JP2015103571A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2015103571A
JP2015103571A JP2013241256A JP2013241256A JP2015103571A JP 2015103571 A JP2015103571 A JP 2015103571A JP 2013241256 A JP2013241256 A JP 2013241256A JP 2013241256 A JP2013241256 A JP 2013241256A JP 2015103571 A JP2015103571 A JP 2015103571A
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
conversion member
reflection layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013241256A
Other languages
Japanese (ja)
Other versions
JP6334142B2 (en
Inventor
聡二 大和田
Soji Owada
聡二 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013241256A priority Critical patent/JP6334142B2/en
Publication of JP2015103571A publication Critical patent/JP2015103571A/en
Application granted granted Critical
Publication of JP6334142B2 publication Critical patent/JP6334142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device arranged to introduce excitation light from a light guide member into a wavelength conversion member and to take out, from a side face thereof, light emitted by the wavelength conversion member in response to the excitation light, by which the loss of light energy can be prevented, and a higher brightness can be achieved.SOLUTION: A light-emitting device comprises: a light-emitting part 50 including a wavelength conversion member 20, and a reflection member 43 covering an upper surface of the wavelength conversion member; and a light guide member 10 fixed to a backside of the light-emitting part and serving to supply light for exciting a fluorescent material included in the wavelength conversion member. The light-emitting part 50 has a total reflection layer 41 formed on each sides of the wavelength conversion member; the total reflection layer is formed from a material smaller than the wavelength conversion member in refraction index. The light-emitting device preferably comprises means for directing light introduced from the light guide member into the wavelength conversion member toward a side face of the light-emitting part.

Description

本発明は、光ガイドと蛍光体プレート等の波長変換部材を組み合わせた発光装置に係り、特に波長変換部材の両面に反射部材を配置し、反射部材が配置されていない側面から光を取りだすようにした発光装置に関する。   The present invention relates to a light emitting device in which a light guide and a wavelength conversion member such as a phosphor plate are combined. In particular, a reflection member is disposed on both surfaces of the wavelength conversion member, and light is extracted from a side surface on which the reflection member is not disposed. The present invention relates to a light emitting device.

従来、光ファイバ等の光ガイドにより伝送される励起光を吸収し、波長変換して所定の波長域の光を放出する波長変換部材を用いた発光装置が提案されている(特許文献1)。このタイプの発光装置では、円盤状の波長変換部材の底面に光ガイドが接続されるとともに光ガイドを除く底面と上面に反射膜が配置され、側面から光を取りだすようにしている。この発光装置は車両用灯具に適した半双指向性を持つ光源となる。   Conventionally, a light-emitting device using a wavelength conversion member that absorbs excitation light transmitted by a light guide such as an optical fiber and converts the wavelength to emit light in a predetermined wavelength range has been proposed (Patent Document 1). In this type of light emitting device, a light guide is connected to the bottom surface of the disk-shaped wavelength conversion member, and a reflection film is disposed on the bottom surface and the top surface excluding the light guide so as to extract light from the side surface. This light-emitting device serves as a light source having semi-bidirectional characteristics suitable for a vehicle lamp.

特開2013−131335号公報JP 2013-131335 A

上述した発光装置では、波長変換部材で変換された光が、波長変換部材を伝搬し側面から取り出されるまでに、波長変換部材の両面に設けた反射膜によって反射を繰り返される際に損失が生じる。例えば反射部材が最も反射効率のよい金属(Ag)の場合でも反射率は98%であり、反射を繰り返すことにより損失は増大する。また増反射機能がある誘電体を金属膜と組み合わせて用いる場合、誘電体に増反射機能を持たせるためには層数を増やす必要があり、それによって高入射角側の反射特性が急激に悪くなることが知られている。特許文献1に記載されるような側面から光を取りだす発光装置では、光を側面から取り出すために反射部材の高入射角側の特性が重要となるため、その低下は高輝度化を妨げる大きな要因となる。   In the light emitting device described above, a loss occurs when the light converted by the wavelength conversion member is repeatedly reflected by the reflection films provided on both surfaces of the wavelength conversion member before propagating through the wavelength conversion member and being extracted from the side surface. For example, even when the reflective member is a metal (Ag) having the highest reflection efficiency, the reflectance is 98%, and the loss increases by repeating the reflection. Also, when using a dielectric with an increased reflection function in combination with a metal film, it is necessary to increase the number of layers in order for the dielectric to have an increased reflection function, which causes the reflection characteristics on the high incident angle side to deteriorate rapidly. It is known to be. In the light emitting device that extracts light from the side surface as described in Patent Document 1, the characteristics on the high incident angle side of the reflecting member are important in order to extract light from the side surface. It becomes.

このように反射部材の特性による光エネルギーの損失は高輝度化の障害となるが、さらに光から変換された熱による消光という問題もある。
本発明は、側面から光を取り出す発光装置において高輝度化を図ることを課題とする。
As described above, the loss of light energy due to the characteristics of the reflecting member is an obstacle to high brightness, but there is also a problem of quenching due to heat converted from light.
An object of the present invention is to achieve high brightness in a light-emitting device that extracts light from a side surface.

上記課題を解決するため、本発明は以下の発光装置を提供する。すなわち、本発明の発光装置は、波長変換部材と当該波長変換部材の上面を覆う反射部材とを含む発光部と、前記発光部の裏面に固定され、前記波長変換部材に含まれる蛍光体を励起する光を供給する光ガイド部材とを備え、前記発光部の側面が光出射面となる発光装置であって、前記発光部は、前記波長変換部材を挟んで両側に、前記波長変換部材の屈折率よりも低屈折率の材料からなる全反射層が形成されていることを特徴とする。   In order to solve the above problems, the present invention provides the following light-emitting device. That is, the light-emitting device of the present invention excites the phosphor included in the wavelength conversion member, which is fixed to the back surface of the light-emitting unit, and the light-emitting unit that includes the wavelength conversion member and the reflection member that covers the top surface of the wavelength conversion member. A light guide device that supplies light to be emitted, wherein a side surface of the light emitting unit is a light emitting surface, and the light emitting unit is refracted by the wavelength converting member on both sides of the wavelength converting member. A total reflection layer made of a material having a refractive index lower than the refractive index is formed.

波長変換材料の両面に、所定の光の入射角度範囲(臨界角以上の角度)において光を全反射する層を設けたことにより波長変換材料内を伝搬する光のエネルギー損失を低減し、発光装置の高輝度化を図ることができる。またエネルギー損失に伴う発熱が少なくなるため信頼性が向上する。   A light emitting device that reduces energy loss of light propagating in the wavelength conversion material by providing layers that totally reflect light in both sides of the wavelength conversion material within a predetermined light incident angle range (an angle greater than the critical angle) The brightness can be increased. Further, since heat generation due to energy loss is reduced, reliability is improved.

第1実施形態の発光装置の全体概要を示す図The figure which shows the whole light-emitting device outline | summary of 1st Embodiment. 第1実施形態の発光装置の変更例を示す図The figure which shows the example of a change of the light-emitting device of 1st Embodiment. 第1実施形態の発光装置の別の変更例を示す図The figure which shows another modification of the light-emitting device of 1st Embodiment. 第1実施形態における光の進路を説明する図The figure explaining the course of light in a 1st embodiment 第2実施形態の発光装置の全体概要を示す図The figure which shows the whole outline | summary of the light-emitting device of 2nd Embodiment. (a)〜(c)は、第2実施形態の発光装置の要部とその変更例を示す図(A)-(c) is a figure which shows the principal part of the light-emitting device of 2nd Embodiment, and its modification. 第3実施形態の発光装置の一態様を示す図The figure which shows the one aspect | mode of the light-emitting device of 3rd Embodiment. 第3実施形態の発光装置の別の態様を示す図The figure which shows another aspect of the light-emitting device of 3rd Embodiment. 第4実施形態の発光装置の全体概要を示す図The figure which shows the whole light-emitting device outline | summary of 4th Embodiment.

以下、図面を参照して、本発明の発光装置の実施形態を説明する。   Hereinafter, an embodiment of a light emitting device of the present invention will be described with reference to the drawings.

<第1実施形態>
本実施形態の発光装置は、図1に示すように、励起光を導光する光ガイド部材10と、励起光を吸収し励起光と異なる波長の光を発する波長変換部材20を含む発光部とを組み合わせた発光装置であり、波長変換部材20の側面から光を効率よく出射させるために、波長変換部材20の両面に特定の光反射構造が形成されていることが特徴である。波長変換部材20と光反射構造を含めて発光部という。
<First Embodiment>
As shown in FIG. 1, the light emitting device of the present embodiment includes a light guide member 10 that guides excitation light, and a light emitting unit that includes a wavelength conversion member 20 that absorbs excitation light and emits light having a wavelength different from that of the excitation light. In order to efficiently emit light from the side surface of the wavelength conversion member 20, a specific light reflection structure is formed on both surfaces of the wavelength conversion member 20. The wavelength conversion member 20 and the light reflecting structure are referred to as a light emitting part.

まず本実施形態の発光装置を構成する構造について図1を参照して説明する。
図1に示す発光装置100は、保持部材12に保持された光ガイド部材10と、保持部材12の上面に固定された発光部50とからなる。光ガイド部材10は、その一端が保持部材12の上面とほぼ同一面となるように保持部材12に支持されている。光ガイド部材10の他端は光源30に接続されている。
First, the structure constituting the light emitting device of this embodiment will be described with reference to FIG.
A light emitting device 100 shown in FIG. 1 includes a light guide member 10 held by a holding member 12 and a light emitting unit 50 fixed to the upper surface of the holding member 12. The light guide member 10 is supported by the holding member 12 such that one end thereof is substantially flush with the upper surface of the holding member 12. The other end of the light guide member 10 is connected to the light source 30.

発光部50は、波長変換部材20と、その両面に形成された全反射層41a、41b(総括して全反射層41ともいう)と、上面側の全反射層41aの上に配置された反射層43とを備えており、下面側が接合材60を介して光ガイド部材10の先端が露出した保持部材12の上面に固定されている。波長変換部材20は、光源30から光ガイド部材10を介して発光部50に導入された励起光を吸収し波長の異なる光を発する。励起光と波長変換部材20が発する光は、波長変換部材20内を伝搬し、発光部50の側面から出射する。   The light emitting unit 50 includes the wavelength conversion member 20, total reflection layers 41 a and 41 b (referred to collectively as a total reflection layer 41) formed on both surfaces thereof, and a reflection disposed on the total reflection layer 41 a on the upper surface side. The lower surface side is fixed to the upper surface of the holding member 12 where the tip of the light guide member 10 is exposed through the bonding material 60. The wavelength conversion member 20 absorbs excitation light introduced from the light source 30 through the light guide member 10 into the light emitting unit 50 and emits light having different wavelengths. The excitation light and the light emitted from the wavelength conversion member 20 propagate through the wavelength conversion member 20 and are emitted from the side surface of the light emitting unit 50.

次に発光装置100の各要素の詳細を説明する。
本実施形態の発光装置100に用いる光源30は、波長変換部材20に含まれる蛍光体を励起する波長の光を発するものであればよく、紫外光から青色光領域に発光波長をもつ発光ダイオードやレーザーダイオードなどの固体光源を用いることができる。例えば、GaN系の材料を用いた約405nmの紫外光を発光するレーザーダイオードや、約450nmの青色光を発光するレーザーダイオードを用いることができる。
Next, details of each element of the light emitting device 100 will be described.
The light source 30 used in the light emitting device 100 of the present embodiment may be any light source that emits light having a wavelength that excites the phosphor contained in the wavelength conversion member 20, such as a light emitting diode having an emission wavelength from the ultraviolet light to the blue light region. A solid light source such as a laser diode can be used. For example, a laser diode that emits ultraviolet light of about 405 nm using a GaN-based material or a laser diode that emits blue light of about 450 nm can be used.

光ガイド部材10は、励起光源30からの励起光を導光するもので、中心部のコアとその周囲を覆うクラッドからなる光ファイバであり、石英ガラス、プラスチック等公知の材料のものを用いることができる。コア径は特に限定されないが、例えば0.2mm程度のものを用いることができる。また光ガイド部材10の出光面から出射される光の角度を大きくするために開口数NAが大きい光ファイバを用いることが好適である。開口数NAはコアの屈折率とクラッドの屈折率で決まる。一般にコアはクラッドと比較して屈折率が高いので、光ガイド部材10の入光面(光源30側端部)から光ガイド部材10に導入された励起光は、コアとクラッドとの境界で全反射することでコア内に閉じ込められた状態で出光面(波長変換部材20側端面)から出射する。この出射光の角度は開口数で決まり(NA=sinθmax)、開口数が大きいほど角度も大きい。開口数の大きい光ファイバを用い、出射光の角度を広げることにより、光ファイバへの光の戻りを少なくし波長変換部材20への入射光を増加することができる。但し、光ファイバから出射される光の角度は、後述する全反射層41bで全反射されない角度(ブリュースター角)より小さくする必要がある。   The light guide member 10 guides the excitation light from the excitation light source 30, is an optical fiber composed of a core at the center and a clad covering the periphery thereof, and is made of a known material such as quartz glass or plastic. Can do. Although a core diameter is not specifically limited, For example, a thing about 0.2 mm can be used. In order to increase the angle of light emitted from the light exit surface of the light guide member 10, it is preferable to use an optical fiber having a large numerical aperture NA. The numerical aperture NA is determined by the refractive index of the core and the refractive index of the cladding. In general, the refractive index of the core is higher than that of the cladding, so that the excitation light introduced into the light guide member 10 from the light incident surface of the light guide member 10 (the end portion on the light source 30 side) is entirely at the boundary between the core and the cladding. The light exits from the light exit surface (end surface on the wavelength conversion member 20 side) while being confined in the core by reflection. The angle of the emitted light is determined by the numerical aperture (NA = sin θmax), and the larger the numerical aperture, the larger the angle. By using an optical fiber having a large numerical aperture and widening the angle of outgoing light, it is possible to reduce the return of light to the optical fiber and increase the incident light to the wavelength conversion member 20. However, the angle of the light emitted from the optical fiber needs to be smaller than the angle (Brewster angle) where the light is not totally reflected by the total reflection layer 41b described later.

光ファイバは、単線ファイバであっても多線ファイバであってもよい。また単一モードファイバであっても、マルチモードファイバであってもよいが、マルチモードファイバを用いた場合には、一般にガウシアン分布を持つレーザー光を均一分布にすることができるため、波長変換部材20内で大きい角度で反射する光を増加することできる。マルチモードファイバは、円形マルチモードファイバ、矩形マルチモードファイバのいずれでもよい。   The optical fiber may be a single wire fiber or a multi-wire fiber. In addition, a single-mode fiber or a multi-mode fiber may be used, but when a multi-mode fiber is used, a laser beam having a Gaussian distribution can generally be made to have a uniform distribution. The light reflected at a large angle within 20 can be increased. The multimode fiber may be either a circular multimode fiber or a rectangular multimode fiber.

なお図では示していないが、励起光源30と光ガイド部材10の入光面との間には、励起光源30からの光を効率よく光ファイバ内に取り込むために集光レンズなどを配置してもよい。   Although not shown in the drawing, a condensing lens or the like is disposed between the excitation light source 30 and the light incident surface of the light guide member 10 in order to efficiently take in the light from the excitation light source 30 into the optical fiber. Also good.

光ガイド部材10は、保持部材(フェルール)12を貫通する穴に挿入された状態で保持部材12に支持されており、その一端は保持部材12の端面12aと同一面に位置している。保持部材12の材料は、特に限定されないが、ステンレス、ニッケル、ジルコニア等の金属、樹脂、ガラスなどが用いられる。また保持部材12の、波長変換部材20が配置される側の端面12aは反射面であることが好ましい。反射面は、保持部材12の端面12aを鏡面研磨することによって形成してもよいし、金属膜や誘電体膜などの反射膜15を保持部材12の表面に蒸着やメッキ等により形成してもよい。さらに表面に反射面を持つ部材(反射性部材)を保持部材12の端面12aに貼着してもよい。反射膜15は、端面12aの光ファイバ先端が位置する部分を除いて形成されている。   The light guide member 10 is supported by the holding member 12 in a state of being inserted into a hole penetrating the holding member (ferrule) 12, and one end thereof is located on the same plane as the end surface 12 a of the holding member 12. The material of the holding member 12 is not particularly limited, but a metal such as stainless steel, nickel, zirconia, resin, glass, or the like is used. Moreover, it is preferable that the end surface 12a by which the wavelength conversion member 20 is arrange | positioned of the holding member 12 is a reflective surface. The reflective surface may be formed by mirror polishing the end surface 12a of the holding member 12, or a reflective film 15 such as a metal film or a dielectric film may be formed on the surface of the holding member 12 by vapor deposition or plating. Good. Further, a member having a reflective surface on the surface (reflective member) may be attached to the end surface 12 a of the holding member 12. The reflective film 15 is formed except for the portion of the end face 12a where the optical fiber tip is located.

光ガイド部材10と発光部50とを接合する接合材60としては、シリコーン樹脂、ガラス等の高耐熱性・透光性の材料を用いることができる。特に励起光の波長範囲及び波長変換部材が発する光の波長範囲において高い透光性を有するものが好ましい。また接合部材60の屈折率は、光ガイド部材10のコアと同程度であることが好ましい。接合材60の厚みは特に限定されないが、1μm〜5μm程度が好適である。   As the bonding material 60 for bonding the light guide member 10 and the light emitting unit 50, a high heat-resistant and translucent material such as silicone resin or glass can be used. In particular, those having high translucency in the wavelength range of excitation light and the wavelength range of light emitted from the wavelength conversion member are preferable. Further, the refractive index of the bonding member 60 is preferably approximately the same as that of the core of the light guide member 10. The thickness of the bonding material 60 is not particularly limited, but is preferably about 1 μm to 5 μm.

波長変換部材20は、励起光源30から光ガイド部材10を介して入射される励起光を吸収し、励起光と波長の異なる光を発生するものであり、その材料として、紫外光から青色光領域の光を吸収し、それより長波長の光を発する蛍光体が用いられる。具体的には、紫外光励起蛍光体として、(Ca,Sr)S:Eu2+、CaAlSiN:Eu2+、(Ca,Sr)AlSiN:Eu2+、(Sr,Ba)SiO:Eu2+、(Ca,Sr)Si:Eu2+、KSiF:Mn4+、KSiF:Mn4+、KTiF:Mn4+等の赤色発光蛍光体、YAl12:Ce3+(YAG)、(Sr,Ba)SiO:Eu2+、Ca(Si,Al)12(O,N)16:Eu2+、(Ba,Sr,Ca)SiO:Eu2+、TbAl12:Ce3+、CaGa:Eu2+、Ca−α−Sialon:Eu2+等の黄色発光蛍光体、Y(Ga,Al)12:Ce3+、LuAl12:Ce3+、(Ba,Sr)SiO:Eu2+、SrGa:Eu2+、CaScSi12:Ce3+、CaSc:Eu2+、CaSc:Ce3+、(Si,Al)(O,N):Eu2+、β−Sialon:Eu2+、(Sr,Ba)Si:Eu2+、BaSi12:Eu2+等の緑色発光蛍光体が挙げられる。これらは発光装置の所望の発光色に応じて、1種または2種以上を混合して用いることができる。 The wavelength conversion member 20 absorbs excitation light incident from the excitation light source 30 via the light guide member 10 and generates light having a wavelength different from that of the excitation light. A phosphor that absorbs the light and emits light having a longer wavelength is used. Specifically, as the ultraviolet light-excited phosphor, (Ca, Sr) S: Eu 2+ , CaAlSiN 3 : Eu 2+ , (Ca, Sr) AlSiN 3 : Eu 2+ , (Sr, Ba) 2 SiO 5 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , KSiF 6 : Mn 4+ , KSiF 6 : Mn 4+ , KTiF 6 : Mn 4+ and other red light emitting phosphors, Y 3 Al 5 O 12 : Ce 3+ (YAG) , (Sr, Ba) 2 SiO 4 : Eu 2+ , Ca x (Si, Al) 12 (O, N) 16 : Eu 2+ , (Ba, Sr, Ca) 2 SiO 4 : Eu 2+ , Tb 3 Al 5 O 12: Ce 3+, CaGa 2 S 4: Eu 2+, Ca-α-Sialon: yellow-emitting phosphor of Eu 2+ and the like, Y 3 (Ga, Al) 5 O 12: Ce 3+, Lu 3 a 5 O 12: Ce 3+, ( Ba, Sr) 2 SiO 4: Eu 2+, SrGa 2 S 4: Eu 2+, Ca 3 Sc 2 Si 3 O 12: Ce 3+, CaSc 2 O 4: Eu 2+, CaSc 2 O 4 : Ce 3+ , (Si, Al) 6 (O, N) 8 : Eu 2+ , β-Sialon: Eu 2+ , (Sr, Ba) Si 2 O 2 N 2 : Eu 2+ , Ba 3 Si 6 O 12 N 2 : Green light-emitting phosphors such as Eu 2+ are listed. These may be used alone or in combination of two or more depending on the desired emission color of the light emitting device.

蛍光体の形態としては、蛍光体粉末をガラスや樹脂中に分散させたもの、ガラス母体に発光中心イオンを添加したガラス蛍光体、及び蛍光体セラミックス等を用いることができる。蛍光体粉末をガラスや樹脂中に分散させたものとして具体的には、上述した蛍光体の粉末をP、Si、B、Alなどの成分を含むガラス中に分散したものが挙げられる。ガラス蛍光体としては、Ce3+やEu2+を賦活剤(発光中心イオン)として添加したCa−Si−Al−O−N系やY−Si−Al−O−N 系等の酸窒化物系ガラス蛍光体が挙げられる。蛍光体セラミックスとしては、上述した蛍光体組成から成り、樹脂成分を実質的に含まない焼結体が挙げられる。 As a form of the phosphor, a phosphor powder dispersed in glass or resin, a glass phosphor obtained by adding a luminescent center ion to a glass matrix, a phosphor ceramic, or the like can be used. Specifically, the phosphor powder is dispersed in glass or resin. Specifically, the phosphor powder described above is contained in a glass containing components such as P 2 O 3 , Si 2 , B 2 O 3 , and Al 2 O 3. Are dispersed. As the glass phosphor, oxynitride glass such as Ca—Si—Al—O—N or Y—Si—Al—O—N added with Ce 3+ or Eu 2+ as an activator (emission center ion). Examples include phosphors. Examples of the phosphor ceramic include a sintered body having the phosphor composition described above and substantially free of a resin component.

これらの中でも蛍光体粉末の焼結体である蛍光体セラミックスが好ましく、特に、焼結体中に光の散乱の原因となるポアや粒界の不純物を殆ど含まない透光性の高いものが好ましい。蛍光体セラミックスは熱伝導性が高いため、蛍光体の発光が熱によって弱まる現象(温度消光)を低減することができる。なお蛍光体セラミックスの焼結体のポアは、焼結体を製造する際に用いる融剤の選択や焼結時の圧力や温度を調整することにより低減することができる。なおポアの残存量を評価する指標として蛍光体セラミックスの比重の値を用いることができ、その値が計算される理論値に対して95%以上のものが特に望ましい。透光性の高い蛍光体セラミックスを蛍光体プレートして利用することにより、励起光や蛍光を拡散により失うことなく蛍光層からの光の取り出し効率を高めることができる。また蛍光体プレート内で発生した熱を効率よく拡散することができる。
ただし波長変換部材20は透光性を阻害しない範囲で少量の光拡散材を含んでいてもよい。
Among these, phosphor ceramics which are sintered bodies of phosphor powders are preferable, and in particular, highly transparent ones that hardly contain pores or grain boundary impurities that cause light scattering in the sintered body are preferable. . Since phosphor ceramics have high thermal conductivity, it is possible to reduce a phenomenon (temperature quenching) in which light emission of the phosphor is weakened by heat. The pores in the sintered body of the phosphor ceramic can be reduced by selecting a flux used when manufacturing the sintered body and adjusting the pressure and temperature during sintering. In addition, the value of specific gravity of the phosphor ceramic can be used as an index for evaluating the remaining amount of pores, and it is particularly desirable that the value is 95% or more with respect to the theoretical value for calculating the value. By using phosphor ceramics with high translucency as a phosphor plate, it is possible to increase the light extraction efficiency from the phosphor layer without losing excitation light or fluorescence by diffusion. Further, the heat generated in the phosphor plate can be diffused efficiently.
However, the wavelength conversion member 20 may contain a small amount of a light diffusing material as long as the translucency is not impaired.

波長変換部材20の形状は、特に限定されるものではないが、本実施形態では高さの低い円筒形状すなわち円盤形状を有し、二つの平行な円形の面20a、20bと短い円筒状の側面20cとを有している。波長変換部材20の二つの平行な面のうち一方20b側に光ガイド部材10(光ファイバ)が接合材等により固定されている。二つの面20a、20bは、光ガイド10が接合された部分を除き、光を反射するための複数の層40が形成されている。光ガイド部材10により波長変換部材20に入射した励起光及びこの励起光により波長変換材料20が発する光は、波長変換部材20の面20a、20bで反射を繰り返し、側面20cから取り出される。すなわち側面20cが波長変換部材20の光出射面となる。波長変換部材20の面20a、20bは、これらの面と接する全反射層の機能を発現させるために平滑であることが好ましく、特に鏡面であることが好ましい。具体的には、平均粗さ(Ra)が20nm未満であることが好ましい。   The shape of the wavelength conversion member 20 is not particularly limited, but in the present embodiment, it has a cylindrical shape with a low height, that is, a disk shape, and includes two parallel circular surfaces 20a and 20b and a short cylindrical side surface. 20c. The light guide member 10 (optical fiber) is fixed to one of the two parallel surfaces of the wavelength conversion member 20 by a bonding material or the like. The two surfaces 20a and 20b are formed with a plurality of layers 40 for reflecting light except for a portion where the light guide 10 is joined. The excitation light incident on the wavelength conversion member 20 by the light guide member 10 and the light emitted from the wavelength conversion material 20 by the excitation light are repeatedly reflected on the surfaces 20a and 20b of the wavelength conversion member 20 and extracted from the side surface 20c. That is, the side surface 20 c becomes the light emission surface of the wavelength conversion member 20. The surfaces 20a and 20b of the wavelength conversion member 20 are preferably smooth in order to express the function of the total reflection layer in contact with these surfaces, and particularly preferably a mirror surface. Specifically, the average roughness (Ra) is preferably less than 20 nm.

全反射層41は、光ガイド部材10を構成する光ファイバ(コア)や波長変換部材20を構成する材料よりも屈折率が小さい透光性材料からなる。   The total reflection layer 41 is made of a translucent material having a refractive index smaller than that of the material constituting the optical fiber (core) and the wavelength conversion member 20 constituting the light guide member 10.

全反射層41を構成する材料の、波長変換部材20との屈折率差は、好ましくは0.1以上、より好ましくは0.2以上である。典型的な蛍光体であるYAGの屈折率は1.85であるので、屈折率が1.65以下であることが好ましい。このような低屈折率材料として、具体的には、NaAl14(チオライト)(n=1.33)、AlF(n=1.36)、MgF(n=1.38)、CaF(n=1.43)、SiO(n=1.45)、Al(n=1.64)などの誘電体物質を用いることができる。これらのうち成膜性の観点からはSiOが好適である。また全反射性を含む性能の観点からはMgFが好適である。 The difference in refractive index between the material constituting the total reflection layer 41 and the wavelength conversion member 20 is preferably 0.1 or more, more preferably 0.2 or more. Since the refractive index of YAG as a typical phosphor is 1.85, the refractive index is preferably 1.65 or less. As such a low refractive index material, specifically, Na 5 Al 3 F 14 (thiolite) (n = 1.33), AlF 3 (n = 1.36), MgF 2 (n = 1.38) , CaF 2 (n = 1.43), SiO 2 (n = 1.45), Al 2 O 3 (n = 1.64), and other dielectric materials can be used. Of these, SiO 2 is preferable from the viewpoint of film formability. From the viewpoint of performance including total reflectivity, MgF 2 is preferable.

全反射層41の厚みは、限定されるものではないが、全反射層41の上に後述する誘電体層の多層膜(増反射層42)を設ける場合には、好ましくは300nm以上、より好ましくは500nm以上である。また好ましくは2μm以下、より好ましくは1μm以下である。厚みを300nm以上とすることにより、増反射層42と干渉を起こすことなく十分な全反射機能を得ることができる。全反射層41は、スパッタリング、真空蒸着等の方法で波長変換部材20の表面に成膜することができる。   The thickness of the total reflection layer 41 is not limited. However, in the case where a multilayer film (dielectric reflection layer 42) of a dielectric layer described later is provided on the total reflection layer 41, it is preferably 300 nm or more, more preferably Is 500 nm or more. Moreover, it is preferably 2 μm or less, more preferably 1 μm or less. By setting the thickness to 300 nm or more, a sufficient total reflection function can be obtained without causing interference with the increased reflection layer 42. The total reflection layer 41 can be formed on the surface of the wavelength conversion member 20 by a method such as sputtering or vacuum deposition.

このような全反射層41(41a、41b)を波長変換部材20の両面に配置することにより、光が波長変換部材20内で反射を繰り返しながら側面に伝搬していく際に、所定の入射角より入射角の大きい光を、波長変換部材20と全反射層41との間で全反射させて、反射による光の損失を防止することができる。全反射層41の機能については、後に詳述する。   By arranging such total reflection layers 41 (41a, 41b) on both surfaces of the wavelength conversion member 20, a predetermined incident angle is obtained when light propagates to the side surface while repeating reflection in the wavelength conversion member 20. Light having a larger incident angle can be totally reflected between the wavelength conversion member 20 and the total reflection layer 41 to prevent light loss due to reflection. The function of the total reflection layer 41 will be described in detail later.

全反射層41aの上に配置される反射層43は、全反射層41aを透過する光を反射し波長変換部材20に戻すもので、膜であっても基板であってもよい。膜の場合は、Ag、Ag合金、Al、Rh、Pt、Au、Cu、Ti、Si等の金属反射膜及びSiO、Al、TiO、ZnO等の誘電体多層膜を用いることができる。これらの膜はスパッタリング、真空蒸着、メッキ等の方法により形成することができる。基板の場合は、鏡面のAl基板やその上に金属膜、光学多層膜を形成したものを用いることができ、接合材により全反射層41に接合することができる。接合材としては、発光部50と光ガイド部材10とを接合した接合部と同様の材料を用いることができる。 The reflection layer 43 disposed on the total reflection layer 41a reflects light transmitted through the total reflection layer 41a and returns it to the wavelength conversion member 20, and may be a film or a substrate. In the case of a film, use a metal reflective film such as Ag, Ag alloy, Al, Rh, Pt, Au, Cu, Ti, and Si and a dielectric multilayer film such as SiO 2 , Al 2 O 3 , TiO 2 , and ZnO. Can do. These films can be formed by sputtering, vacuum deposition, plating, or the like. In the case of a substrate, a mirror-surface Al substrate or a substrate on which a metal film or an optical multilayer film is formed can be used, and can be bonded to the total reflection layer 41 with a bonding material. As the bonding material, the same material as the bonding portion where the light emitting portion 50 and the light guide member 10 are bonded can be used.

なお図1では、反射層43を、波長変換部材20の上面側に位置する全反射層41aの上だけに配置する場合を示しているが、図2に示すように、下面側に位置する全反射層41bの接合材60側に反射層43を形成してもよい。波長変換部材20とその両側の全反射層41a、41bを挟むように反射層43を設けることにより、全反射層41bを透過した光を反射して波長変換部材20に戻すことができるので、導波損失を低減することができる。また下側の反射層43を介して、波長変換部材20と保持部材12或いはその上に形成された反射膜15とをはんだやAuSn等で共晶接合することが可能となるため、波長変換部材20で生じた熱を保持部材側12に効果的に逃がすことができ、温度消光を防止できる。   FIG. 1 shows a case where the reflective layer 43 is disposed only on the total reflection layer 41a located on the upper surface side of the wavelength conversion member 20, but as shown in FIG. The reflective layer 43 may be formed on the bonding material 60 side of the reflective layer 41b. By providing the reflection layer 43 so as to sandwich the wavelength conversion member 20 and the total reflection layers 41a and 41b on both sides thereof, the light transmitted through the total reflection layer 41b can be reflected and returned to the wavelength conversion member 20. Wave loss can be reduced. Further, since the wavelength conversion member 20 and the holding member 12 or the reflection film 15 formed thereon can be eutectic bonded with solder, AuSn, or the like via the lower reflective layer 43, the wavelength conversion member The heat generated at 20 can be effectively released to the holding member side 12 and temperature quenching can be prevented.

さらに本実施形態の発光装置100は、全反射層41と反射層43との間に、図3に示すように、増反射層42を設けてもよい。増反射層42を下側の全反射層41に積層する場合には、光ガイド部材10から波長変換部材20への光の入射を妨げないために、光ガイド部材10先端が固定される部分以外の領域に形成する。   Furthermore, the light emitting device 100 according to the present embodiment may be provided with an increased reflection layer 42 between the total reflection layer 41 and the reflection layer 43 as shown in FIG. In the case where the increased reflection layer 42 is laminated on the lower total reflection layer 41, in order not to prevent the light from entering the wavelength conversion member 20 from the light guide member 10, other than the portion where the tip of the light guide member 10 is fixed. Formed in the region.

増反射層42は、低屈折率材料と高屈折率材料とを交互に積層した光学多層膜であり、各層の厚みが入射光の波長λの1/4に調整され、十分な層数とすることにより入射光を殆ど透過せず反射光にすることができる。従って、層の厚みは励起光及び波長変換部材20が発する光の波長を考慮して調整され、具体的には約10nm〜100nmである。全体の厚みは約0.01μm〜3μmが好ましい。低屈折率材料としては、例えば、NaAl14(チオライト)(n=1.33)、AlF(n=1.36)、CaF(n=1.38)、SiO(n=1.45)、Al(n=1.64)等が用いられる。高屈折率材料としては、CeO(n=2.13)、Ta(n=2.20)、Ti(n=2.31)、TiO(n=2.35)、Nb(n=2.37)等が用いられる。これら材料をスパッタリング、真空蒸着等の方法で順次成膜することによりに増反射層42を形成することができる。 The increased reflection layer 42 is an optical multilayer film in which low-refractive index materials and high-refractive index materials are alternately stacked, and the thickness of each layer is adjusted to ¼ of the wavelength λ of incident light so that the number of layers is sufficient. As a result, incident light is hardly transmitted and reflected light can be obtained. Therefore, the thickness of the layer is adjusted in consideration of the wavelength of the excitation light and the light emitted from the wavelength conversion member 20, and is specifically about 10 nm to 100 nm. The total thickness is preferably about 0.01 μm to 3 μm. As a low refractive index material, for example, Na 5 Al 3 F 14 (thiolite) (n = 1.33), AlF 3 (n = 1.36), CaF 2 (n = 1.38), SiO 2 (n = 1.45), Al 2 O 3 (n = 1.64), etc. are used. As a high refractive index material, CeO 2 (n = 2.13), Ta 2 O 5 (n = 2.20), Ti 3 O 5 (n = 2.31), TiO 2 (n = 2.35). Nb 2 O 5 (n = 2.37) or the like is used. The reflective layer 42 can be formed by sequentially depositing these materials by a method such as sputtering or vacuum deposition.

次に本実施形態の発光装置100における全反射層41の機能を説明する。
全反射層41は、波長変換部材20を伝搬する光のうち、全反射層41との界面における入射角が臨界角以上の光を反射し、光を波長変換部材20に閉じ込める機能を持つ。臨界角θTは、スネル法則より波長変換部材20と全反射層41の屈折率で決まり、例えば、波長変換部材20が屈折率1.85のYAG蛍光体であり、全反射層41が屈折率1.45のSiOである場合、
sin(θT)=1.45/1.85
θT=51.6
となる。すなわち51.6°以上の入射角を持つ入射光は波長変換部材20と全反射層41との界面で全反射し、上記全反射層と波長変換材料の組み合わせでは、波長変換部材20への入射角が51.6°以上であれば理論上、光エネルギーの損失がなく、光は波長変換部材20を伝搬し発光部側面から取り出すことができる。因みにYAGに対し屈折率1.65の全反射層を設けた場合には、入射角63°以上であれば全反射が可能となる。
Next, the function of the total reflection layer 41 in the light emitting device 100 of this embodiment will be described.
The total reflection layer 41 has a function of reflecting light whose incident angle at the interface with the total reflection layer 41 is greater than or equal to a critical angle among light propagating through the wavelength conversion member 20 and confining the light in the wavelength conversion member 20. The critical angle θT is determined by the refractive index of the wavelength conversion member 20 and the total reflection layer 41 according to Snell's law. For example, the wavelength conversion member 20 is a YAG phosphor having a refractive index of 1.85, and the total reflection layer 41 has a refractive index of 1. .45 of SiO 2 ,
sin (θT) = 1.45 / 1.85
θT = 51.6
It becomes. That is, incident light having an incident angle of 51.6 ° or more is totally reflected at the interface between the wavelength conversion member 20 and the total reflection layer 41, and is incident on the wavelength conversion member 20 in the combination of the total reflection layer and the wavelength conversion material. Theoretically, if the angle is 51.6 ° or more, there is no loss of light energy, and light can propagate through the wavelength conversion member 20 and be extracted from the side surface of the light emitting unit. Incidentally, when a total reflection layer having a refractive index of 1.65 is provided for YAG, total reflection is possible at an incident angle of 63 ° or more.

全反射層を設けずに反射層43のみを設けた場合、例えば、反射層43が最も反射率の高い金属膜(Ag)でも反射率は100%ではなく、可視光領域において一定の吸収を持つ。また一般に増反射性を有する誘電体の多層膜(増反射層42)を金属膜に加えて配置した場合、反射率は向上するが、増反射層は高い入射角、特に70度以上の高い入射角、の光に対しては反射率が急に低下するという特性を持つ。従って低入射角の光には増反射効果が得られても、高入射角では増反射効果が得られない。   When only the reflection layer 43 is provided without providing the total reflection layer, for example, even when the reflection layer 43 is the metal film (Ag) having the highest reflectivity, the reflectivity is not 100% and has a certain absorption in the visible light region. . In general, when a dielectric multilayer film (increased reflection layer 42) having increased reflectivity is arranged in addition to a metal film, the reflectivity is improved, but the increased reflection layer has a high incidence angle, particularly high incidence of 70 degrees or more. It has a characteristic that the reflectivity suddenly decreases with respect to light of an angle. Therefore, even if a light reflection effect is obtained for light having a low incidence angle, a light reflection effect cannot be obtained at a high incidence angle.

本実施形態では全反射層41を配置したことにより、金属膜や増反射層の反射機能を補い、光の取り出し効率を大幅に向上できる。   In the present embodiment, by providing the total reflection layer 41, the reflection function of the metal film or the increased reflection layer can be supplemented, and the light extraction efficiency can be greatly improved.

波長変換部材20への入射側については、励起光源30としてLED、LD等の固体光源を用いた場合、固体光源からの励起光は指向性を持つため、励起光は光ガイド部材10から波長変換部材20の下側に位置する全反射層41bへは低入射角で入射し、光ガイド部材10と全反射層41bとの界面で全反射することなく波長変換部材20に入射することができる。   On the incident side to the wavelength conversion member 20, when a solid light source such as an LED or LD is used as the excitation light source 30, the excitation light from the solid light source has directivity, so that the excitation light is wavelength converted from the light guide member 10. The light enters the total reflection layer 41b located below the member 20 at a low incident angle, and can enter the wavelength conversion member 20 without being totally reflected at the interface between the light guide member 10 and the total reflection layer 41b.

光ガイド部材10から出射した光が全反射しない理由について、図4を参照して詳述する。図4は光ガイド部材10と発光部50との接続部を拡大した図であり、光の進路を矢印で示している。また以下の説明では、各層(膜)の厚みは均一で界面は平行であることを前提にしている。   The reason why the light emitted from the light guide member 10 is not totally reflected will be described in detail with reference to FIG. FIG. 4 is an enlarged view of the connection portion between the light guide member 10 and the light emitting portion 50, and the path of light is indicated by an arrow. In the following description, it is assumed that the thickness of each layer (film) is uniform and the interface is parallel.

ここで光ガイド部材(光ファイバ)10のコア10aの屈折率をn1、クラッド10bの屈折率をn2、接合材60の屈折率をn3、全反射層41の屈折率をn4とし、コア10aとクラッド10bとの反射角をθ1、コア10aから接合材60への入射角をθ2、コア10aから接合材60への屈折角をθ3、接合材60から全反射層41への屈折角をθ4とする。   Here, the refractive index of the core 10a of the light guide member (optical fiber) 10 is n1, the refractive index of the cladding 10b is n2, the refractive index of the bonding material 60 is n3, the refractive index of the total reflection layer 41 is n4, and the core 10a The reflection angle with the cladding 10b is θ1, the incident angle from the core 10a to the bonding material 60 is θ2, the refraction angle from the core 10a to the bonding material 60 is θ3, and the refraction angle from the bonding material 60 to the total reflection layer 41 is θ4. To do.

スネルの法則より式(1)が成立し、式(1)より式(2)が得られる。
n1・sinθ2=n3・sinθ3=n4・sinθ4 (1)
sinθ4=(n1/n4)sinθ2 (2)
Equation (1) is established from Snell's law, and Equation (2) is obtained from Equation (1).
n1 · sin θ2 = n3 · sin θ3 = n4 · sin θ4 (1)
sin θ4 = (n1 / n4) sin θ2 (2)

一方、光ファイバ(コア)10aから放射され光の角度の最大値は、コア−クラッド間の反射角θ1が臨界角、すなわち式(3)を満たすときである。
n1・sinθ1=n2・sin90°
sinθ1=n2/n1 (3)
On the other hand, the maximum value of the angle of light emitted from the optical fiber (core) 10a is when the reflection angle θ1 between the core and the clad satisfies the critical angle, that is, the expression (3).
n1 · sin θ1 = n2 · sin90 °
sin θ1 = n2 / n1 (3)

また、θ1+θ2=90°であって、式(4)の関係があるので、
sinθ2=√(1−sinθ1) (4)
式(2)は、式(3)及び式(4)を用いて、式(5)で表すことができる。
sinθ4=(1/n4)√(n1−n2) (5)
In addition, since θ1 + θ2 = 90 ° and the relationship of the formula (4),
sin θ2 = √ (1−sin 2 θ1) (4)
Formula (2) can be represented by Formula (5) using Formula (3) and Formula (4).
sin θ4 = (1 / n4) √ (n1 2 −n2 2 ) (5)

ここで式(5)の右辺の「√(n1−n2)」は光ファイバの開口数NA(NA=√(n1−n2))であり、式(5)は開口数NAを用いて式(6)で表すことができる。
sinθ4=(1/n4)・NA (6)
Here, “√ (n1 2 −n2 2 )” on the right side of Expression (5) is the numerical aperture NA (NA = √ (n1 2 −n2 2 )) of the optical fiber, and Expression (5) is the numerical aperture NA. And can be represented by equation (6).
sin θ4 = (1 / n4) · NA (6)

従って接合材60から全反射層41bへの屈折角θ4は、式(7)に示すように、全反射層41の屈折率n4と光ファイバ10の開口数NAで決まる。
θ4=sin−1((1/n4)・NA) (7)
Therefore, the refraction angle θ4 from the bonding material 60 to the total reflection layer 41b is determined by the refractive index n4 of the total reflection layer 41 and the numerical aperture NA of the optical fiber 10, as shown in Expression (7).
θ4 = sin −1 ((1 / n4) · NA) (7)

全反射層41がSiO(屈折率1.45)、光ファイバのNAが0.30であるとするとθ4は約12°であり、垂直入射に近い角度で全反射層に入射することになる。全反射層41に入射した光は波長変換部材20へ角度θ4で入射するが、全反射層41の屈折率は波長変換部材20の屈折率より小さいため、全反射層41bと波長変換部材20との界面に置いて全反射は起こらず、光は全反射層41bを透過して波長変換部材20に導入される。 Assuming that the total reflection layer 41 is SiO 2 (refractive index 1.45) and the optical fiber has an NA of 0.30, θ4 is about 12 ° and enters the total reflection layer at an angle close to normal incidence. . The light incident on the total reflection layer 41 enters the wavelength conversion member 20 at an angle θ4. However, since the refractive index of the total reflection layer 41 is smaller than the refractive index of the wavelength conversion member 20, the total reflection layer 41b, the wavelength conversion member 20, The total reflection does not occur at the interface, and the light is transmitted through the total reflection layer 41 b and introduced into the wavelength conversion member 20.

また、光が接合部材60と全反射層41bとの界面で全反射されないためには、接合材60から全反射層41bへの屈折角θ4が90°未満であればよい。全反射が生じる際のコアからの入射角θ2は、式(2)において、θ4=90°とすることにより求められる(式(8))。
sinθ4=(n1/n4)sinθ2=1
θ2=sin−1(n4/n1) (8)
Further, in order to prevent light from being totally reflected at the interface between the bonding member 60 and the total reflection layer 41b, the refraction angle θ4 from the bonding material 60 to the total reflection layer 41b may be less than 90 °. The incident angle θ2 from the core when total reflection occurs is obtained by setting θ4 = 90 ° in equation (2) (equation (8)).
sin θ4 = (n1 / n4) sin θ2 = 1
θ2 = sin −1 (n4 / n1) (8)

式(8)において、コアの屈折率n1を1.46、全反射層41の屈折率n4を1.45とすると、全反射が生じる角度θ2の臨界値は約83°であり、角度θ2が83°より大きいときに全反射が起こる。一方、コア10aから接合材60に出射される光の角度θ2の最大値θmaxは、NA=n・sinθmax(nは接合材の屈折率)であり、接合材60(シリコーン樹脂)の屈折率が1.4、NAが0.30のとき、約12.3°であり、83°より小さい。よって全反射層41bの界面では全反射は起こらず、光ガイド部材10からの光は全反射層41bを経て、波長変換部材20に導入される。   In equation (8), if the refractive index n1 of the core is 1.46 and the refractive index n4 of the total reflection layer 41 is 1.45, the critical value of the angle θ2 at which total reflection occurs is about 83 °, and the angle θ2 is Total reflection occurs when it is greater than 83 °. On the other hand, the maximum value θmax of the angle θ2 of the light emitted from the core 10a to the bonding material 60 is NA = n · sin θmax (n is the refractive index of the bonding material), and the refractive index of the bonding material 60 (silicone resin) is 1.4 When NA is 0.30, it is about 12.3 °, which is smaller than 83 °. Therefore, total reflection does not occur at the interface of the total reflection layer 41b, and light from the light guide member 10 is introduced into the wavelength conversion member 20 through the total reflection layer 41b.

以上説明したように、本実施形態の発光装置によれば、波長変換部材の両面に全反射層を配置したことにより、光ガイド部材10から送られる励起光を損失なく、波長変換部材に入射することができ、且つ波長変換部材に送られた光を閉じ込めた状態で光出射面である側面に伝搬させることができるので、高い発光効率が実現できる。また光エネルギーの損失に伴う発熱量を低減することができるので、信頼性が高い。   As described above, according to the light emitting device of this embodiment, the total reflection layers are arranged on both surfaces of the wavelength conversion member, so that the excitation light transmitted from the light guide member 10 enters the wavelength conversion member without loss. In addition, since the light transmitted to the wavelength conversion member can be propagated to the side surface which is the light emitting surface in a confined state, high light emission efficiency can be realized. Further, since the amount of heat generated due to the loss of light energy can be reduced, the reliability is high.

なお図面に示す実施形態では、発光部50の側面全面が光取り出し面である場合を示したが、側面の一部に光遮光部材や反射部材を配置し、本実施形態の発光装置の指向特性を調整することも可能である。   In the embodiment shown in the drawings, the entire side surface of the light emitting unit 50 is a light extraction surface. However, the light shielding member and the reflecting member are arranged on a part of the side surface, and the directivity characteristics of the light emitting device of the present embodiment. It is also possible to adjust.

<第2実施形態>
本実施形態の発光装置は、波長変換部材20の上面側に、光ガイド部材10から波長変換部材20に入射される光を側方に向けて、波長変換部材20内で高角反射する光の割合を増加させる手段を設けたことが特徴である。以下、図5を参照して本実施形態の発光装置を説明する。図5において、第1実施形態と同じ要素は同じ符号で示し、重複する説明は省略する。
Second Embodiment
In the light emitting device according to the present embodiment, the ratio of light that is reflected at a high angle in the wavelength conversion member 20 by directing light incident on the wavelength conversion member 20 from the light guide member 10 to the side on the upper surface side of the wavelength conversion member 20. It is a feature that means for increasing is provided. Hereinafter, the light-emitting device of this embodiment will be described with reference to FIG. In FIG. 5, the same elements as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図5に示す発光装置においても、光ガイド部材10の光出射面に、波長変換部材20を備えた発光部50が固定されること、波長変換部材20の両面に全反射層41(41a1、41b)が設けられることは第1実施形態と同様である。本実施形態では、波長変換部材20の光ガイド部材10に対向する部分の上面側に凹部が形成され、その部分の全反射層41aが波長変換部材20側に凸状411になっていることが特徴である。   Also in the light emitting device shown in FIG. 5, the light emitting unit 50 including the wavelength conversion member 20 is fixed to the light emitting surface of the light guide member 10, and the total reflection layers 41 (41 a 1 and 41 b are formed on both surfaces of the wavelength conversion member 20. ) Is provided as in the first embodiment. In the present embodiment, the concave portion is formed on the upper surface side of the portion of the wavelength conversion member 20 that faces the light guide member 10, and the total reflection layer 41 a of the portion has a convex shape 411 on the wavelength conversion member 20 side. It is a feature.

全反射層41aの凸状の部分(凸部411)は、波長変換部材20に垂直に近い角度(0度に近い入射角度)で入射する光を屈折させて波長変換部材20の側面方向に誘導する機能を持つ。凸部411の形状は、底面の形状及び大きさが光ガイド部材10の断面とほぼ同程度とすることが好ましく、光ガイド部材10の断面が円形の場合、図6(a)〜(c)に示すように、円錐状、或いは円錐の錐面を外側又は内側に曲面状にした形状などとすることができる。   The convex portion (convex portion 411) of the total reflection layer 41a refracts light incident at an angle close to perpendicular to the wavelength conversion member 20 (incidence angle close to 0 degrees) and guides it in the side surface direction of the wavelength conversion member 20. It has a function to do. The shape of the convex portion 411 is preferably such that the shape and size of the bottom surface are approximately the same as the cross section of the light guide member 10, and when the cross section of the light guide member 10 is circular, FIGS. As shown in Fig. 4, the shape may be a conical shape or a conical conical surface curved outward or inward.

また凸部411の傾斜は、光ガイド部材10から波長変換部材20に入射し凸部に当たる光の角度(入射角度)が臨界角θT以上であることが好ましい。すなわち図5の右側に示すように、光ガイド部材10から入射される光の進路をl1、凸部の垂線をl2、全反射層主平面の垂線をl3とし、入射光がほぼ垂線l3に概ね平行であるとすると、入射光に対する傾斜面の角度θ1、入射光の傾斜面に対する入射角θ2、及び、その光が傾斜面で反射して主平面に入射される入射角θ3は、それぞれ次の関係にある(式(9)、(10))。
θ1+θ2=90° (9)
2θ2+θ3=180° (10)
The inclination of the convex portion 411 is preferably such that the angle (incident angle) of light that enters the wavelength conversion member 20 from the light guide member 10 and strikes the convex portion is not less than the critical angle θT. That is, as shown on the right side of FIG. 5, the path of light incident from the light guide member 10 is 11, the perpendicular of the convex portion is 12, the perpendicular of the main plane of the total reflection layer is 13, and the incident light is approximately in the normal 13. If parallel, the angle θ1 of the inclined surface with respect to the incident light, the incident angle θ2 with respect to the inclined surface of the incident light, and the incident angle θ3 at which the light is reflected by the inclined surface and incident on the main plane are respectively (Equations (9) and (10)).
θ1 + θ2 = 90 ° (9)
2θ2 + θ3 = 180 ° (10)

ここでθTを臨界角とすると、傾斜面及び主平面で光が全反射する条件は次のとおりである。
θ2>θT (11)
θ3>θT (12)
これら式(9)〜(12)から、主平面にたいする傾斜面の角度θ(=90°−θ1)を求めると、
θT<θ<(90°−θT/2) (13)
となる。例えば、波長変換部材20がYAGで全反射層41がSiOである場合の臨界角θT(52°)では、
52°<θ<64°
となる。これにより凸部411に当たった光は全反射されて側面方向に向かうことができる。
Here, when θT is a critical angle, the conditions under which light is totally reflected on the inclined surface and the main plane are as follows.
θ2> θT (11)
θ3> θT (12)
From these equations (9) to (12), the angle θ (= 90 ° −θ1) of the inclined surface with respect to the main plane is obtained.
θT <θ <(90 ° −θT / 2) (13)
It becomes. For example, at the critical angle θT (52 °) when the wavelength conversion member 20 is YAG and the total reflection layer 41 is SiO 2 ,
52 ° <θ <64 °
It becomes. Thereby, the light which hits the convex part 411 is totally reflected, and can go to a side surface direction.

なお光ファイバからの光が垂直方向に対し最大角度(α)の広がりを持つ場合には、式(13)は次式(14)となる。
θT−α<θ<{(90°−θT/2)−α/2} (14)
When the light from the optical fiber has a maximum angle (α) spread with respect to the vertical direction, Expression (13) becomes the following Expression (14).
θT−α <θ <{(90 ° −θT / 2) −α / 2} (14)

以上、凸部411が図6(a)に示す形状の場合を例に説明したが、光ガイド部材10から入射される光の入射角にある程度分布(ガウシアン分布)があることを考慮すると、図6(b)や(c)に示すような形状が好ましく、特にガウシアン分布を持つ入射角の光を均一分布に近づけるために、図6(b)に示す形状が好ましい。   As described above, the case where the convex portion 411 has the shape shown in FIG. 6A has been described as an example, but considering that there is a certain distribution (Gaussian distribution) in the incident angle of light incident from the light guide member 10, FIG. 6 (b) and (c) are preferable, and in particular, the shape shown in FIG. 6 (b) is preferable in order to make light having an incident angle having a Gaussian distribution close to a uniform distribution.

本実施形態の発光装置において、全反射層41aに凸部411を形成する方法としては、波長変換部材20の上面に凸部411に対応する凹部をエッチング、微細加工等により形成しておき、その上に全反射層41aを形成する方法を採用することができる。全反射層41aの上に配置する反射部材が反射層43の場合には、全反射層41aの上に蒸着やメッキ等で成膜すればよいが、金属板等を配置する場合には、全反射層41aの上面を平坦にして、すなわち凹部がない状態で配置することが望ましい。   In the light emitting device of this embodiment, as a method of forming the convex portion 411 on the total reflection layer 41a, a concave portion corresponding to the convex portion 411 is formed on the upper surface of the wavelength conversion member 20 by etching, fine processing, etc. A method of forming the total reflection layer 41a thereon can be employed. When the reflecting member disposed on the total reflection layer 41a is the reflection layer 43, the film may be formed on the total reflection layer 41a by vapor deposition, plating, or the like. It is desirable to arrange the reflective layer 41a so that the upper surface thereof is flat, that is, without a recess.

本実施形態によれば、光ガイド部材10に対応する上面側の全反射層41aに光ガイド部材10からの光を側方に反射させる形状を形成したことにより、波長変換部材20内での光の反射を低減し、波長変換部材20内で高角反射する光の割合を増加させることができ、さらに効率よく光を取りだすことができる。   According to the present embodiment, the light in the wavelength conversion member 20 is formed by forming the shape that reflects the light from the light guide member 10 sideways on the total reflection layer 41a on the upper surface side corresponding to the light guide member 10. Can be reduced, the proportion of light reflected at a high angle in the wavelength conversion member 20 can be increased, and light can be extracted more efficiently.

<第3実施形態>
本実施形態の発光装置は、波長変換部材20と光ガイド部材10の端面の接合部分に、光ガイド部材10から波長変換部材20に入射される光の入射角度を広げる手段を設けたことが特徴である。以下、図7及び図8を参照して本実施形態の発光装置を説明する。図7及び図8において、第1実施形態と同じ要素は同じ符号で示し、重複する説明は省略する。
<Third Embodiment>
The light emitting device according to the present embodiment is characterized in that means for widening the incident angle of light incident on the wavelength conversion member 20 from the light guide member 10 is provided at the junction between the end faces of the wavelength conversion member 20 and the light guide member 10. It is. Hereinafter, the light-emitting device of this embodiment will be described with reference to FIGS. 7 and 8. In FIG.7 and FIG.8, the same element as 1st Embodiment is shown with the same code | symbol, and the overlapping description is abbreviate | omitted.

光ガイド部材10から全反射層41bを通って光波長変換部材20に入射される光の角度は、全反射層41bで全反射されないために約80°以下であることが必要であるが、一方、波長変換部材20において全反射層41bの機能を生かし、光を効率よく側面に導くためにはその制限内で角度が大きいことが好ましい。光ファイバから出射される光はガウシアン分布を持つが、光ファイバの端面の形状を平坦ではなく変化させることにより、ガウシアン分布を均一分布とするができ、出射角度を広げることが可能となる。   The angle of the light that enters the light wavelength conversion member 20 from the light guide member 10 through the total reflection layer 41b is not totally reflected by the total reflection layer 41b. In order to take advantage of the function of the total reflection layer 41b in the wavelength conversion member 20 and efficiently guide light to the side surface, the angle is preferably large within the limit. The light emitted from the optical fiber has a Gaussian distribution, but by changing the shape of the end face of the optical fiber instead of being flat, the Gaussian distribution can be made uniform and the emission angle can be widened.

図7に示す発光装置では、光ガイド部材10の端面を保持部材12の端面に対し凹状にすることにより、光ガイド部材10から出射される光の角度を広げている。凹状は、図示したような球面状でもよいし、円錐や角錐状であってもよく、端面の研磨加工により形成することができる。いずれの場合にも、光ガイド部材10から出射する光の分布を均一分布に近づけて、その出射角度を広げることができる。   In the light emitting device shown in FIG. 7, the angle of light emitted from the light guide member 10 is widened by making the end surface of the light guide member 10 concave with respect to the end surface of the holding member 12. The concave shape may be a spherical shape as shown in the figure, may be a cone shape or a pyramid shape, and can be formed by polishing the end face. In any case, the distribution of the light emitted from the light guide member 10 can be made close to a uniform distribution, and the emission angle can be widened.

図8に示す発光装置では、光ガイド部材10が接合される波長変換部材20の下面の部分に凹部21を設けている。凹部21は、ウェットエッチングやRIE等により形成することができ、全反射層41bはこの凹部21を覆って形成される。この場合にも、図7に示す発光装置と同様に、実質的に開口数を広げるのと同様の効果が得られる。   In the light emitting device shown in FIG. 8, the concave portion 21 is provided in the lower surface portion of the wavelength conversion member 20 to which the light guide member 10 is joined. The recess 21 can be formed by wet etching, RIE, or the like, and the total reflection layer 41b is formed to cover the recess 21. Also in this case, the same effect as that of substantially increasing the numerical aperture can be obtained as in the light emitting device shown in FIG.

また図8の下に示すように、図7に示す態様と図8に示す態様を組み合わせてもよい。すなわち光ファイバ端面を凹状にするとともに、端面に対応する波長変換部材20の下面を凹状にする。   Further, as shown in the lower part of FIG. 8, the aspect shown in FIG. 7 may be combined with the aspect shown in FIG. That is, the end surface of the optical fiber is made concave, and the lower surface of the wavelength conversion member 20 corresponding to the end surface is made concave.

本実施形態によれば、光ガイド部材10から波長変換部材20に入射される光を均一分布に近づけるとともにブリュースター角度の制限内で入射角度を広げることができる。これにより、第2実施形態と同様に、波長変換部材20内で高角反射する光の割合を増加させることができ、さらに効率よく光を取りだすことができる。   According to this embodiment, the light incident on the wavelength conversion member 20 from the light guide member 10 can be made to have a uniform distribution, and the incident angle can be expanded within the limit of the Brewster angle. Thereby, similarly to 2nd Embodiment, the ratio of the light which carries out high angle reflection within the wavelength conversion member 20 can be increased, and light can be taken out still more efficiently.

<第4実施形態>
本実施形態の発光装置は、光ガイド部材として、コアの中心が光ガイド部材の中心からずれた材料を用いることが特徴である。図9に本実施形態の発光装置を示す。図9において、第1実施形態と同じ要素は同じ符号で示し、重複する説明は省略する。
<Fourth embodiment>
The light emitting device of the present embodiment is characterized in that a material having a core center shifted from the center of the light guide member is used as the light guide member. FIG. 9 shows a light emitting device of this embodiment. In FIG. 9, the same elements as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図9の下側に光ガイド部材10の断面を示す。図示する光ガイド部材10は、複数のコアを束ねたバンドルファイバである。図では3本のコアからなるバンドルファイバを示しているが、コア数は3に限らず、それより多くてもよい。またこのバンドルファイバは、コアがファイバ中心に対し放射状に配置されており、中心にはコアは存在しない。図9の上側の図は複数本のコアを持つバンドルファイバの断面を示しており、図示するように、その端面は円錐状に加工されている。   A cross section of the light guide member 10 is shown on the lower side of FIG. The illustrated light guide member 10 is a bundle fiber in which a plurality of cores are bundled. In the figure, a bundle fiber composed of three cores is shown, but the number of cores is not limited to three and may be larger. In this bundle fiber, the core is arranged radially with respect to the center of the fiber, and there is no core at the center. The upper drawing of FIG. 9 shows a cross section of a bundle fiber having a plurality of cores, and its end face is processed into a conical shape as shown.

このようなバンドルファイバでは、光の出射面が傾斜しているため出射光軸が垂直に対し傾斜する。これによりコアと全反射層41との間に存在する物質(接合材)の屈折率に依存して、光の出射角度は端面が水平な場合に対し変化し、開口数を広げる効果と実質的に同じ効果が得られる。   In such a bundle fiber, since the light emission surface is inclined, the emission optical axis is inclined with respect to the vertical. Thereby, depending on the refractive index of the substance (bonding material) existing between the core and the total reflection layer 41, the light emission angle changes as compared with the case where the end face is horizontal, and the effect of widening the numerical aperture is substantial. The same effect can be obtained.

以上、本発明の各実施形態を説明したが、上記実施形態は適宜組み合わせることも可能であるし、個々の実施形態の説明において触れた変更例は、技術的に矛盾しない限り他の実施形態についても同様に適用することができる。   As mentioned above, although each embodiment of the present invention was described, the above-mentioned embodiment can also be combined suitably, and the modification mentioned in explanation of each embodiment is about other embodiments unless there is technical contradiction. Can be applied similarly.

本発明の発光装置は、側面からの光取り出し効率に優れ、車両用灯具その他一般照明に利用することができる。特に半双指向性を有するので車両用灯具に好適である。   The light emitting device of the present invention is excellent in light extraction efficiency from the side, and can be used for vehicular lamps and other general lighting. In particular, since it has semi-bidirectionality, it is suitable for a vehicular lamp.

本発明により光の損失が極めて少なく、動作の信頼性の高い発光装置が提供される。   According to the present invention, a light-emitting device with extremely low light loss and high operation reliability is provided.

10・・・光ガイド部材、12・・・保持部材、15・・・反射膜、20・・・波長変換材料、30・・・光源、41・・・全反射層、42・・・増反射層、43・・・反射層、50・・・発光部、60・・・接合材、411・・・凸部。

DESCRIPTION OF SYMBOLS 10 ... Light guide member, 12 ... Holding member, 15 ... Reflection film, 20 ... Wavelength conversion material, 30 ... Light source, 41 ... Total reflection layer, 42 ... Increase reflection Layer, 43 ... reflective layer, 50 ... light emitting part, 60 ... bonding material, 411 ... convex part.

Claims (6)

波長変換部材と当該波長変換部材の上面を覆う反射部材とを含む発光部と、前記発光部の裏面に固定され、前記波長変換部材に含まれる蛍光体を励起する光を供給する光ガイド部材とを備え、前記発光部の側面が光出射面となる発光装置であって、
前記発光部は、前記波長変換部材を挟んで両側に、前記波長変換部材の屈折率よりも低屈折率の材料からなる全反射層が形成されていることを特徴とする発光装置。
A light emitting part including a wavelength converting member and a reflecting member covering the upper surface of the wavelength converting member; and a light guide member that is fixed to the back surface of the light emitting part and supplies light that excites the phosphor contained in the wavelength converting member. A light emitting device in which a side surface of the light emitting unit is a light emitting surface,
The light emitting device is characterized in that a total reflection layer made of a material having a refractive index lower than that of the wavelength conversion member is formed on both sides of the wavelength conversion member.
請求項1に記載の発光装置であって、
前記発光部の裏面に、前記光ガイド部材が固定された部分を除いて、反射部材が配置されていることを特徴とする発光装置。
The light-emitting device according to claim 1,
A light-emitting device, wherein a reflection member is disposed on a back surface of the light-emitting portion except for a portion where the light guide member is fixed.
請求項1又は2に記載の発光装置であって、
前記反射部材は、金属反射層と、前記金属反射層と前記全反射層との間に設けられる増反射層とを備えることを特徴とする発光装置。
The light-emitting device according to claim 1 or 2,
The reflection member includes a metal reflection layer and an increased reflection layer provided between the metal reflection layer and the total reflection layer.
請求項1に記載の発光装置であって、
前記波長変換部材の上面に位置する前記全反射層の一部が、前記波長変換部材側に凸状であることを特徴とする発光装置。
The light-emitting device according to claim 1,
A part of the total reflection layer located on the upper surface of the wavelength conversion member is convex toward the wavelength conversion member.
請求項1に記載の発光装置であって、
前記光ガイド部材は、前記発光部に固定される端面が凹状又は凸状であることを特徴とする発光装置。
The light-emitting device according to claim 1,
The light guide member is characterized in that an end surface fixed to the light emitting portion is concave or convex.
請求項1に記載の発光装置であって、
前記発光部の、前記光ガイド部材からの光が入射する面が前記波長変換部材側に凹んだ形状であることを特徴とする発光装置。

The light-emitting device according to claim 1,
The light emitting device according to claim 1, wherein a surface of the light emitting portion on which light from the light guide member is incident is recessed toward the wavelength converting member.

JP2013241256A 2013-11-21 2013-11-21 Light emitting device Active JP6334142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013241256A JP6334142B2 (en) 2013-11-21 2013-11-21 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241256A JP6334142B2 (en) 2013-11-21 2013-11-21 Light emitting device

Publications (2)

Publication Number Publication Date
JP2015103571A true JP2015103571A (en) 2015-06-04
JP6334142B2 JP6334142B2 (en) 2018-05-30

Family

ID=53379067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241256A Active JP6334142B2 (en) 2013-11-21 2013-11-21 Light emitting device

Country Status (1)

Country Link
JP (1) JP6334142B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012160A (en) * 2017-06-30 2019-01-24 パナソニックIpマネジメント株式会社 Light emitting body and light emitting device
WO2019021782A1 (en) * 2017-07-25 2019-01-31 日本電気硝子株式会社 Wavelength conversion member
JP2019211520A (en) * 2018-05-31 2019-12-12 株式会社オキサイド Method, program, and device for evaluating fluorescent body element and fluorescent body element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253099A (en) * 2005-02-08 2006-09-21 Nichia Chem Ind Ltd Light emitting device
JP2012226986A (en) * 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
JP2013089645A (en) * 2011-10-13 2013-05-13 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013131558A (en) * 2011-12-20 2013-07-04 Stanley Electric Co Ltd Light emitting device, vehicle lighting fixture, and vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253099A (en) * 2005-02-08 2006-09-21 Nichia Chem Ind Ltd Light emitting device
JP2012226986A (en) * 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
JP2013089645A (en) * 2011-10-13 2013-05-13 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013131558A (en) * 2011-12-20 2013-07-04 Stanley Electric Co Ltd Light emitting device, vehicle lighting fixture, and vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012160A (en) * 2017-06-30 2019-01-24 パナソニックIpマネジメント株式会社 Light emitting body and light emitting device
JP7016037B2 (en) 2017-06-30 2022-02-04 パナソニックIpマネジメント株式会社 Light emitter and light emitting device
WO2019021782A1 (en) * 2017-07-25 2019-01-31 日本電気硝子株式会社 Wavelength conversion member
JP2019211520A (en) * 2018-05-31 2019-12-12 株式会社オキサイド Method, program, and device for evaluating fluorescent body element and fluorescent body element
JP7062281B2 (en) 2018-05-31 2022-05-06 株式会社オキサイド Fluorescent element evaluation method, Fluorescent element evaluation program and Fluorescent element evaluation device

Also Published As

Publication number Publication date
JP6334142B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6529713B2 (en) Light emitting device
US20200012022A1 (en) Ceramic Wavelength Converter Having a High Reflectivity Reflector
JP2012038452A (en) Light source device
JP6457099B2 (en) Wavelength conversion member and light emitting device
JP2011014587A (en) Light emitting device
KR20190126467A (en) Wavelength conversion element and light source provided with same
KR102231580B1 (en) Light conversion element, Lamp package and automobile lamp using the same
US10236658B2 (en) Light source utilizing wavelength conversion
CN110726122B (en) Wavelength conversion device and light source device
JP2014157698A (en) Fluorescence light source device
JP6000689B2 (en) Light source device
JP5109498B2 (en) Light emitting device
JP6334142B2 (en) Light emitting device
CN101897039A (en) Side emitting device with hybrid top reflector
JP2014203852A (en) Wavelength conversion member and light emitting device
JP6827119B2 (en) White light generator and lighting device
JP6367515B1 (en) Phosphor element and lighting device
JP6916073B2 (en) Optical device
US11262046B2 (en) Phosphor element, method for producing same, and lighting device
CN115164129A (en) Laser lighting structure
CZ2020667A3 (en) Light source
JP6632108B1 (en) Phosphor element, its manufacturing method and lighting device
KR101507879B1 (en) Lighting apparatus using laser
JP6660484B2 (en) Phosphor element and lighting device
WO2020066077A1 (en) Phosphor element, method for producing same, and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180426

R150 Certificate of patent or registration of utility model

Ref document number: 6334142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250