JP2014084502A - Method for feeding gas fuel to sintering machine, and gas fuel feeding device - Google Patents

Method for feeding gas fuel to sintering machine, and gas fuel feeding device Download PDF

Info

Publication number
JP2014084502A
JP2014084502A JP2012234507A JP2012234507A JP2014084502A JP 2014084502 A JP2014084502 A JP 2014084502A JP 2012234507 A JP2012234507 A JP 2012234507A JP 2012234507 A JP2012234507 A JP 2012234507A JP 2014084502 A JP2014084502 A JP 2014084502A
Authority
JP
Japan
Prior art keywords
gaseous fuel
fuel supply
gas fuel
charging layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012234507A
Other languages
Japanese (ja)
Other versions
JP6024890B2 (en
Inventor
Koji Tsuchiya
耕治 土屋
Yohei Takigawa
洋平 瀧川
Tomoji Iwami
友司 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012234507A priority Critical patent/JP6024890B2/en
Publication of JP2014084502A publication Critical patent/JP2014084502A/en
Application granted granted Critical
Publication of JP6024890B2 publication Critical patent/JP6024890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

PROBLEM TO BE SOLVED: To provide a method for feeding gas fuel, in the case gas fuel is fed and a sintering operation is performed in a downward suction type sintering machine, capable of detecting the abnormal burning of the gas fuel at high precision, and a device therefor.SOLUTION: A sintering raw material charging layer comprising fine ore and a carbonaceous material is formed on a circularly moving pallet, the carbonaceous material in the surface of the charging layer is ignited, thereafter, air including gas fuel fed from plurally gas fuel feeders installed in the downstream of the ignition furnace in the machine length direction to the inside of the hoods thereof is sucked with a wind box disposed at the lower part of the pallet and is introduced into the charging layer, and the gas fuel and the carbonaceous material are burnt in the charging layer to produce sintered ore. At this time, a thermometer for measuring the surface temperature of the charging layer is disposed in the inside of the hood of each gas fuel feeder, it is decided that the abnormal burning of the gas fuel has been caused when the measured value of the thermometer reaches a prescribed threshold or higher, and the feed of the gas fuel to the gas fuel feeding piping is stopped.

Description

本発明は、下方吸引式のドワイトロイド焼結機であって、焼結に要する熱源の一部として気体燃料を供給し、高品質の焼結鉱を製造する焼結機に用いて好適な気体燃料供給方法と気体燃料供給装置に関するものである。   The present invention is a downward suction type dwytroid sintering machine, which is a gas suitable for use in a sintering machine that supplies gaseous fuel as part of a heat source required for sintering and produces high-quality sintered ore. The present invention relates to a fuel supply method and a gaseous fuel supply apparatus.

高炉製銑法の主原料である焼結鉱は、一般に、図1に示すような工程を経て製造される。焼結鉱の原料は、鉄鉱石粉や焼結鉱篩下粉、製鉄所内で発生した回収粉、石灰石およびドロマイトなどの含CaO系副原料、生石灰等の造粒助剤、コークス粉や無煙炭などであり、これらの原料は、ホッパー1・・・の各々から、コンベヤ上に所定の割合で切り出される。切り出された原料は、ドラムミキサー2および3等によって適量の水が加えられ、混合、造粒されて、平均径が3〜6mmの擬似粒子である焼結原料とされる。この焼結原料は、その後、焼結機上に配設されているサージホッパー4、5からドラムフィーダー6と切り出しシュート7を介して、無端移動式の焼結機パレット8上に400〜800mmの厚さで装入され、焼結ベッドともいわれる装入層9を形成する。その後、装入層9の上方に設置された点火炉10で装入層表層の炭材に点火するとともに、パレット8の直下に配設されたウインドボックス11を介して装入層上方の空気を下方に吸引することにより、装入層内の炭材を順次燃焼させ、このときに発生する燃焼熱で前記焼結原料を溶融して焼結ケーキを得る。このようにして得た焼結ケーキは、その後、破砕、整粒され、5mm以上の塊成物は成品焼結鉱として高炉に供給され、それ以下のものは返鉱として焼結原料として再使用される。   Sinter ore, which is the main raw material of the blast furnace ironmaking method, is generally manufactured through a process as shown in FIG. The raw materials for sintered ore are iron ore powder, sintered ore sieving powder, recovered powder generated in steelworks, CaO-containing auxiliary materials such as limestone and dolomite, granulation aids such as quick lime, coke powder and anthracite Yes, these raw materials are cut out from each of the hoppers 1. The cut out raw material is added with an appropriate amount of water by the drum mixers 2 and 3 and the like, mixed and granulated to obtain a sintered raw material which is pseudo particles having an average diameter of 3 to 6 mm. This sintered raw material is then transferred to 400 to 800 mm on an endless moving type sintering machine pallet 8 from the surge hoppers 4 and 5 arranged on the sintering machine through the drum feeder 6 and the cutting chute 7. The charge layer 9 is charged with a thickness and is also referred to as a sintered bed. Thereafter, the carbon material on the surface of the charging layer is ignited by an ignition furnace 10 installed above the charging layer 9, and the air above the charging layer is passed through a wind box 11 disposed immediately below the pallet 8. By sucking downward, the carbonaceous material in the charging layer is sequentially burned, and the sintered raw material is melted by the combustion heat generated at this time to obtain a sintered cake. The sintered cake obtained in this way is then crushed and sized, and agglomerates of 5 mm or more are supplied to the blast furnace as a product sintered ore, and those smaller than that are reused as sintered raw materials as return ore. Is done.

上記製造プロセスにおいて、点火炉10によって点火された装入層内の炭材は、その後、装入層内を上層から下層に向かって吸引される空気によって燃焼を続け、厚さ方向に幅をもった燃焼・溶融帯(以降、単に「燃焼帯」ともいう。)を形成する。この燃焼帯は、パレット8が下流側に移動するのに伴って次第に装入層の上層から下層に移行し、燃焼帯が通過した後には、焼結反応が完了した焼結ケーキ層(焼結層)が生成される。   In the above manufacturing process, the carbonaceous material in the charging layer ignited by the ignition furnace 10 is continuously burned by the air sucked from the upper layer toward the lower layer in the charging layer, and has a width in the thickness direction. A combustion / melting zone (hereinafter also simply referred to as “combustion zone”) is formed. This combustion zone gradually moves from the upper layer to the lower layer as the pallet 8 moves downstream, and after passing through the combustion zone, the sintered cake layer (sintered) in which the sintering reaction has been completed. Layer) is generated.

図2は、点火炉で点火された装入層表層の炭材が、吸引される空気によって燃焼を続けて燃焼帯を形成し、これが装入層の上層から下層に順次移動し、焼結ケーキが形成されていく過程を模式的に示した図である。また、図3(a)は、上記燃焼帯が、図2に示した太枠内に示した装入層の上層部、中層部および下層部の各層内に存在しているときの温度分布を模式的に示したものである。焼結鉱の強度は、1200℃以上の温度に保持される温度と時間の積に影響され、その値が大きいほど焼結鉱の強度は高くなる。そのため、装入層内の中層部および下層部は、装入層上層部の炭材の燃焼熱が吸引される空気によって運ばれて予熱されるため、高温度に長時間にわたって保持されるのに対して、装入層上層部は、予熱されない分、燃焼熱が不足し、焼結に必要な燃焼溶融反応(焼結反応)が不十分となりやすい。その結果、装入層の幅方向断面内における焼結鉱の歩留り分布は、図3(b)に示したように、装入層上層部ほど歩留りが低くなる。また、パレット両幅端部も、パレット側壁からの放熱や、通過する空気の量が多いことによる過冷却によって、焼結に必要な高温域での保持時間が十分に確保できず、やはり歩留りが低くなる。   FIG. 2 shows that the carbon material in the surface of the charging layer ignited in the ignition furnace is continuously burned by the sucked air to form a combustion zone, which sequentially moves from the upper layer to the lower layer of the charging layer. It is the figure which showed typically the process in which is formed. FIG. 3A shows the temperature distribution when the combustion zone is present in each of the upper layer portion, middle layer portion and lower layer portion of the charging layer shown in the thick frame shown in FIG. It is shown schematically. The strength of the sintered ore is influenced by the product of the temperature and time maintained at a temperature of 1200 ° C. or higher, and the greater the value, the higher the strength of the sintered ore. Therefore, the middle layer and lower layer in the charging layer are preheated by being transported by the air sucked by the combustion heat of the carbon material in the upper charging layer, so that it can be held at a high temperature for a long time. On the other hand, the upper portion of the charge layer is not preheated, and therefore the combustion heat is insufficient, and the combustion melting reaction (sintering reaction) necessary for sintering tends to be insufficient. As a result, the yield distribution of the sintered ore in the cross section in the width direction of the charging layer becomes lower in the upper layer portion of the charging layer as shown in FIG. Also, the pallet both width ends cannot secure sufficient holding time in the high temperature range necessary for sintering due to heat dissipation from the pallet side walls and excessive cooling due to the large amount of air passing through, and the yield is also high. Lower.

これらの問題に対して、従来は、焼結原料中に添加している炭材(粉コークス)量を増量することが行われてきた。しかし、コークスの添加量を増やすことによって、図4に示したように、焼結層内の温度を高め、1200℃以上に保持される時間を延長することができるものの、それと同時に焼結時の最高到達温度が1400℃を超えて適正範囲から外れ、却って焼結鉱の被還元性や冷間強度の低下を招くことになる。   In order to cope with these problems, conventionally, the amount of carbonaceous material (powder coke) added to the sintered raw material has been increased. However, by increasing the amount of coke added, as shown in FIG. 4, the temperature in the sintered layer can be increased and the time maintained at 1200 ° C. or higher can be extended. The highest temperature exceeds 1400 ° C. and deviates from the appropriate range, and on the contrary, the reducibility and cold strength of the sintered ore are reduced.

そこで、従来から、装入層上層部を長時間にわたって高温に保持することを目的とした技術が幾つか提案されている。例えば、特許文献1には、装入層に点火後、装入層上に気体燃料を噴射する技術が、特許文献2には、装入層に点火後、装入層に吸引される空気中に可燃性ガスを添加する技術が、また、特許文献3には、焼結原料の装入層内を高温にするため、装入層の上にフードを配設し、そのフードから空気やコークス炉ガスとの混合ガスを点火炉直後の位置で吹き込む技術が、さらに、特許文献4には、低融点溶剤と炭材や可燃性ガスを同時に点火炉直後の位置で吹き込む技術が提案されている。   In view of this, several techniques have been proposed for the purpose of maintaining the upper portion of the charging layer at a high temperature for a long time. For example, Patent Document 1 discloses a technique for injecting gaseous fuel onto a charging layer after the charging layer is ignited. Patent Document 2 discloses a technique in which air is sucked into the charging layer after the charging layer is ignited. In addition, in Patent Document 3, a hood is disposed on the charging layer so that the inside of the charging layer of the sintering raw material is heated, and air or coke is discharged from the hood. A technique for blowing a mixed gas with a furnace gas at a position immediately after the ignition furnace, and Patent Document 4 propose a technique for simultaneously blowing a low-melting-point solvent and a carbonaceous material or a combustible gas at a position immediately after the ignition furnace. .

しかし、これらの技術は、高濃度の気体燃料を使用し、しかも燃料ガスの吹き込みに際して炭材量を削減していないため、装入層内の焼結時の最高到達温度が操業管理上の上限温度である1400℃を超える高温となり、焼結過程で生成したカルシウムフェライトが分解して、被還元性や冷間強度の低い焼結鉱が生成して歩留改善効果が得られなかったり、気体燃料の燃焼による温度上昇と熱膨張によって通気性が悪化し、生産性が低下したりし、さらには、気体燃料の使用によって焼結ベッド(装入層)上部空間で火災を起こす危険性があったりするため、いずれも実用化には至っていない。   However, since these technologies use high-concentration gaseous fuel and do not reduce the amount of carbonaceous material when fuel gas is injected, the maximum temperature reached during sintering in the charged layer is the upper limit for operation management. When the temperature exceeds 1400 ° C, the calcium ferrite produced during the sintering process decomposes, producing a sintered ore with low reducibility and low cold strength, and the yield improvement effect cannot be obtained. Increased temperature and thermal expansion due to fuel combustion may deteriorate air permeability, reduce productivity, and use of gaseous fuel may cause a fire in the upper space of the sintering bed (charging layer). Therefore, none of them has been put into practical use.

そこで、本発明者らは、上記問題点を解決する技術として、焼結原料中の炭材添加量を削減した上で、焼結機の点火炉の下流かつ焼結に必要な熱量が不足する装入層上層部が焼結反応を起こす焼結機の機長の前半部分において、燃焼下限濃度以下に希釈した各種気体燃料を、パレット上方から装入層内に導入し、装入層内で燃焼させることにより、装入層内の最高到達温度および高温域保持時間の両方を適正範囲に制御する技術を特許文献5等に提案している。   Thus, as a technique for solving the above problems, the present inventors have reduced the amount of carbonaceous material added in the sintering raw material, and lacked the amount of heat necessary for sintering downstream of the ignition furnace of the sintering machine. In the first half of the length of the sintering machine where the upper part of the charging layer causes a sintering reaction, various gaseous fuels diluted below the lower combustion limit concentration are introduced into the charging layer from above the pallet and burned in the charging layer. By doing so, Patent Literature 5 proposes a technique for controlling both the maximum attained temperature in the charging layer and the high temperature region holding time within an appropriate range.

下方吸引式焼結機を用いた焼結鉱の製造方法に、上記特許文献5等の技術を適用し、焼結原料中への炭材添加量を削減した上で、燃焼下限濃度以下に希釈した気体燃料を装入層内に導入し、気体燃料を装入層内で燃焼させた場合には、図5に示したように、上記気体燃料は、炭材が燃焼した後の装入層内(焼結層内)で燃焼するので、燃焼・溶融帯の最高到達温度を1400℃超えとすることなく、燃焼・溶融帯の幅を厚さ方向に拡大させることができ、効果的に高温域保持時間の延長を図ることができる。   Apply technology such as Patent Document 5 above to the method of manufacturing sintered ore using a downward suction type sintering machine, reduce the amount of carbonaceous material added to the sintering raw material, and then dilute below the lower combustion limit concentration When the gaseous fuel is introduced into the charging layer and the gaseous fuel is burned in the charging layer, as shown in FIG. Because it burns in the inside (sintered layer), the width of the combustion / melting zone can be expanded in the thickness direction without exceeding the maximum temperature of the combustion / melting zone exceeding 1400 ° C. The area retention time can be extended.

ところで、焼結機の点火炉の下流側に設置された気体燃料供給装置から気体燃料を供給して焼結操業を行う場合には、気体燃料は燃焼や爆発を起こし易いという性質上、安全であることが最優先とされる。この点、本発明においては、気体燃料を常温では燃焼も爆発も起こらない濃度に希釈して供給するため、通常であれば、安全上の問題はない。   By the way, when performing a sintering operation by supplying gaseous fuel from a gaseous fuel supply device installed on the downstream side of the ignition furnace of the sintering machine, the gaseous fuel is safe because of its property to easily cause combustion and explosion. There is a top priority. In this regard, in the present invention, since the gaseous fuel is diluted and supplied to a concentration at which neither combustion nor explosion occurs at room temperature, there is no problem in safety under normal circumstances.

しかし、高濃度の気体燃料を気体燃料供給装置(フード)内の空気中に高速で噴出して瞬時に燃焼下限濃度以下に希釈する気体燃料供給方法の場合、例えば、気体燃料供給系統に何らかの異常が生じて気体燃料の噴出速度が低下したり、あるいは、正規の噴出口以外の場所から気体燃料が漏洩したりした場合には、供給された気体燃料が、原料装入層内に導入されて燃焼する前に、原料装入層の上方で、点火炉で点火された焼結原料装入層中の火種によって着火し、異常燃焼を起こしたり、爆発を起こしたりして、重大災害につながるおそれがある。したがって、気体燃料への着火が生じた場合には、早期に検出し、気体燃料の供給を停止してやる必要がある。そこで、発明者らは、上記気体燃料供給装置のフード内に紫外線を検知する火炎検知器(着火検知器)を設置し、着火を検出する技術を特許文献6〜8に提案している。   However, in the case of a gaseous fuel supply method in which high-concentration gaseous fuel is jetted at high speed into the air in the gaseous fuel supply device (hood) and instantly diluted below the lower combustion limit concentration, for example, there is some abnormality in the gaseous fuel supply system If the gas fuel jet velocity decreases or the gas fuel leaks from a place other than the normal jet outlet, the supplied gas fuel is introduced into the raw material charging layer. Before combustion, it may be ignited by the type of fire in the sintered raw material charge layer ignited in the ignition furnace above the raw material charge layer, causing abnormal combustion or explosion, leading to a serious disaster There is. Therefore, when ignition of the gaseous fuel occurs, it is necessary to detect it early and stop the supply of the gaseous fuel. In view of this, the inventors have proposed technologies for detecting ignition by installing a flame detector (ignition detector) for detecting ultraviolet rays in the hood of the gaseous fuel supply apparatus.

特開昭48−018102号公報Japanese Patent Laid-Open No. 48-018102 特公昭46−027126号公報Japanese Examined Patent Publication No. 46-027126 特開昭55−018585号公報Japanese Patent Application Laid-Open No. 55-018585 特開平05−311257号公報JP 05-311257 A WO2007/052776号公報WO2007 / 052776 特開2010−132946号公報JP 2010-132946 A 特開2010−156036号公報JP 2010-156036 A 特開2011−052858号公報JP 2011-052858 A

しかしながら、上記火炎検知器の設置によって焼結操業の安全性は大きく向上したものの、気体燃料供給装置のフード下部の間隙部から入射してくる太陽光や建屋内の照明光、あるいは、工事等の溶接時に発生するアーク等の外乱光によって火炎検知機の誤検知や誤作動が頻発し、気体燃料を供給した焼結操業を安定して実施する上で大きな支障を来たしていた。   However, although the safety of the sintering operation has been greatly improved by the installation of the above flame detector, sunlight, illumination light inside the building, construction work, etc., which enters from the gap under the hood of the gaseous fuel supply device Misdetection and malfunction of the flame detector frequently occur due to disturbance light such as arc generated during welding, which has caused a great hindrance in stably performing the sintering operation supplied with gaseous fuel.

本発明は、従来技術が抱える上記問題点に鑑みてなされたもののであり、その目的は、下方吸引式焼結機において気体燃料を供給して焼結操業を行う際、気体燃料の異常燃焼を精度よく検知し、もって、気体燃料を安全かつ安定して供給することができる気体燃料供給方法を提案するとともに、そのための気体燃料供給装置を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to prevent abnormal combustion of the gaseous fuel when performing the sintering operation by supplying the gaseous fuel in the lower suction type sintering machine. An object of the present invention is to propose a gaseous fuel supply method capable of detecting gaseous fuel accurately and stably and stably supplying gaseous fuel, and to provide a gaseous fuel supply apparatus therefor.

発明者らは、上記課題を解決するべく鋭意検討を重ねた。その結果、上記のような誤検知や誤作動を防止し、気体燃料の異常燃焼を精度よく検知するためには、紫外線等の光を検知する火炎検知器に代えて、原料装入層上表面の温度を直接検知する方法が、最も簡便かつ有効であることを見出し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, in order to prevent erroneous detection and malfunction as described above and to accurately detect abnormal combustion of gaseous fuel, the upper surface of the raw material charging layer is replaced with a flame detector that detects light such as ultraviolet rays. The method of directly detecting the temperature was found to be the simplest and most effective, and the present invention was developed.

すなわち、本発明は、循環移動するパレット上に粉鉱石と炭材を含む焼結原料を装入して装入層を形成し、その装入層表面の炭材に点火炉で点火した後、点火炉下流に機長方向に複数設置された気体燃料供給装置からそのフード内に供給した気体燃料を含む空気をパレット下方に配設されたウインドボックスで吸引して装入層内に導入し、その装入層内において前記気体燃料と炭材を燃焼させて焼結鉱を製造する焼結機への気体燃料供給方法であって、前記気体燃料供給装置のフード内に前記装入層の表面温度を測定する温度計を配設し、当該温度計の測定値が所定の閾値以上の温度となったときは、気体燃料の異常燃焼が生じていると判定し、気体燃料供給配管への気体燃料の供給を停止することを特徴とする気体燃料供給方法である。   That is, the present invention is to form a charging layer by charging a sintered raw material containing fine ore and carbonaceous material on a circulating pallet, after igniting the carbonaceous material on the charging layer surface in an ignition furnace, Air containing gaseous fuel supplied into the hood from a plurality of gaseous fuel supply devices installed in the machine length direction downstream of the ignition furnace is sucked with a wind box disposed below the pallet and introduced into the charging layer. A method for supplying gaseous fuel to a sintering machine for producing sintered ore by burning the gaseous fuel and carbonaceous material in a charging layer, wherein the surface temperature of the charging layer is in a hood of the gaseous fuel supply device When the measured value of the thermometer reaches a temperature equal to or higher than a predetermined threshold, it is determined that abnormal combustion of the gaseous fuel has occurred, and the gaseous fuel to the gaseous fuel supply pipe is The gaseous fuel supply method is characterized in that the supply of the gas is stopped.

本発明の気体燃料供給方法は、上記気体燃料の供給を停止した後、気体燃料供給配管に不活性ガスを導入することを特徴とする。   The gaseous fuel supply method of the present invention is characterized in that after the supply of the gaseous fuel is stopped, an inert gas is introduced into the gaseous fuel supply pipe.

また、本発明の気体燃料供給方法は、上記閾値を50℃以上の温度に設定することを特徴とする。   Moreover, the gaseous fuel supply method of this invention sets the said threshold value to the temperature of 50 degreeC or more, It is characterized by the above-mentioned.

また、本発明は、焼結機のパレット上方に配置された、上下が開口し、四方を取り囲むフードと、当該フード内に水平方向かつ上下方向に複数配設した邪魔板と、当該邪魔板の下方に水平方向に複数配設した気体燃料供給配管と、前記パレット上の原料装入層の表面温度を測定する温度計と、前記気体燃料供給配管への気体燃料の供給を制御する制御装置を有する焼結機の気体燃料供給装置であって、前記制御装置は、前記温度計の測定値が所定の閾値以上の温度となったときは、気体燃料の異常燃焼が生じていると判定し、気体燃料供給配管への気体燃料の供給を停止する機能を有することを特徴とする気体燃料供給装置である。   The present invention also includes a hood that is disposed above the pallet of the sintering machine and that is open at the top and bottom and that surrounds the four sides, a baffle plate that is disposed in the hood in the horizontal and vertical directions, and the baffle plate A plurality of gaseous fuel supply pipes arranged horizontally below, a thermometer for measuring the surface temperature of the raw material charging layer on the pallet, and a control device for controlling the supply of gaseous fuel to the gaseous fuel supply pipes A gas fuel supply device for a sintering machine, wherein the control device determines that abnormal combustion of the gas fuel has occurred when the measured value of the thermometer is equal to or higher than a predetermined threshold; A gaseous fuel supply apparatus having a function of stopping supply of gaseous fuel to a gaseous fuel supply pipe.

本発明の気体燃料供給装置における上記制御装置は、気体燃料の異常燃焼が発生したと判定した際、気体燃料の供給を停止するとともに、不活性ガスを気体燃料供給配管に導入する機能を有することを特徴とする。   The control device in the gaseous fuel supply apparatus of the present invention has a function of stopping the supply of the gaseous fuel and introducing an inert gas into the gaseous fuel supply pipe when it is determined that abnormal combustion of the gaseous fuel has occurred. It is characterized by.

本発明によれば、気体燃料供給装置における気体燃料の異常燃焼を確実に検知することができるので、気体燃料を供給する焼結操業を安全かつ安定して実現することが可能となり、ひいては、高強度かつ被還元性に優れる高品質の焼結鉱を、安全かつ安定して製造することが可能となる。   According to the present invention, it is possible to reliably detect abnormal combustion of gaseous fuel in the gaseous fuel supply apparatus, so that it is possible to safely and stably realize a sintering operation for supplying gaseous fuel, It becomes possible to produce a high-quality sintered ore that is strong and excellent in reducibility safely and stably.

焼結プロセスを説明する概要図である。It is a schematic diagram explaining a sintering process. 焼結の進行に伴う装入層内の変化を説明する模式図である。It is a schematic diagram explaining the change in the charging layer accompanying progress of sintering. 燃焼帯が装入層の上層部、中層部および下層部の各位置に存在しているときの温度分布と、装入層の幅方向断面内における焼結鉱の歩留り分布を説明する図である。It is a figure explaining the temperature distribution when a combustion zone exists in each position of the upper layer part of the charging layer, the middle layer part, and the lower layer part, and the yield distribution of the sintered ore in the width direction cross section of the charging layer. . 炭材量の変化(増量)による装入層内の温度変化を説明する図である。It is a figure explaining the temperature change in the charging layer by the change (increase) of the amount of carbon materials. 気体燃料供給が高温域保持時間に及ぼす効果を説明する模式図である。It is a schematic diagram explaining the effect which gaseous fuel supply has on high temperature range holding time. 本発明の焼結機におけるパレット、点火炉および気体燃料供給装置を説明する図である。It is a figure explaining the pallet, ignition furnace, and gaseous fuel supply apparatus in the sintering machine of this invention. 本発明の気体燃料供給装置のパレット幅方向の断面図である。It is sectional drawing of the pallet width direction of the gaseous fuel supply apparatus of this invention. 火炎検知器を設置した気体燃料供給装置例を説明する図である。It is a figure explaining the example of the gaseous fuel supply apparatus which installed the flame detector. 温度計を設置した本発明の気体燃料供給装置を説明する図であるIt is a figure explaining the gaseous fuel supply apparatus of this invention which installed the thermometer. 本発明の気体燃料供給装置の気体燃料供給系統を説明する図である。It is a figure explaining the gaseous fuel supply system of the gaseous fuel supply apparatus of this invention.

以下、本発明の実施の形態について説明する。
図6は、本発明に係る焼結機のパレット、点火炉および気体燃料供給装置を示す側面図の一例であり、無端移動式の焼結機パレット8は、一列に連結した複数のパレット台車13・・・がレール14上を移動する構成とされている。また、パレット台車13は、図7に示すように、焼結原料が装入・堆積されるグレート13aと、グレート13aの幅方向両縁部から立ち上がるサイドウォール13bから構成されている。
また、図6の符号15は、焼結機パレット8上に焼結原料を装入する図示されていない床敷鉱ホッパー4、サージホッパー5、ドラムフィーダー6および切り出しシュート7からなる原料装入部であり、これらを介して切り出され、装入された床敷鉱(返鉱)および焼結原料が、焼結機パレット8のグレート13a上に装入層9を形成する。
Embodiments of the present invention will be described below.
FIG. 6 is an example of a side view showing a pallet, an ignition furnace, and a gaseous fuel supply device of a sintering machine according to the present invention, and an endless moving type sintering machine pallet 8 includes a plurality of pallet trucks 13 connected in a row. Are configured to move on the rail 14. Further, as shown in FIG. 7, the pallet carriage 13 is composed of a grate 13a in which a sintering raw material is charged and deposited, and side walls 13b rising from both edges in the width direction of the grate 13a.
Further, reference numeral 15 in FIG. 6 denotes a raw material charging section comprising a floor mine hopper 4, a surge hopper 5, a drum feeder 6, and a cutting chute 7 (not shown) for charging the sintered raw material onto the sintering machine pallet 8. The bedding ore (returned ore) and the sintered raw material cut and charged through these materials form the charging layer 9 on the grate 13a of the sintering machine pallet 8.

また、原料装入部15の下流側には、点火炉10が設置され、この点火炉の下流側に、気体燃料供給装置16が複数基(図6では3基)の直列に設置されている。ここで、気体燃料供給装置16は、点火炉10で点火された焼結機パレット8上の装入層内に気体燃料を導入し、燃焼させることで、装入層の燃焼・焼結帯を拡幅して高温域保持時間を延長し、焼結鉱の品質改善、生産性の向上を図る装置であり、図7に示すように、焼結機パレット8の上方に配置した四方を取り囲むフード17と、フード17内に水平方向かつ上下方向に複数配置した多数の邪魔板18と、フード17内の邪魔板18の下方に水平方向に複数配置した気体燃料供給配管19とを備えている。   Further, an ignition furnace 10 is installed on the downstream side of the raw material charging section 15, and a plurality of gas fuel supply devices 16 (three in FIG. 6) are installed in series on the downstream side of the ignition furnace. . Here, the gaseous fuel supply device 16 introduces the gaseous fuel into the charging layer on the sintering machine pallet 8 ignited in the ignition furnace 10 and burns it, thereby forming a combustion / sintering zone of the charging layer. A hood 17 surrounding the four sides disposed above the sintering machine pallet 8 as shown in FIG. And a plurality of baffle plates 18 arranged in the hood 17 in the horizontal and vertical directions, and a plurality of gas fuel supply pipes 19 arranged in the horizontal direction below the baffle plates 18 in the hood 17.

フード17は、上部及び下部が開口しており、フード17内の邪魔板18は、頂点を上方とする断面がへ字状の部材であって、焼結機パレット8の搬送方向に沿って延長し、焼結機パレット8の搬送方向と直交する幅方向に所定ピッチをもって複数列かつ上下方向にも複数段配設されている。気体燃料供給配管19は、焼結機パレット8の搬送方向に延長し、搬送方向と直交するパレット幅方向に所定間隔を保って複数本配置されており、これら気体燃料供給配管19には、図示されていたい気体燃料供給素管から、気体燃料が供給されている。各気体燃料供給配管19には、気体燃料が水平方向に噴出する気体燃料噴出ノズルが配設または開口部が設けられている。この気体燃料としては、高炉ガス(Bガス)、コークス炉ガス(Cガス)、高炉・コークス炉混合ガス(Mガス)、LNG(天然ガス)、都市ガス、メタンガス、エタンガス、プロパンガス等の可燃性ガスやこれらの混合ガスを用いることができる。さらに、頁岩(シェール)層から採取される、従来の天然ガスとは異なる非在来型の天然ガス(シェールガス)もLNGと同様に用いることができる。   The upper portion and the lower portion of the hood 17 are open, and the baffle plate 18 in the hood 17 is a member having a U-shaped cross section with the apex upward, and extends along the conveying direction of the sintering machine pallet 8. In addition, a plurality of rows are arranged in a plurality of rows and in the vertical direction with a predetermined pitch in the width direction orthogonal to the conveying direction of the sintering machine pallet 8. A plurality of gaseous fuel supply pipes 19 extend in the conveying direction of the sintering machine pallet 8 and are arranged at a predetermined interval in the pallet width direction orthogonal to the conveying direction. Gaseous fuel is supplied from a gaseous fuel supply element tube which is desired to be performed. Each gaseous fuel supply pipe 19 is provided with a gaseous fuel ejection nozzle or an opening for ejecting gaseous fuel in the horizontal direction. As this gaseous fuel, combustible gas such as blast furnace gas (B gas), coke oven gas (C gas), blast furnace / coke oven mixed gas (M gas), LNG (natural gas), city gas, methane gas, ethane gas, propane gas, etc. Sexual gas or a mixed gas thereof can be used. Further, unconventional natural gas (shale gas) collected from a shale layer and different from conventional natural gas can be used in the same manner as LNG.

また、装入層内に導入する空気中に含まれる気体燃料は、その気体燃料の燃焼下限濃度以下のものであることが必要である。希釈気体燃料の濃度が燃焼下限濃度より高いと、装入層上方で燃焼してしまい、気体燃料を供給する効果が失われてしまったり、爆発を起こしたりするおそれがある。また、希釈気体燃料が高濃度であると、低温度域で燃焼してしまうため、高温域保持時間の延長に有効に寄与し得ないおそれがあるからである。好ましくは、希釈した気体燃料の濃度は、大気中の常温における燃焼下限濃度の3/4以下、より好ましくは燃焼下限濃度の1/5以下、さらに好ましくは燃焼下限濃度の1/10以下である。ただし、希釈気体燃料の濃度が、燃焼下限濃度の1/100未満では、燃焼による発熱量が不足し、焼結鉱の強度向上と歩留りの改善効果が得られないため、下限は燃焼下限濃度の1/100とする。これを、天然ガス(LNG)についてみると、LNGの室温における燃焼下限濃度は4.8vol%であるから、希釈気体燃料の濃度は0.05〜3.6vol%の範囲が好ましく、0.05〜1.0vol%の範囲がより好ましく、0.05〜0.5vol%の範囲がさらに好ましいことになる。なお、希釈した気体燃料を供給する方法は、予め気体燃料を燃焼下限濃度以下に希釈した空気を供給する方法、高濃度の気体燃料を高速で空気中に噴出させて瞬時に燃焼下限濃度以下に希釈させる方法のいずれでもよい。   Further, the gaseous fuel contained in the air introduced into the charging layer needs to be not more than the lower combustion limit concentration of the gaseous fuel. If the concentration of the diluted gas fuel is higher than the lower combustion limit concentration, combustion may occur above the charging layer, and the effect of supplying the gaseous fuel may be lost or an explosion may occur. In addition, if the diluted gas fuel has a high concentration, it is burned in a low temperature range, so that it may not be able to effectively contribute to the extension of the high temperature range holding time. Preferably, the concentration of the diluted gaseous fuel is 3/4 or less of the lower combustion limit concentration at normal temperature in the atmosphere, more preferably 1/5 or less of the lower combustion limit concentration, and further preferably 1/10 or less of the lower combustion limit concentration. . However, if the concentration of the diluted gas fuel is less than 1/100 of the lower combustion limit concentration, the calorific value due to combustion is insufficient and the effect of improving the strength and yield of the sintered ore cannot be obtained. 1/100. As for natural gas (LNG), the lower limit concentration of LNG at room temperature is 4.8 vol%, so the concentration of diluted gas fuel is preferably in the range of 0.05 to 3.6 vol%. The range of -1.0 vol% is more preferable, and the range of 0.05-0.5 vol% is even more preferable. In addition, the method of supplying diluted gaseous fuel is a method of supplying air in which gaseous fuel is previously diluted to a lower combustion limit concentration or less, and a high concentration gaseous fuel is jetted into the air at high speed to instantaneously lower the lower combustion combustion concentration. Any method of dilution may be used.

ところで、上記のように高濃度の気体燃料を高速で空気中に噴出させて瞬時に燃焼下限濃度以下に希釈させる方法の場合、気体燃料の元圧の低下や、気体燃料の噴出口の目詰まり等によって噴出する気体燃料の速度が低下したときには、点火炉で点火した装入層内の火種によって気体燃料供給配管から噴出している気体燃料に着火し、原料装入層の上方において異常燃焼を起こすおそれがある。   By the way, in the case of the method in which high-concentration gaseous fuel is jetted into the air at a high speed as described above and instantly diluted below the lower combustion limit concentration, the gas fuel lowers the original pressure or the gas fuel outlet is clogged. When the velocity of the gaseous fuel ejected due to, for example, decreases, the gaseous fuel ejected from the gaseous fuel supply pipe is ignited by the type of fire in the charging layer ignited in the ignition furnace, and abnormal combustion occurs above the raw material charging layer. There is a risk of it happening.

斯かる異常燃焼を検知する方法としては、従来、例えば図8に示したように、視野角が90度以上の火炎検知器(着火検知器)21を気体燃料供給装置のフード内四隅に設置する方法を採用している。しかし、この火炎検知器は、気体燃料が燃焼したときの火炎が発する紫外線を検知し、着火を検知するものであるため、気体燃料供給装置のフード下部と原料装入層上表面との間隙部から入射してくる太陽光や建屋内の照明光、あるいは、工事等の溶接時に発生するアーク等の外乱光によって誤検知や誤作動を起こし易いという問題がある。   As a method for detecting such abnormal combustion, conventionally, for example, as shown in FIG. 8, flame detectors (ignition detectors) 21 having a viewing angle of 90 degrees or more are installed at four corners in the hood of the gaseous fuel supply device. The method is adopted. However, since this flame detector detects the ultraviolet rays emitted by the flame when the gaseous fuel burns and detects ignition, the gap between the lower hood of the gaseous fuel supply device and the upper surface of the raw material charging layer There is a problem that erroneous detection or malfunction is likely to occur due to ambient light such as sunlight incident on the building, illumination light in the building, or arc generated during welding during construction or the like.

そこで、発明者らは、火炎が発する紫外線等を検知する火炎検知方法に代わる方法について検討した。その結果、点火炉出側の原料装入層の上表面は、点火炉で点火された直後であるにも拘らず、装入層内に導入される空気流によって冷却され、点火後数分で50℃以下の温度まで冷却されること、一方、原料装入層に導入される気体燃料に着火等の異常燃焼が生じた場合には、原料装入層の上表面は50℃以上の温度に容易に上昇すること、したがって、気体燃料の異常燃焼は、原料装入層の上表面温度を測定するという単純な方法で、精度よく検知することができることを見出した。   Therefore, the inventors examined a method that can replace the flame detection method for detecting ultraviolet rays or the like emitted by a flame. As a result, the upper surface of the raw material charging layer on the exit side of the ignition furnace is cooled by the air flow introduced into the charging layer even though it is immediately after being ignited in the ignition furnace, and within a few minutes after ignition. When the gas fuel is cooled to a temperature of 50 ° C. or lower and abnormal combustion such as ignition occurs in the gaseous fuel introduced into the raw material charge layer, the upper surface of the raw material charge layer is kept at a temperature of 50 ° C. or higher. It has been found that rising easily and therefore abnormal combustion of gaseous fuel can be detected with high accuracy by a simple method of measuring the upper surface temperature of the raw material charging layer.

そこで、本発明では、図9に示すように、気体燃料供給装置のフード内に装入原料層の上表面の温度を測定する温度計22を設置し、この温度計の測定温度が所定の閾値以上の温度に上昇した場合に、気体燃料の異常燃焼が発生したと判定することとした。
ここで、上記閾値となる温度は、50℃以上の温度に設定するのが好ましい。ただし、閾値温度を高くし過ぎると、異常燃焼を検知する精度が低下したり、原料装入層の上表面温度の上昇に時間を要する分、異常燃焼の検知が遅れたりするので、上限の閾値温度は80℃以下とするのが好ましく、より好ましくは60℃以下に設定するのが好ましい。
また、異常燃焼発生と判定する閾値以上の温度となる時間は、短過ぎると焼結ケーキ表面に発生した局部的な亀裂内部の温度によって誤検知を起こすおそれがあり、一方、長過ぎると、異常燃焼の検知が遅れることになるので、2〜5秒の範囲に設定するのが好ましい。
Therefore, in the present invention, as shown in FIG. 9, a thermometer 22 for measuring the temperature of the upper surface of the charged raw material layer is installed in the hood of the gaseous fuel supply apparatus, and the measured temperature of the thermometer is a predetermined threshold value. When the temperature rises to the above, it is determined that abnormal combustion of the gaseous fuel has occurred.
Here, the temperature serving as the threshold is preferably set to a temperature of 50 ° C. or higher. However, if the threshold temperature is set too high, the accuracy of detecting abnormal combustion will decrease, or the detection of abnormal combustion will be delayed by the amount of time required to increase the upper surface temperature of the raw material charging layer. The temperature is preferably 80 ° C. or lower, more preferably 60 ° C. or lower.
In addition, if the time when the temperature is equal to or higher than the threshold for determining the occurrence of abnormal combustion is too short, there is a risk of false detection due to the temperature inside the local crack generated on the surface of the sintered cake. Since detection of combustion is delayed, it is preferable to set it in the range of 2 to 5 seconds.

なお、原料装入層表面の温度を測定する温度計は、測定に要する時間が短いものであれば特に制限はなく、例えば、放射温度計や熱電対を用いた温度計、サーモグラフィ等であれば好適に用いることができる。また、この温度計の設置個数は、1気体燃料供給装置当り1以上であればよく、特に制限はないが、フード内の原料装入層の上表面を全面にわたって測定できるようにするのが好ましい。   The thermometer for measuring the temperature of the raw material charge layer surface is not particularly limited as long as the time required for the measurement is short. For example, if it is a thermometer using a radiation thermometer or a thermocouple, thermography, etc. It can be used suitably. The number of thermometers installed may be one or more per gas fuel supply device, and there is no particular limitation, but it is preferable that the upper surface of the raw material charging layer in the hood can be measured over the entire surface. .

また、気体燃料の異常燃焼が発生したと判定したときの対応策としては、高濃度の気体燃料に起因する火災や爆発等を防止する観点から、気体燃料供給装置への気体燃料の供給停止は必須の事項である。さらに安全性を高める観点からは、気体燃料供給配管に気体燃料を供給する気体燃料供給系統に不活性ガスを導入し、気体燃料を完全に置換してやることが好ましい。   In addition, as a countermeasure when it is determined that abnormal combustion of the gaseous fuel has occurred, the supply of gaseous fuel to the gaseous fuel supply device is stopped from the viewpoint of preventing a fire or explosion caused by the high concentration gaseous fuel. It is an indispensable matter. Further, from the viewpoint of improving safety, it is preferable to completely replace the gaseous fuel by introducing an inert gas into the gaseous fuel supply system that supplies the gaseous fuel to the gaseous fuel supply pipe.

図10は、原料装入層の上方に設置した温度計22で原料装入層の上表面の温度を測定し、その測定値が所定の閾値以下であるか否かを制御装置23で判定することによって、気体燃料(LNG)と不活性ガス(Nガス)の供給を制御する本発明の気体燃料供給装置の一例を示したものである。具体的には、図10(a)は、上記測定値が閾値以下(正常)と判定された場合を示したものであり、この場合には、気体燃料供給本管24に設けられた遮断弁25を開、不活性ガス供給配管26に設けられた遮断弁27を閉として、気体燃料供給装置16に気体燃料が供給されている状態を示している。
また、図10(b)は、上記測定値が閾値超え(異常)と判定された場合を示したものであり、この場合には、気体燃料供給配管の本管24に設けられた遮断弁25を閉として、気体燃料供給装置16への気体燃料の供給を停止するとともに、不活性ガス供給配管26に設けられた遮断弁27を開として、気体燃料供給配管19に不活性ガスを導入して配管内に残留した気体燃料を排除している状態を示している。なお、不活性ガスとしては、上記Nガスの他に、Arガス、COガス等を用いることができる。
このようにすることで、気体燃料の異常燃焼が生じた場合でも、大きな災害に至ることを確実に防止することができる。
In FIG. 10, the temperature of the upper surface of the raw material charging layer is measured by a thermometer 22 installed above the raw material charging layer, and it is determined by the control device 23 whether or not the measured value is below a predetermined threshold value. This shows an example of the gaseous fuel supply device of the present invention that controls the supply of gaseous fuel (LNG) and inert gas (N 2 gas). Specifically, FIG. 10A shows a case where the measured value is determined to be equal to or less than a threshold value (normal). In this case, a shut-off valve provided in the gaseous fuel supply main pipe 24 is shown. 25 shows a state in which the gaseous fuel is supplied to the gaseous fuel supply device 16 with the opening 25 and the shutoff valve 27 provided in the inert gas supply pipe 26 closed.
FIG. 10B shows a case where the measured value is determined to exceed the threshold (abnormal). In this case, the shutoff valve 25 provided in the main pipe 24 of the gaseous fuel supply pipe. Is closed, the supply of gaseous fuel to the gaseous fuel supply device 16 is stopped, the shutoff valve 27 provided in the inert gas supply pipe 26 is opened, and the inert gas is introduced into the gaseous fuel supply pipe 19. The state which has excluded the gaseous fuel which remained in piping is shown. As the inert gas, Ar gas, CO 2 gas, or the like can be used in addition to the N 2 gas.
By doing in this way, even when abnormal combustion of gaseous fuel arises, it can prevent reliably reaching a big disaster.

パレット幅が5m、有効機長(点火炉〜排鉱部までの長さ)が82m、装入層の層厚が700mmで、点火炉の下流側約4m以降に7.5mの長さの気体燃料供給装置が3基直列に配設されており、その気体燃料供給装置から、炭材を4.7mass%含有する焼結原料装入層内に、希釈後の気体燃料濃度が0.4vol%(炭材約0.4mass%に相当)となるようLNGを供給して焼結操業を行う実機焼結機に、比較例として、図8に示したように紫外線を検知する火炎検知機を設置した気体燃料供給装置と、発明例として、図9に示したように温度計(放射温度計)を設置した本発明の気体燃料供給装置を適用して、気体燃料の異常燃焼の検出精度を比較・評価した。   Pallet width is 5m, effective machine length (length from ignition furnace to waste mining section) is 82m, charging layer thickness is 700mm, gaseous fuel of 7.5m length after about 4m downstream of ignition furnace Three supply devices are arranged in series, and from the gaseous fuel supply device, the diluted gaseous fuel concentration is 0.4 vol% (in a sintered raw material charging layer containing 4.7 mass% carbonaceous material). As a comparative example, a flame detector for detecting ultraviolet rays as shown in FIG. 8 was installed in an actual sintering machine that performs sinter operation by supplying LNG to a carbon material equivalent to about 0.4 mass%). Compare the detection accuracy of abnormal combustion of gaseous fuel by applying the gaseous fuel supply device of the present invention having a thermometer (radiation thermometer) as shown in FIG. evaluated.

その結果、気体燃料の異常燃焼は、発明例、比較例のいずれの装置とも見逃すことなく検出することができたが、火炎検知機を設置した比較例の装置では、誤検知が1回/月の頻度で発生したのに対して、本発明例の装置では誤検知は0回/月であった。以上の結果から、本発明の気体燃料供給装置を適用することにより、気体燃料の異常燃焼を精度よく検出でき、高品質の焼結鉱を安全かつ安定して製造できることが確認された。   As a result, abnormal combustion of the gaseous fuel could be detected without overlooking the apparatus of the invention example and the comparative example, but in the apparatus of the comparative example in which the flame detector was installed, the erroneous detection was once per month. On the other hand, in the apparatus of the present invention, false detection was 0 times / month. From the above results, it was confirmed that by applying the gaseous fuel supply device of the present invention, abnormal combustion of the gaseous fuel can be detected with high accuracy, and a high-quality sintered ore can be produced safely and stably.

本発明の気体燃料供給方法は、製鉄用、特に高炉用原料として使用される焼結鉱の製造方法として有用であるばかりでなく、その他の鉱石塊成化技術にも好ましく適用することができる。   The gaseous fuel supply method of the present invention is not only useful as a method for producing sintered ore used as a raw material for iron making, particularly as a blast furnace, but can also be preferably applied to other ore agglomeration techniques.

1:原料ホッパー、 2、3:ドラムミキサー、 4:床敷鉱ホッパー、 5:サージホッパー、 6:ドラムフィーダー、 7:切り出しシュート、 8:パレット、 9:装入層、 10:点火炉、 11:ウインドボックス(風箱)、 12:カットオフプレート、 13:パレット台車、 13a:グレート、 13b:サイドウォール、 14:レール、 15:原料装入部、 16:気体燃料供給装置、 17:フード、 18:邪魔板、 19:気体燃料供給配管、 21:火炎検知器、 22:温度計、 23:制御装置、 24:気体燃料供給配管本管、25:気体燃料遮断弁、 26:不活性ガス供給配管、 27:不活性ガス遮断弁   1: Raw material hopper, 2, 3: Drum mixer, 4: Bedlay hopper, 5: Surge hopper, 6: Drum feeder, 7: Cutting chute, 8: Pallet, 9: Charging layer, 10: Ignition furnace, 11 : Wind box (wind box), 12: Cut-off plate, 13: Pallet cart, 13a: Great, 13b: Side wall, 14: Rail, 15: Raw material charging unit, 16: Gas fuel supply device, 17: Hood, 18: baffle plate, 19: gaseous fuel supply pipe, 21: flame detector, 22: thermometer, 23: control device, 24: main pipe of gaseous fuel supply pipe, 25: gaseous fuel cutoff valve, 26: inert gas supply Piping, 27: Inert gas shutoff valve

Claims (5)

循環移動するパレット上に粉鉱石と炭材を含む焼結原料を装入して装入層を形成し、その装入層表面の炭材に点火炉で点火した後、点火炉下流に機長方向に複数設置された気体燃料供給装置からそのフード内に供給した気体燃料を含む空気をパレット下方に配設されたウインドボックスで吸引して装入層内に導入し、その装入層内において前記気体燃料と炭材を燃焼させて焼結鉱を製造する焼結機への気体燃料供給方法であって、
前記気体燃料供給装置のフード内に前記装入層の表面温度を測定する温度計を配設し、当該温度計の測定値が所定の閾値以上の温度となったときは、気体燃料の異常燃焼が生じていると判定し、気体燃料供給配管への気体燃料の供給を停止することを特徴とする気体燃料供給方法。
A sintering raw material containing fine ore and carbonaceous material is charged on a circulating pallet to form a charging layer, and the carbonaceous material on the charging layer surface is ignited in an ignition furnace, and then in the machine direction downstream of the ignition furnace The air containing the gaseous fuel supplied into the hood from a plurality of gaseous fuel supply devices installed in the hood is sucked with a wind box disposed below the pallet and introduced into the charging layer. A method for supplying gaseous fuel to a sintering machine for producing sintered ore by burning gaseous fuel and carbonaceous material,
A thermometer for measuring the surface temperature of the charging layer is disposed in the hood of the gaseous fuel supply device, and when the measured value of the thermometer reaches a temperature equal to or higher than a predetermined threshold, abnormal combustion of the gaseous fuel A gaseous fuel supply method characterized in that the fuel gas supply to the gaseous fuel supply pipe is stopped.
前記気体燃料の供給を停止した後、気体燃料供給配管に不活性ガスを導入することを特徴とする請求項1に記載の気体燃料供給方法。 2. The gaseous fuel supply method according to claim 1, wherein after the supply of the gaseous fuel is stopped, an inert gas is introduced into the gaseous fuel supply pipe. 前記閾値を50℃以上の温度に設定することを特徴とする請求項1または2に記載の気体燃料供給方法。 The gaseous fuel supply method according to claim 1, wherein the threshold is set to a temperature of 50 ° C. or more. 焼結機のパレット上方に配置された、上下が開口し、四方を取り囲むフードと、
当該フード内に水平方向かつ上下方向に複数配設した邪魔板と、
当該邪魔板の下方に水平方向に複数配設した気体燃料供給配管と、
前記パレット上の原料装入層の表面温度を測定する温度計と、
前記気体燃料供給配管への気体燃料の供給を制御する制御装置を有する焼結機の気体燃料供給装置であって、
前記制御装置は、前記温度計の測定値が所定の閾値以上の温度となったときは、気体燃料の異常燃焼が生じていると判定し、気体燃料供給配管への気体燃料の供給を停止する機能を有することを特徴とする気体燃料供給装置。
A hood that is located above the pallet of the sintering machine and that opens up and down and surrounds the four sides.
A plurality of baffle plates disposed horizontally and vertically in the hood;
A plurality of gaseous fuel supply pipes arranged horizontally below the baffle plate;
A thermometer for measuring the surface temperature of the raw material charging layer on the pallet;
A gas fuel supply device of a sintering machine having a control device for controlling the supply of gas fuel to the gas fuel supply pipe,
When the measured value of the thermometer reaches a temperature equal to or higher than a predetermined threshold, the control device determines that abnormal combustion of the gaseous fuel has occurred and stops the supply of the gaseous fuel to the gaseous fuel supply pipe. A gaseous fuel supply device having a function.
前記制御装置は、気体燃料の異常燃焼が発生したと判定した際、気体燃料の供給を停止するとともに、不活性ガスを気体燃料供給配管に導入する機能を有することを特徴とする請求項4に記載の気体燃料供給装置。 5. The control device according to claim 4, wherein the control device has a function of stopping the supply of the gaseous fuel and introducing an inert gas into the gaseous fuel supply pipe when it is determined that the abnormal combustion of the gaseous fuel has occurred. The gaseous fuel supply apparatus of description.
JP2012234507A 2012-10-24 2012-10-24 Method and apparatus for supplying gaseous fuel to a sintering machine Active JP6024890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234507A JP6024890B2 (en) 2012-10-24 2012-10-24 Method and apparatus for supplying gaseous fuel to a sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234507A JP6024890B2 (en) 2012-10-24 2012-10-24 Method and apparatus for supplying gaseous fuel to a sintering machine

Publications (2)

Publication Number Publication Date
JP2014084502A true JP2014084502A (en) 2014-05-12
JP6024890B2 JP6024890B2 (en) 2016-11-16

Family

ID=50787866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234507A Active JP6024890B2 (en) 2012-10-24 2012-10-24 Method and apparatus for supplying gaseous fuel to a sintering machine

Country Status (1)

Country Link
JP (1) JP6024890B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615015B1 (en) * 2014-07-29 2016-04-22 현대제철 주식회사 Apparatus and method for producting sinter
WO2016099010A1 (en) * 2014-12-16 2016-06-23 주식회사 포스코 Sintering machine and sintering method
CN114085990A (en) * 2020-08-25 2022-02-25 中南大学 Micro-fine particle biomass fuel and hydrogen-containing gas coupled injection sintering energy-saving emission-reducing method
CN114250357A (en) * 2020-09-22 2022-03-29 中冶长天国际工程有限责任公司 High-hydrogen low-carbon sinter bed structure, sintering system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102449267B1 (en) * 2020-11-13 2022-09-30 주식회사 태성환경연구소 A sensor-based monitoring device for preventing explosion accidents of rto

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194456A (en) * 2005-01-11 2006-07-27 Jfe Steel Kk Sintered ore manufacturing device and its manufacturing method
JP2008292154A (en) * 2007-04-27 2008-12-04 Jfe Steel Kk Sintering machine and its operation method
JP2010133616A (en) * 2008-12-03 2010-06-17 Jfe Steel Corp Sintering machine and method of operating sintered ore
JP2010132946A (en) * 2008-12-03 2010-06-17 Jfe Steel Corp Sintering machine
JP2010156036A (en) * 2008-12-03 2010-07-15 Jfe Steel Corp Method for producing sintered ore
JP2011052858A (en) * 2009-08-31 2011-03-17 Jfe Steel Corp Sintering machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194456A (en) * 2005-01-11 2006-07-27 Jfe Steel Kk Sintered ore manufacturing device and its manufacturing method
JP2008292154A (en) * 2007-04-27 2008-12-04 Jfe Steel Kk Sintering machine and its operation method
JP2010133616A (en) * 2008-12-03 2010-06-17 Jfe Steel Corp Sintering machine and method of operating sintered ore
JP2010132946A (en) * 2008-12-03 2010-06-17 Jfe Steel Corp Sintering machine
JP2010156036A (en) * 2008-12-03 2010-07-15 Jfe Steel Corp Method for producing sintered ore
JP2011052858A (en) * 2009-08-31 2011-03-17 Jfe Steel Corp Sintering machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615015B1 (en) * 2014-07-29 2016-04-22 현대제철 주식회사 Apparatus and method for producting sinter
WO2016099010A1 (en) * 2014-12-16 2016-06-23 주식회사 포스코 Sintering machine and sintering method
CN114085990A (en) * 2020-08-25 2022-02-25 中南大学 Micro-fine particle biomass fuel and hydrogen-containing gas coupled injection sintering energy-saving emission-reducing method
CN114085990B (en) * 2020-08-25 2022-07-29 中南大学 Micro-fine particle biomass fuel and hydrogen-containing gas coupled injection sintering energy-saving emission-reducing method
CN114250357A (en) * 2020-09-22 2022-03-29 中冶长天国际工程有限责任公司 High-hydrogen low-carbon sinter bed structure, sintering system and method
CN114250357B (en) * 2020-09-22 2023-07-25 中冶长天国际工程有限责任公司 High-hydrogen low-carbon sintering material layer structure, sintering system and method

Also Published As

Publication number Publication date
JP6024890B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6024890B2 (en) Method and apparatus for supplying gaseous fuel to a sintering machine
JP5458560B2 (en) Sintering machine
JP6090558B2 (en) Gas fuel supply device for sintering machine
JP5584975B2 (en) Sintering machine and method for operating sintered ore
EP2876174B1 (en) Gaseous fuel supply apparatus for sintering machine
JP5386953B2 (en) Sintering machine and method for operating sintered ore
JP5843063B2 (en) Sintering machine and gaseous fuel supply method
JP5262274B2 (en) Sintering machine and operation method thereof
JP5359013B2 (en) Sintering machine and operation method thereof
JP5544791B2 (en) Sintering machine
WO2014080450A1 (en) Oxygen-gas fuel supply device for sintering machine
JP5359012B2 (en) Sintering machine and operation method thereof
JP5613985B2 (en) Sintering machine
JP5593607B2 (en) Method for producing sintered ore and sintering machine
JP5930213B2 (en) Oxygen-gas fuel supply device for sintering machine
JP5561443B2 (en) Method for producing sintered ore
JP2008291355A (en) Production method of sintered ore and sintering machine
JP5581582B2 (en) Sintering machine
JP5504619B2 (en) Method for producing sintered ore
JP2014047358A (en) Gas fuel feeding method to sintering machine
JP6020807B2 (en) Method for supplying gaseous fuel to a sintering machine
JP2013130367A (en) Sintering machine, and gaseous fuel supply method
JP2014055329A (en) Measurement method for air flow rate in sintering machine and production method for sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R150 Certificate of patent or registration of utility model

Ref document number: 6024890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250