JP2015104748A - Copper material bonding method - Google Patents

Copper material bonding method Download PDF

Info

Publication number
JP2015104748A
JP2015104748A JP2013248205A JP2013248205A JP2015104748A JP 2015104748 A JP2015104748 A JP 2015104748A JP 2013248205 A JP2013248205 A JP 2013248205A JP 2013248205 A JP2013248205 A JP 2013248205A JP 2015104748 A JP2015104748 A JP 2015104748A
Authority
JP
Japan
Prior art keywords
bonding
joining
nanoporous
metal
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013248205A
Other languages
Japanese (ja)
Other versions
JP6347385B2 (en
Inventor
西川 宏
Hiroshi Nishikawa
宏 西川
美紀子 齋藤
Mikiko Saito
美紀子 齋藤
水野 潤
Jun Mizuno
潤 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Osaka University NUC
Original Assignee
Waseda University
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Osaka University NUC filed Critical Waseda University
Priority to JP2013248205A priority Critical patent/JP6347385B2/en
Publication of JP2015104748A publication Critical patent/JP2015104748A/en
Application granted granted Critical
Publication of JP6347385B2 publication Critical patent/JP6347385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Die Bonding (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive copper material bonding method capable of forming bonded parts high in reliability and excellent in mechanical properties even at a low bonding temperature by using a bonding composition easy to handle and excellent in long-term stability and by reducing voids and residual organic components in bonded layers.SOLUTION: Provided is a copper material bonding method including: a step of interposing a bonding composition consisting of a nanoporous metal material containing metallic nanoparticles arrayed in three dimensions and having a mean particle size of 5 to 500 nm between a first bonding target copper material and a second bonding target copper material; and a step of heating the bonding composition interposed between the first bonding target copper material and the second bonding target copper material at 50 to 400°C, and pressing the first bonding target copper material and the second bonding target copper material.

Description

本発明は銅材の低温接合方法に関し、より具体的には、取扱いが容易かつ長期安定性に優れた接合用組成物を用い、接合層内のボイドや残留有機成分の低減によって高い信頼性及び機械的特性を有する接合部の形成が低い接合温度でも可能な、安価な銅材の接合方法に関する。   The present invention relates to a low-temperature bonding method for copper materials, more specifically, using a bonding composition that is easy to handle and excellent in long-term stability, and has high reliability and reduced voids and residual organic components in the bonding layer. The present invention relates to an inexpensive method for joining copper materials, which enables formation of a joint having mechanical properties even at a low joining temperature.

銅材及び銅被覆された部品に代表される金属部品と金属部品とを機械的及び/又は電気的及び/又は熱的に接合するために、従来より、はんだ、導電性接着剤、銀ペースト及び異方導電性フィルム等が用いられている。   Conventionally, in order to mechanically and / or electrically and / or thermally bond metal parts and metal parts represented by copper materials and copper-coated parts, solder, conductive adhesive, silver paste and An anisotropic conductive film or the like is used.

なかでも、はんだ並びに金属からなる導電フィラーを含む接着剤、ペースト及びフィルムは、電気的な接続を必要とする部分の接合に用いられている。更には、金属は一般的に熱伝導性が高いため、これらはんだ並びに導電フィラーを含む接着剤、ペースト及びフィルムは、放熱性を上げるために使用される場合もある。   Especially, the adhesive agent, paste, and film containing the conductive filler which consists of solder and a metal are used for joining the part which needs an electrical connection. Furthermore, since metals generally have high thermal conductivity, adhesives, pastes, and films containing these solders and conductive fillers may be used to increase heat dissipation.

一方、例えば、LED等の発光素子を用いて高輝度の照明デバイスや発光デバイスを作製する場合、或いは、パワーデバイスと言われる高温で高効率の動作をする半導体素子を用いて半導体デバイスを作製する場合等には、発熱量が上がる傾向にある。デバイスや素子の効率を向上させて発熱を減らす試みも行われているが、現状では十分な成果が出ておらず、デバイスや素子の使用温度が上がっているのが実情である。   On the other hand, for example, when a high-luminance lighting device or a light-emitting device is manufactured using a light-emitting element such as an LED, or a semiconductor device is manufactured using a semiconductor element that operates at a high temperature and is called a power device. In some cases, the amount of heat generation tends to increase. Attempts have been made to improve the efficiency of devices and elements to reduce heat generation. However, at present, sufficient results have not been achieved, and the operating temperature of devices and elements has risen.

また、接合時におけるデバイスの損傷を防ぐという観点からは、低い接合温度(例えば350℃以下)で十分な接合強度を確保できる接合材が求められている。したがって、デバイスや素子等を接合するための接合材に対しては、接合温度の低下とともに、接合後におけるデバイスの動作による使用温度の上昇に耐えて十分な接合強度を維持できる耐熱性が求められているが、従来からの接合材では十分な対応ができないことが多い。例えば、はんだは、金属を融点以上に加熱する工程(リフロー工程)を経て部材同士を接合するが、一般的に融点はその組成に固有であるため、耐熱温度を上げようとすると加熱(接合)温度も上がってしまう。   Further, from the viewpoint of preventing device damage during bonding, there is a demand for a bonding material that can ensure sufficient bonding strength at a low bonding temperature (for example, 350 ° C. or lower). Therefore, the bonding material for bonding devices and elements is required to have heat resistance that can withstand the increase in operating temperature due to the operation of the device after bonding and maintain sufficient bonding strength as the bonding temperature decreases. However, there are many cases where conventional bonding materials are not sufficient. For example, solder joins members through a process of heating the metal to the melting point or higher (reflow process). Generally, the melting point is inherent to the composition, so heating (joining) when trying to increase the heat-resistant temperature. The temperature will rise.

更に、はんだを用いて素子や基板を数層重ね合わせて接合する場合、重ね合わせる層の数だけ加熱工程を経る必要であり、既に接合した部分の溶融を防ぐためには、次の接合に用いるはんだの融点(接合温度)を下げる必要があり、また、重ね合わせる層の数だけはんだ組成の種類が必要になり、取扱いが煩雑になる。   Furthermore, when several layers of elements and substrates are bonded using solder, it is necessary to go through the heating process for the number of layers to be overlapped. In order to prevent melting of the already bonded portion, the solder used for the next bonding It is necessary to lower the melting point (joining temperature) of the solder, and the number of types of solder composition is required by the number of layers to be overlaid, which makes handling complicated.

他方、導電性接着剤、銀ペースト及び異方導電性フィルムでは、含有するエポキシ樹脂等の熱硬化を利用して部材同士を接合するが、得られたデバイスや素子の使用温度が上がると樹脂成分が分解、劣化することがある。例えば、特許文献1(特開2008−63688号公報)においては、接合材の主材として用いて被接合部材同士を接合した時により高い接合強度が得られるようにした微粒子が提案されているが、使用温度上昇時における樹脂成分の分解、劣化の問題は解消されていない。   On the other hand, in the conductive adhesive, silver paste and anisotropic conductive film, the members are joined together by using thermosetting such as epoxy resin contained, but when the use temperature of the obtained device or element rises, the resin component May decompose and deteriorate. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-63688) proposes fine particles that are used as a main material of a bonding material so that higher bonding strength can be obtained when bonded members are bonded to each other. The problem of decomposition and deterioration of the resin component at the time of use temperature rise has not been solved.

また、高い使用温度において用いられる高温はんだには、従来より鉛を含むはんだが用いられている。鉛は有毒性があるため、はんだは鉛フリー化への流れが顕著である。高温はんだには他に良い代替材料が存在しないため、依然として鉛はんだが使用されているが、環境問題の観点から、鉛を使用しない接合材が切望されている。   Conventionally, solder containing lead has been used as high-temperature solder used at high operating temperatures. Since lead is toxic, the trend toward solder-free solder is remarkable. Since there is no other good alternative material for high-temperature solder, lead solder is still used, but from the viewpoint of environmental problems, a bonding material that does not use lead is eagerly desired.

近年、高温はんだの代替材料として、銀、金などの貴金属を中心とする金属ナノ粒子を用いた接合材が開発されている(例えば、特許文献2:特開2012−046779号公報)。しかしながら、金属ナノ粒子は高価であるだけでなく、室温でも容易に凝集することから、分散状態を長期間維持するためには金属ナノ粒子の表面を有機層で被覆し、溶媒に適当な分散剤を添加する必要がある。   In recent years, as an alternative material for high-temperature solder, a bonding material using metal nanoparticles centered on noble metals such as silver and gold has been developed (for example, Patent Document 2: JP 2012-046779 A). However, since metal nanoparticles are not only expensive, but also easily aggregate at room temperature, in order to maintain a dispersed state for a long period of time, the surface of the metal nanoparticles is coated with an organic layer, and a suitable dispersant for the solvent. Need to be added.

金属ナノ粒子の焼結による接合層は当該金属の融点相当の耐熱温度を有する等、従来のはんだと比較して優れた特性を有する一方、上記有機層及び分散剤等が焼結段階で接合層に残存してしまい、ボイドが形成するという問題がある。加えて、接合温度が上記有機層及び分散剤等の分解温度に依存するという不可避的な問題点も存在する。   The bonding layer formed by sintering metal nanoparticles has superior characteristics compared to conventional solders, such as having a heat resistance temperature corresponding to the melting point of the metal, while the organic layer and the dispersing agent are bonded at the sintering stage. There is a problem that voids are formed. In addition, there is an unavoidable problem that the bonding temperature depends on the decomposition temperature of the organic layer and the dispersant.

特開2008−63688号公報JP 2008-63688 A 特開2012−046779号公報JP 2012-046779 A

以上のような状況に鑑み、本発明の目的は、取扱いが容易かつ長期安定性に優れた接合用組成物を用い、接合層内のボイドや残留有機成分の低減によって高い信頼性及び機械的特性を有する接合部の形成が低い接合温度でも可能な、安価な銅材の接合方法を提供することにある。   In view of the above situation, the object of the present invention is to use a bonding composition that is easy to handle and excellent in long-term stability, and has high reliability and mechanical properties by reducing voids and residual organic components in the bonding layer. It is an object of the present invention to provide an inexpensive method for joining copper materials, which enables formation of a joining portion having a low temperature even at a low joining temperature.

本発明者は、上記目的を達成すべく接合用組成物について鋭意研究を重ねた結果、金属ナノ粒子が三次元的に配列してなるナノ多孔体金属材を含む接合用組成物を用いることが上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。   As a result of earnest research on the bonding composition to achieve the above object, the present inventor uses a bonding composition containing a nanoporous metal material in which metal nanoparticles are arranged three-dimensionally. It has been found that it is extremely effective in achieving the above object, and has reached the present invention.

即ち、本発明は、
三次元的に配列する平均粒径が5〜500nmの金属ナノ粒子を含むナノ多孔体金属材を含有する接合用組成物を、第一の被接合銅材と第二の被接合銅材との間に介在させる工程と、
前記第一の被接合銅材と前記第二の被接合銅材との間に介在させた前記接合用組成物を50〜350℃に加熱するとともに、前記第一の被接合銅材と前記第二の被接合銅材とを加圧する工程と、を含むこと、を特徴とする銅材の接合方法を提供する。
That is, the present invention
A bonding composition containing a nanoporous metal material including metal nanoparticles having a three-dimensionally arranged average particle diameter of 5 to 500 nm is obtained by combining a first bonded copper material and a second bonded copper material. Interposing the process,
While heating the said composition for joining interposed between said 1st to-be-joined copper material and said 2nd to-be-joined copper material to 50-350 degreeC, said 1st to-be-joined copper material and said 1st And a step of pressurizing a second copper material to be joined.

本発明においては、金属ナノ粒子が三次元的に配列してなるナノ多孔体金属材を用いることで、金属ナノ粒子の分散性確保等のために有機被覆層及び分散剤等を使用する必要がなく、接合層内のボイドや残留有機物を大幅に低減することができる。   In the present invention, it is necessary to use an organic coating layer, a dispersant and the like in order to ensure dispersibility of the metal nanoparticles by using a nanoporous metal material in which metal nanoparticles are three-dimensionally arranged. Therefore, voids and residual organic substances in the bonding layer can be greatly reduced.

本発明の銅材の接合方法においては、前記接合用組成物が前記ナノ多孔体金属材のみで構成されること、が好ましい。有機溶媒や分散剤の使用を必要としないナノ多孔体金属材のみを接合用組成物とすることで、有機層及び分散剤等が焼結段階で接合層に残存してしまい、ボイドが形成するという問題を効果的に解決することができる。加えて、接合温度が有機層及び分散剤等の分解温度に依存するという、金属ナノ粒子を用いた接合方法の不可避的な問題点を解決することができる。   In the copper material joining method of the present invention, it is preferable that the joining composition is composed only of the nanoporous metal material. By using only a nanoporous metal material that does not require the use of an organic solvent or a dispersant as the bonding composition, the organic layer, the dispersant, etc. remain in the bonding layer during the sintering stage, and voids are formed. Can be effectively solved. In addition, the inevitable problem of the joining method using metal nanoparticles, in which the joining temperature depends on the decomposition temperature of the organic layer and the dispersant or the like, can be solved.

また、本発明の接合方法においては、前記ナノ多孔体金属材が、金属材(金属箔または金属板)の脱成分腐食(Dealloying)によって形成されるナノ多孔体金属シートであること、が好ましい。個々に生成した金属ナノ粒子を三次元的に配列することは極めて困難であるが、金属材(金属箔または金属板)の脱成分腐食を用いることで、ナノ多孔体金属シートを容易に得ることができる。また、ナノ多孔体金属材がシート状であれば、被接合銅材間に容易に配置することができる。   Moreover, in the joining method of this invention, it is preferable that the said nanoporous metal material is a nanoporous metal sheet formed by decomponent corrosion of a metal material (metal foil or metal plate). Although it is extremely difficult to arrange individually generated metal nanoparticles in three dimensions, a nanoporous metal sheet can be easily obtained by using decomponent corrosion of a metal material (metal foil or metal plate). Can do. Moreover, if a nanoporous metal material is a sheet form, it can arrange | position easily between to-be-joined copper materials.

ここで、脱成分腐食とは、適当な腐食液を用いた合金元素の選択溶解を利用したものであり、例えば、J.ErlebacherらによってNature,410(2001),40で報告されており、その技術を用いて形成されるナノ多孔体金属シートを本発明の接合方法で用いるのが好ましい。   Here, the decomponent corrosion is based on the selective dissolution of alloy elements using an appropriate corrosive solution. Reported by Erlebacher et al., Nature, 410 (2001), 40, and a nanoporous metal sheet formed using this technique is preferably used in the joining method of the present invention.

なかでも、本発明の接合方法においては、脱成分腐食を施す金属材が二元系合金であることが好ましく、Au−Ag合金であることがより好ましい。二元系合金を脱成分腐食することで、主として一方の元素が溶解除去され、他の元素を主成分とする金属ナノ粒子で構成されるナノ多孔体金属材を効率的に得ることができる。また、Au−Ag合金を例えば硝酸(HNO3)で脱成分腐食することで、主として金(Au)で構成されるナノ多孔体金属材を効率的に得ることができる。 Especially, in the joining method of this invention, it is preferable that the metal material which performs a decomponent corrosion is a binary system alloy, and it is more preferable that it is an Au-Ag alloy. By decomponent corrosion of the binary alloy, one of the elements is mainly dissolved and removed, and a nanoporous metal material composed of metal nanoparticles mainly composed of the other element can be efficiently obtained. Moreover, the nanoporous metal material mainly composed of gold (Au) can be efficiently obtained by decomponent corrosion of the Au—Ag alloy with, for example, nitric acid (HNO 3 ).

また、本発明の接合方法においては、前記ナノ多孔体金属材が、前記ナノ多孔体金属シートを粉砕して得られるナノ多孔体金属粉末であること、が好ましい。ナノ多孔体金属材を粉末状とすることで、多様な大きさ及び形状を有する被接合面に合わせて、容易に接合用組成物を配置することができる。   Moreover, in the joining method of this invention, it is preferable that the said nanoporous metal material is the nanoporous metal powder obtained by grind | pulverizing the said nanoporous metal sheet. By making the nanoporous metal material into a powder form, it is possible to easily dispose the bonding composition according to the surfaces to be bonded having various sizes and shapes.

本発明によれば、取扱いが容易かつ長期安定性に優れた接合用組成物を用い、接合層内のボイドや残留有機成分の低減によって高い信頼性及び機械的特性を有する接合部の形成が低い接合温度でも可能な、安価な銅材の接合方法を提供することができる。   According to the present invention, a bonding composition that is easy to handle and excellent in long-term stability is used, and formation of a joint having high reliability and mechanical properties is low by reducing voids and residual organic components in the bonding layer. It is possible to provide an inexpensive copper bonding method that is possible even at a bonding temperature.

パワーモジュールの概略断面図である。It is a schematic sectional drawing of a power module. 脱成分腐食を1時間施したAu−Ag合金シートのSEM写真である。It is a SEM photograph of the Au-Ag alloy sheet which gave decomponent corrosion for 1 hour. 脱成分腐食を2時間施したAu−Ag合金シートのSEM写真である。It is a SEM photograph of the Au-Ag alloy sheet which gave decomponent corrosion for 2 hours. 脱成分腐食を3時間施したAu−Ag合金シートのSEM写真である。It is a SEM photograph of the Au-Ag alloy sheet which gave decomponent corrosion for 3 hours. 脱成分腐食を4時間施したAu−Ag合金シートのSEM写真である。It is a SEM photograph of the Au-Ag alloy sheet which gave decomponent corrosion for 4 hours. 脱成分腐食を5時間施したAu−Ag合金シートのSEM写真である。It is a SEM photograph of the Au-Ag alloy sheet which gave decomponent corrosion for 5 hours. 脱成分腐食を10時間施したAu−Ag合金シートのSEM写真である。It is a SEM photograph of the Au-Ag alloy sheet which gave decomponent corrosion for 10 hours. 100℃で高温保持したナノ多孔体金属シートのSEM写真である。It is a SEM photograph of the nanoporous metal sheet kept at a high temperature at 100 ° C. 150℃で高温保持したナノ多孔体金属シートのSEM写真である。It is a SEM photograph of the nanoporous metal sheet kept at a high temperature at 150 ° C. 200℃で高温保持したナノ多孔体金属シートのSEM写真である。It is a SEM photograph of the nanoporous metal sheet kept at a high temperature at 200 ° C. 250℃で高温保持したナノ多孔体金属シートのSEM写真である。It is a SEM photograph of the nanoporous metal sheet kept at a high temperature at 250 ° C. ナノ多孔体金属シートのAu4fのXPSナロースキャンスペクトルである。It is an XPS narrow scan spectrum of Au4f of a nanoporous metal sheet. ナノ多孔体金属シートのAg3dのXPSナロースキャンスペクトルである。It is an XPS narrow scan spectrum of Ag3d of a nanoporous metal sheet. 接合試験に用いたシリコン(Si)基板からなる接合試験片の形状及び配置図である。It is the shape and arrangement | positioning figure of a joining test piece which consists of a silicon | silicone (Si) board | substrate used for the joining test. ナノ多孔体金属シートを用いて得られた接合継手の引張強度を示すグラフである。It is a graph which shows the tensile strength of the joint joint obtained using the nanoporous metal sheet. 接合試験に用いた無酸素銅からなる接合試験片の形状である。It is the shape of the joining test piece which consists of oxygen-free copper used for the joining test. ナノ多孔体金属シートを用いて得られた接合継手のせん断強度を示すグラフである。It is a graph which shows the shear strength of the joint joint obtained using the nanoporous metal sheet. ナノ多孔体金属粉末の外観写真である。It is an external appearance photograph of nanoporous metal powder.

以下、本発明のナノ多孔体金属材を用いた銅材の接合方法の好適な一実施形態について詳細に説明する。なお、以下の説明では、本発明の一実施形態を示すに過ぎず、これらによって本発明が限定されるものではなく、また、重複する説明は省略することがある。   Hereinafter, a preferred embodiment of a copper material joining method using the nanoporous metal material of the present invention will be described in detail. In addition, in the following description, only one embodiment of the present invention is shown, and the present invention is not limited by these, and redundant description may be omitted.

(1)接合用組成物
本実施形態の接合用組成物は、ナノ多孔体金属材を含むことを特徴とし、必要に応じて有機溶媒や分散剤等を含有している。以下においてこれら各成分について説明する。
(1) Joining composition The joining composition of this embodiment is characterized by containing a nanoporous metal material, and contains an organic solvent, a dispersing agent, etc. as needed. These components will be described below.

(1−1)ナノ多孔体金属材
本実施形態の接合用組成物に用いるナノ多孔体金属材は、平均粒径が5〜500nmの金属ナノ粒子が三次元的に配列してなるナノ多孔体金属材であることが好ましく、平均粒径が10〜50nmの金属ナノ粒子が三次元的に配列してなるナノ多孔体金属材であることがより好ましい。金属ナノ粒子は一般的に安定性及び分散性に乏しく、表面を有機物等で被覆する必要があるが、金属ナノ粒子が三次元的に配列することで、当該被覆等を用いることなく、長期の安定性及び分散性を担保することができる。
(1-1) Nanoporous metal material The nanoporous metal material used in the bonding composition of the present embodiment is a nanoporous material in which metal nanoparticles having an average particle diameter of 5 to 500 nm are three-dimensionally arranged. A metal material is preferable, and a nanoporous metal material in which metal nanoparticles having an average particle diameter of 10 to 50 nm are three-dimensionally arranged is more preferable. Metal nanoparticles generally have poor stability and dispersibility, and it is necessary to coat the surface with organic matter, etc., but the metal nanoparticles are arranged in a three-dimensional manner without using the coating or the like for a long time. Stability and dispersibility can be ensured.

また、ナノ多孔体金属材を構成する金属ナノ粒子の平均粒径を5〜500nmとすることで、金属ナノ粒子が本来有する低温焼成機能を発現することができ、50〜400℃程度の加熱であっても金属ナノ粒子同士の焼結を進行させることができる。金属材に脱成分腐食を施す場合、金属ナノ粒子の平均粒径が5nm以上のナノ多孔体金属材が得られやすく、金属ナノ粒子の平均粒径が500nm以下であると上記低温焼成機能が発現されやすい。また、金属ナノ粒子の平均粒径を10〜50nmとすることで、金属ナノ粒子の安定性及び低温焼結機能を高いレベルで両立させることができる。金属ナノ粒子の平均粒径は、例えば、電子顕微鏡写真から実測することができ、さらには、当該電子顕微鏡写真から、画像処理装置を用いて算出することもできる。なお、ナノ多孔体金属材を構成する金属ナノ粒子の平均粒径は、金属ナノ粒子が扁平している場合は、最短の直径の平均値を意味する。   In addition, by setting the average particle size of the metal nanoparticles constituting the nanoporous metal material to 5 to 500 nm, the metal nanoparticles can express the low-temperature firing function inherently and can be heated at about 50 to 400 ° C. Even if it exists, sintering of metal nanoparticles can be advanced. When decomponent corrosion is applied to a metal material, it is easy to obtain a nanoporous metal material having an average particle size of metal nanoparticles of 5 nm or more. When the average particle size of metal nanoparticles is 500 nm or less, the low-temperature firing function is exhibited. Easy to be. In addition, by setting the average particle diameter of the metal nanoparticles to 10 to 50 nm, both the stability of the metal nanoparticles and the low-temperature sintering function can be achieved at a high level. The average particle diameter of the metal nanoparticles can be measured from an electron micrograph, for example, and can be calculated from the electron micrograph using an image processing apparatus. In addition, the average particle diameter of the metal nanoparticle which comprises a nanoporous metal material means the average value of the shortest diameter, when the metal nanoparticle is flat.

ナノ多孔体金属材は、金属材(金属箔または金属板)の脱成分腐食によって形成されるナノ多孔体金属シートであること、が好ましい。個々に生成した金属ナノ粒子を三次元的に配列することは極めて困難であるが、金属材(金属箔または金属板)の脱成分腐食を用いることで、ナノ多孔体金属シートを容易に得ることができる。また、ナノ多孔体金属材がシート状であれば、被接合銅材間に容易に配置することができる。   The nanoporous metal material is preferably a nanoporous metal sheet formed by decomponent corrosion of a metal material (metal foil or metal plate). Although it is extremely difficult to arrange individually generated metal nanoparticles in three dimensions, a nanoporous metal sheet can be easily obtained by using decomponent corrosion of a metal material (metal foil or metal plate). Can do. Moreover, if a nanoporous metal material is a sheet form, it can arrange | position easily between to-be-joined copper materials.

上述のとおり、脱成分腐食は適当な腐食液を用いた合金元素の選択溶解を利用したものであり、腐食液は処理対象となる金属材や目的とするナノ多孔体金属材の形状等に応じて適宜選択すればよい。腐食液としては、例えば、HF、HCl、NaOH、HNO3、H2SO4、クエン酸、H2SO4+MnSO4、(NH4)2SO4+MnSO4、AgNO3等を用いることができる。 As described above, decomponent corrosion uses selective dissolution of alloy elements using an appropriate corrosive solution, and the corrosive solution depends on the metal material to be treated and the shape of the target nanoporous metal material. May be selected as appropriate. As the corrosive liquid, for example, HF, HCl, NaOH, HNO 3 , H 2 SO 4 , citric acid, H 2 SO 4 + MnSO 4 , (NH 4) 2 SO 4 + MnSO 4 , AgNO 3 or the like can be used.

脱成分腐食は金属材の全てに施す必要はなく、表面近傍のみに施すことが好ましい。被接合銅材と接する金属材の少なくとも表面近傍がナノ多孔体構造を有しさえすれば、低温焼成機能を有することで、良好な接合部を得ることができる。この場合、脱成分腐食が施されていない金属材の内部では金属ナノ粒子の焼成が不要であり、極めて効率的に接合が達成される。   Decomponent corrosion does not need to be applied to all of the metal material, and is preferably applied only to the vicinity of the surface. As long as at least the surface vicinity of the metal material in contact with the copper material to be joined has a nanoporous structure, it has a low-temperature firing function, so that a good joint can be obtained. In this case, firing of the metal nanoparticles is unnecessary inside the metal material that has not been subjected to decomponent corrosion, and bonding can be achieved extremely efficiently.

本発明の接合方法においては、脱成分腐食を施す金属材が二元系合金であることが好ましく、Au−Ag合金であることがより好ましい。二元系合金を脱成分腐食することで、主として一方の元素が溶解除去され、他の元素を主成分とする金属ナノ粒子で構成されるナノ多孔体金属材を効率的に得ることができる。Au−Ag合金を例えば硝酸(HNO3)で脱成分腐食することで、主として金(Au)で構成されるナノ多孔体金属材を効率的に得ることができる。 In the joining method of the present invention, the metal material subjected to decomponent corrosion is preferably a binary alloy, more preferably an Au—Ag alloy. By decomponent corrosion of the binary alloy, one of the elements is mainly dissolved and removed, and a nanoporous metal material composed of metal nanoparticles mainly composed of the other element can be efficiently obtained. A nanoporous metal material mainly composed of gold (Au) can be efficiently obtained by decomponent corrosion of the Au—Ag alloy with nitric acid (HNO 3 ), for example.

その他、脱成分腐食によってナノ多孔体金属材を得ることができる金属材としては、Au−Ag−Pt、Au−Cu、Au−Zn、Au−Al、Ag−Al、Ag−Zn、Cu−Al、Cu−Mg、Cu−Mn、Cu−Zn、Pt−Cu、Pt−Si、Pt−Al、Pt−Zn、Pd−Ag、Pt−Co、Pd−Al、Pd−Ni−P、Ni−Al、Ni−Cu等を例示することができる。ここで、Au−Ag−Pt、Au−Cu、Au−Zn及びAu−Al等の脱成分腐食によってナノ多孔体Au材を、Ag−Al及びAg−Zn等の脱成分腐食によってナノ多孔体Ag材を、Cu−Al、Cu−Mg、Cu−Mn及びCu−Zn等の脱成分腐食によってナノ多孔体Cu材を、Pt−Cu、Pt−Si、Pt−Al、Pt−Zn、Pd−Ag及びPt−Co等の脱成分腐食によってナノ多孔体Pt材を、Pd−Al及びPd−Ni−P等の脱成分腐食によってナノ多孔体Pd材を、Ni−Al及びNi−Cu等の脱成分腐食によってナノ多孔体Ni材を、それぞれ得ることができる。   In addition, as a metal material that can obtain a nanoporous metal material by decomponent corrosion, Au-Ag-Pt, Au-Cu, Au-Zn, Au-Al, Ag-Al, Ag-Zn, Cu-Al Cu-Mg, Cu-Mn, Cu-Zn, Pt-Cu, Pt-Si, Pt-Al, Pt-Zn, Pd-Ag, Pt-Co, Pd-Al, Pd-Ni-P, Ni-Al Ni-Cu etc. can be illustrated. Here, the nanoporous material Au is obtained by decomponent corrosion such as Au-Ag-Pt, Au-Cu, Au-Zn, and Au-Al, and the nanoporous material Ag is obtained by decomponent corrosion such as Ag-Al and Ag-Zn. The material is made of nanoporous Cu material by decomponent corrosion such as Cu—Al, Cu—Mg, Cu—Mn and Cu—Zn, and Pt—Cu, Pt—Si, Pt—Al, Pt—Zn, Pd—Ag. And Pt-Co, etc. to remove nanoporous Pt material, Pd-Al and Pd-Ni-P, etc., to remove nanoporous Pd material, Ni-Al, Ni-Cu, etc. Each nanoporous Ni material can be obtained by corrosion.

ナノ多孔体金属材はシート状であることが好ましい。シート状とすることで、ナノ多孔体金属材のみを接合用組成物として用いる際に、被接合銅材の間に容易に配置することができる。一方で、ナノ多孔体金属材は粉末状であってもよく、粉末状のナノ多孔体金属材はそのままで接合用組成物として用いることができる。更には、粉末状のナノ多孔体金属材を有機溶媒中に分散させて、ペースト状の接合用組成物としても好適に用いることができる。なお、粉末状のナノ多孔体金属材は、超音波を印加した腐食液で金属材を完全に脱成分腐食することや、シート状のナノ多孔体金属材を粉砕することで、容易に得ることができる。   The nanoporous metal material is preferably in the form of a sheet. By using the sheet shape, when only the nanoporous metal material is used as the bonding composition, it can be easily arranged between the bonded copper materials. On the other hand, the nanoporous metal material may be powdery, and the powdered nanoporous metal material can be used as it is as a bonding composition. Furthermore, it can be suitably used as a paste-like bonding composition by dispersing a powdery nanoporous metal material in an organic solvent. In addition, powdery nanoporous metal material can be easily obtained by completely decomponent corrosion of the metal material with a corrosive solution to which ultrasonic waves are applied, or by pulverizing the sheet-like nanoporous metal material. Can do.

(1−2)その他
本実施形態の接合用組成物に用いる有機溶媒は、本発明の効果を損なわない範囲で種々の有機溶媒を用いることができる。有機溶剤としては、例えば、テルペン系溶剤、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤、セロソルブ系溶剤、カルビトール系溶剤等が挙げられる。より具体的には、ターピネオール、メチルエチルケトン、アセトン、イソプロパノール、ブチルカービトール、デカン、ウンデカン、テトラデカン、ベンゼン、トルエン、ヘキサン、ジエチルエーテル、ケロシン等の有機溶媒を用いることができる。
(1-2) Others Various organic solvents can be used as the organic solvent used in the bonding composition of the present embodiment as long as the effects of the present invention are not impaired. Examples of the organic solvent include terpene solvents, ketone solvents, alcohol solvents, ester solvents, ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, cellosolve solvents, carbitol solvents, and the like. Is mentioned. More specifically, organic solvents such as terpineol, methyl ethyl ketone, acetone, isopropanol, butyl carbitol, decane, undecane, tetradecane, benzene, toluene, hexane, diethyl ether, and kerosene can be used.

本実施形態の接合用組成物には、上記の成分に加えて、本発明の効果を損なわない範囲で、使用目的に応じた適度な粘性、密着性、乾燥性又は印刷性等の機能を付与するために、分散媒や、例えばバインダーとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤又は表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。   In addition to the components described above, the bonding composition of the present embodiment is provided with functions such as appropriate viscosity, adhesion, drying properties, and printability according to the intended use within a range that does not impair the effects of the present invention. In order to do so, a dispersion medium, for example, an oligomer component that serves as a binder, a resin component, an organic solvent (a part of the solid content may be dissolved or dispersed), a surfactant, a thickener, or a surface tension. You may add arbitrary components, such as a regulator. Such optional components are not particularly limited.

任意成分のうちの分散媒としては、本発明の効果を損なわない範囲で種々のものを使用可能であり、例えば炭化水素及びアルコール等が挙げられる。   As the dispersion medium of the optional components, various types can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols.

炭化水素としては、脂肪族炭化水素、環状炭化水素及び脂環式炭化水素等が挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。   Examples of the hydrocarbon include aliphatic hydrocarbons, cyclic hydrocarbons and alicyclic hydrocarbons, and each may be used alone or in combination of two or more.

脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和又は不飽和脂肪族炭化水素が挙げられる。   Examples of the aliphatic hydrocarbon include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.

環状炭化水素としては、例えば、トルエン、キシレン等が挙げられる。   Examples of the cyclic hydrocarbon include toluene and xylene.

更に、脂環式炭化水素としては、例えば、リモネン、ジペンテン、テルピネン、ターピネン(テルピネンともいう。)、ネソール、シネン、オレンジフレーバー、テルピノレン、ターピノレン(テルピノレンともいう。)、フェランドレン、メンタジエン、テレベン、ジヒドロサイメン、モスレン、イソテルピネン、イソターピネン(イソテルピネンともいう。)、クリトメン、カウツシン、カジェプテン、オイリメン、ピネン、テレビン、メンタン、ピナン、テルペン、シクロヘキサン等が挙げられる。   Furthermore, as the alicyclic hydrocarbon, for example, limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferrandrene, mentadiene, teleben, Examples thereof include dihydrocymene, moslen, isoterpinene, isoterpinene (also referred to as isoterpinene), clitomen, kautssin, cajeptene, oilimene, pinene, turpentine, menthane, pinane, terpene, and cyclohexane.

また、アルコールは、OH基を分子構造中に1つ以上含む化合物であり、脂肪族アルコール、環状アルコール及び脂環式アルコールが挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。また、OH基の一部は、本発明の効果を損なわない範囲でアセトキシ基等に誘導されていてもよい。   Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced | guided | derived to the acetoxy group etc. in the range which does not impair the effect of this invention.

脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(1−オクタノール、2−オクタノール、3−オクタノール等)、デカノール(1−デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2−エチル−1−ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和C6-30脂肪族アルコール等が挙げられる。 Examples of the aliphatic alcohol include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1- Examples thereof include saturated or unsaturated C 6-30 aliphatic alcohols such as hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.

環状アルコールとしては、例えば、クレゾール、オイゲノール等が挙げられる。   Examples of the cyclic alcohol include cresol and eugenol.

更に、脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール(モノテルペンアルコール等)、ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ソブレロール、ベルベノール等が挙げられる。   Further, as the alicyclic alcohol, for example, cycloalkanol such as cyclohexanol, terpineol (including α, β, γ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, berbenol and the like.

本実施形態の接合用組成物中に分散媒を含有させる場合の含有量は、粘度などの所望の特性によって調整すれば良く、接合用組成物中の分散媒の含有量は、1〜30質量%であるのが好ましい。分散媒の含有量が1〜30質量%であれば、接合用組成物として使いやすい範囲で粘度を調整する効果を得ることができる。分散媒のより好ましい含有量は1〜20質量%であり、更に好ましい含有量は1〜15質量%である。   The content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 mass. % Is preferred. If content of a dispersion medium is 1-30 mass%, the effect of adjusting a viscosity in the range which is easy to use as a joining composition can be acquired. A more preferable content of the dispersion medium is 1 to 20% by mass, and a more preferable content is 1 to 15% by mass.

樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂又はテルペン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。   Examples of the resin component include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.

有機溶剤としては、上記の分散媒として挙げられたものを除き、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、2−プロピルアルコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,2,6−ヘキサントリオール、1−エトキシ−2−プロパノール、2−ブトキシエタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、重量平均分子量が200以上1,000以下の範囲内であるポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、重量平均分子量が300以上1,000以下の範囲内であるポリプロピレングリコール、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、グリセリン又はアセトン等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。   As the organic solvent, except for those mentioned as the above dispersion medium, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, 1 , 4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethyl sulfoxide, N- Chill-2-pyrrolidone, N, N- dimethylacetamide, glycerin, or acetone and the like may be used each of which alone or in combination of two or more.

増粘剤としては、例えば、クレイ、ベントナイト又はヘクトライト等の粘土鉱物、例えば、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂又はブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、キサンタンガム又はグアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。   Examples of the thickener include clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose. , Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysaccharides such as xanthan gum and guar gum, and the like. These may be used alone or in combination of two or more.

また、上記有機成分とは異なる界面活性剤を添加してもよい。多成分溶媒系の金属コロイド分散液においては、乾燥時の揮発速度の違いによる被膜表面の荒れ及び固形分の偏りが生じ易い。本実施形態の接合用組成物に界面活性剤を添加することによってこれらの不利益を抑制し、均一な導電性被膜を形成することができる接合用組成物が得られる。   Moreover, you may add surfactant different from the said organic component. In a multi-component solvent-based metal colloidal dispersion, roughness of the coating surface and uneven solid content are likely to occur due to differences in volatilization rate during drying. By adding a surfactant to the bonding composition of the present embodiment, these disadvantages can be suppressed, and a bonding composition that can form a uniform conductive film is obtained.

本実施形態において用いることのできる界面活性剤としては、特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れを用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。少量の添加量で効果が得られるので、フッ素系界面活性剤が好ましい。   The surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used, for example, an alkylbenzene sulfonate. A quaternary ammonium salt etc. are mentioned. Since the effect can be obtained with a small addition amount, a fluorosurfactant is preferable.

なお、有機成分量を所定の範囲に調整する方法は、加熱を行って調整するのが簡便である。また、ナノ多孔体金属粉末を作製する際に添加する有機成分の量を調整することで行ってもよい。加熱はオーブンやエバポレーターなどで行うことができ、減圧下で行ってもよい。常圧下で行う場合は、大気中でも不活性雰囲気中でも行うことができる。更に、有機成分量の微調整のために、アミン(及びカルボン酸)を後で加えることもできる。   In addition, it is easy to adjust the method of adjusting the amount of organic components in a predetermined range by heating. Moreover, you may carry out by adjusting the quantity of the organic component added when producing nanoporous metal powder. Heating can be performed with an oven or an evaporator, and may be performed under reduced pressure. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Furthermore, amines (and carboxylic acids) can be added later for fine adjustment of the amount of organic components.

本実施形態の接合用組成物の粘度は、固形分の濃度は本発明の効果を損なわない範囲で適宜調整すればよいが、例えば0.01〜5000Pa・Sの粘度範囲であればよく、0.1〜1000Pa・Sの粘度範囲がより好ましく、1〜100Pa・Sの粘度範囲であることが特に好ましい。当該粘度範囲とすることにより、被接合銅材に接合用組成物を塗布する方法として幅広い方法を適用することができる。   The viscosity of the bonding composition of the present embodiment may be adjusted as long as the solid content does not impair the effects of the present invention. For example, the viscosity may be in the range of 0.01 to 5000 Pa · S. A viscosity range of 1 to 1000 Pa · S is more preferable, and a viscosity range of 1 to 100 Pa · S is particularly preferable. By setting it as the said viscosity range, a wide method is applicable as a method of apply | coating the composition for joining to a to-be-joined copper material.

粘度の調整は、ナノ多孔体金属粉末の粒径の調整、有機物の含有量の調整、分散媒その他の成分の添加量の調整、各成分の配合比の調整、増粘剤の添加等によって行うことができる。金属接合用組成物の粘度は、例えば、コーンプレート型粘度計(例えばアントンパール社製のレオメーターMCR301)により測定することができる。   The viscosity is adjusted by adjusting the particle size of the nanoporous metal powder, adjusting the organic content, adjusting the addition amount of the dispersion medium and other components, adjusting the blending ratio of each component, and adding a thickener. be able to. The viscosity of the metal bonding composition can be measured, for example, with a cone plate viscometer (for example, Rheometer MCR301 manufactured by Anton Paar).

本発明の接合方法で用いる接合用組成物は、上述のナノ多孔体金属粉末及び有機溶媒等を従来公知の種々の方法で均一に混合することにより得ることができる。なお、混合方法は、乾式混合であっても良いし、溶媒等を用いて湿式混合を実施しても良い。   The joining composition used in the joining method of the present invention can be obtained by uniformly mixing the above-mentioned nanoporous metal powder, organic solvent, and the like by various conventionally known methods. The mixing method may be dry mixing, or wet mixing using a solvent or the like.

(2)接合方法
本実施形態の金属接合用組成物を用いれば、加熱を伴う銅部材同士の接合において高い接合強度を得ることができる。即ち、上記金属接合用組成物を第一の被接合銅部材と第二の被接合銅部材との間に塗布又は配置により介在させる接合用組成物塗布工程と、第一の被接合銅部材と第二の被接合銅部材との間に塗布又は配置した接合用組成物を、所望の温度(例えば400℃以下、好ましくは150〜300℃)に加熱することにより焼成して接合する接合工程と、により、第一の被接合銅部材と第二の被接合銅部材とを接合することができる。この際、第一の被接合銅材及び第二の被接合銅材のうちの一方又は両方を加熱することにより、介在する接合用組成物を加熱してもよい。
(2) Joining method If the composition for metal joining of this embodiment is used, high joining strength can be obtained in the joining of the copper members accompanied by heating. That is, the bonding composition application step of interposing the metal bonding composition between the first bonded copper member and the second bonded copper member by application or arrangement, and the first bonded copper member, A bonding step in which the bonding composition applied or disposed between the second bonded copper member is baked and bonded to a desired temperature (for example, 400 ° C. or less, preferably 150 to 300 ° C.). Thus, the first bonded copper member and the second bonded copper member can be bonded. At this time, the intervening bonding composition may be heated by heating one or both of the first bonded copper material and the second bonded copper material.

また、この加熱の際に、第一の被接合銅材及び第二の被接合銅材の外部からこれらを挟む方向に0.5〜30MPa程度の加圧をすることで、強固な接合部を得ることができる。また、焼成を行う際、段階的に温度を上げたり下げたりすることもできる。更に、予め被接合部材表面に界面活性剤又は表面活性化剤等を塗布しておくことも可能である。   In addition, during this heating, by applying a pressure of about 0.5 to 30 MPa in the direction of sandwiching the first bonded copper material and the second bonded copper material from the outside, a strong bonded portion can be obtained. Can be obtained. In addition, when firing, the temperature can be raised or lowered stepwise. Furthermore, it is also possible to apply a surfactant or a surface activator to the surface of the member to be joined in advance.

本発明者は、鋭意検討を重ねた結果、前記金属接合用組成物塗布工程での金属接合用組成物として、上述した本実施形態の金属接合用組成物を用いれば、第一の被接合銅部材と第二の被接合銅部材とを、高い接合強度をもってより確実に接合できる(接合体が得られる)ことを見出した。   As a result of intensive studies, the inventor has obtained the first bonded copper by using the metal bonding composition of the present embodiment described above as the metal bonding composition in the metal bonding composition coating step. It discovered that a member and the 2nd to-be-joined copper member can be joined more reliably with high joining strength (a joined body is obtained).

ここで、金属接合用組成物の長期安定性、及び、接合層内のボイドや残留有機成分を低減するという観点からは、シート状又は粉末状のナノ多孔体金属材のみを第一の被接合銅部材と第二の被接合銅部材との間に配置し、加圧しながら所望の温度(例えば400℃以下、好ましくは150〜300℃)で焼成して接合することが最も好ましい。   Here, from the viewpoint of long-term stability of the metal bonding composition and reduction of voids and residual organic components in the bonding layer, only the nanoporous metal material in sheet form or powder form is bonded to the first object. Most preferably, it is placed between the copper member and the second copper member to be joined, and fired and bonded at a desired temperature (for example, 400 ° C. or lower, preferably 150 to 300 ° C.) while applying pressure.

本実施形態の金属接合用組成物の「塗布」とは、金属接合用組成物を面状に塗布する場合も線状に塗布(描画)する場合も含む概念である。塗布されて、加熱により焼成される前の状態の金属接合用組成物からなる塗膜の形状は、所望する形状にすることが可能である。したがって、加熱による焼成後の本実施形態の接合体では、金属接合用組成物は、面状の接合層及び線状の接合層のいずれも含む概念であり、これら面状の接合層及び線状の接合層は、連続していても不連続であってもよく、連続する部分と不連続の部分とを含んでいてもよい。   The “application” of the metal bonding composition of the present embodiment is a concept including the case where the metal bonding composition is applied in the form of a plane and the case where the composition is applied (drawn) in a linear form. The shape of the coating film made of the composition for metal bonding before being applied and fired by heating can be made into a desired shape. Therefore, in the joined body of the present embodiment after firing by heating, the metal joining composition is a concept including both a planar joining layer and a linear joining layer, and these planar joining layer and linear The bonding layer may be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.

本実施形態において用いることのできる第一の被接合銅部材及び第二の被接合銅部材としては、金属接合用組成物を塗布又は配置して加熱により焼成して接合することのできるものであればよく、特に制限はないが、接合時の温度により損傷しない程度の耐熱性を具備した銅部材であるのが好ましい。   As a 1st to-be-joined copper member and a 2nd to-be-joined copper member which can be used in this embodiment, if the composition for metal joining can be apply | coated or arrange | positioned and it can bake by heating and can join. The copper member is not particularly limited, but is preferably a copper member having heat resistance that is not damaged by the temperature at the time of joining.

なお、被接合銅部材は、銅以外の基材に銅をめっきや蒸着等の種々の方法で被覆したものであってもよい。このような基材としては、例えば、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ビニル樹脂、フッ素樹脂、液晶ポリマー、セラミクス、ガラス又は銅以外の金属等を挙げることができる。   In addition, the to-be-joined copper member may coat | cover copper by various methods, such as plating and vapor deposition, to base materials other than copper. Examples of such a base material include polyesters such as polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polycarbonate. (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass, or metal other than copper can be used.

また、被接合銅部材は、例えば板状又はストリップ状等の種々の形状であってよく、リジッドでもフレキシブルでもよい。基材の厚さも適宜選択することができる。接着性若しくは密着性の向上又はその他の目的ために、親水化処理等の表面処理を施した銅部材を用いてもよい。   The bonded copper member may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible. The thickness of the substrate can also be selected as appropriate. A copper member that has been subjected to a surface treatment such as a hydrophilization treatment may be used in order to improve adhesiveness or adhesion, or for other purposes.

本発明の接合方法は、図1に示すようなパワーモジュール内の半導体素子を放熱基板に接合する際にも好適に用いることができる。この場合、放熱基板及び半導体素子の被接合面が銅であることが好ましい。   The bonding method of the present invention can also be suitably used when bonding a semiconductor element in a power module as shown in FIG. 1 to a heat dissipation substrate. In this case, it is preferable that the surfaces to be bonded of the heat dissipation substrate and the semiconductor element are copper.

金属接合用組成物を被接合銅部材に塗布する工程では、種々の方法を用いることが可能であるが、上述のように、例えば、ディッピング、スクリーン印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、刷毛による塗布方式、流延式、フレキソ式、グラビア式、又はシリンジ式等のなかから適宜選択して用いることができる。   In the process of applying the metal bonding composition to the copper member to be bonded, various methods can be used. For example, as described above, dipping, screen printing, spraying, bar coating, spin coating The ink jet method, the dispenser method, the pin transfer method, the brush application method, the casting method, the flexo method, the gravure method, the syringe method, and the like can be appropriately selected and used.

上記のように塗布した後の塗膜を、被接合銅部材を損傷させない範囲で、例えば350℃以下の温度に加熱することにより焼成し、本実施形態の接合体を得ることができる。本実施形態においては、先に述べたように、本実施形態の金属接合用組成物を用いるため、被接合銅部材に対して優れた密着性を有する接合層が得られ、強い接合強度がより確実に得られる。   The coated film after coating as described above is baked by heating to a temperature of 350 ° C. or less, for example, within a range that does not damage the copper member to be bonded, and the bonded body of this embodiment can be obtained. In the present embodiment, as described above, since the metal bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a copper member to be bonded is obtained, and a stronger bonding strength is obtained. It is definitely obtained.

本実施形態においては、金属接合用組成物がバインダー成分を含む場合は、接合層の強度向上及び被接合銅部材間の接合強度向上等の観点から、バインダー成分も焼結することになるが、場合によっては、各種印刷法へ適用するために接合用組成物の粘度を調整することをバインダー成分の主目的として、焼成条件を制御してバインダー成分を全て除去してもよい。   In this embodiment, when the metal bonding composition includes a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding layer and improving the bonding strength between the bonded copper members, In some cases, the binder component may be mainly used to adjust the viscosity of the bonding composition for application to various printing methods, and the binder condition may be controlled to remove all of the binder component.

上記焼成を行う方法は特に限定されるものではなく、例えば従来公知のオーブン等を用いて、被接合銅部材上に塗布、描画、又は配置した上記金属接合用組成物の温度が、例えば350℃以下となるように焼成することによって接合することができる。上記焼成の温度の下限は必ずしも限定されず、被接合銅部材同士を接合できる温度であって、かつ、本発明の効果を損なわない範囲の温度であることが好ましい。ここで、上記焼成後の金属接合用組成物においては、なるべく高い接合強度を得るという点で、有機物の残存量は少ないほうがよいが、本発明の効果を損なわない範囲で有機物の一部が残存していても構わない。   The method for performing the baking is not particularly limited. For example, the temperature of the metal bonding composition applied, drawn or arranged on the bonded copper member using a conventionally known oven or the like is, for example, 350 ° C. It can join by baking so that it may become the following. The lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the bonded copper members can be bonded to each other and does not impair the effects of the present invention. Here, in the metal bonding composition after firing, it is better that the residual amount of the organic matter is small in terms of obtaining as high a bonding strength as possible, but a part of the organic matter remains within the range not impairing the effect of the present invention. It does not matter.

本発明の接合方法で用いる金属接合用組成物によれば、例えば50〜250℃程度の低温加熱による焼成でも高い導電性を発現する接合層を有する接合を実現することができるため、比較的熱に弱い被接合銅部材同士であっても接合することができる。また、焼成時間は特に限定されるものではなく、焼成温度に応じて、接合できる焼成時間であればよい。   According to the metal bonding composition used in the bonding method of the present invention, it is possible to realize a bond having a bonding layer that exhibits high conductivity even by firing at a low temperature of, for example, about 50 to 250 ° C. Even if the copper members to be joined are weak, they can be joined. Further, the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature.

本実施形態においては、上記被接合銅部材と接合層との密着性を更に高めるため、上記被接合銅部材の表面処理を行ってもよい。上記表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法、基材上にあらかじめプライマー層や導電性ペースト受容層を設ける方法等が挙げられる。   In this embodiment, in order to further improve the adhesion between the bonded copper member and the bonding layer, the surface treatment of the bonded copper member may be performed. Examples of the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment, and a method of previously providing a primer layer and a conductive paste receiving layer on a substrate.

接合工程の雰囲気は特に制限されず、大気中、不活性ガス雰囲気下、減圧下等で行うことができる。   The atmosphere in the bonding step is not particularly limited, and can be performed in the air, under an inert gas atmosphere, under reduced pressure, or the like.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではない。例えば、接合用組成物にナノ多孔体金属材以外のナノ粒子等を適宜添加して使用することもできる。   As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these. For example, nanoparticles other than the nanoporous metal material can be appropriately added to the bonding composition and used.

以下、実施例において本発明のナノ多孔体金属材を用いた接合方法について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   Hereinafter, although the joining method using the nanoporous metal material of the present invention will be further described in Examples, the present invention is not limited to these Examples.

≪実施例1≫
金属材に厚さ約100μmのAu−Ag合金シート(Au:50質量%,Ag:50質量%)を用い、脱成分腐食によってナノ多孔体金属シートを製造した。具体的には、Au−Ag合金シートの表面を研磨紙で研磨後、超音波の印加を伴った60%硝酸(HNO3)に浸漬して表面近傍のAgをエッチングし、主として金(Au)で構成されるナノ多孔体構造を表面に有するナノ多孔体金属シートを得た。ここで、浸漬時間は1時間、2時間、3時間、4時間、5時間、及び10時間とし、浸漬後の試料は純粋で洗浄した。
Example 1
An Au-Ag alloy sheet (Au: 50 mass%, Ag: 50 mass%) with a thickness of about 100 μm was used as the metal material, and a nanoporous metal sheet was produced by decomponent corrosion. Specifically, after polishing the surface of the Au—Ag alloy sheet with abrasive paper, it is immersed in 60% nitric acid (HNO 3 ) with application of ultrasonic waves to etch Ag in the vicinity of the surface, and mainly gold (Au). A nanoporous metal sheet having a nanoporous structure constituted by the following was obtained. Here, the immersion time was 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, and 10 hours, and the sample after immersion was washed pure.

図2〜図7に、浸漬時間1時間〜10時間のAu−Ag合金シートの走査電子顕微鏡(SEM)写真をそれぞれ示す。浸漬処理(脱成分腐食)後のAu−Ag合金シートの表面は、金属ナノ粒子が三次元的に配列してなるナノ多孔体構造となっていることが確認できる。SEM写真からナノ多孔体構造を形成する金属ナノ粒子の平均粒径を測定したところ、浸漬時間1時間及び2時間の場合は脱成分腐食が不十分で金属ナノ粒子が明瞭に形成されておらず、浸漬時間3時間の場合は5.5nm、浸漬時間4時間の場合は7.5nm、浸漬時間5時間の場合は8.8nm、浸漬時間10時間の場合は14.2nmであった。なお、走査電子顕微鏡には日立ハイテク社製の超高分解能分析走査電子顕微鏡SU−70を用いた。   In FIGS. 2-7, the scanning electron microscope (SEM) photograph of the Au-Ag alloy sheet | seat of immersion time 1 hour-10 hours is shown, respectively. It can be confirmed that the surface of the Au-Ag alloy sheet after the immersion treatment (decomponent corrosion) has a nanoporous structure in which metal nanoparticles are arranged three-dimensionally. The average particle diameter of the metal nanoparticles forming the nanoporous structure was measured from the SEM photograph. When the immersion time was 1 hour and 2 hours, the decomponent corrosion was insufficient and the metal nanoparticles were not clearly formed. When the immersion time was 3 hours, it was 5.5 nm, when the immersion time was 4 hours, 7.5 nm, when the immersion time was 5 hours, it was 8.8 nm, and when the immersion time was 10 hours, it was 14.2 nm. The scanning electron microscope used was an ultra-high resolution analytical scanning electron microscope SU-70 manufactured by Hitachi High-Tech.

3時間の浸漬時間で得られたナノ多孔体金属シート(金属ナノ粒子の平均粒径:5.5nm)を30分間高温保持し、低温焼結機能を評価した。なお、保持温度は100℃、150℃、200℃、及び250℃とした。図8〜図11に、100℃〜250℃で高温保持したナノ多孔体金属シート表面のSEM写真を示す。保持温度が250℃以下と低温であっても、金属ナノ粒子の焼結が進行し、気孔部が減少していることが確認できる。特に、保持温度が250℃の場合は緻密な焼結体となっている。なお、走査電子顕微鏡には日立ハイテク株式会社製の超高分解能分析走査電子顕微鏡SU−70を用いた。   A nanoporous metal sheet (average particle diameter of metal nanoparticles: 5.5 nm) obtained with a 3-hour immersion time was kept at a high temperature for 30 minutes to evaluate a low-temperature sintering function. The holding temperatures were 100 ° C., 150 ° C., 200 ° C., and 250 ° C. 8 to 11 show SEM photographs of the surface of the nanoporous metal sheet held at a high temperature of 100 ° C to 250 ° C. Even when the holding temperature is as low as 250 ° C. or lower, it can be confirmed that the sintering of the metal nanoparticles proceeds and the pores are reduced. In particular, when the holding temperature is 250 ° C., a dense sintered body is obtained. As the scanning electron microscope, an ultra-high resolution analytical scanning electron microscope SU-70 manufactured by Hitachi High-Tech Co., Ltd. was used.

ナノ多孔体金属シートの表面近傍の組成を評価するため、脱成分腐食前のAu−Ag合金シート、脱成分腐食(浸漬時間3時間)後のAu−Ag合金シート、及び脱成分腐食(浸漬時間3時間)後に上記各種高温保持を施したAu−Ag合金シートについて、XPS測定を行った。図12及び図13に、Au4fのナロースキャンスペクトル及びAg3dナロースキャンスペクトルをそれぞれ示す。脱成分腐食前のAu−Ag合金シートと比較して、脱成分腐食後のAu−Ag合金シートではAu4fのピーク強度が大幅に大きく、ナノ多孔体金属シートの表面近傍は金(Au)を主成分とする金属ナノ粒子で構成されていることが分かる。   In order to evaluate the composition near the surface of the nanoporous metal sheet, an Au-Ag alloy sheet before decomponent corrosion, an Au-Ag alloy sheet after decomponent corrosion (immersion time 3 hours), and decomponent corrosion (immersion time) After 3 hours), XPS measurement was performed on the Au—Ag alloy sheet subjected to the above-mentioned various high temperature holdings. 12 and 13 show the narrow scan spectrum and the Ag3d narrow scan spectrum of Au4f, respectively. Compared with the Au-Ag alloy sheet before decomponent corrosion, the Au-Ag alloy sheet after decomponent corrosion has a significantly larger peak intensity of Au4f, and the surface of the nanoporous metal sheet is mainly made of gold (Au). It turns out that it is comprised with the metal nanoparticle used as a component.

Ag3dのピークに関しては、脱成分腐食前のAu−Ag合金シートと比較して、脱成分腐食後のAu−Ag合金シートでピーク強度が大幅に小さく、当該結果もナノ多孔体金属シートの表面近傍は金(Au)を主成分とする金属ナノ粒子で構成されていることを示唆している。ここで、Ag3dのピーク強度は高温保持時間が高くなるにつれて大きくなっている。これは、高温保持によってAu−Ag合金シートの内部から表面に銀(Ag)が拡散した結果である。なお、XPS測定には日本電子株式会社製のJPS−9010TRを用い、Mg−Kα(1253.6eV)とモノクロメータの組合せで測定を行った。   As for the peak of Ag3d, the peak intensity is significantly smaller in the Au-Ag alloy sheet after decomponent corrosion compared to the Au-Ag alloy sheet before decomponent corrosion, and the result is also near the surface of the nanoporous metal sheet. Suggests that it is composed of metal nanoparticles mainly composed of gold (Au). Here, the peak intensity of Ag3d increases as the high temperature holding time increases. This is a result of diffusion of silver (Ag) from the inside to the surface of the Au—Ag alloy sheet by holding at a high temperature. For XPS measurement, JPS-9010TR manufactured by JEOL Ltd. was used, and measurement was performed with a combination of Mg-Kα (1253.6 eV) and a monochromator.

接合試験に用いたシリコン(Si)基板からなる接合試験片の形状を図14に示す。1cm×1cm×525μmのシリコン(Si)基板の表面に銅(Cu)を蒸着したものを被接合材とし、当該被接合材の間に脱成分腐食(浸漬時間3時間)で得られたナノ多孔体金属シートを配置して接合試験片を調整した。当該試験片を250℃の接合温度、3kPaの減圧下で接合試験を行なった。接合に際しては、加圧力8MPaで加圧を行い、接合時間は20分とした。なお、試験後は直ちに試験片を装置外に取り出して空冷した。   FIG. 14 shows the shape of a bonding test piece made of a silicon (Si) substrate used in the bonding test. Nanoporous material obtained by decomponent corrosion (immersion time 3 hours) between the materials to be bonded, which is obtained by depositing copper (Cu) on the surface of a 1 cm × 1 cm × 525 μm silicon (Si) substrate A body metal sheet was arranged to prepare a joining test piece. The test piece was subjected to a bonding test at a bonding temperature of 250 ° C. and a reduced pressure of 3 kPa. When joining, pressurization was performed at a pressure of 8 MPa, and the joining time was 20 minutes. Note that immediately after the test, the test piece was taken out of the apparatus and air-cooled.

接合試験により得られた接合継手1について、引張試験を行い、接合強度を求めた。得られた引張強度を図15に示す。接合継手は3つ作製し、それぞれの接合継手について引張試験を行って平均値を求めた。なお、引張試験は図14に示す試験片において、接合界面を介して上下のシリコン(Si)基板のそれぞれに専用の治具を固定し、当該治具に対して接合界面に略垂直な方向に荷重を付加して行った。   About the joint 1 obtained by the joining test, the tensile test was done and the joining strength was calculated | required. The obtained tensile strength is shown in FIG. Three bonded joints were prepared, and a tensile test was performed on each bonded joint to obtain an average value. In the tensile test, in the test piece shown in FIG. 14, a dedicated jig is fixed to each of the upper and lower silicon (Si) substrates via the bonding interface, and in a direction substantially perpendicular to the bonding interface with respect to the jig. A load was applied.

≪実施例2≫
接合温度を200℃とした以外は実施例1と同様にして接合継手2を得た。実施例1と同様にして得られた引張強度を図15に示す。
<< Example 2 >>
A bonded joint 2 was obtained in the same manner as in Example 1 except that the bonding temperature was 200 ° C. The tensile strength obtained in the same manner as in Example 1 is shown in FIG.

≪実施例3≫
接合温度を150℃とした以外は実施例1と同様にして接合継手3を得た。実施例1と同様にして得られた引張強度を図15に示す。
Example 3
A bonded joint 3 was obtained in the same manner as in Example 1 except that the bonding temperature was 150 ° C. The tensile strength obtained in the same manner as in Example 1 is shown in FIG.

≪実施例4≫
接合温度を100℃とした以外は実施例1と同様にして接合継手4を得た。実施例1と同様にして得られた引張強度を図15に示す。
Example 4
A bonded joint 4 was obtained in the same manner as in Example 1 except that the bonding temperature was 100 ° C. The tensile strength obtained in the same manner as in Example 1 is shown in FIG.

≪実施例5≫
接合試験に用いた無酸素銅からなる接合試験片の形状を図16に示す。それぞれの試験片の接合面はRmax=3.2Sとなるように旋盤加工により仕上げ、アセトン中での超音波洗浄と塩酸中での酸洗いを行った後、水洗と乾燥を経て試験に供した。大きい方の円板試験片の接合面に脱成分腐食(浸漬時間4時間)で得られたナノ多孔体金属シートを配置し、小さい方の試験片を重ねて接合試験片を調整した。当該試験片を350℃の接合温度で接合試験を行ない、接合継手5を得た。接合に際しては、加圧力20MPaで加圧を行い、接合時間は30分、接合雰囲気は大気とした。なお、試験後は直ちに試験片を装置外に取り出して空冷した。
Example 5
The shape of a joining test piece made of oxygen-free copper used in the joining test is shown in FIG. The joint surface of each test piece was finished by lathe processing so that Rmax = 3.2S, and after ultrasonic cleaning in acetone and pickling in hydrochloric acid, it was subjected to water washing and drying, and then subjected to the test. . A nanoporous metal sheet obtained by decomponent corrosion (immersion time: 4 hours) was placed on the joining surface of the larger disc test piece, and the smaller test piece was stacked to prepare a joining test piece. The test piece was subjected to a bonding test at a bonding temperature of 350 ° C. to obtain a bonded joint 5. When joining, pressurization was performed at a pressure of 20 MPa, the joining time was 30 minutes, and the joining atmosphere was air. Note that immediately after the test, the test piece was taken out of the apparatus and air-cooled.

接合試験により得られた接合継手1について、ボンドテスターを用いてせん断試験(せん断速度1.0mm/min,せん断高さ200μm)を行い、接合強度を求めた。得られたせん断強度を図17に示す。なお、接合継手は3つ作製し、それぞれの接合継手についてせん断試験を行って平均値を求めた。   About the joining joint 1 obtained by the joining test, the shear test (shear rate 1.0mm / min, shear height 200micrometer) was done using the bond tester, and joining strength was calculated | required. The obtained shear strength is shown in FIG. Three bonded joints were prepared, and a shear test was performed on each bonded joint to obtain an average value.

≪実施例6≫
接合温度を300℃とした以外は実施例5と同様にして接合継手6を得た。実施例1と同様にして得られたせん断強度を図17に示す。
Example 6
A bonded joint 6 was obtained in the same manner as in Example 5 except that the bonding temperature was 300 ° C. The shear strength obtained in the same manner as in Example 1 is shown in FIG.

≪実施例7≫
接合温度を250℃とした以外は実施例5と同様にして接合継手7を得た。実施例1と同様にして得られたせん断強度を図17に示す。
Example 7
A bonded joint 7 was obtained in the same manner as in Example 5 except that the bonding temperature was 250 ° C. The shear strength obtained in the same manner as in Example 1 is shown in FIG.

≪実施例8≫
金属材に厚さ約100μmのAu−Ag合金シート(Au:25質量%,Ag:75質量%)を用い、脱成分腐食によってナノ多孔体金属粉末を製造した。具体的には、Au−Ag合金シートの表面を研磨紙で研磨後、超音波の印加を伴った60%硝酸(HNO3)に浸漬して表面近傍のAgをエッチングし、主として金(Au)で構成されるナノ多孔体構造を有するナノ多孔体金属粉末が得られるまで脱成分腐食を施した。ナノ多孔体金属粉末を洗浄及び乾燥後、接合用組成物として用いた。得られたナノ多孔体金属粉末の外観写真を図18に示す。
Example 8
Using a Au-Ag alloy sheet (Au: 25 mass%, Ag: 75 mass%) with a thickness of about 100 μm as the metal material, nanoporous metal powder was produced by decomponent corrosion. Specifically, after polishing the surface of the Au—Ag alloy sheet with abrasive paper, it is immersed in 60% nitric acid (HNO 3 ) with application of ultrasonic waves to etch Ag in the vicinity of the surface, and mainly gold (Au). Demineralization corrosion was performed until a nanoporous metal powder having a nanoporous structure composed of: The nanoporous metal powder was washed and dried, and then used as a bonding composition. An appearance photograph of the obtained nanoporous metal powder is shown in FIG.

ナノ多孔体金属シートの代わりにナノ多孔体金属粉末を用いた以外は実施例3と同様にして接合継手8を得た。実施例1と同様にして引張強度を測定したところ、2.5MPaの値を得た。   A joint joint 8 was obtained in the same manner as in Example 3 except that nanoporous metal powder was used instead of the nanoporous metal sheet. When the tensile strength was measured in the same manner as in Example 1, a value of 2.5 MPa was obtained.

≪実施例9≫
接合温度を100℃とした以外は実施例8と同様にして接合継手9を得た。実施例1と同様にして引張強度を測定したところ、1.2MPaの値を得た。
Example 9
A bonded joint 9 was obtained in the same manner as in Example 8 except that the bonding temperature was 100 ° C. When the tensile strength was measured in the same manner as in Example 1, a value of 1.2 MPa was obtained.

≪実施例10≫
接合温度を50℃とした以外は実施例8と同様にして接合継手10を得た。実施例1と同様にして引張強度を測定したところ、0.45MPaの値を得た。
Example 10
A bonded joint 10 was obtained in the same manner as in Example 8 except that the bonding temperature was 50 ° C. When the tensile strength was measured in the same manner as in Example 1, a value of 0.45 MPa was obtained.

≪比較例1≫
ナノ多孔体金属シートを被接合面に配置しなかった以外は実施例1と同様にして比較接合継手1を得た。実施例1と同様にして得られた引張強度を図15に示す。
≪Comparative example 1≫
A comparative joint 1 was obtained in the same manner as in Example 1 except that the nanoporous metal sheet was not disposed on the surface to be joined. The tensile strength obtained in the same manner as in Example 1 is shown in FIG.

≪比較例2≫
ナノ多孔体金属シートを被接合面に配置しなかった以外は実施例2と同様にして比較接合継手1を得た。実施例1と同様にして得られた引張強度を図15に示す。
«Comparative example 2»
Comparative joint 1 was obtained in the same manner as in Example 2 except that the nanoporous metal sheet was not disposed on the surface to be joined. The tensile strength obtained in the same manner as in Example 1 is shown in FIG.

≪比較例3≫
ナノ多孔体金属シートを被接合面に配置しなかった以外は実施例3と同様にして比較接合継手3を得た。実施例1と同様にして引張強度の測定を試みたが、強度が低すぎて値を得ることができなかった。
«Comparative Example 3»
A comparative joint 3 was obtained in the same manner as in Example 3 except that the nanoporous metal sheet was not disposed on the surface to be joined. Measurement of tensile strength was attempted in the same manner as in Example 1, but the strength was too low to obtain a value.

≪比較例4≫
ナノ多孔体金属シートを被接合面に配置しなかった以外は実施例4と同様にして比較接合継手4を得た。実施例1と同様にして引張強度の測定を試みたが、強度が低すぎて値を得ることができなかった。
<< Comparative Example 4 >>
A comparative joint 4 was obtained in the same manner as in Example 4 except that the nanoporous metal sheet was not disposed on the surface to be joined. Measurement of tensile strength was attempted in the same manner as in Example 1, but the strength was too low to obtain a value.

≪比較例5≫
無酸素銅からなる接合試験片の表面にAuめっきを施した以外は実施例5と同様にして比較接合継手5を得た。実施例5と同様にして得られたせん断試験を図17に示す。
<< Comparative Example 5 >>
A comparative joint 5 was obtained in the same manner as in Example 5 except that the surface of a joining test piece made of oxygen-free copper was plated with Au. A shear test obtained in the same manner as in Example 5 is shown in FIG.

≪比較例6≫
接合温度を300℃とした以外は比較例5と同様にして比較接合継手6を得た。実施例5と同様にして得られたせん断試験を図17に示す。
<< Comparative Example 6 >>
Comparative joint 6 was obtained in the same manner as in Comparative Example 5 except that the joining temperature was 300 ° C. A shear test obtained in the same manner as in Example 5 is shown in FIG.

≪比較例7≫
接合温度を250℃とした以外は比較例5と同様にして比較接合継手7を得た。実施例5と同様にして得られたせん断試験を図17に示す。
<< Comparative Example 7 >>
Comparative joint 7 was obtained in the same manner as Comparative Example 5 except that the joining temperature was 250 ° C. A shear test obtained in the same manner as in Example 5 is shown in FIG.

図15に示すとおり、全ての接合温度において、接合継手1〜4は比較継手1〜4と比較して高い引張強度を示している。特に、接合温度250℃において、接合継手1は約5MPaと顕著に高い引張強度を示している。   As shown in FIG. 15, the bonded joints 1 to 4 exhibit higher tensile strength than the comparative joints 1 to 4 at all bonding temperatures. In particular, at a bonding temperature of 250 ° C., the bonded joint 1 exhibits a remarkably high tensile strength of about 5 MPa.

また、図17に示すとおり、接合継手5〜7は良好なせん断強度を有しており、接合温度350℃で得られた接合継手5のせん断強度は約25MPaに達している。更に、Au−Au接合となる比較継手5〜7と比較して、Cu−Cu接合となる接合継手5〜7は、高いせん断強度を有しており、本発明の接合方法がCu−Cu接合に好適に用いることができることが分かる。   Moreover, as shown in FIG. 17, the joint joints 5-7 have favorable shear strength, and the shear strength of the joint joint 5 obtained at the joining temperature of 350 ° C. has reached about 25 MPa. Furthermore, compared with the comparative joints 5 to 7 to be Au—Au joints, the joint joints 5 to 7 to be Cu—Cu joints have high shear strength, and the joining method of the present invention is a Cu—Cu joint. It can be seen that it can be suitably used.

加えて、ナノ多孔体金属粉末を用いて得られた接合継手8〜10に関しても、接合温度が極めて低いにもかかわらず、良好な継手が得られている。

In addition, regarding the joints 8 to 10 obtained using the nanoporous metal powder, a good joint is obtained despite the extremely low joining temperature.

Claims (6)

三次元的に配列する平均粒径が5〜500nmの金属ナノ粒子を含むナノ多孔体金属材を含有する接合用組成物を、第一の被接合銅材と第二の被接合銅材との間に介在させる工程と、
前記第一の被接合銅材と前記第二の被接合銅材との間に介在させた前記接合用組成物を50〜400℃に加熱するとともに、前記第一の被接合銅材と前記第二の被接合銅材とを加圧する工程と、を含むこと、
を特徴とする銅材の接合方法。
A bonding composition containing a nanoporous metal material including metal nanoparticles having a three-dimensionally arranged average particle diameter of 5 to 500 nm is obtained by combining a first bonded copper material and a second bonded copper material. Interposing the process,
While heating the said composition for joining interposed between said 1st to-be-joined copper material and said 2nd to-be-joined copper material to 50-400 degreeC, said 1st to-be-joined copper material and said 1st Including a step of pressurizing the second bonded copper material,
A method for joining copper materials.
前記接合用組成物が前記ナノ多孔体金属材のみで構成されること、
を特徴とする請求項1に記載の銅材の接合方法。
The bonding composition is composed of only the nanoporous metal material;
The method for joining copper materials according to claim 1.
前記ナノ多孔体金属材が、金属材の脱成分腐食によって形成されるナノ多孔体金属シートであること、
を特徴とする請求項1又は2に記載の銅材の接合方法。
The nanoporous metal material is a nanoporous metal sheet formed by decomponent corrosion of a metal material,
The copper material joining method according to claim 1 or 2.
前記金属材が二元系合金であること、
を特徴とする請求項3に記載の銅材の接合方法。
The metal material is a binary alloy;
The method for joining copper materials according to claim 3.
前記二元系合金がAu−Ag合金であること、
を特徴とする請求項4に記載の銅材の接合方法。
The binary alloy is an Au-Ag alloy;
The method for joining copper materials according to claim 4.
前記ナノ多孔体金属材がナノ多孔体金属粉末であること、
を特徴とする請求項1〜5のいずれかに記載の銅材の接合方法。
The nanoporous metal material is a nanoporous metal powder;
The method for joining copper materials according to claim 1, wherein:
JP2013248205A 2013-11-29 2013-11-29 Copper material joining method Active JP6347385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248205A JP6347385B2 (en) 2013-11-29 2013-11-29 Copper material joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248205A JP6347385B2 (en) 2013-11-29 2013-11-29 Copper material joining method

Publications (2)

Publication Number Publication Date
JP2015104748A true JP2015104748A (en) 2015-06-08
JP6347385B2 JP6347385B2 (en) 2018-06-27

Family

ID=53435198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248205A Active JP6347385B2 (en) 2013-11-29 2013-11-29 Copper material joining method

Country Status (1)

Country Link
JP (1) JP6347385B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190054538A1 (en) * 2016-01-27 2019-02-21 Mitsubishi Materials Corporation Manufacturing method of copper bonded part
JP2019155766A (en) * 2018-03-14 2019-09-19 セーレン株式会社 Conductive joint sheet and joining method using the same
EP3587020A4 (en) * 2017-02-23 2020-01-01 Osaka University Joining member, method for producing joining member, and method for producing joint structure
CN111634938A (en) * 2020-06-16 2020-09-08 东莞理工学院 Preparation method of nano porous powder material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236494A (en) * 2010-04-12 2011-11-24 Nippon Handa Kk Method for manufacturing metal member joined body, and metal member joined body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236494A (en) * 2010-04-12 2011-11-24 Nippon Handa Kk Method for manufacturing metal member joined body, and metal member joined body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190054538A1 (en) * 2016-01-27 2019-02-21 Mitsubishi Materials Corporation Manufacturing method of copper bonded part
US10898956B2 (en) * 2016-01-27 2021-01-26 Mitsubishi Materials Corporation Manufacturing method of copper bonded part
EP3587020A4 (en) * 2017-02-23 2020-01-01 Osaka University Joining member, method for producing joining member, and method for producing joint structure
JPWO2018155633A1 (en) * 2017-02-23 2020-02-27 国立大学法人大阪大学 Bonding material, method of manufacturing bonding material, and method of manufacturing bonded structure
JP2019155766A (en) * 2018-03-14 2019-09-19 セーレン株式会社 Conductive joint sheet and joining method using the same
JP7007221B2 (en) 2018-03-14 2022-02-10 セーレン株式会社 Conductive bonding sheet and bonding method using this
CN111634938A (en) * 2020-06-16 2020-09-08 东莞理工学院 Preparation method of nano porous powder material
CN111634938B (en) * 2020-06-16 2021-11-09 东莞理工学院 Preparation method of nano porous powder material

Also Published As

Publication number Publication date
JP6347385B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6349310B2 (en) Metal bonding composition
JP6021816B2 (en) Bonding composition
JP6659026B2 (en) Low temperature joining method using copper particles
JP6262139B2 (en) Bonding composition
WO2012121355A1 (en) Electronic part and method of manufacturing electronic part
JP6766160B2 (en) Composition for metal bonding
JP6347385B2 (en) Copper material joining method
JP6736782B2 (en) Composition for bonding
JP6467114B1 (en) Method for producing metal bonded laminate
JP6713120B1 (en) Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method
JP2017155166A (en) Joining composition
JP6163616B1 (en) Bonding composition
WO2018030173A1 (en) Bonding composition and method for preparing same
JP6380791B2 (en) Joining method using micro-sized silver particles
WO2016067599A1 (en) Bonding composition
JP6669420B2 (en) Bonding composition
JP6442688B2 (en) Metal joining method
JP6267835B1 (en) Bonding composition and method for producing the same
TWI682827B (en) Bonding composition and electronic component assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180518

R150 Certificate of patent or registration of utility model

Ref document number: 6347385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250