JP2015101677A - Dielectric film, and film capacitor - Google Patents

Dielectric film, and film capacitor Download PDF

Info

Publication number
JP2015101677A
JP2015101677A JP2013244015A JP2013244015A JP2015101677A JP 2015101677 A JP2015101677 A JP 2015101677A JP 2013244015 A JP2013244015 A JP 2013244015A JP 2013244015 A JP2013244015 A JP 2013244015A JP 2015101677 A JP2015101677 A JP 2015101677A
Authority
JP
Japan
Prior art keywords
dielectric film
film
capacitor
dielectric
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013244015A
Other languages
Japanese (ja)
Other versions
JP6199711B2 (en
Inventor
光起 岡村
Mitsuoki Okamura
光起 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013244015A priority Critical patent/JP6199711B2/en
Publication of JP2015101677A publication Critical patent/JP2015101677A/en
Application granted granted Critical
Publication of JP6199711B2 publication Critical patent/JP6199711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric film having excellent slidability, and a film capacitor obtained by using the dielectric film.SOLUTION: A dielectric film 1 contains an organic resin as a main component thereof and has concave parts 5, which are formed repeatedly in the planar direction, on the surface 3 thereof. When the cross section of the dielectric film 1 is viewed, a convex part 7 exists between the adjacent concave parts 5 and has a flat top part 7a and a curved plane 11 curved toward the bottom 9 side of the convex part 7. The film capacitor has a metallic film 21 on the surface of the dielectric film 1. The dielectric film 1 of the film capacitor is hardly stuck closely to another dielectric film 1 or another metallic film 21 even when the thickness of the dielectric film 1 is thin. Since the dielectric film 1 has high slidability, the dielectric film is used suitably in the wound type film capacitor.

Description

本発明は、誘電体フィルムおよびフィルムコンデンサに関する。   The present invention relates to a dielectric film and a film capacitor.

フィルムコンデンサは、例えば、ポリプロピレン樹脂をフィルム化した誘電体フィルムの表面に蒸着によって形成された金属膜を電極として有している。近年、フィルムコンデンサについても、他の電子部品と同様、小型化の要求がますます高まってきており、誘電体フィルムを薄層化する試みが行われているが、誘電体フィルムを薄層化すると、誘電体フィルムの表面の凹凸が小さくなり、平滑化されてくる。   The film capacitor has, for example, a metal film formed by vapor deposition on the surface of a dielectric film obtained by filming a polypropylene resin as an electrode. In recent years, as with other electronic components, the demand for miniaturization has been increasing, and attempts have been made to make the dielectric film thinner. However, if the dielectric film is made thinner, The unevenness on the surface of the dielectric film is reduced and smoothed.

この場合、例えば、平滑化された誘電体フィルムの表面に金属膜を形成し、巻回させて、いわゆる巻回型のコンデンサを形成すると、金属膜の形成されていない誘電体フィルムの面と、誘電体フィルムおよび金属膜が一体化して巻回されることにより接するようになる金属膜の面とが密着しやすくなる。   In this case, for example, when a metal film is formed on the surface of the smoothed dielectric film and wound to form a so-called wound capacitor, the surface of the dielectric film on which the metal film is not formed, When the dielectric film and the metal film are integrally wound, the surface of the metal film that comes into contact with each other is easily adhered.

誘電体フィルムと金属膜とが密着した状態になると、誘電体フィルムおよび金属膜が熱衝撃を受けたときなどに、両者の熱膨張率の違いによって、どちらかに亀裂や破れが生じ、誘電特性が低下するという問題が発生してしまう。   When the dielectric film and the metal film are in close contact with each other, when the dielectric film and the metal film are subjected to thermal shock, cracks or tears occur in either of them due to the difference in the coefficient of thermal expansion between the two. This causes a problem of lowering.

図3(a)は、従来の誘電体フィルムを模式的に示す斜視図であり、(b)は、(a)のA−A線断面図である。図3(a)(b)に示した従来の誘電体フィルム101は、凸部107側が上側(頂部側)に向けて緩やかに湾曲する形状の凹部105および凸部107が周期的に配置された構成を有している。なお、特許文献1および2においても同様の構成が開示されており、これにより表面摩擦抵抗を低減できることから、誘電体フィルム101の滑り性を改善できるとされている。   Fig.3 (a) is a perspective view which shows the conventional dielectric film typically, (b) is the sectional view on the AA line of (a). In the conventional dielectric film 101 shown in FIGS. 3A and 3B, concave portions 105 and convex portions 107 having a shape in which the convex portion 107 side gently curves toward the upper side (the top side) are periodically arranged. It has a configuration. Patent Documents 1 and 2 also disclose the same configuration, which can reduce the surface frictional resistance, so that the slipperiness of the dielectric film 101 can be improved.

しかしながら、上記特許文献に開示されたような従来の誘電体フィルム101においても、誘電体フィルム101が薄層化されて、凸部107と凹部105との間の高低差(h)が小さくなった場合には、凸部105の頂部付近の面積が大きくなることから、誘電体フィルム101の表面103は、それ自身の他の部分や金属膜と密着しやすい状態になりやすく、依然として滑り性に難を有している。   However, even in the conventional dielectric film 101 as disclosed in the above patent document, the dielectric film 101 is thinned, and the height difference (h) between the convex portion 107 and the concave portion 105 is reduced. In this case, since the area near the top of the convex portion 105 becomes large, the surface 103 of the dielectric film 101 is likely to be in close contact with other parts of itself and the metal film, and still difficult to slip. have.

特開2009−141293号公報JP 2009-141293 A 特開2013−207158号公報JP 2013-207158 A

本発明は上記課題に鑑みなされたものであり、滑り性の良い誘電体フィルムと、それを用いたフィルムコンデンサを提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a dielectric film having good slipperiness and a film capacitor using the dielectric film.

本発明の誘電体フィルムは、有機樹脂を主成分とし、表面に平面方向に凹部が繰り返し設けられた誘電体フィルムであって、該誘電体フィルムを断面視したときに、前記凹部間は凸部となっており、該凸部は、頂部が平坦であるとともに、前記凸部の底部側に向けて湾曲する湾曲面を有していることを特徴とする。   The dielectric film of the present invention is a dielectric film having an organic resin as a main component and having concave portions repeatedly provided on the surface in a plane direction. When the dielectric film is viewed in cross section, the concave portions are convex portions. The convex portion has a flat top portion and a curved surface that curves toward the bottom side of the convex portion.

本発明のフィルムコンデンサは、上記誘電体フィルムの表面に金属膜を有していることを特徴とする。   The film capacitor of the present invention has a metal film on the surface of the dielectric film.

本発明によれば、滑り性の良い誘電体フィルムと、それを用いたフィルムコンデンサを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, a dielectric film with favorable slip property and a film capacitor using the same can be obtained.

(a)は、本発明の誘電体フィルムの一実施形態を模式的に示す斜視図であり、(b)は、(a)のA−A線断面図である。(A) is a perspective view which shows typically one Embodiment of the dielectric film of this invention, (b) is the sectional view on the AA line of (a). (a)は、誘電体フィルムの両面に電極層を有する構造を模式的に示す断面図であり、(b)は、本発明のフィルムコンデンサの一実施形態を示す外観斜視図である。(A) is sectional drawing which shows typically the structure which has an electrode layer on both surfaces of a dielectric film, (b) is an external appearance perspective view which shows one Embodiment of the film capacitor of this invention. (a)は、従来の誘電体フィルムを模式的に示す斜視図であり、(b)は、(a)のA−A線断面図である。(A) is a perspective view which shows the conventional dielectric film typically, (b) is the sectional view on the AA line of (a).

本実施形態の誘電体フィルム1は、有機樹脂を主成分とし、表面3に平面方向に凹部5が繰り返し設けられた構成を有するものである。また、誘電体フィルム1を断面視したときに、凹部5間は凸部7となっており、その凸部7の頂部7aが平坦であるとともに、凸部7の底部9側に向けて湾曲する湾曲面11を有している。   The dielectric film 1 of the present embodiment has a configuration in which an organic resin is a main component and a concave portion 5 is repeatedly provided on the surface 3 in a planar direction. Further, when the dielectric film 1 is viewed in cross section, the convex portions 7 are formed between the concave portions 5, and the top portion 7a of the convex portions 7 is flat and curves toward the bottom portion 9 side of the convex portions 7. It has a curved surface 11.

誘電体フィルム1の表面3に形成された凸部7は、その頂部7aの表面3が平坦であり、底部9側に向けて湾曲する湾曲面11を有するような形状であると、誘電体フィルム1が薄層化された場合にも、誘電体フィルム1の表面3に凹部5の形状が残りやすい。このため誘電体フィルム1が金属膜とともに巻回されたときに、両者が密着しても誘電体フィルム1の表面3に形成された凹部5によって形成される空隙により接着する面積が狭いものとなる。これにより誘電体フィルム1に接触する金属膜を密着し難くすることができ、滑り性の高いものとなる。   The convex portion 7 formed on the surface 3 of the dielectric film 1 has a shape in which the surface 3 of the top portion 7a is flat and has a curved surface 11 that curves toward the bottom portion 9 side. Even when 1 is thinned, the shape of the recess 5 tends to remain on the surface 3 of the dielectric film 1. For this reason, when the dielectric film 1 is wound together with the metal film, the area to be bonded becomes narrow due to the gap formed by the concave portion 5 formed on the surface 3 of the dielectric film 1 even if they are in close contact with each other. . As a result, the metal film in contact with the dielectric film 1 can be made difficult to adhere, and the slipperiness is high.

つまり、図3(a)(b)に示す上述した従来の誘電体フィルム101のように、表面103に形成された凸部107が上側(頂部側)に向けて緩やかに湾曲する形状となっている場合には、表面103が湾曲している分だけ平坦な面よりも凸部107の頂部における面積が大きいものとなる。誘電体フィルム101の表面103がこのような形状である場合に、誘電体フィルム101が薄層化されると、凸部107と凹部105との間の高低差(h)が小さくなると同時に、凸部107の頂部における曲率(半径)が大きくなることから、誘電体フィルム101の凸部107の頂部における面積はさらに広くなってくる。このため誘電体フィルム101は密着しやすくなり、滑り性が劣るものとなる。   That is, like the above-described conventional dielectric film 101 shown in FIGS. 3A and 3B, the convex portion 107 formed on the surface 103 is gently curved toward the upper side (the top side). If the surface 103 is curved, the area at the top of the convex portion 107 is larger than the flat surface because the surface 103 is curved. When the surface 103 of the dielectric film 101 has such a shape, when the dielectric film 101 is thinned, the height difference (h) between the convex portion 107 and the concave portion 105 becomes small, and at the same time, the convexity Since the curvature (radius) at the top of the portion 107 is increased, the area at the top of the convex portion 107 of the dielectric film 101 is further increased. For this reason, the dielectric film 101 becomes easy to adhere, and slipperiness becomes inferior.

これに対し、本実施形態の誘電体フィルム1は、図1(a)(b)に示すように、凸部7の頂部7aが平坦であるため、凸部7の表面3が湾曲している構造に比べて凸部7の面積が狭いものとなっている。   On the other hand, as shown in FIGS. 1A and 1B, the dielectric film 1 of this embodiment has a flat top portion 7a of the convex portion 7, and thus the surface 3 of the convex portion 7 is curved. The area of the convex portion 7 is narrower than that of the structure.

また、本実施形態の誘電体フィルム1では、凸部7が底部9側に向けて湾曲する湾曲面11を有する構造となっていることから、誘電体フィルム1が薄層化され、凹部5の深さが浅くなっても凹部5には空隙が残りやすく、密着する面積が拡大し難い。このため誘電体フィルム1は密着し難いものとなり、滑り性が向上する。このような構造の誘電体フィルム1としては、厚み(平均厚み)が0.5〜3μmであるような薄い誘電体フィルム1に好適なものとなる。   Moreover, in the dielectric film 1 of this embodiment, since the convex part 7 has the structure which has the curved surface 11 which curves toward the bottom part 9 side, the dielectric film 1 is thinned and the concave part 5 of FIG. Even if the depth becomes shallow, a gap is likely to remain in the recess 5, and the contact area is difficult to expand. For this reason, the dielectric film 1 becomes difficult to adhere and the slipperiness is improved. The dielectric film 1 having such a structure is suitable for a thin dielectric film 1 having a thickness (average thickness) of 0.5 to 3 μm.

ここで、有機樹脂を主成分とするとは、誘電体フィルム1中に有機樹脂が70体積%以上含まれている場合をいい、有機樹脂の他に、セラミック粒子などの高誘電率材料を含んでいても良い。   Here, the organic resin as a main component means that the dielectric film 1 contains 70% by volume or more of an organic resin, and includes a high dielectric constant material such as ceramic particles in addition to the organic resin. May be.

誘電体フィルム1の表面3に凹部5および凸部7が形成された状態というのは、誘電体フィルム1の表面粗さを測定したときに、凸部7と凹部5(凸部7の頂部7aと凹部7の底5a)との間の高低差が50nm以上であるものをいう。   The state in which the concave portion 5 and the convex portion 7 are formed on the surface 3 of the dielectric film 1 is that when the surface roughness of the dielectric film 1 is measured, the convex portion 7 and the concave portion 5 (the top portion 7a of the convex portion 7). And the bottom 5a) of the recess 7 are those having a height difference of 50 nm or more.

このような表面構造を有する誘電体フィルム1の場合、表面3の密着性をさらに低減できるという点で、誘電体フィルム1を平面視したときの凹部5の総面積Aが頂部7aの総面積Bよりも広いことが望ましい。ここで、凹部5の総面積Aは、誘電体フィルム1の単位面積となる所定の領域における凹部5の面積を合計したものを言い、一方、凸部7の総面積Bとは、同じ領域において、凹部5の総面積Aの部分を除いた領域のことを言う。   In the case of the dielectric film 1 having such a surface structure, the total area A of the recesses 5 when the dielectric film 1 is viewed in plan is the total area B of the top portion 7a in that the adhesion of the surface 3 can be further reduced. It is desirable that it is wider. Here, the total area A of the recesses 5 is the sum of the areas of the recesses 5 in a predetermined region that is a unit area of the dielectric film 1, while the total area B of the protrusions 7 is the same area. It means a region excluding the portion of the total area A of the recess 5.

また、本実施形態の誘電体フィルム1では、凸部7の頂部7a同士を結ぶ面が略面一であることが望ましい。誘電体フィルム1に形成された凸部7の高さの位置が異なるような場合には、その表面3に金属膜を形成した後に行われる扁平化処理の後に、凸部7が平坦化されると同時に凹部7の深さが浅くなり、表面3の面積が大きくなりやすい。これに対し、凸部7の頂部7a同士を結ぶ面が元々略面一であると、扁平化処理後においても凹部5および凸部7の変形が少ないため、誘電体フィルム1の凸部7の頂部7aの面積が維持され、加工工程においても誘電体フィルム1の密着性が高くなるのを抑えることができる。   Moreover, in the dielectric film 1 of this embodiment, it is desirable that the surface connecting the top portions 7a of the convex portions 7 is substantially flush. In the case where the height positions of the convex portions 7 formed on the dielectric film 1 are different, the convex portions 7 are flattened after the flattening process performed after the metal film is formed on the surface 3 thereof. At the same time, the depth of the recess 7 becomes shallow, and the area of the surface 3 tends to increase. On the other hand, when the surface connecting the top portions 7a of the convex portions 7 is originally substantially flush, the deformation of the concave portions 5 and the convex portions 7 is small even after the flattening process. The area of the top portion 7a is maintained, and it is possible to suppress the adhesion of the dielectric film 1 from being increased in the processing step.

ここで、略面一であるとは、誘電体フィルム1を定盤などの平坦面に載せたときの表面3の高さの位置が20nm以下である場合をいう。   Here, being substantially flush means that the height position of the surface 3 when the dielectric film 1 is placed on a flat surface such as a surface plate is 20 nm or less.

誘電体フィルム1の凹部5および凸部7は、例えば、原子間力顕微鏡(AFM)を用いて検知することができる。   The concave portion 5 and the convex portion 7 of the dielectric film 1 can be detected using, for example, an atomic force microscope (AFM).

図2は、(a)は、誘電体フィルムの両面に金属膜を有する構造を模式的に示す断面図であり、(b)は、本発明のフィルムコンデンサの一実施形態を示す外観斜視図である。   2A is a cross-sectional view schematically showing a structure having metal films on both surfaces of a dielectric film, and FIG. 2B is an external perspective view showing an embodiment of the film capacitor of the present invention. is there.

上述した誘電体フィルム1を具備する本実施形態のフィルムコンデンサは、誘電体フィルム1の両面に金属膜21を備えている構成を基本構造とする本体部23により構成されている。この本体部23は、誘電体フィルム1の滑り性が高いために、長尺状の誘電体フィルム1と金属膜21とが巻回された巻回型のフィルムコンデンサに適している。   The film capacitor of the present embodiment including the dielectric film 1 described above is constituted by a main body portion 23 having a basic structure in which a metal film 21 is provided on both surfaces of the dielectric film 1. The main body 23 is suitable for a wound type film capacitor in which the long dielectric film 1 and the metal film 21 are wound because the dielectric film 1 has high slipperiness.

このフィルムコンデンサは外部電極24に端子としてさらにリード線25を有していても良いが、フィルムコンデンサの小型化という点でリード線25を有しない構造が望ましい。また、本体部23、外部電極24およびリード線25の一部は絶縁性および耐環境の点から外装部材26に覆われていてもよい。   The film capacitor may further have a lead wire 25 as a terminal on the external electrode 24, but a structure without the lead wire 25 is desirable in terms of miniaturization of the film capacitor. Further, the main body 23, the external electrode 24, and a part of the lead wire 25 may be covered with the exterior member 26 in terms of insulation and environment resistance.

次に、本実施形態の誘電体フィルムおよびフィルムコンデンサは、例えば、以下に示すような製造方法によって得ることができる。まず、誘電体フィルム1の母材となる有機樹脂を用意する。   Next, the dielectric film and film capacitor of the present embodiment can be obtained, for example, by a manufacturing method as described below. First, an organic resin that serves as a base material for the dielectric film 1 is prepared.

有機樹脂としては、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、ポリエチレンナフタレート(PEN)およびシクロオレフィンポリマー(COP)、などが好適である。   As the organic resin, polyethylene terephthalate (PET), polypropylene (PP), polyphenylene sulfide (PPS), polyethylene naphthalate (PEN), cycloolefin polymer (COP), and the like are suitable.

これらの有機樹脂の室温(約25℃)における比誘電率(ε)は、例えば、ポリエチレンテレフタレート(PET)が3.3、ポリプロピレン(PP)が2.3、ポリフェニレンサルファイド(PPS)が3.0、シクロオレフィンポリマー(COP)が2.2〜3.0である。   The relative dielectric constant (ε) of these organic resins at room temperature (about 25 ° C.) is, for example, 3.3 for polyethylene terephthalate (PET), 2.3 for polypropylene (PP), and 3.0 for polyphenylene sulfide (PPS). The cycloolefin polymer (COP) is 2.2 to 3.0.

また、これらの有機樹脂の室温(約25℃)における破壊電界強度(E)は、例えば、ポリエチレンテレフタレート(PET)が310(V/μm)、ポリプロピレン(PP)が380(V/μm)、ポリフェニレンサルファイド(PPS)が210(V/μm)、シクロオレフィンポリマー(COP)が370〜510(V/μm)である。   The breakdown electric field strength (E) of these organic resins at room temperature (about 25 ° C.) is, for example, 310 (V / μm) for polyethylene terephthalate (PET), 380 (V / μm) for polypropylene (PP), polyphenylene The sulfide (PPS) is 210 (V / μm), and the cycloolefin polymer (COP) is 370 to 510 (V / μm).

金属酸化物5aとなる原料組成物としては、テトラ−i−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−n−ブトキシジルコニウム、トリ−i−プロポキシアルミニウム、およびトリ−n−ブトキシアルミニウムから選ばれる少なくとも1種の金属アルコキシド化合物を適用できる。   The raw material composition to be the metal oxide 5a is selected from tetra-i-propoxy titanium, tetra-n-butoxy titanium, tetra-n-butoxy zirconium, tri-i-propoxy aluminum, and tri-n-butoxy aluminum. At least one metal alkoxide compound can be applied.

誘電体フィルム1を形成する場合、例えば、基材としてPET製のフィルムを適用し、この表面に、溶液キャスト法などの成形法を適用して、有機樹脂シートを形成することにより、誘電体フィルム1を得ることができる。   When forming the dielectric film 1, for example, a PET film is applied as a base material, and a molding method such as a solution casting method is applied to the surface to form an organic resin sheet, thereby forming the dielectric film. 1 can be obtained.

誘電体フィルム1用のスラリとしては、有機樹脂を溶剤に溶解させて調製した樹脂スラリを用いる。このとき、スラリは塗工後の乾燥過程でマランゴニ対流が発生する固形分濃度に調整しておくのが良い。この場合のスラリの固形分濃度としては、10〜20質量%の範囲としておくことが望ましい。これにより誘電体フィルム1における凸部7の頂部7aが平坦であるとともに、凸部7の底部9側に向けて湾曲する湾曲面11を有する誘電体フィルム1を得ることができる。このような製法により得られる誘電体フィルム1の凸部7は、頂部7aの幅が50nm以下と薄く、凸部7は凹部5の輪郭であるような構造となっている。これにより誘電体フィルム1の表面3には、多くの凹部5が密接するように形成されることから、誘電体フィルム1の厚みが薄くなっても凹部5が残りやすいものとなる。   As the slurry for the dielectric film 1, a resin slurry prepared by dissolving an organic resin in a solvent is used. At this time, the slurry is preferably adjusted to a solid content concentration at which Marangoni convection is generated in the drying process after coating. In this case, the solid concentration of the slurry is preferably in the range of 10 to 20% by mass. Thereby, while the top part 7a of the convex part 7 in the dielectric film 1 is flat, the dielectric film 1 which has the curved surface 11 which curves toward the bottom part 9 side of the convex part 7 can be obtained. The convex part 7 of the dielectric film 1 obtained by such a manufacturing method has a structure in which the width of the top part 7a is as thin as 50 nm or less, and the convex part 7 is the outline of the concave part 5. As a result, many concave portions 5 are formed in close contact with the surface 3 of the dielectric film 1, so that the concave portions 5 are likely to remain even when the thickness of the dielectric film 1 is reduced.

成膜に使用する溶剤としては、例えば、メタノール、イソプロパノール、n-ブタノール、エチレングリコール、エチレングリコールモノプロピルエーテル、メチルエチルケトン、メチルイソブチルケトン、キシレン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、シクロヘキサン、エチルシクロヘキサン、又は、これらから選択された2種以上の混合物を含んだ有機溶剤を用いるのがよい。   Examples of the solvent used for film formation include methanol, isopropanol, n-butanol, ethylene glycol, ethylene glycol monopropyl ether, methyl ethyl ketone, methyl isobutyl ketone, xylene, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dimethylacetamide, It is preferable to use an organic solvent containing cyclohexane, ethylcyclohexane, or a mixture of two or more selected from these.

次に、誘電体フィルム1の表面にAl(アルミニウム)などの金属成分を蒸着することによって金属膜21を形成し、次いで、金属膜21を形成した誘電体フィルム1を巻回させてフィルムコンデンサの本体部23を得る。   Next, the metal film 21 is formed by vapor-depositing a metal component such as Al (aluminum) on the surface of the dielectric film 1, and then the dielectric film 1 on which the metal film 21 is formed is wound to form a film capacitor. A main body 23 is obtained.

次に、本体部23の金属膜21が露出した端面に外部電極24を形成する。外部電極24の形成には、例えば、金属の溶射、スパッタ法、メッキ法などが好適である。また、ここで、外部電極24にリード線25を形成しても良い。次いで、外部電極24(リード線25を含む)を形成した本体部23の表面に外装樹脂26を形成することによって本実施形態のフィルムコンデンサを得ることができる。   Next, the external electrode 24 is formed on the end surface of the main body 23 where the metal film 21 is exposed. For the formation of the external electrode 24, for example, metal spraying, sputtering, plating, or the like is suitable. Here, the lead wire 25 may be formed on the external electrode 24. Next, the film capacitor of the present embodiment can be obtained by forming the exterior resin 26 on the surface of the main body 23 on which the external electrodes 24 (including the lead wires 25) are formed.

具体的な材料の選択を行って誘電体フィルムを作製し、以下の評価を行った。   A specific material was selected to produce a dielectric film, and the following evaluation was performed.

まず、樹脂としてシクロオレフィンポリマー(COP;分子量:Mw=20000)を準備した。   First, a cycloolefin polymer (COP; molecular weight: Mw = 20000) was prepared as a resin.

次に、この樹脂(COP)をシクロヘキサンを主成分とする溶剤に溶解させてスラリを調製した。このときのスラリの固形分濃度は10〜20質量%の範囲であり、加熱したときにマランゴニ対流が見られた。   Next, this resin (COP) was dissolved in a solvent containing cyclohexane as a main component to prepare a slurry. The solid content concentration of the slurry at this time was in the range of 10 to 20% by mass, and Marangoni convection was observed when heated.

この後、相対湿度を55%±5%とした条件で、コーターにより、上記スラリをポリエチレンテレフタレート(PET)フィルム上に塗布することによって誘電体フィルムを作製した。凸部の頂部が平坦であるとともに、凸部の底部側に向けて湾曲する湾曲面を有するものであった(試料1)。   Then, the dielectric film was produced by apply | coating the said slurry on a polyethylene terephthalate (PET) film with a coater on the conditions which made relative humidity 55% +/- 5%. The top of the convex portion was flat and had a curved surface that curved toward the bottom side of the convex portion (Sample 1).

作製した誘電体フィルムは、180℃で脱溶剤を行った後の平均厚みが2.5μmであった。   The produced dielectric film had an average thickness of 2.5 μm after solvent removal at 180 ° C.

次に、真空蒸着法により誘電体フィルムの両面に平均厚みが75nmのAlの電極層を形成した。   Next, an Al electrode layer having an average thickness of 75 nm was formed on both surfaces of the dielectric film by vacuum deposition.

誘電体フィルムおよび金属膜の平均厚みは作製した試料(金属膜付き誘電体フィルム)の一部を切り取り、10等分した領域を測定した平均値より求めた。   The average thickness of the dielectric film and the metal film was obtained from an average value obtained by measuring a region obtained by cutting out a part of the produced sample (dielectric film with metal film) and dividing it into 10 equal parts.

誘電体フィルムの密着強度は、クロスカット法(JISK5600−5−6)を用いて評価した。カッターを用いて誘電体フィルムの表面に2mm間隔で6本切り込みを入れ、90°方向を変えて直行する6本の切込みをさらに入れ、格子状とした。75mmの長さに切り出したセロハンテープを金属膜の格子にカットした部分に貼り、強く圧着させ、その後、テープの端を約60°の角度で一気に引き剥がした。誘電体フィルムの剥離状態はJISK5600−5−6の0〜5段階の評価方法で評価した。測定試料数は10個とした。   The adhesion strength of the dielectric film was evaluated using a cross-cut method (JISK5600-5-6). Using a cutter, 6 cuts were made on the surface of the dielectric film at intervals of 2 mm, and 6 cuts that were changed perpendicularly by changing the 90 ° direction were further made into a lattice shape. A cellophane tape cut out to a length of 75 mm was attached to the cut portion of the metal film lattice and pressed firmly, and then the end of the tape was peeled off at an angle of about 60 °. The peeled state of the dielectric film was evaluated by the 0-5 scale evaluation method of JISK5600-5-6. The number of measurement samples was 10.

試料1の誘電体フィルムにおける膜の表面形態は、原子間力顕微鏡(AFM)により確認した。凹部と凸部との高低差が約60nmあった。また、この誘電体フィルムは凸部同士を結ぶ面が略面一となっていた。また、誘電体フィルムを平面視したときの凹部の総面積が頂部の総面積よりも10%ほど大きいものであった。これらの測定は2mm×2mm以下の領域にて行った。   The surface form of the film in the dielectric film of Sample 1 was confirmed by an atomic force microscope (AFM). The difference in height between the concave and convex portions was about 60 nm. Further, this dielectric film had a substantially flat surface connecting the convex portions. Further, the total area of the recesses when the dielectric film was viewed in plan was about 10% larger than the total area of the top. These measurements were performed in an area of 2 mm × 2 mm or less.

また、試料1の誘電体フィルムの作製に用いたスラリよりも溶剤量を減らしてスラリ粘度を1.5倍にしたスラリから誘電体フィルムを作製した。この試料2の誘電体フィルムは、誘電体フィルムを平面視したときの凹部の総面積が頂部の総面積よりも5%ほど小さいものであった(試料2)。   In addition, a dielectric film was produced from a slurry in which the amount of solvent was reduced from the slurry used to produce the dielectric film of Sample 1 and the slurry viscosity was 1.5 times. In the dielectric film of Sample 2, the total area of the recesses when the dielectric film was viewed in plan was about 5% smaller than the total area of the top (Sample 2).

比較例として、固形分濃度が25〜35重量%のスラリを用いて誘電体フィルムを作製し、上記と同様の評価を行った。このとき調製したスラリは加熱してもマランゴニ対流は見られず、作製した誘電体フィルムの表面粗さは10nm以下であり、表面に凹部および凸部のほとんど見られないものであった(試料3)。   As a comparative example, a dielectric film was prepared using a slurry having a solid content concentration of 25 to 35% by weight, and the same evaluation as described above was performed. The slurry prepared at this time did not show Marangoni convection even when heated, and the surface roughness of the produced dielectric film was 10 nm or less, and there were almost no concaves and convexes on the surface (Sample 3). ).

また、比較例の誘電体フィルムを作製するために調製したスラリを凹凸を有するロールに接触させて成形した誘電体フィルムも作製した(試料4)。   Moreover, the dielectric film which shape | molded the slurry prepared in order to produce the dielectric film of a comparative example was made to contact the roll which has an unevenness | corrugation was also produced (sample 4).

作製した誘電体フィルムについて、それぞれ密着強度を評価した。試料1の誘電体フィ
ルムは、クロスカット法による5段階の評価で段階5であったが、試料2の誘電体フィルムは、段階4であり、いずれも密着強度が低く、滑り性の良いものであった。一方、比較例である試料3の誘電体フィルムは段階1であった。また、凹凸を有するロールに接触させて成形した試料4の誘電体フィルムは段階2であり、これらは試料1および試料2に比較して密着強度が高く、滑り性に劣るものであった。
The produced dielectric film was evaluated for adhesion strength. The dielectric film of sample 1 was in stage 5 in a five-step evaluation by the cross-cut method, but the dielectric film of sample 2 was in stage 4, both of which had low adhesion strength and good slipperiness. there were. On the other hand, the dielectric film of Sample 3 as a comparative example was in stage 1. In addition, the dielectric film of Sample 4 formed by contacting with a roll having irregularities was in stage 2, which had higher adhesion strength than Sample 1 and Sample 2, and was inferior in slipperiness.

1、101・・・・・・・誘電体フィルム
3、103・・・・・・・表面
5、105・・・・・・・凹部
5a・・・・・・・・・・(凹部の)底
7、107・・・・・・・凸部
7a・・・・・・・・・・(凸部の)頂部
9・・・・・・・・・・・(凸部の)底部
11・・・・・・・・・・湾曲面
23・・・・・・・・・・本体部
24・・・・・・・・・・外部電極
25・・・・・・・・・・リード
26・・・・・・・・・・外装部材
1, 101... Dielectric film 3, 103 .. Surface 5, 105... Recess 5a. Bottom 7, 107... Convex 7a... (Convex) Top 9... (Convex) Bottom 11 ········ curved surface 23 ··································・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Exterior material

Claims (4)

有機樹脂を主成分とし、表面に平面方向に凹部が繰り返し設けられた誘電体フィルムであって、該誘電体フィルムを断面視したときに、前記凹部間は凸部となっており、該凸部は、頂部が平坦であるとともに、前記凸部の底部側に向けて湾曲する湾曲面を有していることを特徴とする誘電体フィルム。   A dielectric film comprising organic resin as a main component and having concave portions repeatedly provided in a plane direction on the surface, and when the dielectric film is viewed in cross section, the concave portions are convex portions, and the convex portions Is a dielectric film characterized in that the top part is flat and has a curved surface that curves toward the bottom side of the convex part. 平面視したときの前記凹部の総面積が前記頂部の総面積よりも広いことを特徴とする請求項1に記載の誘電体フィルム。   2. The dielectric film according to claim 1, wherein a total area of the recesses in a plan view is wider than a total area of the top part. 前記頂部同士を結ぶ面が略面一であることを特徴とする請求項1または2に記載の誘電体フィルム。   The dielectric film according to claim 1, wherein a surface connecting the tops is substantially flush. 請求項1乃至3のうちいずれかに記載の誘電体フィルムの表面に金属膜を有していることを特徴とするフィルムコンデンサ。


A film capacitor comprising a metal film on a surface of the dielectric film according to claim 1.


JP2013244015A 2013-11-26 2013-11-26 Dielectric film and film capacitor Active JP6199711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013244015A JP6199711B2 (en) 2013-11-26 2013-11-26 Dielectric film and film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013244015A JP6199711B2 (en) 2013-11-26 2013-11-26 Dielectric film and film capacitor

Publications (2)

Publication Number Publication Date
JP2015101677A true JP2015101677A (en) 2015-06-04
JP6199711B2 JP6199711B2 (en) 2017-09-20

Family

ID=53377669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013244015A Active JP6199711B2 (en) 2013-11-26 2013-11-26 Dielectric film and film capacitor

Country Status (1)

Country Link
JP (1) JP6199711B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005823A1 (en) * 2019-07-10 2021-01-14 株式会社村田製作所 Film capacitor and film for film capacitor
US20230021057A1 (en) * 2019-12-20 2023-01-19 Kyocera Corporation Film capacitor element and film capacitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167616A (en) * 1981-03-17 1982-10-15 Siemens Ag Method of producing laminated capacitor
JPS58104674A (en) * 1981-12-18 1983-06-22 Toray Ind Inc Method of making light-permeable film having rugged surface
JPS58205735A (en) * 1982-05-25 1983-11-30 Teijin Ltd Polyester film and production thereof
JPS6288207A (en) * 1985-10-14 1987-04-22 帝人株式会社 Polyester film for dielectric of capacitor
JP2007290380A (en) * 2006-03-28 2007-11-08 Toray Ind Inc Metallized biaxially oriented polypropylene film and capacitor comprised of the same
JP2009141293A (en) * 2007-12-11 2009-06-25 Shin Etsu Polymer Co Ltd Method of manufacturing capacitor film, and capacitor film
JP2012089608A (en) * 2010-10-18 2012-05-10 Shin Etsu Polymer Co Ltd Film for film capacitor
JP2013207158A (en) * 2012-03-29 2013-10-07 Hitachi Aic Inc Metallized film capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167616A (en) * 1981-03-17 1982-10-15 Siemens Ag Method of producing laminated capacitor
JPS58104674A (en) * 1981-12-18 1983-06-22 Toray Ind Inc Method of making light-permeable film having rugged surface
JPS58205735A (en) * 1982-05-25 1983-11-30 Teijin Ltd Polyester film and production thereof
JPS6288207A (en) * 1985-10-14 1987-04-22 帝人株式会社 Polyester film for dielectric of capacitor
JP2007290380A (en) * 2006-03-28 2007-11-08 Toray Ind Inc Metallized biaxially oriented polypropylene film and capacitor comprised of the same
JP2009141293A (en) * 2007-12-11 2009-06-25 Shin Etsu Polymer Co Ltd Method of manufacturing capacitor film, and capacitor film
JP2012089608A (en) * 2010-10-18 2012-05-10 Shin Etsu Polymer Co Ltd Film for film capacitor
JP2013207158A (en) * 2012-03-29 2013-10-07 Hitachi Aic Inc Metallized film capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005823A1 (en) * 2019-07-10 2021-01-14 株式会社村田製作所 Film capacitor and film for film capacitor
JPWO2021005823A1 (en) * 2019-07-10 2021-01-14
JP7268734B2 (en) 2019-07-10 2023-05-08 株式会社村田製作所 Film capacitors and films for film capacitors
US20230021057A1 (en) * 2019-12-20 2023-01-19 Kyocera Corporation Film capacitor element and film capacitor

Also Published As

Publication number Publication date
JP6199711B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
KR102128339B1 (en) Release film for green sheet manufacturing, release film manufacturing method for green sheet manufacturing, green sheet manufacturing method, and green sheet
JP6199711B2 (en) Dielectric film and film capacitor
US20210108091A1 (en) Coated articles that demonstrate moisture resistance, suitable for use in electronic packages
KR20220070286A (en) Conductive film and manufacturing method thereof, and temperature sensor film and manufacturing method thereof
JP5554116B2 (en) Release film for molding ceramic green sheet and method for producing the same
KR20210148070A (en) Release film for ceramic green sheet manufacturing process
JP2015103700A (en) Film capacitor
JP6321414B2 (en) Film capacitor
JP5785706B2 (en) Release film for molding ceramic green sheet and method for producing the same
JP2015029005A (en) Dielectric film and film capacitor
JP6215635B2 (en) Laminate and film capacitor
US9818539B2 (en) Thin film capacitor with improved resistance to dielectric breakdown
JP6219637B2 (en) Dielectric film and film capacitor
JP6258663B2 (en) Film capacitor
JP6441583B2 (en) Dielectric film and film capacitor
CN114746265B (en) Metallized film and film capacitor using the same
JP2015183181A (en) High insulation film and film capacitor using the same
JP2015023174A (en) Film capacitor
JP5686050B2 (en) Micro heater element
US20220310576A1 (en) Semiconductor package structure and methods of manufacturing the same
JP4877387B2 (en) Radial lead electronic components
KR20210047928A (en) Heater and heater attachment
JP2023141167A (en) Metalized film and film capacitor including the same
JP2015211071A (en) Film capacitor
JP2018157016A (en) Insulating film for capacitor and film capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170824

R150 Certificate of patent or registration of utility model

Ref document number: 6199711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150