JP2015096837A - Surface shape measuring instrument - Google Patents

Surface shape measuring instrument Download PDF

Info

Publication number
JP2015096837A
JP2015096837A JP2013237029A JP2013237029A JP2015096837A JP 2015096837 A JP2015096837 A JP 2015096837A JP 2013237029 A JP2013237029 A JP 2013237029A JP 2013237029 A JP2013237029 A JP 2013237029A JP 2015096837 A JP2015096837 A JP 2015096837A
Authority
JP
Japan
Prior art keywords
image
shape measuring
light
surface shape
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013237029A
Other languages
Japanese (ja)
Other versions
JP2015096837A5 (en
Inventor
尚史 坂内
Hisafumi Sakauchi
尚史 坂内
高見 芳夫
Yoshio Takami
芳夫 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2013237029A priority Critical patent/JP2015096837A/en
Publication of JP2015096837A publication Critical patent/JP2015096837A/en
Publication of JP2015096837A5 publication Critical patent/JP2015096837A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve measurement accuracy of a surface shape by effectively using a light receiving surface of an image pick-up device in a surface shape measuring instrument.SOLUTION: The surface shape measuring instrument includes: light irradiation means that applies slit light 13 to a surface of a measurement object 11 having a rugged structure; image formation means M (M1 to M6) that receives light from a slit light irradiation area 14 on the surface from a direction at an angle to the irradiation direction of the slit light 13 and forms an image of a section line of rugged structure; imaging means for capturing an image of the section line of rugged structure; and image magnifying means M that is disposed on an optical path from the slit light irradiation area 14 to the imaging means and magnifies the image in the height direction of the rugged structure.

Description

本発明は、光切断法を用いて物品の表面の形状を計測する表面形状計測装置に関する。   The present invention relates to a surface shape measuring apparatus that measures the shape of the surface of an article using an optical cutting method.

物品の表面の形状を計測する方法の一つに光切断法がある。
光切断法は、被測定物の表面の凹凸構造を切断するようにスリット光を照射し、凹凸構造の切断線の像を撮像手段の受光面に結像させることによって、その形状を計測する方法である。凹凸構造の切断線の像は、凹凸構造の形状を反映するため、被測定物の表面上でスリット光の照射位置を移動させつつ、撮像手段の受光面に結像させた像を順次解析することによって、被測定物の表面に存在する凹凸形状を3次元計測することができる。
One method for measuring the shape of the surface of an article is a light cutting method.
The light cutting method is a method of measuring the shape by irradiating slit light so as to cut the uneven structure on the surface of the object to be measured and forming an image of the cutting line of the uneven structure on the light receiving surface of the imaging means. It is. Since the image of the cutting line of the concavo-convex structure reflects the shape of the concavo-convex structure, the image formed on the light receiving surface of the imaging means is sequentially analyzed while moving the irradiation position of the slit light on the surface of the object to be measured. As a result, the uneven shape existing on the surface of the object to be measured can be three-dimensionally measured.

特許文献1には、凹凸構造104を有する基板101の表面形状を計測する表面形状計測装置が記載されている。その要部構成を図1に示す。
この装置では、レーザ光源121から基板101の表面に対して垂直にスリット光122を照射する。そして、基板101表面からの光をミラー126Aで反射し、ハーフミラー125Aで分割して、水平方向(紙面に垂直な方向)にずらして配置した2つのCCDカメラ113a、113bに入射させる。また、スリット光を挟んで反対側においても、上記同様の経路により、基板101表面からの光を、水平方向にずらして配置した2つのCCDカメラ113c、113dに入射させる。こうして、互いにずらして配置した4つのCCDカメラにより視野分担して凹凸構造104の像を得る(図2)。
Patent Document 1 describes a surface shape measuring apparatus that measures the surface shape of a substrate 101 having a concavo-convex structure 104. The principal part structure is shown in FIG.
In this apparatus, the slit light 122 is irradiated from the laser light source 121 perpendicularly to the surface of the substrate 101. Then, the light from the surface of the substrate 101 is reflected by the mirror 126A, divided by the half mirror 125A, and incident on the two CCD cameras 113a and 113b arranged so as to be shifted in the horizontal direction (direction perpendicular to the paper surface). In addition, on the opposite side across the slit light, the light from the surface of the substrate 101 is incident on two CCD cameras 113c and 113d arranged in a horizontal direction by the same path as described above. In this way, an image of the concavo-convex structure 104 is obtained by sharing the visual field by the four CCD cameras arranged so as to be shifted from each other (FIG. 2).

特開平11-37734号公報JP 11-37734 A

光切断法を用いた表面形状計測装置では、被測定物の表面の凹凸構造を切断するように幅広なスリット光を照射し、凹凸構造の切断線の像を取得するため、被測定物の表面に高い凸構造が存在する場合には、その影になる部分の像を得ることができない。そのため、こうした表面形状計測装置は、幅広で低い凹凸構造を有する表面の形状を計測するために用いられることが多く、CCDカメラ等の撮像手段の受光面上には、図3に示すように、幅方向に長く、高さ方向に短い像が結像する。従って、撮像手段の受光面は、その中央部における帯状の領域のみが用いられることになり、それ以外の領域が無駄になってしまう。   In the surface shape measuring apparatus using the light cutting method, the surface of the object to be measured is obtained by irradiating a wide slit light so as to cut the uneven structure on the surface of the object to be measured, and obtaining an image of the cutting line of the uneven structure. If there is a high convex structure, an image of the shadowed portion cannot be obtained. Therefore, such a surface shape measuring device is often used for measuring the shape of a surface having a wide and low uneven structure, and on the light receiving surface of an imaging means such as a CCD camera, as shown in FIG. An image that is long in the width direction and short in the height direction is formed. Therefore, only the belt-like area at the center is used for the light receiving surface of the imaging means, and the other areas are wasted.

本発明が解決しようとする課題は、光切断法を用いて被測定物の表面の形状を計測する表面形状計測装置において、撮像手段の受光面上の領域を有効に利用するとともに、その計測精度を向上させることである。   The problem to be solved by the present invention is to effectively use the area on the light receiving surface of the imaging means and measure the accuracy in the surface shape measuring device that measures the shape of the surface of the object to be measured using the light cutting method. It is to improve.

上記課題を解決するために成された本発明に係る表面形状計測装置は、
a) 凹凸構造を有する被測定物の表面に対してスリット光を照射する光照射手段と、
b) 前記表面のスリット光照射領域からの光を、前記スリット光の照射方向に対して角度をなす方向から受光して、前記凹凸構造の切断線の像を結像する結像手段と、
c) 前記凹凸構造の切断線の像を撮像する撮像手段と、
d) 前記スリット光照射領域から前記撮像手段に至る光路上に配置され、前記凹凸構造の高さ方向に前記像を拡大する像拡大手段と、
を備えることを特徴とする。
The surface shape measuring apparatus according to the present invention made to solve the above problems is
a) a light irradiation means for irradiating the surface of the object to be measured having an uneven structure with slit light;
b) Imaging means for receiving light from the slit light irradiation region of the surface from a direction that forms an angle with respect to the irradiation direction of the slit light, and forming an image of a cutting line of the concavo-convex structure;
c) an imaging means for capturing an image of a cutting line of the concavo-convex structure;
d) an image enlarging unit that is disposed on an optical path from the slit light irradiation region to the imaging unit and that magnifies the image in the height direction of the concavo-convex structure;
It is characterized by providing.

上記スリット光は、スリットを通過したような形状、つまりシート状の光を意味し、スリットを通過した光のみに限定されない。また、ワークの表面を点で照射する線状の光を走査して上記スリット光としてもよい。線状の光を走査する場合には、光の走査とワークの移動を交互に行う。
像拡大手段としては、例えば、シリンドリカル凹面鏡やシリンドリカル凸面鏡、シリンドリカルレンズを用いることができる。また、これらを複数、組み合わせて上記方向に像を拡大してもよい。
The said slit light means the shape which passed the slit, ie, sheet-like light, and is not limited only to the light which passed the slit. Alternatively, the slit light may be obtained by scanning linear light that irradiates the surface of the workpiece with a point. When scanning linear light, light scanning and workpiece movement are performed alternately.
As the image enlarging means, for example, a cylindrical concave mirror, a cylindrical convex mirror, or a cylindrical lens can be used. A plurality of these may be combined to enlarge the image in the above direction.

本発明に係る表面形状計測装置では、被測定物の表面の凹凸構造の切断線の像が、像拡大手段によって該凹凸構造の高さ方向に拡大され、撮像手段の受光面上に結像する。撮像手段の受光面上では、従来、用いられていなかった領域に、高さ方向に拡大された凹凸構造の切断線の像が結像するため、高さ方向において従来よりも解像度の高い像が得られる。このように、本発明に係る表面形状計測装置を用いることにより、従来用いられていない受光面上の領域を有効に利用して、表面形状の計測精度を高めることができる。   In the surface shape measuring apparatus according to the present invention, the image of the cutting line of the concavo-convex structure on the surface of the object to be measured is enlarged in the height direction of the concavo-convex structure by the image magnifying means and imaged on the light receiving surface of the imaging means. . On the light receiving surface of the imaging means, an image of the cutting line of the concavo-convex structure enlarged in the height direction is formed in an area that has not been used conventionally, so an image with higher resolution than in the past in the height direction. can get. As described above, by using the surface shape measuring apparatus according to the present invention, it is possible to effectively use a region on the light receiving surface that has not been conventionally used, and to improve the surface shape measurement accuracy.

本発明に係る表面形状計測装置では、前記結像手段が、
e) 前記切断線が伸びる方向に並んで配置された、それぞれが前記表面から異なる高さに位置する複数の反射面であって、前記切断線に対して平行であり前記表面に対して角度をなす、互いに平行な複数の反射面である複数の第1反射面を有する第1の反射手段と、
f) 前記複数の第1反射面からそれぞれ等距離に位置し、前記複数の第1反射面により反射した光がそれぞれ入射する複数の反射面であって、前記表面に対して垂直であり互いに平行な複数の反射面である複数の第2反射面を有する第2の反射手段と、
を備えるように構成することができる。
In the surface shape measuring apparatus according to the present invention, the imaging means is
e) a plurality of reflective surfaces arranged side by side in the direction in which the cutting line extends, each being at a different height from the surface, parallel to the cutting line and at an angle to the surface A first reflecting means having a plurality of first reflecting surfaces which are a plurality of reflecting surfaces parallel to each other;
f) A plurality of reflecting surfaces that are located at an equal distance from each of the plurality of first reflecting surfaces and on which light reflected by the plurality of first reflecting surfaces is incident, and are perpendicular to the surface and parallel to each other. A second reflecting means having a plurality of second reflecting surfaces which are a plurality of reflecting surfaces;
It can comprise.

この態様の表面形状計測装置では、被測定物の表面からの光が、該表面の凹凸構造の切断線に対して平行であり該表面に対して角度をなす複数の第1反射面により反射され、さらに、被測定物の表面に対して垂直な複数の第2反射面により反射されて撮像手段の受光面に向かう。表面から異なる高さに位置し、互いに平行な複数の第1反射面で反射された光が入射する複数の第2反射面は、互いに表面から異なる高さに配置される。これら複数の第2反射面により反射された光によって撮像手段の受光面上に結ばれる像は、凹凸構造の切断線の像を複数に分割し、それらを90°回転したものとなる。
この態様の表面形状計測装置では、凹凸構造の切断線の像を複数の像に分割して受光面上に結像させるため、撮像手段の受光面の形状や凹凸構造の切断線の像の形状を考慮して、撮像手段の受光面上の領域を有効に利用することができる。
In the surface shape measuring apparatus of this aspect, light from the surface of the object to be measured is reflected by the plurality of first reflecting surfaces that are parallel to the cutting line of the concavo-convex structure on the surface and form an angle with the surface. Furthermore, the light is reflected by a plurality of second reflecting surfaces perpendicular to the surface of the object to be measured and travels toward the light receiving surface of the imaging means. The plurality of second reflection surfaces, which are located at different heights from the surface and on which light reflected by the plurality of first reflection surfaces parallel to each other, are disposed at different heights from the surface. An image formed on the light receiving surface of the imaging unit by the light reflected by the plurality of second reflecting surfaces is obtained by dividing the image of the cutting line of the concavo-convex structure into a plurality of pieces and rotating them by 90 °.
In the surface shape measuring apparatus of this aspect, since the image of the cutting line of the concavo-convex structure is divided into a plurality of images and formed on the light receiving surface, the shape of the light receiving surface of the imaging means or the shape of the image of the cutting line of the concavo-convex structure In consideration of the above, it is possible to effectively use the area on the light receiving surface of the imaging means.

この態様の表面形状計測装置は、さらに、
g) 前記スリット光照射領域から前記第1の反射手段及び前記第2の反射手段を経由して前記撮像手段に至る、複数の光路のうちの少なくとも1つの光路上に配置され、該光路の全長を変えることなく、前記撮像手段に入射する位置を変化させる光路調整手段と、
を備えることが望ましい。
The surface shape measuring apparatus of this aspect further includes
g) disposed on at least one optical path of a plurality of optical paths from the slit light irradiation region to the imaging means via the first reflecting means and the second reflecting means, and the total length of the optical paths Without changing the optical path adjusting means for changing the position incident on the imaging means,
It is desirable to provide.

上記光路調整手段は、例えば、空気と異なる屈折率を有する光透過部材や、迂回する光路を形成する複数のミラーにより構成することができる。   The optical path adjusting means can be constituted by, for example, a light transmitting member having a refractive index different from that of air, or a plurality of mirrors that form a detouring optical path.

この態様の表面形状計測装置では、光路調整手段によって、複数の単位照射領域の像の離間距離を調整する。つまり、撮像手段の受光面の形状や大きさを考慮して像の離間距離を調整し、撮像手段の受光面をさらに無駄なく利用することができる。この光路調整手段は、該手段が配置された光路の全長を変化させないため、撮像手段により撮像される像の解像度は変化しない。   In the surface shape measuring device of this aspect, the separation distance of the images of the plurality of unit irradiation regions is adjusted by the optical path adjusting means. That is, it is possible to adjust the image separation distance in consideration of the shape and size of the light receiving surface of the imaging unit, and to use the light receiving surface of the imaging unit more efficiently. Since this optical path adjustment means does not change the total length of the optical path in which the means is arranged, the resolution of the image picked up by the image pickup means does not change.

本発明に係る表面形状計測装置では、撮像手段の受光面のうち、従来、用いられていない領域に、高さ方向に拡大した凹凸構造の切断線の像を結像させて、該高さ方向において解像度を高めた像を取得する。従って、撮像手段の受光面上の領域を有効に利用し、かつ表面形状の計測精度を高めることができる。   In the surface shape measuring apparatus according to the present invention, an image of the cutting line of the concavo-convex structure expanded in the height direction is formed on an area of the light receiving surface of the imaging unit that has not been conventionally used, and the height direction To obtain an image with increased resolution. Therefore, it is possible to effectively use the region on the light receiving surface of the image pickup means and improve the measurement accuracy of the surface shape.

従来の表面形状計測装置の要部構成図。The principal part block diagram of the conventional surface shape measuring apparatus. 従来の表面形状計測装置における4台のCCDカメラによる視野分担の状況を示す図。The figure which shows the condition of the visual field sharing by the four CCD cameras in the conventional surface shape measuring apparatus. 従来の表面形状計測装置における撮像素子の受光面の使用について説明する図。The figure explaining use of the light-receiving surface of the image pick-up element in the conventional surface shape measuring apparatus. 実施例1の表面形状計測装置の要部構成図。FIG. 3 is a main part configuration diagram of the surface shape measuring apparatus according to the first embodiment. 実施例1の表面形状計測装置における像の回転と拡大について説明する図。FIG. 4 is a diagram for explaining rotation and enlargement of an image in the surface shape measurement apparatus according to the first embodiment. 実施例1の表面形状計測装置における撮像素子の受光面の使用と従来の装置における撮像素子の受光面の使用とを比較説明する図。The figure which compares and demonstrates use of the light-receiving surface of the image pick-up element in the surface shape measuring apparatus of Example 1 and use of the light-receiving surface of the image pick-up element in the conventional apparatus. 実施例2の表面形状計測装置における光路調整手段の構成を説明する図。FIG. 6 is a diagram illustrating a configuration of an optical path adjusting unit in the surface shape measuring apparatus according to the second embodiment. 実施例2の表面形状計測装置の撮像素子の受光面上での結像位置について説明する図。FIG. 6 is a diagram illustrating an imaging position on a light receiving surface of an imaging element of a surface shape measuring apparatus according to a second embodiment.

本発明に係る表面形状計測装置の実施例について、以下、図面を参照して説明する。   Embodiments of a surface shape measuring apparatus according to the present invention will be described below with reference to the drawings.

図4に実施例1の表面形状計測装置の要部構成を示す。
本実施例の表面形状計測装置は、ワーク11表面の凹凸構造の形状を計測する装置である。ワーク11は載置台12上に載置されており、図示しない移動機構によって図面右方向に向かって所定のステップで順次移動する。
図示しない光源から発せられ、スリットを通過したスリット光13は、ワーク11の表面の凹凸構造を切断するように照射される。スリット光照射領域14はスリット光が凹凸構造を切断する線(切断線)が伸びる方向において仮想的に3分割(14a、14b、14c)される。
FIG. 4 shows a main configuration of the surface shape measuring apparatus according to the first embodiment.
The surface shape measuring apparatus of the present embodiment is an apparatus that measures the shape of the concavo-convex structure on the surface of the workpiece 11. The workpiece 11 is placed on the placing table 12, and sequentially moves in a predetermined step toward the right in the drawing by a moving mechanism (not shown).
Slit light 13 emitted from a light source (not shown) and passed through the slit is irradiated so as to cut the uneven structure on the surface of the work 11. The slit light irradiation region 14 is virtually divided into three (14a, 14b, 14c) in the direction in which the line (cutting line) that the slit light cuts the concavo-convex structure extends.

ワーク11の上方には、スリット光照射領域14からの光をCCDカメラの受光面15に入射させて凹凸構造の切断線の像を結像させるための、6枚のシリンドリカル凹面ミラーM1〜M6が配置されている。   Above the workpiece 11, there are six cylindrical concave mirrors M1 to M6 for causing the light from the slit light irradiation region 14 to enter the light receiving surface 15 of the CCD camera to form an image of the cutting line of the concavo-convex structure. Has been placed.

シリンドリカル凹面ミラーM1、M2、M3は、それぞれスリット光照射領域14a、14b、14cの鉛直上方であって、高さH1、H2、H3の位置(H1<H2<H3)に配置されており、凹凸構造の切断線に平行で、ワーク11の表面に対して45度の角度をなす方向に傾斜している。シリンドリカル凹面ミラーM1、M2、M3は凹凸構造の切断線の像を、該凹凸構造の高さ方向に拡大する像拡大手段であるとともに、第1反射手段を構成する。   Cylindrical concave mirrors M1, M2, and M3 are arranged vertically above the slit light irradiation regions 14a, 14b, and 14c, and at heights H1, H2, and H3 (H1 <H2 <H3), respectively. Inclined in a direction parallel to the cutting line of the structure and at an angle of 45 degrees with respect to the surface of the workpiece 11. The cylindrical concave mirrors M1, M2, and M3 are image magnifying means for enlarging the image of the cutting line of the concavo-convex structure in the height direction of the concavo-convex structure, and constitute the first reflecting means.

また、シリンドリカル凹面ミラーM4、M5、M6は、それぞれM1、M2、M3からワークの移動方向と逆の方向に距離Lずつ離れた位置に配置されており、ワーク11の表面に対して垂直で、凹凸構造の切断線に対して45度の角度をなす方向に傾斜している。また、シリンドリカル凹面ミラーM4、M5、M6は、CCDカメラの受光面15からそれぞれD1、D2、D3(D1>D2>D3)だけ離間している。ここで、H1+L+D1=H2+L+D2=H3+L+D3である。即ち、3分割されたスリット光照射領域14a、14b、14cのそれぞれからの光が2枚のミラーで反射されてCCDカメラの受光面15に到達するまでの光路長が互いに等しくなるように構成されている。シリンドリカル凹面ミラーM4、M5、M6は、第2反射手段を構成する。シリンドリカル凹面ミラーの凹面形状等はシリンドリカル凹面ミラーM1、M2、M3と同じであり、シリンドリカル凹面ミラーM1、M2、M3によって凹凸構造の像を高さ方向に拡大するように曲げられた光路を平行な光路に戻す(テレセントリック性を保つ)役割も担っている。   Cylindrical concave mirrors M4, M5, and M6 are arranged at distances L from M1, M2, and M3 in the direction opposite to the moving direction of the work, and perpendicular to the surface of the work 11, It is inclined in a direction that forms an angle of 45 degrees with respect to the cutting line of the concavo-convex structure. The cylindrical concave mirrors M4, M5, and M6 are separated from the light receiving surface 15 of the CCD camera by D1, D2, and D3 (D1> D2> D3), respectively. Here, H1 + L + D1 = H2 + L + D2 = H3 + L + D3. That is, the light path lengths until the light from each of the three divided slit light irradiation areas 14a, 14b, and 14c is reflected by the two mirrors and reaches the light receiving surface 15 of the CCD camera are equal to each other. ing. Cylindrical concave mirrors M4, M5, and M6 constitute second reflecting means. The concave shape of the cylindrical concave mirror is the same as that of the cylindrical concave mirrors M1, M2, and M3, and the optical path bent by the cylindrical concave mirrors M1, M2, and M3 so as to enlarge the image of the concavo-convex structure in the height direction is made parallel. It also plays a role of returning to the optical path (maintaining telecentricity).

スリット光照射領域14aから発せられた光は、該領域14aの鉛直上方に配置されたシリンドリカル凹面ミラーM1により水平方向(ワークの移動方向と逆の方向)に反射され、さらにシリンドリカル凹面ミラーM4により水平面内で垂直方向に進行方向が変えられた後、CCDカメラの受光面15の下部領域に入射する。
スリット光照射領域14bから発せられた光も同様に、シリンドリカル凹面ミラーM2、M5によって反射され、CCDカメラの受光面15の中央部の領域に入射する。さらに、スリット光照射領域14cから発せられた光も同様に、シリンドリカル凹面ミラーM3、M6によって反射され、CCDカメラの受光面15の上部領域に入射する。
The light emitted from the slit light irradiation area 14a is reflected in the horizontal direction (the direction opposite to the moving direction of the workpiece) by the cylindrical concave mirror M1 disposed vertically above the area 14a, and further, the horizontal plane by the cylindrical concave mirror M4. After the traveling direction is changed in the vertical direction, the light enters the lower region of the light receiving surface 15 of the CCD camera.
Similarly, the light emitted from the slit light irradiation region 14b is reflected by the cylindrical concave mirrors M2 and M5 and enters the central region of the light receiving surface 15 of the CCD camera. Further, the light emitted from the slit light irradiation region 14c is similarly reflected by the cylindrical concave mirrors M3 and M6 and enters the upper region of the light receiving surface 15 of the CCD camera.

ワーク11の表面では、スリット光照射領域14a、14b、14cにおける凹凸構造の切断線の像が、該切断線が伸びる方向に隣接している(図5(a))。しかし、これら3つの像は、第1反射手段と第2反射手段によって90°回転し、また、シリンドリカル凹面ミラーM1、M2、M3によって高さ方向に像が1.5倍拡大されてCCDカメラの受光面15上に結像する(図5(c))。なお、図5では、便宜上、縦横比を実際の比率から変更して示している。   On the surface of the workpiece 11, the image of the cutting line of the concavo-convex structure in the slit light irradiation regions 14a, 14b, and 14c is adjacent to the direction in which the cutting line extends (FIG. 5A). However, these three images are rotated 90 ° by the first reflecting means and the second reflecting means, and the images are enlarged 1.5 times in the height direction by the cylindrical concave mirrors M1, M2, and M3, and the CCD camera An image is formed on the light receiving surface 15 (FIG. 5C). In FIG. 5, for the sake of convenience, the aspect ratio is changed from the actual ratio.

従来の表面形状計測装置において、同じ凹凸構造の切断線の像(90mm×5mm)を正方形状の受光面上に結像させるためには、90mm四方の受光面が必要である(図6(b))。受光面15の中央の帯状の領域のみが使用され、受光面の上部、下部の広い領域が用いられることがない。   In a conventional surface shape measuring apparatus, a 90 mm square light receiving surface is required in order to form an image of a cutting line (90 mm × 5 mm) having the same concavo-convex structure on a square light receiving surface (FIG. 6B). )). Only the belt-like region at the center of the light receiving surface 15 is used, and the wide regions above and below the light receiving surface are not used.

これに対し本実施例の表面形状計測装置では、図6(a)に示すように、30mm四方の受光面内に3つの像を並べて結像させることによって切断像を得ることができる。このように、従来の9分の1の面積の受光面15上で、受光面15上の中央部だけでなく、上部領域や下部領域も活用して、従来よりも解像度の高い像を得ることができる。   On the other hand, in the surface shape measuring apparatus of the present embodiment, as shown in FIG. 6A, a cut image can be obtained by forming three images side by side in a 30 mm square light receiving surface. In this way, on the light receiving surface 15 having a conventional area of 1/9, an image having a higher resolution than the conventional one can be obtained by utilizing not only the central portion on the light receiving surface 15 but also the upper and lower regions. Can do.

より詳細には、光路を折り曲げる際の角度がすべて90°であると、図4において、D1〜D3の値はD1=D2+30mm=D3+60mmとなり、H1〜H3の値も自ずとH3=H2+30mm=H1+60mmとなるので、60mm+α四方の受光面内に3つの像を並べることができる。そして、M4〜M6での光路の折り曲げ角度を90°以外とする、あるいは、後述する実施例2のように光路調整手段を設けることにより、H3とH1、H2との差を小さくでき、その結果、30mm四方の受光面内に3つの像を並べることができる。なお、受光面のサイズを60mm+α四方とさほど小さくはできずとも、光路を横方向に折り曲げることで、通常はレンズの焦点距離を確保するために上下方向に高くなりがちな装置を小型化できる利点がある。   More specifically, if the angles when the optical path is bent are all 90 °, the values of D1 to D3 in FIG. 4 are D1 = D2 + 30 mm = D3 + 60 mm, and the values of H1 to H3 are naturally H3 = H2 + 30 mm = H1 + 60 mm. Therefore, three images can be arranged in the 60 mm + α square light receiving surface. The difference between H3, H1, and H2 can be reduced by setting the optical path bending angle at M4 to M6 to other than 90 °, or by providing an optical path adjusting means as in Example 2 described later. Three images can be arranged in a 30 mm square light receiving surface. Even if the size of the light-receiving surface cannot be reduced so much as 60 mm + α square, it is possible to reduce the size of a device that tends to increase in the vertical direction in order to ensure the focal length of the lens by bending the optical path in the horizontal direction. There is.

本実施例では、シリンドリカル凹面ミラーM1〜M6を用いているが、これらに代えてシリンドリカル凸面ミラーを用いてもよい。あるいは、像を回転する平面ミラーと像を拡大するシリンドリカルレンズを組み合わせてもよい。この場合には、第1反射手段を構成する平面ミラーと第2反射手段を構成する平面ミラーで順に反射されることによって像が90°回転し(図5(b))、シリンドリカルレンズを通過することによって像が高さ方向に拡大される(図5(c))。なお、この構成において、シリンドリカルレンズはスリット光照射領域から受光面に至る光路上の別の位置に配置してもよい。さらに、上述した構成を組み合わせて用いることもできる。   In this embodiment, cylindrical concave mirrors M1 to M6 are used, but cylindrical convex mirrors may be used instead. Alternatively, a plane mirror that rotates the image and a cylindrical lens that expands the image may be combined. In this case, the image is rotated by 90 ° by being sequentially reflected by the plane mirror constituting the first reflecting means and the plane mirror constituting the second reflecting means (FIG. 5B), and passes through the cylindrical lens. As a result, the image is enlarged in the height direction (FIG. 5C). In this configuration, the cylindrical lens may be arranged at another position on the optical path from the slit light irradiation region to the light receiving surface. Further, the above-described configurations can be used in combination.

次に、本発明に係る表面形状計測装置の別の実施例2について説明する。本実施例の表面形状計測装置の要部構成は図4に示した実施例1と同様の構成であるため、要部構成に関する説明を省略し、実施例1と異なる点についてのみ説明する。   Next, another embodiment 2 of the surface shape measuring apparatus according to the present invention will be described. The configuration of the main part of the surface shape measuring apparatus of the present embodiment is the same as that of the first embodiment shown in FIG. 4, and therefore, description regarding the main configuration is omitted, and only differences from the first embodiment will be described.

実施例1の表面形状計測装置では、スリット光照射領域14a、14b、14cを決定すると距離D1、D2、D3が決まり、続いて高さH1、H2、H3が決まる。また、CCDカメラの受光面15において、スリット光照射領域14a、14b、14cにおける切断線の像は、それぞれ高さH1、H2、H3の位置に結像する。つまり、実施例1の構成では、スリット光照射領域14a、14b、14cを決定すると、受光面15上での結像位置が固定される。実施例1では、図5(c)に示したように、受光面15で上下に隣接する2つの像の間に、受光面15の不使用領域が多少、存在する。このような場合に、受光面15上での結像位置を上下方向に適宜に変更して不使用領域を小さくする(あるいは、なくす)ことができれば、例えば、受光面15上に結像するスリット光照射領域14を広げることができる。あるいは、スリット光照射領域14が同じ場合には、実施例1の場合よりも受光面15が小さいCCDカメラで撮像することができる。実施例2の表面形状計測装置はこのような目的を達成するために構成される装置である。   In the surface shape measuring apparatus according to the first embodiment, when the slit light irradiation areas 14a, 14b, and 14c are determined, the distances D1, D2, and D3 are determined, and subsequently, the heights H1, H2, and H3 are determined. Further, on the light receiving surface 15 of the CCD camera, images of the cutting lines in the slit light irradiation areas 14a, 14b, and 14c are formed at positions of heights H1, H2, and H3, respectively. That is, in the configuration of the first embodiment, when the slit light irradiation areas 14a, 14b, and 14c are determined, the imaging position on the light receiving surface 15 is fixed. In the first embodiment, as shown in FIG. 5C, there are some unused areas of the light receiving surface 15 between two vertically adjacent images on the light receiving surface 15. In such a case, if the image forming position on the light receiving surface 15 can be changed appropriately in the vertical direction to reduce (or eliminate) the unused area, for example, a slit that forms an image on the light receiving surface 15 The light irradiation region 14 can be expanded. Alternatively, when the slit light irradiation area 14 is the same, it is possible to pick up an image with a CCD camera having a smaller light receiving surface 15 than in the first embodiment. The surface shape measuring apparatus according to the second embodiment is an apparatus configured to achieve such an object.

具体的には、実施例2の表面形状計測装置では、スリット光照射領域14b、14cにおける切断線の像を、それぞれ高さH2−ΔL2(実施例1ではH2)、高さH3−ΔL3(実施例1ではH3)の位置に結像させる。そのために、ミラーM2とM5を高さH2−ΔL2(実施例1ではH2)に、ミラーM3とM6を高さH3−ΔL3(実施例1ではH3)に配置する。ここで、ΔL3=ΔL2×2である。   Specifically, in the surface shape measuring apparatus according to the second embodiment, the images of the cutting lines in the slit light irradiation regions 14b and 14c are respectively expressed as height H2-ΔL2 (H2 in the first embodiment) and height H3-ΔL3 (implementation). In Example 1, an image is formed at the position H3). Therefore, the mirrors M2 and M5 are arranged at a height H2-ΔL2 (H2 in the first embodiment), and the mirrors M3 and M6 are arranged at a height H3-ΔL3 (H3 in the first embodiment). Here, ΔL3 = ΔL2 × 2.

上記のようにミラーの配置を変更すると、切断線の結像位置は下方に移動するが、スリット光照射領域14a、14b、14cのそれぞれから受光面15に至る3つの光路の光路長にばらつきが生じる。具体的には、スリット光照射領域14aに対応する光路が最も長く、これに対してスリット光照射領域14b、14cに対応する光路がそれぞれΔL2、ΔL3だけ短くなる。光路長にばらつきが生じると、受光面15において結ばれる像の解像度にばらつきが生じ、それら像から解析される凹凸構造の形状の計測精度にも違いが生じてしまう。従って、3つの光路の間に生じる光路長の差(ΔL2、ΔL3)を解消する必要がある。   When the mirror arrangement is changed as described above, the imaging position of the cutting line moves downward, but the optical path lengths of the three optical paths from the slit light irradiation regions 14a, 14b, and 14c to the light receiving surface 15 vary. Arise. Specifically, the optical path corresponding to the slit light irradiation area 14a is the longest, whereas the optical paths corresponding to the slit light irradiation areas 14b and 14c are shortened by ΔL2 and ΔL3, respectively. When the optical path length varies, the resolution of the images formed on the light receiving surface 15 also varies, and the measurement accuracy of the shape of the concavo-convex structure analyzed from these images also varies. Therefore, it is necessary to eliminate the optical path length difference (ΔL2, ΔL3) generated between the three optical paths.

そこで、実施例2の表面形状計測装置では、実施例1の表面形状計測装置の構成に、図7に示す光路調整手段を追加する。光路調整手段20は、2枚の平面ミラーM2a、M2bで構成されており、シリンドリカル凹面ミラーM2に代えて配置される。このように平面ミラーM2a、M2bを配置すると迂回光路21を形成されるため、この領域での光路長がΔL2だけ長くなる。また、シリンドリカル凹面ミラーM3に代えて、平面ミラーM3a、M3bを配置して同様に迂回光路を形成させ、この領域での光路長をΔL3だけ長くする。こうして、上述した光路長の差を解消する。さらに、シリンドリカル凹面ミラーM1、M4、M5、M6に代えてそれぞれ平面ミラーを配置し、3つの光路上にぞれぞれ凹凸構造の高さ方向に像を拡大するシリンドリカルレンズを配置する。   Therefore, in the surface shape measuring apparatus according to the second embodiment, an optical path adjusting unit shown in FIG. 7 is added to the configuration of the surface shape measuring apparatus according to the first embodiment. The optical path adjusting means 20 is composed of two plane mirrors M2a and M2b, and is arranged in place of the cylindrical concave mirror M2. When the plane mirrors M2a and M2b are arranged in this way, the detour optical path 21 is formed, so that the optical path length in this region is increased by ΔL2. Further, instead of the cylindrical concave mirror M3, plane mirrors M3a and M3b are arranged to form a bypass optical path in the same manner, and the optical path length in this region is increased by ΔL3. Thus, the above-described difference in optical path length is eliminated. Furthermore, instead of the cylindrical concave mirrors M1, M4, M5, and M6, plane mirrors are arranged, and cylindrical lenses for enlarging the image in the height direction of the concavo-convex structure are arranged on the three optical paths.

本実施例では、実施例1のシリンドリカル凹面ミラーM2、M3の位置に光路調整手段を配置しているが、必ずしもこれらの位置には限定されず、M1〜M6のいずれの位置にも光路調整手段20を配置することができる。光路調整手段20の配置と、迂回光路の長さを適宜に変更することによって、受光面15における結像位置を上下に任意の距離だけ移動させることができる。従って、撮像手段の受光面15の形状とスリット光照射領域の形状とを考慮し、該受光面15全体を有効に活用することができる。また、光路調整手段20を構成するミラーとして、シリンドリカル凹面ミラーやシリンドリカル凸面ミラーを用いてもよい。   In the present embodiment, the optical path adjusting means is disposed at the positions of the cylindrical concave mirrors M2 and M3 of the first embodiment, but is not necessarily limited to these positions, and the optical path adjusting means is provided at any position of M1 to M6. 20 can be arranged. By appropriately changing the arrangement of the optical path adjusting means 20 and the length of the bypass optical path, the imaging position on the light receiving surface 15 can be moved up and down by an arbitrary distance. Therefore, the entire light receiving surface 15 can be effectively used in consideration of the shape of the light receiving surface 15 of the imaging means and the shape of the slit light irradiation region. In addition, a cylindrical concave mirror or a cylindrical convex mirror may be used as a mirror constituting the optical path adjusting unit 20.

光路調整手段として屈折率部材を用いることもできる。屈折率n、厚さdの屈折率部材を光路上に配置すると、物理的な長さを変えることなく実質的な光路長を(1‐1n/)dだけ長くすることができる。従って、部材の屈折率nや厚さdを適宜に変更するとともに、各ミラーの配置を適宜に設定することによっても、光路長を変化させることなく、受光面15上での結像位置を変化させることができる。   A refractive index member can also be used as the optical path adjusting means. When a refractive index member having a refractive index n and a thickness d is arranged on the optical path, the substantial optical path length can be increased by (1-1n /) d without changing the physical length. Accordingly, the image forming position on the light receiving surface 15 can be changed without changing the optical path length by appropriately changing the refractive index n and thickness d of the member and appropriately setting the arrangement of each mirror. Can be made.

上記実施例は一例であって、本願発明の趣旨に沿って適宜に変更することができる。
実施例1及び2では、スリット光照射領域を3つに分割し、それぞれにおける切断線の像を撮像手段の受光面上に結像させる構成としたが、スリット光照射領域の分割数は受光面の形状等を考慮して適宜に決めることができる。あるいは、スリット光照射領域を分割することなく、切断線の像を凹凸構造の高さ方向に拡大して受光面上に結像させてもよい。なお、スリット光照射領域を分割しない場合には、実施例1及び2のように像を回転させるための反射手段を配置しなくてもよい。
The above embodiment is merely an example, and can be appropriately changed in accordance with the spirit of the present invention.
In the first and second embodiments, the slit light irradiation area is divided into three parts, and an image of the cutting line in each is formed on the light receiving surface of the imaging unit. However, the number of divisions of the slit light irradiation area is the light receiving surface. It can be determined appropriately in consideration of the shape and the like. Alternatively, the image of the cutting line may be enlarged in the height direction of the concavo-convex structure and formed on the light receiving surface without dividing the slit light irradiation region. If the slit light irradiation area is not divided, the reflecting means for rotating the image as in the first and second embodiments may not be arranged.

実施例1及び2の構成における各ミラーの位置及び傾斜方向は、第1反射手段と第2反射手段による反射で像を90°回転させることができさえすれば、適宜に変更できる。また、各光路上に、像拡大によって生じる収差を補正するためのレンズを配置してもよい。これにより、像の収差を補正して計測精度を高めることができる。また、ワーク11の表面と、第1反射手段の間に物体側テレセントリックレンズ30を配置することによって、物体側テレセントリック光学系を構成し、像の解像度を高めることもできる(図7参照)。さらに、光路上の適宜の位置に、像を縮小(あるいは拡大)するレンズを配置して切断線の像の大きさを変更し、撮像手段の受光面の大きさに合致させるようにしてもよい。   The position and tilt direction of each mirror in the configurations of the first and second embodiments can be changed as long as the image can be rotated 90 ° by reflection by the first reflecting means and the second reflecting means. A lens for correcting aberration caused by image enlargement may be arranged on each optical path. Thereby, the aberration of the image can be corrected to improve the measurement accuracy. Further, by disposing the object side telecentric lens 30 between the surface of the work 11 and the first reflecting means, an object side telecentric optical system can be configured to increase the resolution of the image (see FIG. 7). Further, a lens for reducing (or enlarging) the image may be disposed at an appropriate position on the optical path to change the size of the image of the cutting line so as to match the size of the light receiving surface of the imaging unit. .

11…ワーク
12…載置台
13…スリット光
14、14a、14b、14c…スリット光照射領域
15…受光面
20…光路調整手段
M1〜M6…シリンドリカル凹面ミラー
M2a、M2b、M3a、M3b…平面ミラー
101…基板
104…凹凸構造
113a…CCDカメラ
113c…CCDカメラ
121…レーザ光源
122…スリット光
125A…ハーフミラー
126A…ミラー
DESCRIPTION OF SYMBOLS 11 ... Work 12 ... Mounting stand 13 ... Slit light 14, 14a, 14b, 14c ... Slit light irradiation area 15 ... Light-receiving surface 20 ... Optical path adjustment means M1-M6 ... Cylindrical concave mirror M2a, M2b, M3a, M3b ... Plane mirror 101 ... Substrate 104 ... Uneven structure 113a ... CCD camera 113c ... CCD camera 121 ... Laser light source 122 ... Slit light 125A ... Half mirror 126A ... Mirror

Claims (4)

a) 凹凸構造を有する被測定物の表面に対してスリット光を照射する光照射手段と、
b) 前記表面のスリット光照射領域からの光を、前記スリット光の照射方向に対して角度をなす方向から受光して、前記凹凸構造の切断線の像を結像する結像手段と、
c) 前記凹凸構造の切断線の像を撮像する撮像手段と、
d) 前記スリット光照射領域から前記撮像手段に至る光路上に配置され、前記凹凸構造の高さ方向に前記像を拡大する像拡大手段と、
を備えることを特徴とする表面形状計測装置。
a) a light irradiation means for irradiating the surface of the object to be measured having an uneven structure with slit light;
b) Imaging means for receiving light from the slit light irradiation region of the surface from a direction that forms an angle with respect to the irradiation direction of the slit light, and forming an image of a cutting line of the concavo-convex structure;
c) an imaging means for capturing an image of a cutting line of the concavo-convex structure;
d) an image enlarging unit that is disposed on an optical path from the slit light irradiation region to the imaging unit and that magnifies the image in the height direction of the concavo-convex structure;
A surface shape measuring device comprising:
前記結像手段が、
e) 前記切断線が伸びる方向に並んで配置された、それぞれが前記表面から異なる高さに位置する複数の反射面であって、前記切断線に対して平行であり前記表面に対して角度をなす、互いに平行な複数の反射面である複数の第1反射面を有する第1の反射手段と、
f) 前記複数の第1反射面からそれぞれ等距離に位置し、前記複数の第1反射面により反射した光がそれぞれ入射する複数の反射面であって、前記表面に対して垂直であり互いに平行な複数の反射面である複数の第2反射面を有する第2の反射手段と、
を有することを特徴とする請求項1に記載の表面形状計測装置。
The imaging means is
e) a plurality of reflective surfaces arranged side by side in the direction in which the cutting line extends, each being at a different height from the surface, parallel to the cutting line and at an angle to the surface A first reflecting means having a plurality of first reflecting surfaces which are a plurality of reflecting surfaces parallel to each other;
f) A plurality of reflecting surfaces that are located at an equal distance from each of the plurality of first reflecting surfaces and on which light reflected by the plurality of first reflecting surfaces is incident, and are perpendicular to the surface and parallel to each other. A second reflecting means having a plurality of second reflecting surfaces which are a plurality of reflecting surfaces;
The surface shape measuring apparatus according to claim 1, wherein
g) 前記スリット光照射領域から前記第1の反射手段及び前記第2の反射手段を経由して前記撮像手段に至る、複数の光路のうちの少なくとも1つの光路上に配置され、該光路の全長を変えることなく、前記撮像手段に入射する位置を変化させる光路調整手段と、
を備えることを特徴とする請求項2に記載の表面形状計測装置。
g) disposed on at least one optical path of a plurality of optical paths from the slit light irradiation region to the imaging means via the first reflecting means and the second reflecting means, and the total length of the optical paths Without changing the optical path adjusting means for changing the position incident on the imaging means,
The surface shape measuring device according to claim 2, comprising:
結像手段に含まれる光学系が、少なくとも被測定物の表面側においてテレセントリックな光学系であることを特徴とする請求項1から3のいずれかに記載の表面形状計測装置。   4. The surface shape measuring apparatus according to claim 1, wherein the optical system included in the image forming means is a telecentric optical system at least on the surface side of the object to be measured.
JP2013237029A 2013-11-15 2013-11-15 Surface shape measuring instrument Pending JP2015096837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013237029A JP2015096837A (en) 2013-11-15 2013-11-15 Surface shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013237029A JP2015096837A (en) 2013-11-15 2013-11-15 Surface shape measuring instrument

Publications (2)

Publication Number Publication Date
JP2015096837A true JP2015096837A (en) 2015-05-21
JP2015096837A5 JP2015096837A5 (en) 2016-11-17

Family

ID=53374196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013237029A Pending JP2015096837A (en) 2013-11-15 2013-11-15 Surface shape measuring instrument

Country Status (1)

Country Link
JP (1) JP2015096837A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261006A (en) * 1986-05-07 1987-11-13 Nissan Motor Co Ltd Surface defect inspecting apparatus
JPH1137734A (en) * 1997-07-23 1999-02-12 Mitsubishi Heavy Ind Ltd Shape precision-inspecting device for plasma display substrate
US20080151229A1 (en) * 2006-12-11 2008-06-26 Zygo Corporation Multiple-degree of freedom interferometer with compensation for gas effects
JP2008216219A (en) * 2007-03-08 2008-09-18 Hitachi Ltd Illuminating device, defect inspection device using the same and defect inspection method, and height measuring device and height measuring method
WO2015072016A1 (en) * 2013-11-15 2015-05-21 株式会社島津製作所 Surface shape measurement device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261006A (en) * 1986-05-07 1987-11-13 Nissan Motor Co Ltd Surface defect inspecting apparatus
JPH1137734A (en) * 1997-07-23 1999-02-12 Mitsubishi Heavy Ind Ltd Shape precision-inspecting device for plasma display substrate
US20080151229A1 (en) * 2006-12-11 2008-06-26 Zygo Corporation Multiple-degree of freedom interferometer with compensation for gas effects
JP2008216219A (en) * 2007-03-08 2008-09-18 Hitachi Ltd Illuminating device, defect inspection device using the same and defect inspection method, and height measuring device and height measuring method
WO2015072016A1 (en) * 2013-11-15 2015-05-21 株式会社島津製作所 Surface shape measurement device

Similar Documents

Publication Publication Date Title
TWI427265B (en) Measuring apparatus
JP2012225701A (en) Shape measuring device
US11257232B2 (en) Three-dimensional measurement method using feature amounts and device using the method
WO2014115341A1 (en) Confocal scanner and optical measuring device using same
JP2017534918A (en) Exposure apparatus adjustment apparatus and adjustment method
JP6178138B2 (en) 3D shape measuring device
JP2014059164A (en) Shape measurement device and shape measurement method
JP2005070225A (en) Surface image projector and the surface image projection method
US8149383B2 (en) Method for determining the systematic error in the measurement of positions of edges of structures on a substrate resulting from the substrate topology
JP6098731B2 (en) Surface shape measuring device
JP2015096837A (en) Surface shape measuring instrument
KR101833611B1 (en) Measuring apparatus
JP2020101743A (en) Confocal microscope and its imaging method
JP5346670B2 (en) Non-contact surface shape measuring device
JP2017181807A (en) Lens and shape measurement method for lens
JP2007218931A (en) Method and instrument for measuring shape of optical face, and recording medium
JP5965721B2 (en) Multifocal imaging device
KR102658509B1 (en) Method for controlling moving body, exposure method, method for manufacturing device, moving body apparatus, and exposure apparatus
JP2008185380A (en) Shape measuring apparatus
JP2010230400A (en) Optical displacement meter
JP2016017854A (en) Shape measurement device
JPH06317405A (en) Laser displacement gauge
JP2016008816A (en) Shape measurement device, control method of shape measurement device and shape measurement program
JP2020180832A (en) Image measuring device
JP2013011492A (en) Three-dimentional image acquisition device and three-dimentional image acquisition method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180206