の方法で活物質を作製した。前述の方法によりD90/D10を求め、さらに実施例1と同様の方法で、活物質組成の測定、pHの測定、評価用セルの作製および電池特性評価を行った。結果を表2に示す。

Figure 2015106470
(Example 15)
An active material was produced in the same manner as in Example 1, except that the dry powder obtained by drying the paste obtained by the hydrothermal synthesis step in an oven at 100 ° C. for 12 hours was crushed using a mortar for 30 minutes. D90 / D10 was calculated | required by the above-mentioned method, and also by the method similar to Example 1, the active material composition measurement, pH measurement, preparation of the cell for evaluation, and battery characteristic evaluation were performed. The results are shown in Table 2.
Figure 2015106470

表2に示すように、実施例1、14および15の正極活物質のpHは、3.0以上6.8以下であり、正極活物質層のpHは、3.5以上7.8以下であり、D90/D10は23以下であることが確認された。また、実施例1、14および15の評価用セルのサイクル特性は、全比較例のサイクル特性より良好な傾向があることが確認された。   As shown in Table 2, the positive electrode active materials of Examples 1, 14, and 15 have a pH of 3.0 or more and 6.8 or less, and the positive electrode active material layer has a pH of 3.5 or more and 7.8 or less. It was confirmed that D90 / D10 was 23 or less. It was also confirmed that the cycle characteristics of the evaluation cells of Examples 1, 14 and 15 tend to be better than those of all comparative examples.

10…正極、20…負極、12…正極集電体、14…正極活物質層、18…セパレータ、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。 DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 20 ... Negative electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 60 62 ... Lead, 100 ... Lithium ion secondary battery.

Claims (3)

組成式Li1−xVOPO〔ただしxは、−0.15≦x≦0.15である。〕で表される化合物であって、前記化合物のpHが3.0以上、6.8以下であることを特徴とする正極活物質。 Composition formula Li 1-x VOPO 4 [where x is −0.15 ≦ x ≦ 0.15. A positive electrode active material, wherein the pH of the compound is 3.0 or more and 6.8 or less. 正極集電体と、請求項1記載の正極活物質を含み前記正極集電体上に設けられた正極活物質層のpHが3.5以上、7.8以下であることを特徴とする正極。   A positive electrode current collector and a positive electrode active material layer comprising the positive electrode active material according to claim 1 and having a pH of 3.5 or more and 7.8 or less provided on the positive electrode current collector . 請求項2記載の正極を備えることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the positive electrode according to claim 2.
JP2013247300A 2013-11-29 2013-11-29 Positive electrode active material, positive electrode and lithium ion secondary battery Active JP6197609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013247300A JP6197609B2 (en) 2013-11-29 2013-11-29 Positive electrode active material, positive electrode and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247300A JP6197609B2 (en) 2013-11-29 2013-11-29 Positive electrode active material, positive electrode and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015106470A true JP2015106470A (en) 2015-06-08
JP6197609B2 JP6197609B2 (en) 2017-09-20

Family

ID=53436482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247300A Active JP6197609B2 (en) 2013-11-29 2013-11-29 Positive electrode active material, positive electrode and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6197609B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110102A (en) * 2016-12-29 2018-07-12 尚志精密化學股▲ふん▼有限公司 Precursor slurry of cell composite material and preparation method of cell composite material
CN114284488A (en) * 2021-12-23 2022-04-05 上海瑞浦青创新能源有限公司 Positive electrode material, and determination method and application of stability thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011048952A (en) * 2009-08-25 2011-03-10 Tdk Corp Method of manufacturing active material
JP2011051859A (en) * 2009-09-04 2011-03-17 Tdk Corp Method for manufacturing active material
WO2012111425A1 (en) * 2011-02-14 2012-08-23 昭和電工株式会社 Slurries obtained using binder for cell electrodes, electrodes obtained using slurries, and lithium-ion secondary cell obtained using electrodes
JP2012216377A (en) * 2011-03-31 2012-11-08 Tdk Corp Active material, method for producing active material, electrode, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011048952A (en) * 2009-08-25 2011-03-10 Tdk Corp Method of manufacturing active material
JP2011051859A (en) * 2009-09-04 2011-03-17 Tdk Corp Method for manufacturing active material
WO2012111425A1 (en) * 2011-02-14 2012-08-23 昭和電工株式会社 Slurries obtained using binder for cell electrodes, electrodes obtained using slurries, and lithium-ion secondary cell obtained using electrodes
JP2012216377A (en) * 2011-03-31 2012-11-08 Tdk Corp Active material, method for producing active material, electrode, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110102A (en) * 2016-12-29 2018-07-12 尚志精密化學股▲ふん▼有限公司 Precursor slurry of cell composite material and preparation method of cell composite material
CN114284488A (en) * 2021-12-23 2022-04-05 上海瑞浦青创新能源有限公司 Positive electrode material, and determination method and application of stability thereof
CN114284488B (en) * 2021-12-23 2023-10-27 上海瑞浦青创新能源有限公司 Positive electrode material and determination method and application of stability of positive electrode material

Also Published As

Publication number Publication date
JP6197609B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
KR101300304B1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP5165515B2 (en) Lithium ion secondary battery
JP5365125B2 (en) Active material for positive electrode of lithium ion secondary battery
WO2012133729A1 (en) Active material, electrode, lithium-ion secondary battery, and process for producing active material
WO2013038516A1 (en) Manganese iron ammonium phosphate, method for producing same, positive electrode active material for lithium secondary batteries using manganese iron ammonium phosphate, method for producing positive electrode active material for lithium secondary batteries using manganese iron ammonium phosphate, and lithium secondary battery using positive electrode active material for lithium secondary batteries using manganese iron ammonium phosphate
JP5120523B1 (en) Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
JP2011071018A (en) Manufacturing method for lithium ion battery positive active material, and positive active material for lithium ion battery
JP5347605B2 (en) Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
JP7059951B2 (en) Negative electrode layer and all-solid-state battery
JP5375446B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP2015056223A (en) Positive electrode active material for nonaqueous secondary batteries, method for manufacturing positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6197609B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
TW201803803A (en) Method for manufacturing vanadium lithium phosphate
JP6329034B2 (en) Method for producing lithium titanate and method for producing lithium ion secondary battery using the same
JP2012054077A (en) Active material for secondary battery and method for producing active material for secondary battery, and secondary battery using the active material for secondary battery
JP5888046B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP6236956B2 (en) Positive electrode active material, positive electrode, lithium ion secondary battery and sodium ion secondary battery
JP6331822B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP6197610B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP6164422B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP2017152118A (en) Positive electrode active material, positive electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP2016129145A (en) Precursor of positive electrode active material for lithium secondary batteries and its manufacturing method, positive electrode active material for lithium secondary batteries arranged by use thereof and its manufacturing method, and lithium secondary battery arranged by use of positive electrode active material
JP2016186877A (en) Olivine-type positive electrode active material and method for producing the same
JP6098382B2 (en) Positive electrode active material and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150