JP2015098647A - Method of detecting clogging of piping in dust coal blowing installation of blast furnace - Google Patents

Method of detecting clogging of piping in dust coal blowing installation of blast furnace Download PDF

Info

Publication number
JP2015098647A
JP2015098647A JP2014209915A JP2014209915A JP2015098647A JP 2015098647 A JP2015098647 A JP 2015098647A JP 2014209915 A JP2014209915 A JP 2014209915A JP 2014209915 A JP2014209915 A JP 2014209915A JP 2015098647 A JP2015098647 A JP 2015098647A
Authority
JP
Japan
Prior art keywords
downstream
pressure
clogging
value
transportation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014209915A
Other languages
Japanese (ja)
Other versions
JP6020531B2 (en
Inventor
堀 隆行
Takayuki Hori
隆行 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014209915A priority Critical patent/JP6020531B2/en
Publication of JP2015098647A publication Critical patent/JP2015098647A/en
Application granted granted Critical
Publication of JP6020531B2 publication Critical patent/JP6020531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of detecting clogging of piping in a dust coal blowing installation of a blast furnace which is not affected by equipment arranged around the piping and can reduce the time from occurrence of clogging of dust coal in the piping to detection of the clogging, compared with conventional methods.SOLUTION: A method of detecting clogging of piping in a dust coal blowing installation of a blast furnace includes a step of calculating an absolute value of a differential pressure between a pressure measurement in an upstream air feeding system and a pressure measurement in a downstream air feeding system and a step of detecting clogging of piping by determining occurrence of dust coal clogging of the piping of the upstream air feeding system when the magnitude of the absolute value of the calculated differential value is equal to or greater than a pre-set upstream threshold value P1 and the pressure measurement in the downstream air feeding system is equal to or smaller than a pre-set first downstream threshold value B1 and determining occurrence of dust coal clogging of the piping of the downstream air feeding system when the magnitude of the absolute value of the calculated differential pressure is equal to or greater than a pre-set downstream threshold value and the pressure measurement value in the downstream air feeding system is greater than a pre-set second downstream pressure threshold value.

Description

本発明は、高炉へ微粉炭を吹込む設備における配管に、微粉炭の詰まりが発生したことを検知する技術に関する。   The present invention relates to a technique for detecting the occurrence of clogging of pulverized coal in piping in equipment for blowing pulverized coal into a blast furnace.

従来、高炉操業においては、高価なコークスの使用量を減らすために、コークスの一部代替として、石炭を微粉砕した微粉炭を、高炉の内部に吹き込む方法が実施されている。微粉炭は、熱風が送り込まれた乾燥雰囲気下で石炭を石炭破砕機で破砕して形成され、バグフィルターで捕集された後、篩分装置で選別された所定粒度以下のものが、微粉炭ホッパーに貯留され、更にその後、吹込み用のインジェクションタンクに供給される。インジェクションタンクは、輸送配管によって吹込本管と接続されるとともに、吹込本管は途中で分岐して複数の分岐管となり、高炉羽口に至る。   Conventionally, in blast furnace operation, in order to reduce the amount of expensive coke used, a method of blowing finely pulverized coal into the interior of the blast furnace as a partial substitute for coke has been implemented. Pulverized coal is formed by crushing coal with a coal crusher in a dry atmosphere fed with hot air, collected with a bag filter, and then screened with a sieving device, with a particle size of less than a predetermined size. It is stored in the hopper and then supplied to the injection tank for blowing. The injection tank is connected to the blowing main pipe by a transport pipe, and the blowing main pipe is branched in the middle to form a plurality of branch pipes to reach the blast furnace tuyere.

そして、インジェクションタンクに窒素等の圧縮ガスが供給されることで、微粉炭は輸送配管に送り出され、吹込本管及び分岐管を介して高炉の羽口まで搬送される。高炉羽口におけるそれぞれの分岐管の先端には微粉炭吹込み用のランスが設けられており、微粉炭はこの複数のランスによって高炉内部へ吹き込まれる。インジェクションタンク内の圧力は、高炉の内圧よりも高くされているが、インジェクションタンク内の圧力は、通常、吹込本管よりも低い。よってインジェクションタンクからの送出圧のみでは、微粉炭を複数の高炉羽口から均一且つ十分な圧力で炉内に吹き込むのは困難であるため、吹込本管に微粉炭希釈用のガスを兼ねて加圧された空気が送り込まれて混合されることが多い。   And by supplying compressed gas, such as nitrogen, to an injection tank, pulverized coal is sent out to transport piping, and is conveyed to the tuyere of a blast furnace via a blow-in main pipe and a branch pipe. A lance for blowing pulverized coal is provided at the tip of each branch pipe in the blast furnace tuyere, and the pulverized coal is blown into the blast furnace by the plurality of lances. The pressure in the injection tank is set higher than the internal pressure of the blast furnace, but the pressure in the injection tank is usually lower than that of the blow-in main. Therefore, it is difficult to blow pulverized coal into the furnace at a uniform and sufficient pressure from a plurality of blast furnace tuyeres only with the delivery pressure from the injection tank. Therefore, the pulverized coal dilution gas is added to the blow-in main. Often compressed air is fed and mixed.

このように微粉炭とキャリヤガスとを含む固気2相流が形成され、微粉炭は高炉羽口部まで気送される。尚、以下の説明において、輸送配管と吹込本管との合流部より上流側で微粉炭を気送する流路を形成する一群の装置及び配管をまとめて上流気送系と称するとともに、合流部より下流側で高炉羽口まで微粉炭を気送する流路を形成する一群の装置及び配管を下流気送系と称する。上記したインジェクションタンク及び輸送配管は上流気送系に属する。また吹込本管、分岐管、ランス等の配管は下流気送系に属する(図1参照)。   Thus, a solid-gas two-phase flow including pulverized coal and carrier gas is formed, and the pulverized coal is fed to the blast furnace tuyere. In the following description, a group of devices and pipes that form a flow path for feeding pulverized coal upstream from the junction between the transport pipe and the blow-in main pipe are collectively referred to as an upstream air delivery system. A group of devices and pipes that form a flow path for airing pulverized coal to the blast furnace tuyere on the downstream side are referred to as a downstream air transportation system. The above-described injection tank and transportation piping belong to the upstream air transportation system. In addition, pipes such as a blow-in main pipe, a branch pipe, and a lance belong to the downstream air transportation system (see FIG. 1).

ここで、微粉炭は、上記のようにバグフィルターによる捕集及び篩分装置による篩分け処理において、木片や糸屑その他の異物が除去された上で所定の粒度以下のものが選別されている。しかし、高炉の炉内圧力の変化やその他の操業要因の変化により、上流気送系又は下流気送系の配管に微粉炭が詰まることがある。これらの配管に詰まりが発生すると、高炉周壁方向の微粉炭吹込量の低下や不均一な吹込みが生じるため、操業の予定に則った微粉炭吹込みができなくなり、高炉の炉況を悪化させる。
このように、高炉への微粉炭吹込設備の配管における微粉炭の詰まりは、高炉操業に多大な損失を与える。よって微粉炭吹込み操業においては、微粉炭が配管に付着したり閉塞したりすることなくスムーズに流れることが要請されるとともに、詰まりが発生した場合には速やかにこれを検知することが望まれている。
Here, the pulverized coal is selected to have a particle size of not more than a predetermined particle size after removing pieces of wood, lint and other foreign matters in the collection by the bag filter and the sieving process by the sieving device as described above. . However, pulverized coal may be clogged in the piping of the upstream air transportation system or the downstream air transportation system due to changes in the pressure inside the blast furnace or other operating factors. When these pipes are clogged, the amount of pulverized coal blown in the direction of the blast furnace peripheral wall will be reduced or unevenly blown, making it impossible to inject pulverized coal according to the schedule of operations, which will deteriorate the furnace conditions of the blast furnace. .
Thus, clogging of the pulverized coal in the piping of the pulverized coal injection facility to the blast furnace causes a great loss to the blast furnace operation. Therefore, in pulverized coal injection operation, pulverized coal is required to flow smoothly without adhering to or clogging the piping, and it is desirable to detect this quickly when clogging occurs. ing.

そこで、こうした配管の詰まりの発生を検知する方法を見てみると、特許文献1〜3に記載の技術がある。特許文献1の技術は、微粉炭を供給する配管の外側に音響センサを設け、その出力信号から配管内の詰まりを検出するものである。特許文献2の技術は、高炉羽口部における微粉炭の未燃焼領域に着目し、高炉羽口部に放射温度カメラを設置し、その高炉羽口内の温度分布を画像解析して、ランスの詰まりを推定するものである。特許文献3の技術は、微粉炭が80℃程度の温度を有しており、微粉炭が配管に詰まった場合詰まった部位の配管の表面温度が変化することに着目し、周辺設備から温度の影響を受けにくい位置の配管の表面に熱電対を取り付けて配管の表面温度を連続的に測定し、その温度変化量から詰まりの発生の有無を判定するものである。   Then, when seeing the method of detecting the occurrence of such clogged piping, there are techniques described in Patent Documents 1 to 3. In the technique of Patent Document 1, an acoustic sensor is provided outside a pipe for supplying pulverized coal, and clogging in the pipe is detected from the output signal. The technology of Patent Document 2 focuses on the unburned area of pulverized coal at the blast furnace tuyere, installs a radiation temperature camera at the blast furnace tuyere, analyzes the image of the temperature distribution in the blast furnace tuyere, and clogs the lance. Is estimated. The technology of Patent Document 3 pays attention to the fact that the pulverized coal has a temperature of about 80 ° C., and when the pulverized coal is clogged in the pipe, the surface temperature of the clogged portion of the pipe changes, A thermocouple is attached to the surface of a pipe that is not easily affected, the surface temperature of the pipe is continuously measured, and the presence or absence of clogging is determined from the temperature change amount.

特開平09−067605号公報JP 09-0667605 A 特開平06−093317号公報Japanese Patent Laid-Open No. 06-093317 特開2001−040404号公報JP 2001-040404 A

しかし特許文献1の技術では、高炉の近傍に配置される各種の設備や装置から生じる音の影響(ノイズ)を排除することが現実的には難しい場合がある。また特許文献2の技術では、放射温度カメラの前方にブローパイプの湾曲部等が配置される場合があり、こうしたブローパイプがランスの先端部を放射温度カメラの視野角から遮り、画像解析を十分に行えない場合がある。また特許文献3の技術では、配管に熱電対を取り付ける位置とされる、周辺設備から温度の影響を受けにくい位置として高炉鉄皮より1m以上離れ、且つ熱風環状管及び送風支管のいずれからも1m以上離れた、分岐配管の表面が用いられている。しかし、分岐配管の表面上における周辺設備から温度の影響を受けにくい位置は、季節、時間帯、周辺設備の稼働状況等により変動することが多く、現実的には位置を特定することが難しい。
すなわち、特許文献1〜3の技術を用いても、配管の周辺に配置された設備の影響を完全に除外できないという問題がある。加えて特許文献3の技術の場合、測温される配管は比熱を有するため、配管の表面温度が変化するとともにその温度変化を熱電対が捕捉して安定した測定温度として表示するまでにある程度の時間がかかるという問題も生じる。
However, in the technique of Patent Document 1, it may be difficult in practice to eliminate the influence (noise) of sound generated from various facilities and devices arranged in the vicinity of the blast furnace. In the technique of Patent Document 2, a curved portion of a blow pipe may be disposed in front of the radiation temperature camera. Such a blow pipe blocks the tip of the lance from the viewing angle of the radiation temperature camera, so that image analysis is sufficiently performed. May not be possible. Moreover, in the technique of patent document 3, it is set as a position which attaches a thermocouple to piping, it is 1 m or more from a blast furnace core as a position which is hard to be influenced by temperature from surrounding facilities, and 1 m from both a hot-air annular pipe and a ventilation branch pipe. The surfaces of the branch pipes that are separated from each other are used. However, the position on the surface of the branch pipe that is not easily affected by the temperature from the peripheral equipment often varies depending on the season, the time zone, the operation status of the peripheral equipment, and the like, and it is difficult to specify the position in practice.
That is, even if the techniques of Patent Documents 1 to 3 are used, there is a problem that the influence of the equipment arranged around the piping cannot be completely excluded. In addition, in the case of the technique of Patent Document 3, since the pipe to be measured has specific heat, the surface temperature of the pipe changes and the temperature change is captured by the thermocouple and displayed as a stable measurement temperature. The problem of taking time also arises.

この点、本発明者が特許文献3の技術を検証したところ、実際に配管に詰まりが発生した後、詰まりの発生が検知されるまでに一分以上かかることが判明した。詰まり発生後も高炉への微粉炭の吹込みが一分以上継続されると、微粉炭吹込量の低下や不均一な吹込みが生じ、炉況が悪化する可能性が非常に高くなる。このように、特許文献3の技術を用いても、詰まりが生じてから、詰まりの発生を検知するまでに相当の時間がかかるため、配管から微粉炭を除去する復旧作業の開始が遅れ、炉況の悪化を十分に抑制できないという問題が生じていた。
本発明は、上記した未解決の問題を解決するために案出されたものであって、高炉の微粉炭吹込設備における配管の詰まりを検知する方法において、配管周辺に配置された設備の影響を受けることがないとともに、配管に微粉炭の詰まりが生じてから詰まりの発生を検知するまでの時間を、従来に比し短縮できる技術を提供することを目的とする。
In this regard, when the present inventor verified the technique of Patent Document 3, it was found that it takes more than one minute until the occurrence of clogging is detected after clogging has actually occurred in the piping. If pulverized coal is continuously blown into the blast furnace for more than one minute after clogging occurs, the amount of pulverized coal blown down or unevenly blown, resulting in a very high possibility that the furnace conditions will deteriorate. Thus, even if the technique of Patent Document 3 is used, since it takes a considerable amount of time from the occurrence of clogging to detection of clogging, the start of recovery work for removing pulverized coal from the piping is delayed, and the furnace There was a problem that the deterioration of the situation could not be sufficiently suppressed.
The present invention has been devised to solve the above-mentioned unsolved problems, and in the method for detecting clogging of piping in the pulverized coal blowing equipment of a blast furnace, the influence of the equipment arranged around the piping is affected. An object of the present invention is to provide a technology that can reduce the time from when clogging of pulverized coal occurs in a pipe to when the occurrence of clogging is detected.

本発明者は、上記の観点から試験研究を重ねた結果、微粉炭吹込設備における配管に微粉炭が詰まった際の配管内の圧力に関し、次のような知見を得た。
まず、微粉炭が上流気送系で詰まっている場合の上流気送系内の圧力測定値及び下流気送系内の圧力測定値の変化を図2に、また、微粉炭が下流気送系で詰まっている場合の同変化を図3に示す。これらはいずれも溶銑1トン当たり130〜150kgの微粉炭を高炉に吹き込んだ場合に得られたものである。
As a result of repeated testing and research from the above viewpoint, the present inventor has obtained the following knowledge regarding the pressure in the pipe when the pulverized coal is clogged in the pipe in the pulverized coal injection facility.
First, FIG. 2 shows changes in the pressure measurement value in the upstream air transportation system and the pressure measurement value in the downstream air transportation system when the pulverized coal is clogged in the upstream air transportation system, and the pulverized coal is in the downstream air transportation system. The same change when clogged with is shown in FIG. All of these were obtained when 130 to 150 kg of pulverized coal per ton of hot metal was blown into the blast furnace.

微粉炭は、上記した石炭破砕機、バグフィルター、篩分装置及び微粉炭ホッパーによる処理を施された後にインジェクションタンクに蓄えられ、輸送配管、吹込本管及び分岐管等によって高炉羽口まで気送されるものである。尚、図2、図3いずれの場合も、上流気送系内の圧力測定値としてインジェクションタンク内の圧力測定値を、下流気送系内の圧力測定値として吹込本管内の圧力測定値を用いている。   The pulverized coal is stored in the injection tank after being processed by the coal crusher, bag filter, sieving device, and pulverized coal hopper, and is sent to the blast furnace tuyere by transport piping, blow-in mains, branch pipes, etc. It is what is done. 2 and 3, the pressure measurement value in the injection tank is used as the pressure measurement value in the upstream air transportation system, and the pressure measurement value in the blow-in main pipe is used as the pressure measurement value in the downstream air transportation system. ing.

図2中に示した640kPaの値は、上流気送系で詰まりが発生する前の吹込本管内の圧力測定値の代表値の具体例を示す。代表値としては、例えば所定時間内の平均値や中間値、又は最頻値等を用いることができる。尚、以下の説明で用いる「代表値」の意味も、同様である。また図2中に示した450kPaの値は、上流気送系で詰まりが発生した後の吹込本管内の圧力測定値の代表値の具体例を示す。また図2中に示した628kPaの値は、上流気送系で詰まりが発生する前のインジェクションタンク内の圧力測定値の代表値の具体例を示す。   The value of 640 kPa shown in FIG. 2 shows a specific example of the representative value of the pressure measurement value in the blow-in main pipe before clogging occurs in the upstream air transportation system. As the representative value, for example, an average value, an intermediate value, or a mode value within a predetermined time can be used. The meaning of “representative value” used in the following description is also the same. Further, the value of 450 kPa shown in FIG. 2 shows a specific example of the representative value of the pressure measurement value in the blow-in main pipe after clogging occurs in the upstream air transportation system. Further, the value of 628 kPa shown in FIG. 2 shows a specific example of the representative value of the pressure measurement value in the injection tank before clogging occurs in the upstream air feed system.

同様に、図3中に示した640kPaの値は、下流気送系で詰まりが発生する前の吹込本管内の圧力測定値の代表値の具体例を示す。また図3中に示した686kPaの値は、下流気送系で詰まりが発生した後の吹込本管内の圧力測定値の代表値の具体例を示す。また図3中に示した628kPaの値は、下流気送系で詰まりが発生する前のインジェクションタンク内の圧力測定値の代表値の具体例を示す。   Similarly, the value of 640 kPa shown in FIG. 3 shows a specific example of the representative value of the pressure measurement value in the blow-in main pipe before clogging occurs in the downstream air transportation system. Further, the value of 686 kPa shown in FIG. 3 shows a specific example of the representative value of the pressure measurement value in the blow-in main pipe after clogging occurs in the downstream air feeding system. Further, the value of 628 kPa shown in FIG. 3 shows a specific example of the representative value of the pressure measurement value in the injection tank before clogging occurs in the downstream air feeding system.

また上流気送系内の圧力測定値と、下流気送系内の圧力測定値と、これら2つの圧力測定値の差圧の絶対値の大きさの変化とを、表1に示す。

Figure 2015098647
Table 1 shows the pressure measurement values in the upstream air transportation system, the pressure measurement values in the downstream air transportation system, and the change in the absolute value of the differential pressure between these two pressure measurement values.
Figure 2015098647

図2に示すように、t=t0の時点において、微粉炭が上流気送系で詰まった場合、微粉炭は下流気送系の吹込本管中に存在しないので、下流気送系の配管内の圧力損失は小さくなる。これにより、詰まり前は640kPa程度であった吹込本管(下流気送系)内の圧力は急減し、インジェクションタンク(上流気送系)内の圧力より小さい圧力となり、比較的速やかに450kPa程度まで下降するという減少傾向を示す。一方、インジェクションタンク(上流気送系)内の628kPa程度の圧力は大きく変化しない。すなわち上流気送系と下流気送系との差圧の絶対値の大きさは、一旦縮小するがその後は経時的に拡大増加変化する(表1参照)。   As shown in FIG. 2, when the pulverized coal is clogged in the upstream pneumatic system at the time t = t0, the pulverized coal is not present in the blow-in main pipe of the downstream pneumatic system. The pressure loss becomes smaller. As a result, the pressure in the blow-in main pipe (downstream air feeding system), which was about 640 kPa before clogging, suddenly decreases to a pressure lower than the pressure in the injection tank (upstream air feeding system), and relatively quickly reaches about 450 kPa. It shows a decreasing trend of falling. On the other hand, the pressure of about 628 kPa in the injection tank (upstream air feed system) does not change greatly. In other words, the magnitude of the absolute value of the differential pressure between the upstream air-feeding system and the downstream air-feeding system once decreases, but thereafter increases and changes with time (see Table 1).

また図3に示すように、t=t0の時点において、微粉炭が下流気送系で詰まっている場合、微粉炭は上流気送系内を移動しないので、インジェクションタンク(上流気送系)内の628kPa程度の圧力は大きく変化しない。一方、詰まり前は640kPa程度であった吹込本管(下流気送系)内の圧力は、t=t0の時点以降、比較的緩やかに686kPa程度まで上昇するという増加傾向を示す。すなわち、上流気送系と下流気送系との差圧の絶対値の大きさは、徐々に拡大増加変化する(表1参照)。   Also, as shown in FIG. 3, when pulverized coal is clogged in the downstream air transportation system at the time t = t0, the pulverized coal does not move in the upstream air transportation system, so the inside of the injection tank (upstream air transportation system). The pressure of about 628 kPa does not change greatly. On the other hand, the pressure in the blow-in main pipe (downstream air feeding system), which was about 640 kPa before clogging, shows an increasing tendency that it gradually rises to about 686 kPa after t = t0. That is, the magnitude of the absolute value of the differential pressure between the upstream air transportation system and the downstream air transportation system gradually increases and changes (see Table 1).

本発明は上記知見に基づきなされたものである。
本発明のある態様に係る高炉への微粉炭吹込設備における配管の詰まり検知方法は、微粉炭を蓄えたインジェクションタンク及びこのインジェクションタンクに接続された輸送配管を有する上流気送系と、輸送配管に接続されるとともに高炉に連結された吹込本管を有する下流気送系と、を備える高炉の微粉炭吹込設備における配管の詰まりを検知する方法であって、上流気送系内の圧力測定値と下流気送系内の圧力測定値との間の差圧の絶対値を算出する差圧算出ステップと、この算出された差圧の絶対値の大きさが予め設定された上流側閾値以上であり、かつ、下流気送系内の圧力測定値が予め設定された第1の下流側圧力閾値以下のときは、上流気送系の配管に微粉炭の詰まりが生じたと判定し、算出された差圧の絶対値の大きさが予め設定された下流側閾値以上であり、かつ、下流気送系内の圧力測定値が予め設定された第2の下流側圧力閾値より大きいときは、下流気送系の配管に微粉炭の詰まりが生じたと判定して、配管の詰まりを検知する詰まり検知ステップと、を含むことを要旨とする。
The present invention has been made based on the above findings.
A method for detecting clogging of piping in pulverized coal injection equipment to a blast furnace according to an aspect of the present invention includes an injection tank storing pulverized coal, an upstream air transportation system having a transportation pipe connected to the injection tank, and a transportation pipe. A method of detecting clogging of a pipe in a pulverized coal blowing facility of a blast furnace comprising a blown main pipe connected to and connected to a blast furnace, and a pressure measurement value in the upstream air feeding system, The differential pressure calculating step for calculating the absolute value of the differential pressure between the pressure measurement value in the downstream air transportation system, and the magnitude of the calculated absolute value of the differential pressure is greater than or equal to a preset upstream threshold value When the pressure measurement value in the downstream air transportation system is equal to or lower than the first downstream pressure threshold value set in advance, it is determined that the pulverized coal is clogged in the piping of the upstream air transportation system, and the calculated difference The absolute value of the pressure When it is equal to or greater than the set downstream threshold value and the measured pressure value in the downstream air transportation system is larger than the second downstream pressure threshold value set in advance, the piping of the downstream air transportation system is clogged with pulverized coal. It is determined that it has occurred and includes a clogging detection step of detecting clogging of the pipe.

本発明によれば、上流気送系内の圧力測定値と下流気送系内の圧力測定値との間の差圧を求め、この差圧の絶対値の大きさが予め設定された上流側閾値以上でありかつ前記下流気送系内の圧力測定値が下流側圧力閾値以下のときは上流気送系の配管に微粉炭の詰まりが生じたと判定し、詰まりを検知する。また差圧の絶対値の大きさが予め設定された下流側閾値以上でありかつ前記下流気送系内の圧力測定値が下流側圧力閾値以上のときは、下流気送系の配管に微粉炭の詰まりが生じたと判定し、詰まりを検知する。   According to the present invention, the differential pressure between the pressure measurement value in the upstream air transportation system and the pressure measurement value in the downstream air transportation system is determined, and the magnitude of the absolute value of the differential pressure is set on the upstream side. When the measured pressure value in the downstream air transportation system is equal to or higher than the threshold value and is equal to or lower than the downstream pressure threshold value, it is determined that clogging of pulverized coal has occurred in the piping of the upstream air transportation system, and the clogging is detected. When the absolute value of the differential pressure is equal to or greater than a preset downstream threshold value and the pressure measurement value in the downstream pneumatic system is equal to or greater than the downstream pressure threshold value, pulverized coal is connected to the downstream pneumatic system pipe. It is determined that clogging has occurred, and clogging is detected.

このように、詰まりの測定にあたり、配管内の圧力測定値を用いればよいので、配管の近傍にブローパイプのような装置が配設されていても影響を受けることがない。また配管内の圧力の変化は、熱や音といった外乱に影響されることが殆どない。
また、圧力測定値は、配管の詰まりの発生によって上流気送系内の圧力又は下流気送系内の圧力が変化するのと略同じタイミングで変化するので、これに連動して差圧も略同じタイミングで変化する。そのため詰まりの発生後、配管の詰まりを検知するまでの時間が、大きく短縮される。
As described above, since the pressure measurement value in the pipe may be used for clogging measurement, there is no influence even if a device such as a blow pipe is provided in the vicinity of the pipe. The change in pressure in the pipe is hardly affected by disturbances such as heat and sound.
In addition, the pressure measurement value changes at approximately the same timing as the pressure in the upstream air transportation system or the pressure in the downstream air transportation system changes due to the occurrence of clogging in the pipe, so the differential pressure is also approximately linked to this. It changes at the same timing. For this reason, the time from the occurrence of clogging until the detection of clogging in the pipe is greatly reduced.

また、前記詰まり検知ステップは、前記差圧の絶対値の大きさが前記上流側閾値以上であり、かつ、前記下流気送系内の圧力測定値が前記下流側圧力閾値以下となる状態が、予め設定された上流側基準時間以上継続したときに、前記上流気送系の配管に微粉炭の詰まりが生じたと判定することとしてもよい。
また、前記詰まり検知ステップは、前記差圧の絶対値の大きさが前記下流側閾値以上であり、かつ、前記下流気送系内の圧力測定値が下流側圧力閾値より大きい状態が、予め設定された下流側基準時間以上継続したときに、前記下流気送系の配管に微粉炭の詰まりが生じたと判定することとしてもよい。
In the clogging detection step, the state where the absolute value of the differential pressure is not less than the upstream threshold and the pressure measurement value in the downstream air transportation system is not more than the downstream pressure threshold. It may be determined that pulverized coal has been clogged in the upstream air-pipe system when the upstream reference time set for a predetermined time has elapsed.
In the clogging detection step, a state in which the absolute value of the differential pressure is greater than or equal to the downstream threshold and the measured pressure value in the downstream air transportation system is greater than the downstream pressure threshold is set in advance. It may be determined that clogging of pulverized coal has occurred in the piping of the downstream air-feeding system when it continues for more than the downstream reference time.

従って、本発明に係る高炉の微粉炭吹込設備における配管の詰まり検知方法によれば、配管周辺に配置された設備の影響を受けることがないとともに、配管に詰まりが生じた後、詰まりの発生を検知するまでの時間を従来に比し大きく短縮できる。また、詰まりが上流気送系で発生したか下流気送系で発生したかを判定することができる。これにより、その後の復旧動作を速やかに開始することが可能となり、微粉炭吹込量の低下や不均一な吹込みによる炉況の悪化を抑制することができる。   Therefore, according to the method for detecting clogging of piping in the blast furnace pulverized coal injection facility according to the present invention, it is not affected by the equipment arranged around the piping, and after clogging occurs in the piping, occurrence of clogging is prevented. The time until detection can be greatly shortened compared to the conventional method. Further, it can be determined whether the clogging has occurred in the upstream air transportation system or the downstream air transportation system. Thereby, it becomes possible to start subsequent recovery operation | movement rapidly, and the deterioration of the furnace condition by the fall of the amount of pulverized coal injection | pouring and nonuniform injection | pouring can be suppressed.

本発明の実施形態に係る高炉の微粉炭吹込設備における配管の詰まり検知方法が用いられる微粉炭吹込設備の概略を模式的に説明する構成図である。It is a block diagram which illustrates typically the outline of the pulverized coal injection facility in which the clogging detection method of piping in the pulverized coal injection facility of the blast furnace which concerns on embodiment of this invention is used. 微粉炭が上流気送系で詰まっている場合における上流気送系内及び下流気送系内のそれぞれの圧力測定値の変化を説明するグラフ図である。It is a graph explaining the change of each pressure measurement value in the upstream air transportation system and the downstream air transportation system when pulverized coal is clogged with the upstream air transportation system. 微粉炭が下流気送系で詰まっている場合における上流気送系内及び下流気送系内のそれぞれの圧力測定値の変化を説明するグラフ図である。It is a graph explaining the change of each pressure measurement value in the upstream air transportation system and the downstream air transportation system when pulverized coal is clogged with the downstream air transportation system.

本発明の実施形態に係る高炉の微粉炭吹込設備における配管の詰まり検知方法(以下、単に「詰まり検知方法」ともいう)は、微粉炭を高炉へ気送するために用いられる、上流気送系に属する配管及び下流気送系に属する配管の各々の管内圧力を測定し、測定された圧力値の間の差圧に基づいて、微粉炭が上流気送系又は下流気送系のいずれかの配管に詰まったことを検知するものである。以下、その構成を、図面を参照して説明する。なお、図中に示された詰まり検知方法において用いられる各設備及び各装置の形状、大きさ又は比率は適宜簡略化及び誇張して示されている。   A method for detecting clogging of piping in a pulverized coal injection facility for a blast furnace according to an embodiment of the present invention (hereinafter, also simply referred to as “clogging detection method”) is used for air-feeding pulverized coal to a blast furnace. Measure the internal pressure of each of the pipes belonging to and the downstream air transportation system, and based on the differential pressure between the measured pressure values, the pulverized coal is either the upstream air transportation system or the downstream air transportation system It detects that the pipe is clogged. The configuration will be described below with reference to the drawings. In addition, the shape, size, or ratio of each facility and each device used in the clogging detection method shown in the drawing is appropriately simplified and exaggerated.

(微粉炭吹込設備)
まず本発明の実施形態に係る詰まり検知方法が実施される高炉の微粉炭吹込設備について、図1を用いて説明する。微粉炭吹込設備は、上記した石炭破砕機(不図示)、バグフィルター(不図示)、篩分装置(不図示)、微粉炭ホッパー(不図示)を備えるとともに、吹込み用のインジェクションタンク3を備える。また、微粉炭吹込設備は、インジェクションタンク3に接続された輸送配管4と、輸送配管4に接続された吹込本管5とを有する。輸送配管4は吹込本管5と合流部6で合流する。吹込本管5は、中途に設けられた分岐部7で分岐して複数の分岐管8となる。複数の分岐管8の先端には高炉10の羽口11に開口した微粉炭吹込み用のランス9がそれぞれ設けられ、吹込本管5が高炉10の羽口11に連結されている。
(Pulverized coal injection facility)
First, blast furnace pulverized coal injection equipment for carrying out a clogging detection method according to an embodiment of the present invention will be described with reference to FIG. The pulverized coal blowing equipment includes the above-described coal crusher (not shown), a bag filter (not shown), a sieving device (not shown), a pulverized coal hopper (not shown), and an injection tank 3 for blowing. Prepare. Further, the pulverized coal blowing facility has a transport pipe 4 connected to the injection tank 3 and a blow main pipe 5 connected to the transport pipe 4. The transport pipe 4 joins at the blowing main pipe 5 and the junction 6. The blow-in main pipe 5 branches at a branch portion 7 provided in the middle to form a plurality of branch pipes 8. A lance 9 for injecting pulverized coal that opens to the tuyere 11 of the blast furnace 10 is provided at the tip of the plurality of branch pipes 8, and the main blowing pipe 5 is connected to the tuyere 11 of the blast furnace 10.

微粉炭吹込設備は、図1中の左側に位置する囲みで示された、合流部6より上流側で微粉炭を吹込本管5側に気送する上流気送系と、図1中の中央から右側に位置する囲みで示された、合流部6より下流側で微粉炭を高炉10の羽口11に気送する下流気送系とを備える。インジェクションタンク3には、インジェクションタンク3の内圧を測定する上流気送系側圧力計1が配設されている。また吹込本管5には、合流部6を挟んで高炉10の反対側に、吹込本管5内の圧力を測定する下流気送系側圧力計2が配設されている。上流気送系側圧力計1はインジェクションタンク3内の圧力を、また下流気送系側圧力計2は吹込本管5内の圧力を各々連続して経時的に測定する。   The pulverized coal blowing equipment is shown by an enclosure located on the left side in FIG. 1, and an upstream air feeding system that feeds pulverized coal to the blowing main pipe 5 upstream from the junction 6, and the center in FIG. 1. And a downstream air feeding system for airing the pulverized coal to the tuyere 11 of the blast furnace 10 on the downstream side from the joining portion 6, which is indicated by a box located on the right side. The injection tank 3 is provided with an upstream pneumatic system pressure gauge 1 that measures the internal pressure of the injection tank 3. In addition, a downstream air pressure system side pressure gauge 2 for measuring the pressure in the blow main pipe 5 is disposed in the blow main pipe 5 on the opposite side of the blast furnace 10 across the junction 6. The upstream air system side pressure gauge 1 continuously measures the pressure in the injection tank 3 and the downstream air system side pressure gauge 2 continuously measures the pressure in the blow-in main pipe 5 over time.

微粉炭の高炉10への吹込みに際しては、図1中の左側上段の矢印で示すように、まず微粉炭を蓄えたインジェクションタンク3に圧縮窒素が供給されて固気2送流が形成され、その後、固気2送流は輸送配管4を介して合流部6に送り出される。一方、図1中の左側下段の矢印で示すように、合流部6には別の上流側の経路から微粉炭希釈用の圧縮空気が供給され、上流気送系から気送された固気2送流と合流する。またインジェクションタンク3内の圧力は高炉10の内圧より高いとともに、吹込本管5内の圧力は、インジェクションタンク3内の圧力より高く設定されている。微粉炭を含む固気2送流は、吹込本管5、複数の分岐管8、ランス9を経由して、高炉10に吹き込まれる。   When blowing pulverized coal into the blast furnace 10, as shown by the arrow on the upper left side in FIG. 1, first, compressed nitrogen is supplied to the injection tank 3 storing the pulverized coal to form a solid-gas 2 flow, Thereafter, the solid-gas 2 flow is sent to the junction 6 via the transport pipe 4. On the other hand, as shown by the arrow on the lower left side in FIG. 1, compressed air for diluting pulverized coal is supplied to the merging portion 6 from another upstream path, and the solid gas 2 is sent from the upstream air feed system. Merge with the stream. The pressure in the injection tank 3 is higher than the internal pressure in the blast furnace 10, and the pressure in the blow-in main pipe 5 is set higher than the pressure in the injection tank 3. The solid-gas 2 stream containing pulverized coal is blown into the blast furnace 10 via the blow-in main pipe 5, the plurality of branch pipes 8, and the lance 9.

(詰まり検知方法)
次に、上記した微粉炭吹込設備において用いられる詰まり検知方法を説明する。まず、上流気送系側圧力計1を用いてインジェクションタンク3内の圧力を測定するとともに下流気送系側圧力計2を用いて吹込本管5内の圧力を測定する。そして、インジェクションタンク3及び吹込本管5の経時的な圧力測定値を得るとともにこれらの差圧の絶対値を算出する(差圧算出ステップ)。上流気送系又は下流気送系に属する配管に微粉炭の詰まりが発生すると、インジェクションタンク3内の圧力測定値、吹込本管5内の圧力測定値及びインジェクションタンク3内の圧力測定値と吹込本管5内の圧力測定値との間の差圧に、図2及び図3に示すような特徴的な変化が生じる。
(Clogging detection method)
Next, a clogging detection method used in the above-described pulverized coal injection facility will be described. First, the pressure in the injection tank 3 is measured using the upstream air system side pressure gauge 1 and the pressure in the blow-in main pipe 5 is measured using the downstream air system side pressure gauge 2. And while obtaining the pressure measurement value with time of the injection tank 3 and the blow-in main pipe 5, the absolute value of these differential pressures is calculated (differential pressure calculation step). When clogging of pulverized coal occurs in the piping belonging to the upstream air transportation system or the downstream air transportation system, the measured pressure value in the injection tank 3, the measured pressure value in the main injection pipe 5, and the measured pressure value in the injection tank 3 and the injection A characteristic change as shown in FIGS. 2 and 3 occurs in the differential pressure with respect to the pressure measurement value in the main pipe 5.

次に、微粉炭が上流気送系の配管で詰まったか、又は下流気送系の配管で詰まったかを判定する。具体的には、差圧算出ステップで算出された差圧の絶対値の大きさが上流側閾値P1以上であり、かつ、下流気送系内の圧力測定値が下流側圧力閾値B1以下である状態が上流側基準時間T1以上継続したときに、上流気送系の配管に微粉炭の詰まりが生じたと判定して配管の詰まりを検知する。また、上記算出された差圧の絶対値の大きさが下流側閾値P2以上であり、かつ、下流気送系内の圧力測定値が下流側圧力閾値B2以上である状態が下流側基準時間T2以上継続したときに、下流気送系の配管に微粉炭の詰まりが生じたと判定して配管の詰まりを検知する。(詰まり検知ステップ)。   Next, it is determined whether the pulverized coal is clogged with the piping of the upstream air transportation system or the piping of the downstream air transportation system. Specifically, the magnitude of the absolute value of the differential pressure calculated in the differential pressure calculating step is equal to or higher than the upstream threshold value P1, and the pressure measurement value in the downstream air transportation system is equal to or lower than the downstream pressure threshold value B1. When the state continues for the upstream side reference time T1 or longer, it is determined that clogging of pulverized coal has occurred in the piping of the upstream air transportation system, and clogging of the piping is detected. Further, the downstream reference time T2 is a state in which the magnitude of the absolute value of the calculated differential pressure is equal to or greater than the downstream threshold value P2, and the pressure measurement value in the downstream air transportation system is equal to or greater than the downstream pressure threshold value B2. When the above is continued, it is determined that the pulverized coal is clogged in the piping of the downstream air transportation system, and the clogging of the piping is detected. (Clogging detection step).

(上流側閾値P1、上流側基準時間T1及び第1の下流側圧力閾値B1)
上流側閾値P1、上流側基準時間T1及び第1の下流側圧力閾値B1は、いずれも上流気送系での詰まりを判定するために用いられる。上流側閾値P1は、変化する差圧の絶対値の大きさに関して予め設定された圧力用の閾値であり、上流側基準時間T1は、上流側閾値P1以上の大きさの差圧(絶対値)が継続する時間に関して予め設定された基準時間であり、第1の下流側圧力閾値B1は、下流気送系内の圧力の値に関して設定された閾値である。
(Upstream threshold P1, upstream reference time T1, and first downstream pressure threshold B1)
The upstream threshold value P1, the upstream reference time T1, and the first downstream pressure threshold value B1 are all used to determine clogging in the upstream air transportation system. The upstream threshold value P1 is a pressure threshold value that is set in advance with respect to the magnitude of the absolute value of the differential pressure that changes. The upstream reference time T1 is a differential pressure (absolute value) that is greater than or equal to the upstream threshold value P1. Is a reference time that is set in advance with respect to the duration of the continuation, and the first downstream pressure threshold value B1 is a threshold value that is set with respect to the pressure value in the downstream air transportation system.

図2に示すように、例えばt=t0の時点において、上流気送系内の配管で詰まりが発生した場合、略一定であった下流気送系内の圧力測定値は急減して、上流気送系内の圧力測定値を下回る。そして図2中に実線のグラフと破線のグラフとの上下方向の間隔で表される差圧の絶対値の大きさは、一旦縮小した後に拡大変化する。例えば図2の場合、上流気送系内の圧力測定値(640kPa程度)と下流気送系内の圧力測定値(628kPa程度)との差圧の絶対値の大きさは、通常操業時は12kPa程度である。また下流気送系の圧力測定値の方が、上流気送系の圧力測定値より高い。   As shown in FIG. 2, for example, when clogging occurs in the piping in the upstream air transportation system at time t = t0, the pressure measurement value in the downstream air transportation system, which has been substantially constant, rapidly decreases, and the upstream air Below the pressure measurement in the transmission system. The magnitude of the absolute value of the differential pressure represented by the vertical distance between the solid line graph and the broken line graph in FIG. For example, in the case of FIG. 2, the absolute value of the differential pressure between the pressure measurement value in the upstream air transportation system (about 640 kPa) and the pressure measurement value in the downstream air transportation system (about 628 kPa) is 12 kPa during normal operation. Degree. Further, the pressure measurement value of the downstream air transportation system is higher than the pressure measurement value of the upstream air transportation system.

しかし詰まりが生じると下流気送系内の圧力測定値は減少し、上流気送系の圧力測定値と同じとなり、更に時間が経過すると上流気送系の圧力測定値を下回る。そしてt=tの時点において、差圧の絶対値の大きさは上流側閾値P1に至った後も、下流気送系内の圧力測定値は更に減少する。このとき上流側閾値P1以上の差圧の絶対値の大きさが、上流側基準時間T1(t〜t1)の間継続する。また下流気送系の圧力測定値は、t=t1の時点で、第1の下流側圧力閾値B1以下の状態である。よってt=t1の時点において、上流気送系での詰まりの発生条件をすべて満たしたと判定し、微粉炭の詰まりを検知する。 However, when clogging occurs, the pressure measurement value in the downstream air transportation system decreases, becomes the same as the pressure measurement value in the upstream air transportation system, and falls below the pressure measurement value in the upstream air transportation system as time elapses. At the time point t = t H, the measured pressure value in the downstream air transportation system further decreases after the absolute value of the differential pressure reaches the upstream threshold value P1. At this time, the magnitude of the absolute value of the differential pressure equal to or higher than the upstream threshold value P1 continues for the upstream reference time T1 (t H to t1). The measured pressure value of the downstream air transportation system is in a state equal to or lower than the first downstream pressure threshold B1 at the time t = t1. Therefore, at the time of t = t1, it is determined that all the conditions for occurrence of clogging in the upstream air transportation system are satisfied, and clogging of pulverized coal is detected.

上流気送系で詰まりが発生した場合、下流気送系の圧力は図2に示すように、450kPa程度まで減少し、差圧の絶対値の大きさは178kPa程度と、詰まり前の差圧の絶対値の約15倍にまで拡大する。すなわち上流気送系内における詰まり発生時の差圧の絶対値の大きさは、通常操業時の差圧の絶対値の大きさより非常に大きい。このとき、下流気送系内圧力の測定値は、詰まり発生時(t=t0)の前後に亘って全体的に減少する傾向となり、増加傾向には転じない。   When clogging occurs in the upstream air transportation system, the pressure in the downstream air transportation system decreases to about 450 kPa as shown in FIG. 2, and the absolute value of the differential pressure is about 178 kPa, which is the difference between the pressure difference before clogging. It expands to about 15 times the absolute value. That is, the absolute value of the differential pressure when clogging occurs in the upstream air transportation system is much larger than the absolute value of the differential pressure during normal operation. At this time, the measured value of the pressure in the downstream air-feeding system tends to decrease overall before and after the occurrence of clogging (t = t0), and does not turn to an increasing trend.

よって、この場合の上流側閾値P1は例えば100kPa、第1の下流側圧力閾値B1は630kPa、上流側基準時間T1は3秒とそれぞれ設定することができる。尚、上流側基準時間T1は、過去において詰まりが発生した際のデータや、シミュレーションに基づき設定すればよい。一般的に好適な上流側閾値P1の値は、50kPa〜150kPa程度であり、上流側基準時間T1の値は、1秒〜10秒程度である。また上流側閾値P1の値は、通常操業時の差圧の絶対値を基準として、通常操業時の差圧の絶対値+20kPaを下限値、+150kPaを上限値とした範囲の値とするように定めることもできる。例えば通常操業時の差圧の絶対値が12kPaの場合、32kPa≦P1≦162kPaである。下限値の設定のために通常操業時の差圧の絶対値に付加する値が20kPaより小さいと、通常操業時に生じうる差圧の変動状態を、上流気送系内の詰まりと誤判定する可能性が高まる。また上限値の設定のために通常操業時の差圧の絶対値に付加する値が150kPaより大きいと、上流気送系内の詰まりの判定が遅れる可能性が高まる。   Therefore, the upstream threshold value P1 in this case can be set to 100 kPa, the first downstream pressure threshold value B1 to 630 kPa, and the upstream reference time T1 to 3 seconds, for example. The upstream reference time T1 may be set based on data when a clogging has occurred in the past or simulation. A generally preferable value of the upstream threshold value P1 is about 50 kPa to 150 kPa, and the value of the upstream reference time T1 is about 1 second to 10 seconds. Further, the value of the upstream side threshold value P1 is determined to be a value in a range where the absolute value of the differential pressure during normal operation is +20 kPa as a lower limit and the upper limit is +150 kPa, based on the absolute value of the differential pressure during normal operation. You can also. For example, when the absolute value of the differential pressure during normal operation is 12 kPa, 32 kPa ≦ P1 ≦ 162 kPa. If the value added to the absolute value of the differential pressure during normal operation is less than 20 kPa for setting the lower limit value, it is possible to erroneously determine the fluctuation state of the differential pressure that may occur during normal operation as clogging in the upstream air transportation system. Increases nature. Further, if the value added to the absolute value of the differential pressure during normal operation for setting the upper limit value is greater than 150 kPa, the possibility of delaying the determination of clogging in the upstream air transportation system increases.

下流側圧力閾値B1は、下流気送系内の圧力が通常操業時よりも低下することを検出するために設定されるものであり、通常操業時の下流気送系内の圧力よりも小さい値に設定することが好ましい。また、第1の下流側圧力閾値B1は、下流気送系内の圧力の測定値が急減した時点(図2中のt=t0)の上流気送系内圧力の測定値とすることもできる。また、第1の下流側圧力閾値B1は、微粉炭詰まりが発生していない状態における上流気送系内圧力の測定値とすることもできる。また、第1の下流側圧力閾値B1は、通常操業時の下流側圧力測定時の値(下流気送系の圧力測定値、例えば640kPa)よりも1kPa〜20kPa小さい値とするように定めることもできる。   The downstream pressure threshold B1 is set to detect that the pressure in the downstream air transportation system is lower than that during normal operation, and is smaller than the pressure in the downstream air transportation system during normal operation. It is preferable to set to. Further, the first downstream pressure threshold value B1 may be a measured value of the upstream pneumatic system pressure when the measured value of the pressure in the downstream pneumatic system suddenly decreases (t = t0 in FIG. 2). . In addition, the first downstream pressure threshold B1 can be a measured value of the upstream pneumatic system pressure in a state where pulverized coal clogging has not occurred. In addition, the first downstream pressure threshold B1 may be set to a value that is 1 kPa to 20 kPa smaller than a value at the time of downstream pressure measurement during normal operation (a pressure measurement value of the downstream air transportation system, for example, 640 kPa). it can.

(下流側閾値P2、下流側基準時間T2及び第2の下流側圧力閾値B2)
下流側閾値P2、下流側基準時間T2及び第2の下流側圧力閾値B2は、いずれも下流気送系での詰まりを判定するために用いられる。下流側閾値P2は、変化する差圧の絶対値の大きさに関して予め設定された圧力用の閾値であり、下流側基準時間T2は、下流側閾値P2以上の大きさの差圧(絶対値)が継続する時間に関して予め設定された基準時間であり、第2の下流側圧力閾値B2は、下流気送系内の圧力の値に関して設定された閾値である。
(Downstream threshold P2, downstream reference time T2, and second downstream pressure threshold B2)
The downstream threshold P2, the downstream reference time T2, and the second downstream pressure threshold B2 are all used to determine clogging in the downstream air transportation system. The downstream threshold value P2 is a pressure threshold value that is set in advance with respect to the magnitude of the absolute value of the differential pressure that changes, and the downstream reference time T2 is a differential pressure (absolute value) that is greater than or equal to the downstream threshold value P2. The second downstream pressure threshold B2 is a threshold set with respect to the pressure value in the downstream air transportation system.

図3に示すように、例えばt=t0の時点において、下流気送系内の配管で詰まりが発生した場合、略一定であった下流気送系内の圧力測定値は徐々に増加し、図2の場合と同様に2本のグラフの上下方向の間隔で表される差圧の絶対値の大きさは、緩やかに拡大変化する。例えば図3の場合、上流気送系内の圧力測定値(640kPa程度)と下流気送系内の圧力測定値(628kPa程度)との差圧の絶対値の大きさは、図2の場合と同様に、通常操業時は12kPa程度である。しかし詰まりが生じると下流気送系内の圧力測定値は増加し、t=tの時点において、差圧の絶対値の大きさは下流側閾値P2に至った後、下流気送系内の圧力測定値はt=t2の時点まで更に増加する。このとき下流側閾値P2以上の差圧の絶対値が、下流側基準時間T2(t〜t1)の間継続する。また下流気送系の圧力測定値は、t=t1の時点で、第2の下流側圧力閾値B2より大きい状態である。よってt=t2の時点において、下流気送系での詰まりの発生条件をすべて満たしたと判定し、微粉炭の詰まりを検知する。
下流気送系で詰まりが発生した場合、下流気送系の圧力は図3に示すように、686kPa程度まで増加し、差圧の絶対値の大きさは58kPa程度まで拡大する。このとき、下流気送系内の圧力測定値の上昇開始から差圧の絶対値の拡大が収束するまでの平均時間は、過去のデータに基づき算出したところ、約30秒であった。
As shown in FIG. 3, for example, when clogging occurs in the piping in the downstream air transportation system at the time t = t0, the pressure measurement value in the downstream air transportation system that has been substantially constant gradually increases. Similarly to the case of 2, the magnitude of the absolute value of the differential pressure expressed by the vertical interval between the two graphs gradually increases and changes. For example, in the case of FIG. 3, the absolute value of the differential pressure between the pressure measurement value in the upstream air transportation system (about 640 kPa) and the pressure measurement value in the downstream air transportation system (about 628 kPa) is the same as in FIG. Similarly, it is about 12 kPa at the time of normal operation. However, when clogging occurs, the measured pressure value in the downstream air transportation system increases, and at the time t = t L , the magnitude of the absolute value of the differential pressure reaches the downstream side threshold value P2, and then in the downstream air transportation system. The pressure measurement is further increased until t = t2. At this time, the absolute value of the differential pressure equal to or greater than the downstream threshold value P2 continues for the downstream reference time T2 (t L to t1). Further, the pressure measurement value of the downstream air transportation system is in a state larger than the second downstream pressure threshold B2 at the time of t = t1. Therefore, at the time of t = t2, it is determined that all the conditions for occurrence of clogging in the downstream air transportation system are satisfied, and clogging of pulverized coal is detected.
When clogging occurs in the downstream air transportation system, the pressure in the downstream air transportation system increases to about 686 kPa as shown in FIG. 3, and the magnitude of the absolute value of the differential pressure increases to about 58 kPa. At this time, the average time from the start of the increase in the pressure measurement value in the downstream air transportation system until the expansion of the absolute value of the differential pressure converges was about 30 seconds when calculated based on past data.

よって、この場合の下流側閾値P2は例えば40kPaと設定するとともに、下流側基準時間T2は20秒と設定することができる。下流側閾値P2の値は、25kPa〜50kPa程度に設定することが好ましく、下流側基準時間T2の値は、3秒〜30秒程度に設定することが好ましい。また、下流側閾値P2の値は、通常操業時の差圧の絶対値を基準として、通常操業時の差圧の絶対値+10kPaを下限値、+50kPaを上限値とした範囲の値とするように定めることもできる。例えば通常操業時の差圧の絶対値が12kPaの場合、22kPa≦P2≦62kPaである。下限値の設定のために通常操業時の差圧の絶対値に付加する値が10kPaより小さいと、通常操業時に生じうる差圧の変動状態を、下流気送系内の詰まりと誤判定する可能性が高まる。また上限値の設定のために通常操業時の差圧の絶対値に付加する値が50kPaより大きいと、下流気送系内の詰まりの判定が遅れる可能性が高まる。   Therefore, the downstream threshold value P2 in this case can be set to 40 kPa, for example, and the downstream reference time T2 can be set to 20 seconds. The value of the downstream threshold value P2 is preferably set to about 25 kPa to 50 kPa, and the value of the downstream reference time T2 is preferably set to about 3 seconds to 30 seconds. Further, the value of the downstream side threshold value P2 is set to a value in a range in which the absolute value of the differential pressure during normal operation is +10 kPa as a lower limit and the upper limit is +50 kPa, based on the absolute value of the differential pressure during normal operation. It can also be determined. For example, when the absolute value of the differential pressure during normal operation is 12 kPa, 22 kPa ≦ P2 ≦ 62 kPa. If the value added to the absolute value of the differential pressure during normal operation is less than 10 kPa for setting the lower limit value, it is possible to erroneously determine the fluctuation state of the differential pressure that may occur during normal operation as clogging in the downstream air transportation system Increases nature. Further, if the value added to the absolute value of the differential pressure during normal operation for setting the upper limit value is larger than 50 kPa, the possibility of delaying the determination of clogging in the downstream air transportation system increases.

下流気送系で詰まりが発生する場合、上述のように、下流気送系内圧力は通常操業時よりも増加する傾向となるので、第2の下流側圧力閾値B2として通常操業時の下流気送系内圧力と同程度の値、例えば代表値と同じ値を設定しておけば、下流気送系内圧力が第2の下流側圧力閾値B2より大きくなることを検知できる。尚、第1の下流側圧力閾値B1と第2の下流側圧力閾値B2とは、例えば同じ640kPaの値を用いてB1=B2と設定してもよいが、第1の下流側圧力閾値B1は、詰まり発生時に減少する下流気送系内の圧力測定値に関して設定されるので、第2の下流側圧力閾値B2を上回ることはない。すなわちB1≦B2となる。本発明の実施形態においては、算出された差圧の絶対値の大きさが、上流側閾値P1を超えるとともに下流側閾値P2を超える値であっても、第1の下流側圧力閾値B1及び第2の下流側圧力閾値B2を用いることにより、詰まりが上流気送系で生じたか下流気送系で生じたかを判定し分けることが可能となる。   When clogging occurs in the downstream air transportation system, as described above, the pressure in the downstream air transportation system tends to increase more than that during normal operation. Therefore, the downstream air pressure during normal operation is set as the second downstream pressure threshold B2. If a value comparable to the internal pressure in the transmission system, for example, the same value as the representative value, is set, it can be detected that the internal pressure in the downstream air supply system becomes larger than the second downstream pressure threshold B2. The first downstream pressure threshold value B1 and the second downstream pressure threshold value B2 may be set to B1 = B2 using the same value of 640 kPa, for example, but the first downstream pressure threshold value B1 is Since it is set with respect to the pressure measurement value in the downstream air-feeding system that decreases when clogging occurs, the second downstream pressure threshold B2 is not exceeded. That is, B1 ≦ B2. In the embodiment of the present invention, even if the calculated absolute value of the differential pressure exceeds the upstream threshold P1 and exceeds the downstream threshold P2, the first downstream pressure threshold B1 and the first By using the downstream pressure threshold value B2 of 2, it becomes possible to determine and distinguish whether clogging has occurred in the upstream air transportation system or in the downstream air transportation system.

このように上流側閾値P1、上流側基準時間T1、下流側閾値P2、下流側基準時間T2、第1の下流側圧力閾値B1及び第2の下流側圧力閾値B2をそれぞれ設定する。但し、上記したように、上流気送系の配管で詰まりが発生した場合に、差圧の絶対値の大きさが一旦縮小する時間帯がある。よって上流側基準時間T1は、過去において上流気送系で配管が詰まった際の上記縮小時間の長さを求めておき、求められた時間の長さよりも長い時間に設定することが望ましい。   Thus, the upstream threshold value P1, the upstream reference time T1, the downstream threshold value P2, the downstream reference time T2, the first downstream pressure threshold value B1, and the second downstream pressure threshold value B2 are set. However, as described above, there is a time period in which the magnitude of the absolute value of the differential pressure is temporarily reduced when clogging occurs in the upstream air piping. Therefore, it is desirable that the upstream reference time T1 is set to a time longer than the obtained length of time by obtaining the length of the reduction time when the piping is clogged in the upstream air transportation system in the past.

上記したステップによって、本発明の実施形態に係る詰まり検知方法が構成される。そして、微粉炭の詰まりが検知され、詰まりが生じた配管が特定された後、特定された配管を復旧する作業が開始される。また本発明の実施形態に係る詰まり検知方法を用いれば、特に、溶銑1トン当たり130〜150kg程度の微粉炭を吹き込む微粉炭吹込設備において、好適な詰まり検知方法とすることができる。   The clogging detection method according to the embodiment of the present invention is configured by the steps described above. Then, after clogging of pulverized coal is detected and the piping in which the clogging has occurred is specified, an operation for restoring the specified piping is started. Moreover, if the clogging detection method which concerns on embodiment of this invention is used, it can be set as a suitable clogging detection method especially in the pulverized coal blowing equipment which blows about 130-150 kg of pulverized coal per ton of hot metal.

本発明の実施形態に係る詰まり検知方法を用いた場合、微粉炭の詰まりが発生した後、配管の詰まりを実際に検知するまでの時間が数秒オーダで済んだ。また本発明の実施形態に係る微粉炭吹込設備と同様の設備において、上記した特許文献3における熱電対を用いた配管の表面温度の変化量から詰まりを検知する方法を用いた場合、詰まりの発生後、詰まりを検知するまで一分以上かかった。よって本発明の実施形態に係る詰まり検知方法により、詰まりの検知時間を大きく短縮することができた。   When the clogging detection method according to the embodiment of the present invention is used, after the clogging of pulverized coal occurs, the time until the clogging of the pipe is actually detected is on the order of several seconds. Further, in the same equipment as the pulverized coal injection equipment according to the embodiment of the present invention, when the method of detecting clogging from the amount of change in the surface temperature of the pipe using the thermocouple described in Patent Document 3 is used, clogging occurs. After that, it took more than a minute to detect the clogging. Therefore, the clogging detection time according to the embodiment of the present invention can greatly reduce the clogging detection time.

(効果)
本発明の実施形態に係る詰まり検知方法によれば、上流気送系内の圧力測定値と下流気送系内の圧力測定値との間の差圧を求め、この差圧の絶対値の大きさが予め設定された上流側閾値P1以上であり、かつ、下流気送系内の圧力測定値が予め設定された第1の下流側圧力閾値B1以下のときは上流気送系の配管に微粉炭の詰まりが生じたと判定し、詰まりを検知する。また差圧の絶対値の大きさが予め設定された下流側閾値P2以上であり、かつ、下流気送系内の圧力測定値が予め設定された第2の下流側圧力閾値B2より大きいときは、下流気送系の配管に微粉炭の詰まりが生じたと判定し、詰まりを検知する。このように、熱や音といった外乱に影響されることが殆どない配管内の圧力の変化を用いて詰まりを測定するので、配管の近傍にブローパイプのような装置が配設されていても影響を受けることがない。
(effect)
According to the clogging detection method according to the embodiment of the present invention, the differential pressure between the pressure measurement value in the upstream air transportation system and the pressure measurement value in the downstream air transportation system is obtained, and the absolute value of this differential pressure is large. When the pressure is not less than the preset upstream threshold value P1 and the pressure measurement value in the downstream air feed system is not more than the preset first downstream pressure threshold value B1, fine powder is added to the piping of the upstream air feed system. It is determined that charcoal clogging has occurred, and clogging is detected. When the absolute value of the differential pressure is greater than or equal to the preset downstream threshold P2 and the measured pressure value in the downstream air delivery system is greater than the preset second downstream pressure threshold B2. Then, it is determined that clogging of pulverized coal has occurred in the piping of the downstream air transportation system, and the clogging is detected. In this way, clogging is measured using changes in pressure in the piping that are hardly affected by disturbances such as heat and sound, so even if a device such as a blow pipe is installed in the vicinity of the piping, it is not affected. Not receive.

また、圧力測定値は、配管の詰まりの発生によって上流気送系内の圧力又は下流気送系内の圧力が変化するのと略同じタイミングで変化し、圧力測定値の変化に連動して差圧も略同じタイミングで変化する。そのため詰まりの発生後、速やかに差圧の変化をとらえて配管の詰まりを検知するので、詰まりを検知するまでの時間を、大きく短縮できる。通常の操業条件では、詰まりが発生すると、詰まりのない定常状態の圧力から、数秒以内に圧力が変化を始め比較的短時間で、本発明の実施形態に記載した、差圧の絶対値および下流気送系内の圧力測定値が詰まりが検知される圧力条件を満たす状態が生じ始めるので、この定常状態から詰まりが検知される圧力条件を満たす状態が生じるまでの時間を、詰まりの判定条件に加えることもできる。一般に、定常状態から詰まりと判定される圧力条件を満たす状態に至るまで(図2中のt0〜t、又は図3中のt0〜t)の時間が短時間であるほど、重大な障害が発生していることが予測されるため、早期に対策をとる必要がある。そのため、定常状態から詰まりと判定される圧力条件に至るまでの時間や、圧力の変化速度を考慮した判定基準とすることも好ましい。例えば、定常状態から詰まりと判定される圧力条件に至るまでの時間が0.5秒〜15秒であることを詰まりの判定基準に加えることができる。 The pressure measurement value changes at almost the same timing as the pressure in the upstream air transportation system or the pressure in the downstream air transportation system changes due to the occurrence of clogging in the pipe, and the difference is linked to the change in the pressure measurement value. The pressure also changes at approximately the same timing. Therefore, after the occurrence of clogging, the change in the differential pressure is quickly detected to detect clogging of the pipe, so that the time required to detect clogging can be greatly shortened. Under normal operating conditions, when clogging occurs, the pressure starts to change within a few seconds from the steady-state pressure without clogging, and in a relatively short time, the absolute value of the differential pressure and the downstream value described in the embodiments of the present invention. Since the state where the pressure measurement value in the air transportation system satisfies the pressure condition for detecting clogging begins to occur, the time from this steady state until the condition for satisfying the pressure condition for detecting clogging occurs as the clogging judgment condition. It can also be added. In general, the more up to the pressure satisfies condition that is determined to clogging from the steady state (t0~t H in FIG. 2, or T0~t L in FIG. 3) time is a short time, a critical failure Therefore, it is necessary to take measures as soon as possible. For this reason, it is also preferable to use a determination criterion that takes into account the time from the steady state to the pressure condition determined to be clogged and the pressure change rate. For example, it can be added to the determination criterion for clogging that the time from the steady state to the pressure condition determined as clogging is 0.5 seconds to 15 seconds.

本発明の実施形態に係る詰まり検知方法によれば、配管周辺に配置された設備の影響を受けることがないとともに、配管に詰まりが生じた後、詰まりの発生を検知するまでの時間を従来に比し大きく短縮できる。また、詰まりが上流気送系で発生したか下流気送系で発生したかを判定することができる。これにより、その後の復旧作業の動作を速やかに開始することが可能となり、微粉炭吹込量の低下や不均一な吹込みによる炉況の悪化を抑制することができる。   According to the clogging detection method according to the embodiment of the present invention, the time until the occurrence of clogging is detected after the clogging of the pipe is not affected by the equipment arranged around the pipe. It can be greatly shortened. Further, it can be determined whether the clogging has occurred in the upstream air transportation system or the downstream air transportation system. Thereby, it becomes possible to start the operation | movement of subsequent recovery work rapidly, and the deterioration of the furnace condition by the fall of the amount of pulverized coal injection | throwing-in or non-uniform | heterogenous injection | pouring can be suppressed.

また、本発明の実施形態に係る詰まり検知方法によれば、上流側基準時間T1を用いて、差圧の発生時間が一定時間未満の場合を除外する。これにより誤測定の影響を除去して詰まりの発生を判定するので、上流気送系の配管の詰まりをより正確に検知することができる。また、本発明の実施形態に係る詰まり検知方法によれば、下流側基準時間T2を用いて、差圧の発生時間が一定時間未満の場合を除外するので、上流側基準時間T1と同様に、誤測定の影響を除去して詰まりの発生を判定し、下流気送系の配管の詰まりもより正確に検知することができる。   Further, according to the clogging detection method according to the embodiment of the present invention, the case where the generation time of the differential pressure is less than a certain time is excluded using the upstream reference time T1. This eliminates the influence of erroneous measurement and determines the occurrence of clogging, so that clogging of the piping of the upstream air transportation system can be detected more accurately. Further, according to the clogging detection method according to the embodiment of the present invention, the case where the occurrence time of the differential pressure is less than a certain time is excluded using the downstream side reference time T2, so that, similarly to the upstream side reference time T1, It is possible to determine the occurrence of clogging by eliminating the influence of erroneous measurement, and more accurately detect clogging of piping in the downstream air transportation system.

(その他)
尚、本発明の実施形態に係る詰まり検知方法においては、インジェクションタンク3内の圧力測定値と吹込本管5内の圧力測定値との間の差圧を用いたが、差圧を導くために圧力が測定される部位はこれらに限定されるものではない。一般的には、上流気送系における圧力測定は、インジェクションタンク又はそれより上流側で、また下流気送系における圧力測定は、合流部6よりも上流側の圧縮空気ラインで行うことが好ましいが、輸送配管4や分岐管8で行われてもよい。例えば、図1中に示した、合流部6より上流側に配置された下流気送系側圧力計2に替えて、分岐管8に圧力計を設けて下流気送系における圧力測定を行ってもよい。ただしこのとき、圧力計の位置よりも上流側での詰まりを検知することとなるので、仮に図2に示すような圧力測定値の変化が生じても、微粉炭の詰まりが上流気送系内の配管でなく、下流気送系の吹込本管5で発生している場合もある。
(Other)
In the clogging detection method according to the embodiment of the present invention, the differential pressure between the pressure measurement value in the injection tank 3 and the pressure measurement value in the blow-in main pipe 5 is used. The site where the pressure is measured is not limited to these. In general, the pressure measurement in the upstream air transportation system is preferably performed on the injection tank or upstream side thereof, and the pressure measurement in the downstream air transportation system is preferably performed on the compressed air line upstream of the junction 6. The transportation pipe 4 and the branch pipe 8 may be used. For example, in place of the downstream air pressure system side pressure gauge 2 arranged upstream of the junction 6 shown in FIG. 1, a pressure gauge is provided in the branch pipe 8 to measure the pressure in the downstream air supply system. Also good. However, at this time, since clogging upstream of the position of the pressure gauge is detected, clogging of pulverized coal remains in the upstream air transportation system even if a change in the measured pressure value as shown in FIG. 2 occurs. It may occur in the main pipe 5 of the downstream air-feeding system instead of the pipe.

また本発明の実施形態では、2つの圧力測定値間の差圧を用いる場合を説明したが、これに限定されず、複数の圧力測定値を用いて、これらの間の差圧を複数算出し、上記した知見に基づき、それぞれの差圧の絶対値の大きさの変化から、詰まりを検知する方法を行えば、どの配管において微粉炭が詰まったかを特定することを効率的に行うことができる。
また、本実施形態に係る微粉炭吹込設備における詰まり検知方法に加え、上流気送系内又は下流気送系内の配管に熱電対や音響センサを付加的に配設してもよい。例えば複数の熱電対を配管の表面に所定の間隔で配設して表面温度の変化を求める方法と、本実施形態に係る詰まり検知方法と組み合わせることにより、詰まりの発生部位をより効率的に特定することができ、復旧動作を速やかに行うことが可能となる。
In the embodiment of the present invention, the case where the differential pressure between two pressure measurement values is used has been described. However, the present invention is not limited to this, and a plurality of differential pressures between the pressure measurement values are calculated using a plurality of pressure measurement values. Based on the above knowledge, if a method of detecting clogging is performed from the change in the absolute value of each differential pressure, it is possible to efficiently identify in which piping the pulverized coal is clogged. .
Further, in addition to the clogging detection method in the pulverized coal injection facility according to the present embodiment, a thermocouple or an acoustic sensor may be additionally provided in the piping in the upstream air transportation system or the downstream air transportation system. For example, by combining multiple thermocouples on the surface of a pipe at predetermined intervals to obtain changes in surface temperature and the clogging detection method according to this embodiment, the location where clogging occurs can be identified more efficiently. And the recovery operation can be performed promptly.

また、詰まりの進行が原因となり、微粉炭吹込設備の下流気送系の配管(例えば吹込本管)が破損した場合、吹込本管内の圧力が急激に低下するとともに、差圧の絶対値の大きさは急激に拡大する。よって、吹込本管内の圧力の急激な低下と差圧の絶対値の大きさの急激な拡大とを組み合わせて、詰まりの検知だけでなく、更に吹込本管の破損を検知するように構成してもよい。例えば、吹込本管が破損したかどうかを検知する破損検知用閾値Pz及び破損検知用基準時間Tzを各々予め設定しておく。そして、吹込本管内の圧力が所定の圧力にまで急激に低下するとともに、破損検知用閾値Pz以上の大きさの差圧(絶対値)が破損検知用基準時間Tz以上継続した場合に、吹込本管が破損したことを検知するようにしてもよい。一般的には差圧の絶対値が500kPa以上であれば、配管の破損の可能性が高い。詰まりの検知に加え吹込本管の破損を速やかに検知することにより、微粉炭吹込設備の復旧動作を、より迅速に開始することができる。   Also, when the piping of the pulverized coal injection facility downstream (for example, the main injection pipe) is damaged due to the progress of clogging, the pressure in the main injection pipe rapidly decreases and the absolute value of the differential pressure is large. It expands rapidly. Therefore, it is configured to detect not only clogging but also breakage of the blowing main pipe by combining a rapid decrease in the pressure in the blowing main pipe and a sudden increase in the absolute value of the differential pressure. Also good. For example, a breakage detection threshold value Pz for detecting whether or not the blow main pipe is broken and a breakage detection reference time Tz are set in advance. When the pressure in the blow-in main pipe suddenly drops to a predetermined pressure and the differential pressure (absolute value) greater than or equal to the breakage detection threshold Pz continues for the breakage detection reference time Tz or more, You may make it detect that a pipe | tube was damaged. Generally, if the absolute value of the differential pressure is 500 kPa or more, there is a high possibility of damage to the piping. In addition to detecting clogging, the recovery operation of the pulverized coal blowing facility can be started more quickly by quickly detecting breakage of the blowing main.

本発明は上記のとおり開示した実施の形態によって説明したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになると考えられるべきである。本発明は、本明細書及び図面に記載していない様々な実施の形態等を含むとともに、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   Although the present invention has been described by the embodiments disclosed above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, it should be understood that various alternative embodiments, examples, and operational techniques will become apparent to those skilled in the art. The present invention includes various embodiments and the like not described in the present specification and drawings, and the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description. It is what

1 上流気送系側圧力計
2 下流気送系側圧力計
3 インジェクションタンク
4 輸送配管
5 吹込本管
6 合流部
10 高炉
B1 第1の下流側圧力閾値
B2 第2の下流側圧力閾値
P1 上流側閾値
P2 下流側閾値
T1 上流側基準時間
T2 下流側基準時間
DESCRIPTION OF SYMBOLS 1 Upstream air system side pressure gauge 2 Downstream air system side pressure gauge 3 Injection tank 4 Transport piping 5 Blowing main pipe 6 Junction part 10 Blast furnace B1 1st downstream pressure threshold value B2 2nd downstream pressure threshold value P1 Upstream side Threshold P2 Downstream threshold T1 Upstream reference time T2 Downstream reference time

Claims (3)

微粉炭を蓄えたインジェクションタンク及び当該インジェクションタンクに接続された輸送配管を有する上流気送系と、前記輸送配管に接続されるとともに高炉に連結された吹込本管を有する下流気送系と、を備える高炉の微粉炭吹込設備における配管の詰まりを検知する方法であって、
前記上流気送系内の圧力測定値と前記下流気送系内の圧力測定値との間の差圧の絶対値を算出する差圧算出ステップと、
当該算出された差圧の絶対値の大きさが予め設定された上流側閾値以上であり、かつ、前記下流気送系内の圧力測定値が予め設定された第1の下流側圧力閾値以下のときは、前記上流気送系の配管に微粉炭の詰まりが生じたと判定し、
前記算出された差圧の絶対値の大きさが予め設定された下流側閾値以上であり、かつ、前記下流気送系内の圧力測定値が予め設定された第2の下流側圧力閾値より大きいときは、前記下流気送系の配管に微粉炭の詰まりが生じたと判定して、前記配管の詰まりを検知する詰まり検知ステップと、
を含むことを特徴とする高炉の微粉炭吹込設備における配管の詰まり検知方法。
An upstream tank system having an injection tank storing pulverized coal and a transport pipe connected to the injection tank; and a downstream system having a blow main connected to the transport pipe and connected to a blast furnace. A method for detecting clogging of piping in a blast furnace pulverized coal injection facility comprising:
A differential pressure calculating step for calculating an absolute value of a differential pressure between a pressure measurement value in the upstream air transportation system and a pressure measurement value in the downstream air transportation system;
The magnitude of the absolute value of the calculated differential pressure is not less than a preset upstream threshold value, and the pressure measurement value in the downstream air transportation system is not more than a preset first downstream pressure threshold value. When it is determined that clogging of pulverized coal has occurred in the piping of the upstream air transportation system,
The calculated absolute value of the differential pressure is greater than or equal to a preset downstream threshold, and the pressure measurement value in the downstream air delivery system is greater than a preset second downstream pressure threshold. When it is determined that clogging of pulverized coal has occurred in the piping of the downstream air transportation system, a clogging detection step of detecting clogging of the piping,
A method for detecting clogging in a pipe in a pulverized coal injection facility for a blast furnace.
前記詰まり検知ステップは、前記差圧の絶対値の大きさが前記上流側閾値以上であり、かつ、前記下流気送系内の圧力測定値が前記第1の下流側圧力閾値以下となる状態が、予め設定された上流側基準時間以上継続したときに、前記上流気送系の配管に微粉炭の詰まりが生じたと判定することを特徴とする請求項1に記載の高炉の微粉炭吹込設備における配管の詰まり検知方法。   In the clogging detection step, the absolute value of the differential pressure is not less than the upstream threshold value, and the measured pressure value in the downstream air transportation system is not more than the first downstream pressure threshold value. In the blast furnace pulverized coal injecting equipment according to claim 1, wherein it is determined that clogging of pulverized coal has occurred in the piping of the upstream air transportation system when continuing for a preset upstream reference time or longer. Piping clogging detection method. 前記詰まり検知ステップは、前記差圧の絶対値の大きさが前記下流側閾値以上であり、かつ、前記下流気送系内の圧力測定値が前記第2の下流側圧力閾値より大きい状態が、予め設定された下流側基準時間以上継続したときに、前記下流気送系の配管に微粉炭の詰まりが生じたと判定することを特徴とする請求項1又は2に記載の高炉の微粉炭吹込設備における配管の詰まり検知方法。   In the clogging detection step, the state where the magnitude of the absolute value of the differential pressure is not less than the downstream threshold value and the pressure measurement value in the downstream air transportation system is larger than the second downstream pressure threshold value, 3. The blast furnace pulverized coal injection facility according to claim 1, wherein it is determined that clogging of pulverized coal has occurred in the piping of the downstream air transportation system when continuing for a preset downstream reference time or longer. Detection method for clogged pipes.
JP2014209915A 2013-10-15 2014-10-14 Clogging detection method of piping in blast furnace pulverized coal injection equipment. Active JP6020531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209915A JP6020531B2 (en) 2013-10-15 2014-10-14 Clogging detection method of piping in blast furnace pulverized coal injection equipment.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013215026 2013-10-15
JP2013215026 2013-10-15
JP2014209915A JP6020531B2 (en) 2013-10-15 2014-10-14 Clogging detection method of piping in blast furnace pulverized coal injection equipment.

Publications (2)

Publication Number Publication Date
JP2015098647A true JP2015098647A (en) 2015-05-28
JP6020531B2 JP6020531B2 (en) 2016-11-02

Family

ID=53375456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209915A Active JP6020531B2 (en) 2013-10-15 2014-10-14 Clogging detection method of piping in blast furnace pulverized coal injection equipment.

Country Status (1)

Country Link
JP (1) JP6020531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990265A (en) * 2022-07-01 2022-09-02 广东韶钢松山股份有限公司 Blast furnace coal injection production system and anti-backfire method of coal injection gun

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106720A (en) * 1983-11-14 1985-06-12 Kobe Steel Ltd Method of detecting clogging in pulverized material gas-stream conveyor device
JPS61153218A (en) * 1984-12-26 1986-07-11 Kawasaki Steel Corp Cooling method of lance for blowing powder into blast furnace
JP2000226609A (en) * 1999-02-08 2000-08-15 Nkk Corp Method for monitoring abnormality of lance
JP2003226427A (en) * 2002-02-05 2003-08-12 Jfe Steel Kk Powdery and granular material supply equipment to reaction furnace and its operating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106720A (en) * 1983-11-14 1985-06-12 Kobe Steel Ltd Method of detecting clogging in pulverized material gas-stream conveyor device
JPS61153218A (en) * 1984-12-26 1986-07-11 Kawasaki Steel Corp Cooling method of lance for blowing powder into blast furnace
JP2000226609A (en) * 1999-02-08 2000-08-15 Nkk Corp Method for monitoring abnormality of lance
JP2003226427A (en) * 2002-02-05 2003-08-12 Jfe Steel Kk Powdery and granular material supply equipment to reaction furnace and its operating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990265A (en) * 2022-07-01 2022-09-02 广东韶钢松山股份有限公司 Blast furnace coal injection production system and anti-backfire method of coal injection gun

Also Published As

Publication number Publication date
JP6020531B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5568081B2 (en) How to put pulverized coal into the blast furnace
WO2016043167A1 (en) Powder transporting device and char recovering device
JP6020531B2 (en) Clogging detection method of piping in blast furnace pulverized coal injection equipment.
CN105046891A (en) Conveying pipeline blockage detection device and system
JP6547441B2 (en) Apparatus and method for preventing chute tube obstruction
JP2014084502A (en) Method for feeding gas fuel to sintering machine, and gas fuel feeding device
JP7183648B2 (en) Pulverized coal blowing method
JP5541195B2 (en) Method for measuring particle size distribution of pulverized coal
JP7087534B2 (en) How to perform PCI stably
JPS60125307A (en) Method for detecting clogging of powder blowing pipe communicating with tuyere or blast furnace
JP2001040404A (en) Method for detecting clogging of blowing air-feeding piping system for pulverized fine coal into blast furnace
JP3012186B2 (en) Carrier gas abnormality detection method for powder transportation equipment
JP2013043998A (en) Pulverized coal injection method
JP2000320823A (en) Method and apparatus for diagnosing abnormal combustion of fluidized bed
JP5779839B2 (en) Blast furnace operation method
JP4570591B2 (en) Method and system for reusing coarse particles recovered from fluidized bed boiler fuel production and supply equipment
JPH09287011A (en) Detection of clogging of carrying piping for injecting powdery fuel in blast furnace
JP6089927B2 (en) Method of monitoring pulverized coal supply facility and pulverized coal supply facility to blast furnace
JP5862612B2 (en) Unmelted ore detection method and blast furnace operation method
KR101289102B1 (en) Apparatus for meaturing temperature of coal's pipe
JP2009213973A (en) Bug filter type dust collector
JP6783675B2 (en) How to monitor fluidization chute, plant and fluidization chute
JP2018154419A (en) Abnormality detection method of powder supply path in powder conveyance facility
KR100765063B1 (en) Apparatus for sensing temperature of pulverized coal transferring duct
JP5962611B2 (en) Blast furnace pulverized coal blowing method and blowing abnormality detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6020531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250