WO2014115341A1 - Confocal scanner and optical measuring device using same - Google Patents

Confocal scanner and optical measuring device using same Download PDF

Info

Publication number
WO2014115341A1
WO2014115341A1 PCT/JP2013/057249 JP2013057249W WO2014115341A1 WO 2014115341 A1 WO2014115341 A1 WO 2014115341A1 JP 2013057249 W JP2013057249 W JP 2013057249W WO 2014115341 A1 WO2014115341 A1 WO 2014115341A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving
prism
confocal
moving table
aperture array
Prior art date
Application number
PCT/JP2013/057249
Other languages
French (fr)
Japanese (ja)
Inventor
満宏 石原
Original Assignee
株式会社高岳製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高岳製作所 filed Critical 株式会社高岳製作所
Priority to KR1020137021773A priority Critical patent/KR101444048B1/en
Priority to CN201380001083.XA priority patent/CN104067158B/en
Publication of WO2014115341A1 publication Critical patent/WO2014115341A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0044Scanning details, e.g. scanning stages moving apertures, e.g. Nipkow disks, rotating lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/1805Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for prisms

Definitions

  • the present invention relates to a measuring device using light.
  • the present invention relates to speeding up and simplification of an apparatus for performing three-dimensional measurement or surface shape measurement of an object using a confocal optical system.
  • an image formed by the confocal optical system is referred to as a confocal image
  • the light that is out of focus and spreads out is not imaged and is in focus. Only partial light is imaged.
  • out-of-focus and out-of-focus light spreads on the image plane and degrades the image, but confocal optics does not (or very little) do so, so the contrast is sharp.
  • An image is obtained. It is also known that the three-dimensional shape of an imaged object can be measured using the feature that only the light in focus is imaged. Applications are spreading.
  • the basic structure of the confocal optical system (reflection type) is shown in FIG.
  • the light emitted from the point light source 701 is condensed by the objective lens 703 and projected onto the object.
  • the light reflected from the object and incident on the objective lens 703 again enters the pinhole 704 that is optically located at the same position as the point light source 701 via the half mirror 702, and the amount of light that has passed through the pinhole 704 is detected by the detector. 705 is detected.
  • This is the basic structure of the confocal optical system.
  • the height of each position on the object surface can be measured as follows.
  • the reflected light converges on the surface of the pinhole 704, which is also a conjugate position, and much reflected light passes through the pinhole 704.
  • the amount of light passing through the pinhole 704 decreases rapidly. From this, the height of the object surface can be found by changing the distance between the object and the objective lens 703 and finding the point where the detector 705 shows the maximum output.
  • the confocal optical system is basically a point detection optical system, it is generally necessary to perform XY scanning in order to obtain a confocal image.
  • XY scanning method laser beam scanning or scanning using a rotating disk called “Nippow disk” having many spiral pinhole arrays is generally used.
  • An optical system that obtains a confocal image using these scanning methods is used.
  • the three-dimensional measurement using the confocal microscope is basically the same as the height measurement using the point measurement type confocal optical system, and the detector 705 is changed by changing the distance between the object and the objective lens 703.
  • the data obtained each time the distance between the object and the objective lens 703 is changed is not data of one point on the object surface but two-dimensional image data, and the maximum output is obtained.
  • the position is different in that it is obtained for each pixel of the image data.
  • Patent Document 1 discloses a method of optically changing the distance between an object and an objective lens.
  • an object of the present invention is to realize a simple and high-speed confocal three-dimensional measuring apparatus.
  • a moving table having at least one moving axis, an aperture array having a number of confocal apertures attached to the moving table and moving, and directions opposite to each other with respect to the moving axis of the moving table
  • the moving prism attached to the moving table and moving, and inclined to the moving axis of the moving table in exactly opposite directions at the same angle as the moving prism.
  • the fixed prisms are arranged outside the moving table and do not move, and an equivalent parallel plane substrate is formed by combining the moving prism and the fixed prism.
  • a confocal scanner is characterized in that the thickness of an equivalent parallel flat substrate changes with movement.
  • a confocal scanner further comprising at least one protective transparent plate that is attached to the moving table and moves with the moving table to prevent foreign matter from adhering to the aperture array is configured.
  • the aperture array is a pinhole array, and pinholes are provided at intervals P so that the confocal effect is exhibited.
  • the pinholes adjacent to each other in the moving direction are shifted by a small distance S in the direction perpendicular to the moving direction, and It arrange
  • the aperture array is a slit array instead of a pinhole array, and each slit is arranged at a constant interval P in the moving direction so as to exhibit a confocal effect.
  • One of the moving prism and the fixed prism is a prism having two surfaces inclined with respect to the moving axis of the moving table in opposite directions at the same angle
  • the other of the moving prism and the fixed prism is An opening in which the one prism can be inserted and removed with respect to a rectangular parallelepiped member, and is sandwiched between two surfaces inclined at an equal angle to each other in opposite directions with respect to the moving axis of the moving table It is a prism having a shape formed.
  • the thickness of the equivalent parallel flat substrate changes as the one prism is inserted into and removed from the opening of the other prism as the moving table moves.
  • the confocal scanner an objective lens in which the aperture array is arranged at an image plane position, an illumination optical system that irradiates the entire effective image plane of the objective lens, and reflected by a measurement object and incident on the objective lens.
  • the deflected optical element that deflects the object reflected light that has passed through the aperture array in a direction different from the illumination optical system, and the object reflected light deflected by the deflecting optical element is received, photoelectrically converted, and output as an image signal.
  • a two-dimensional detector an imaging optical system that forms an image of the aperture array on the two-dimensional detector via the deflection optical element, and an output of the two-dimensional detector as a digital signal;
  • the aperture array is constituted by an image processing device that searches for a focal position that gives a maximum value using different data of a series of obtained focal positions and identifies the height of the point of the searched focal position.
  • the moving prism is moved at a constant speed by the moving table, and an image is acquired by the two-dimensional detector a plurality of times during the movement, and one exposure time of the two-dimensional detector is determined in the moving direction of the aperture array.
  • the moving time is set to be the same as the moving time that is an integral multiple of the aperture arrangement period.
  • XYZ three-axis scanning can be performed with only one axis scanning, and a simple, low-cost, and high-speed confocal three-dimensional measuring apparatus can be realized.
  • the confocal scanner of the present invention includes a uniaxial moving table 101, a bracket 102 mounted on the moving table 101, an aperture array 103, a moving prism 104, and the moving table 101.
  • the fixed prism 105 is provided.
  • the aperture array 103 is a pinhole array as shown in FIG. 2, and the interval P between the pinholes is set to several times the pinhole diameter so that a confocal effect can be obtained.
  • the pinholes adjacent to each other in the movement axis direction are arranged with a small distance S shifted in the direction perpendicular to the movement axis.
  • the aperture array 103 If the aperture array 103 is left as it is, the transmitted light (information) of the non-aperture portion cannot be obtained. However, by moving by the period P ⁇ (P / S), the entire surface of the aperture array 103 is scanned all over. Information can be obtained.
  • the moving prism 104 that moves together with the aperture array 103 has a shape in which two wedge-shaped prisms are combined such that their slopes face each other, as shown in FIG.
  • the fixed prism 105 that is provided independently of the moving table 101 and does not move with respect to the object has a wedge shape having an apex angle that is the same as the V-shaped angle formed by the inclined surfaces of the moving prism 104.
  • an equivalent parallel flat substrate is formed.
  • the thickness of the equivalent parallel flat substrate changes as the moving prism 104 moves. It is preferable that the bisector of the V-shaped apex angle formed by the inclined surfaces of the moving prism 104 and the bisector of the apex angle of the fixed prism 105 be matched.
  • the wedge shape here mainly means a triangular prism having a cross-sectional shape as shown in FIG. 8A or a quadrangular prism having a cross-sectional shape whose long sides facing each other are not parallel as shown in FIG. 8B.
  • a cross-sectional shape in which the long sides facing each other are not parallel is not limited as shown in FIG.
  • the change in the thickness of the plane parallel substrate can be realized by using a wedge prism in combination. Even if only one wedge-shaped prism is used, the focal point can be changed, but a fatal aberration is given to the imaging optical system. As shown in FIG. 9, if two wedge prisms are combined and used as a parallel plane substrate, the aberration can be reduced. However, since the distance of the space between the prisms changes as the moving table 101 moves, It will shift.
  • the combination of the moving prism 104 and the fixed prism 105 shown in FIG. 1 has the same structure as the wedge-shaped prism pair in FIG. 9 combined in two stages in the opposite direction, and the light beam due to the change in the space distance between the prisms. This shift is restored to the original value and compensated.
  • the moving prism 104 and the fixed prism 105 may be combined to form an equivalent parallel plane substrate, and the reverse may be possible. That is, the prism having the wedge-shaped apex angle may be the moving prism 104, and the prism having the V-shaped space may be the fixed prism 105. That is, one of the moving prism 104 and the fixed prism 105 is configured to have two opposing surfaces that are inclined with respect to the moving axis of the moving table 101 in the opposite directions at the same angle, and the other is the prism. It is only necessary that the opening (opening space) into which can be inserted and removed has a shape formed with respect to a rectangular parallelepiped member.
  • the space formed in the rectangular parallelepiped member has two inclined surfaces with respect to the moving axis of the moving table 101 in the opposite directions at the same angle as the two opposing surfaces of the prism inserted into the space. It should be a space sandwiched between surfaces.
  • the shape of this space may be similar to a prism inserted into and removed from the space.
  • the space may be formed so as to divide a rectangular parallelepiped member.
  • the rectangular parallelepiped member is divided into two prisms.
  • each of the two prisms may be formed such that the opposite surface of the surface facing the inserted / removed prism is parallel to the moving axis of the moving table 101.
  • the equivalent parallel flat substrate formed by the moving prism 104 and the fixed prism 105 configured as described above one wedge-shaped prism is inserted into and extracted from the other fitting space as the moving table 101 moves. As a result, the equivalent thickness changes.
  • the aperture array 103 may be a slit array as shown in FIG. 4, for example.
  • the slit pitch P becomes the period as it is.
  • the opening array 103 is fatal if foreign matter such as dust adheres to it, it is essential to take measures to prevent the foreign matter from adhering. Therefore, it is necessary to provide a protective transparent plate 106 on the moving table 101 as shown in FIG.
  • a protective transparent plate 106 on the moving table 101 as shown in FIG.
  • an opaque film of chromium for example, is deposited on the protective transparent plate 106 and the aperture array 103 is patterned by a lithography technique, it is necessary to provide the protective transparent plate 106 on one side of the aperture array 103. No. Further, the protection on the other side can be performed by the moving prism 104.
  • the light from the light source 501 illuminates the aperture array 103 in an optimal state by the illumination optical system 502.
  • the light source 501 can be a coherent light source such as a laser, or an incoherent thermal light source. However, each optimum optical system is different. Since the coherency of the illumination light is not necessary in the confocal optical system, a mechanism for making it incoherent is provided in the illumination optical system 502 when using a laser.
  • the illumination light that has passed through the aperture array 103 passes through the moving prism 104 of the confocal scanner, passes through the fixed prism 105, passes through the moving prism 104 again, and enters the objective lens 503.
  • the illumination light becomes an image of the aperture array 103 by the image forming action of the objective lens 503 and illuminates the object 504.
  • the illumination light reflected by the object 504 becomes reflected light and enters the objective lens 503, and forms an image again in the image space by the imaging action of the objective lens 503, and a part or almost all of it passes through the openings of the aperture array 103. It will be.
  • the reflected light that has passed through the aperture array 103 is deflected by a deflection optical element 505 provided inside the illumination optical system 502 or between the illumination optical system 502 and the aperture array 103, and is two-dimensionally transmitted through the imaging optical system 506.
  • the detector 507 is reached.
  • the imaging optical system 506 is disposed so as to form an image of the aperture array 103 on the two-dimensional detector 507.
  • the reflected light from the object 504 detected by the two-dimensional detector 507 is photoelectrically converted and output as image data (two-dimensional data), stored in the image processing device 508, and then converted into three-dimensional information of the object by calculation. Is done.
  • a polarizing beam splitter is used as the deflecting optical element 505 to prevent the illumination light reflected by the aperture array 103 from going toward the two-dimensional detector 507, and the inside of the objective lens 503 or the objective lens 503 and the object 504 is used.
  • a ⁇ / 4 retardation plate 509 is inserted therebetween.
  • the illumination light reflected by the aperture array 103 is absolutely unnecessary light, while the reflected light that is signal light from the object 504 is not necessarily large in intensity, and therefore needs to be removed as completely as possible.
  • the illumination light becomes linearly polarized light by the deflecting optical element 505 that is a polarization beam splitter and is reflected by the aperture array 103 without being deflected by the deflecting optical element 505.
  • the linearly polarized illumination light that has passed through the aperture array 103 becomes circularly polarized light once it has passed through the ⁇ / 4 retardation plate 509, and is reflected by the object 504 and passes through the ⁇ / 4 retardation plate 509 again. Can be converted into linearly polarized light in a direction orthogonal to, and deflected by the deflecting optical element 505 to reach the two-dimensional detector 507.
  • a polarizing plate is provided in the illumination optical system 502 separately from the deflection optical element 505 that is a polarization beam splitter, and further in the imaging optical system 506.
  • An analyzer may be provided.
  • the start of the measurement operation starts with the movement of the movement table 101 of the confocal scanner.
  • the moving table 101 is accelerated and reaches a predetermined speed and becomes stable, image data acquisition is started.
  • each sensor pixel of a two-dimensional detector 507 which is a so-called video camera, is exposed, and an electrical signal for each pixel corresponding to the amount of charge photoelectrically converted by the exposure is output as image data to the image processing device 508. It means that it is stored.
  • the exposure time is set to a time during which the moving table 101 moves by one period or a multiple of the period of the periodic structure of the aperture array 103, a confocal image completely scanned in XY can be obtained. This is specifically shown below.
  • the aperture array 103 is the pinhole array type shown in FIG. 2, one cycle is P ⁇ P / S. Therefore, if the speed at the constant speed of the moving table is v, the exposure time T is (P ⁇ P / S). Set to / v. Alternatively, the multiple is set to N ⁇ (P ⁇ P / S) / v. N is a natural number. With this setting, the pinholes in the aperture array 103 exist at the same time in every position in the moving direction, and the interval between the pinhole intervals P in the direction orthogonal to the moving direction is equal to the P / S line. Therefore, complete XY scanning can be realized. If the movement table 101 is moving at a constant speed, a confocal image that has been XY scanned at an arbitrary timing can be acquired. The only condition is that the exposure time is T.
  • the moving prism 104 and the fixed prism 105 can be equivalently regarded as parallel plane substrates with respect to the imaging light flux passing through them.
  • the thickness of the parallel plane substrate continuously changes accordingly.
  • the focal position of the objective lens 503 moves and Z scanning is realized. The If the speed of the moving table 101 is constant, the thickness changes in proportion to time, and the focal position changes at a constant speed.
  • the image processing device 508 can perform three-dimensional measurement calculation.
  • 3D measurement calculation is realized by searching for a confocal image having a maximum value for each pixel, using a series of confocal images whose focal positions are changed at regular intervals. Since the object surface (or interface) exists at the focal position where the confocal image giving the maximum value is obtained, the position in the Z direction, that is, the height can be specified.
  • the focal position interval is constant for easy understanding, this is not an absolute requirement. Even if the intervals are different, the position of the surface (or interface) of the object can be specified.
  • the obtained confocal image includes data having different focal positions for the exposure time.
  • the Z movement that is, the focal movement is 1 mm / s
  • the exposure time is 1 ms
  • the focal position is moved by about 1 ⁇ m
  • the confocal image includes data having different focal positions by about 1 ⁇ m. It becomes a state.
  • each pixel simply changes in height during the exposure time T by setting the pixel size to P ⁇ P. It is only integrated, and it can be considered that it represents the average focal position data at T / 2 after the start of exposure. The same applies to multiples of P ⁇ P.
  • any point in the image is the average position during the exposure time if it is optically smoothed more than the diameter P, that is, if it is blurred. It can be regarded as a state represented, and the same effect can be obtained.
  • the focal position change during the exposure time is a problem for the measurement accuracy by shortening the exposure time T or reducing the scanning speed in the Z direction. It is necessary to set it to the extent that it does not become.
  • the pattern of the aperture array 103 can be other patterns that can achieve the same effect, and the aperture array 103 has a micro lens for each pinhole, that is, the aperture array and the micro lens array are combined. There may be cases where the structure is different. These are also included in the present invention.
  • XYZ three-axis scanning can be performed with only one axis scanning, and a simple, low-cost, and high-speed confocal three-dimensional measuring apparatus can be realized.
  • a simple, low-cost, and high-speed confocal three-dimensional measuring apparatus can be realized.

Abstract

A confocal opening array and a movable prism having a wedge-shaped space on the interior are attached to a single axis movable table, and a fixed prism having a wedge-shaped apex angle is provided to the exterior of the movable table. At the same time that XY scanning of the opening is achieved by means of movement of the movable table, the thickness of an equivalent plane parallel substrate varies using the pair comprising the movable prism and the fixed prism, and confocal movement (Z scanning) is also simultaneously achieved.

Description

共焦点スキャナおよびそれを用いた光学的計測装置Confocal scanner and optical measurement apparatus using the same
 本発明は、光を利用した計測装置に関する。特に、共焦点光学系を用いて、物体の三次元計測あるいは表面形状計測を行う装置の高速化、簡素化に関する。 The present invention relates to a measuring device using light. In particular, the present invention relates to speeding up and simplification of an apparatus for performing three-dimensional measurement or surface shape measurement of an object using a confocal optical system.
 共焦点光学系を用いて画像を撮る(以下では共焦点光学系による画像を共焦点画像と呼ぶことにする)と、ピントが合わずぼけて広がった光は画像化されず、ピントの合った部分の光だけが画像化される。一般の結像光学系ではピントが合わずぼけた光は像面上に広がり画像を劣化させるが、共焦点光学系ではそのようなことがない(あるいは非常に少ない)ため、コントラストの高いシャープな画像が得られる。また、ピントの合った部分の光だけが画像化される特徴を用いて撮像物体の三次元形状が計測可能なことでも知られており、このような特徴を生かして、近年その産業界への適用が広がりつつある。 When an image is taken using a confocal optical system (hereinafter, an image formed by the confocal optical system is referred to as a confocal image), the light that is out of focus and spreads out is not imaged and is in focus. Only partial light is imaged. In general imaging optics, out-of-focus and out-of-focus light spreads on the image plane and degrades the image, but confocal optics does not (or very little) do so, so the contrast is sharp. An image is obtained. It is also known that the three-dimensional shape of an imaged object can be measured using the feature that only the light in focus is imaged. Applications are spreading.
 共焦点光学系(反射型)の基本構造を図7に示す。点光源701から射出された光は対物レンズ703により集光され、物体に投影される。物体から反射して再び対物レンズ703に入射した光はハーフミラー702を介して点光源701と光学的に同じ位置にあるピンホール704に入射し、ピンホール704を通過した光の量が検出器705により検知される。これが共焦点光学系の基本的な構造である。 The basic structure of the confocal optical system (reflection type) is shown in FIG. The light emitted from the point light source 701 is condensed by the objective lens 703 and projected onto the object. The light reflected from the object and incident on the objective lens 703 again enters the pinhole 704 that is optically located at the same position as the point light source 701 via the half mirror 702, and the amount of light that has passed through the pinhole 704 is detected by the detector. 705 is detected. This is the basic structure of the confocal optical system.
 この光学系を利用することにより次のようにして物体表面の各位置の高さが計測できる。物体表面が点光源701に共役な位置にある場合、反射光は同じく共役な位置であるピンホール704面に収束し多くの反射光がピンホール704を通過する。しかし物体表面が点光源701に共役な位置から離れると、ピンホール704を通過する光量は急速に減少する。このことから物体と対物レンズ703との距離を変化させて検出器705が最大出力を示す点を見つければ物体表面の高さがわかることになる。 Using this optical system, the height of each position on the object surface can be measured as follows. When the object surface is at a position conjugate with the point light source 701, the reflected light converges on the surface of the pinhole 704, which is also a conjugate position, and much reflected light passes through the pinhole 704. However, when the object surface moves away from the position conjugate with the point light source 701, the amount of light passing through the pinhole 704 decreases rapidly. From this, the height of the object surface can be found by changing the distance between the object and the objective lens 703 and finding the point where the detector 705 shows the maximum output.
 共焦点光学系は基本的に点検出の光学系であるため、共焦点画像を得るためには一般にXYの走査を行う必要がある。XY走査の方法としてはレーザービーム走査または螺旋状のピンホール列を多数有するNipkow diskと呼ばれる回転円盤を用いた走査が一般的であり、これらの走査手法を使って共焦点画像を得る光学系は、共焦点顕微鏡として知られている。 Since the confocal optical system is basically a point detection optical system, it is generally necessary to perform XY scanning in order to obtain a confocal image. As an XY scanning method, laser beam scanning or scanning using a rotating disk called “Nippow disk” having many spiral pinhole arrays is generally used. An optical system that obtains a confocal image using these scanning methods is used. , Known as a confocal microscope.
 共焦点顕微鏡を使った三次元計測も、基本的には先ほどの点計測型の共焦点光学系を用いた高さ計測と同じで、物体と対物レンズ703との距離を変化させて検出器705が最大出力を示す点を見つける訳であるが、物体と対物レンズ703との距離を変化させるごとに得られるデータは物体表面1点のデータではなく、2次元的な画像データであり、最大出力位置は画像データの画素ごとに求める、という点で異なっている。 The three-dimensional measurement using the confocal microscope is basically the same as the height measurement using the point measurement type confocal optical system, and the detector 705 is changed by changing the distance between the object and the objective lens 703. However, the data obtained each time the distance between the object and the objective lens 703 is changed is not data of one point on the object surface but two-dimensional image data, and the maximum output is obtained. The position is different in that it is obtained for each pixel of the image data.
 具体的には、高さ計測の分解能をaとすると、物体と対物レンズ703との距離をaずつ変化させる毎に共焦点画像を取得、保存し、光軸方向計測範囲すべてを走査(つまり物体と対物レンズ703との距離を変化)し終わった後、画素毎に最も検出器705の出力が大きい画像の位置を探索することで、画素毎に物体表面の位置を求めることができ、三次元的な形状計測データが得られることになる。特許文献1には、物体と対物レンズの距離を光学的に変化させる方法が開示されている。 Specifically, when the height measurement resolution is a, the confocal image is acquired and stored every time the distance between the object and the objective lens 703 is changed by a, and the entire optical axis direction measurement range is scanned (that is, the object The distance between the object lens 703 and the objective lens 703 is finished), and the position of the object surface can be obtained for each pixel by searching for the position of the image with the largest output of the detector 705 for each pixel. Shape measurement data can be obtained. Patent Document 1 discloses a method of optically changing the distance between an object and an objective lens.
特開平8-304043JP-A-8-304043
 上記のように、共焦点光学系による三次元計測では、結局XYZの三軸全ての走査を行う必要がある。そのため構造が複雑・大規模となり高コスト化を招いている。また計測速度の観点からも高速化を求められている。 As described above, in the three-dimensional measurement by the confocal optical system, it is necessary to scan all three axes of XYZ after all. For this reason, the structure is complicated and large-scale, resulting in high costs. In addition, speeding up is also required from the viewpoint of measurement speed.
 このような状況を鑑み、本発明は簡素でかつ高速な共焦点三次元計測装置を実現することを目的とする。 In view of such circumstances, an object of the present invention is to realize a simple and high-speed confocal three-dimensional measuring apparatus.
 上記課題を解決するために、少なくとも一軸の移動軸を有する移動テーブルと、前記移動テーブルに取り付けられて移動する多数の共焦点開口を有する開口アレイと、前記移動テーブルの移動軸に対し互いに逆方向に同じ角度で傾斜した対面する2つの面を有し、前記移動テーブルに取り付けられて移動する移動プリズムと、前記移動テーブルの移動軸に対し前記移動プリズムと正確に同じ角度で互いに逆方向に傾斜した対面する2つの面を有し、前記移動テーブル外に設置され移動しない固定プリズムとから構成され、前記移動プリズムと前記固定プリズムとを組み合わせることで等価的な平行平面基板となり、前記移動テーブルの移動に伴い等価的な平行平面基板の厚さが変化することを特徴とする共焦点スキャナを構成する。 In order to solve the above problems, a moving table having at least one moving axis, an aperture array having a number of confocal apertures attached to the moving table and moving, and directions opposite to each other with respect to the moving axis of the moving table The moving prism attached to the moving table and moving, and inclined to the moving axis of the moving table in exactly opposite directions at the same angle as the moving prism. The fixed prisms are arranged outside the moving table and do not move, and an equivalent parallel plane substrate is formed by combining the moving prism and the fixed prism. A confocal scanner is characterized in that the thickness of an equivalent parallel flat substrate changes with movement.
 もしくは、前記移動テーブルに取り付けられて前記移動テーブルとともに移動する、前記開口アレイへの異物付着防止のための少なくとも1枚の保護透明板、をさらに備えた共焦点スキャナを構成する。 Alternatively, a confocal scanner further comprising at least one protective transparent plate that is attached to the moving table and moves with the moving table to prevent foreign matter from adhering to the aperture array is configured.
 前記開口アレイはピンホールアレイであり、共焦点効果が発揮されるように各ピンホールを間隔Pごとに設け、移動方向に隣り合うピンホールは移動方向と直交する方向に微小距離SずらしてかつP/Sが整数となるように配置する。 The aperture array is a pinhole array, and pinholes are provided at intervals P so that the confocal effect is exhibited. The pinholes adjacent to each other in the moving direction are shifted by a small distance S in the direction perpendicular to the moving direction, and It arrange | positions so that P / S may become an integer.
 また、前記開口アレイはピンホールアレイに代えたスリットアレイであり、各スリットは共焦点効果が発揮されるように移動方向に一定間隔Pを空けて配置する。 Also, the aperture array is a slit array instead of a pinhole array, and each slit is arranged at a constant interval P in the moving direction so as to exhibit a confocal effect.
 前記移動プリズムおよび前記固定プリズムの一方は、互いに等しい角度で互いに逆方向に前記移動テーブルの移動軸に対して傾斜した2つの面を有するプリズムであり、前記移動プリズムおよび前記固定プリズムの他方は、直方体形状の部材に対して、前記一方のプリズムが挿抜可能な開口部であって互いに等しい前記角度で互いに逆方向に前記移動テーブルの移動軸に対して傾斜した2つの面に挟まれた開口部が形成された形状を有するプリズムである。 One of the moving prism and the fixed prism is a prism having two surfaces inclined with respect to the moving axis of the moving table in opposite directions at the same angle, and the other of the moving prism and the fixed prism is An opening in which the one prism can be inserted and removed with respect to a rectangular parallelepiped member, and is sandwiched between two surfaces inclined at an equal angle to each other in opposite directions with respect to the moving axis of the moving table It is a prism having a shape formed.
 前記前記等価的な平行平面基板は、前記移動テーブルの移動に伴い前記一方のプリズムが前記他方のプリズムの前記開口部に対して挿抜されることにより厚さが変化する。 The thickness of the equivalent parallel flat substrate changes as the one prism is inserted into and removed from the opening of the other prism as the moving table moves.
 前記の共焦点スキャナと、像面位置に前記開口アレイが配置された対物レンズと、前記対物レンズの有効像面全体を照射する照明光学系と、計測物体で反射して前記対物レンズに入射し、前記開口アレイを通過した物体反射光を前記照明光学系とは異なる方向へ偏向する偏向光学素子と、前記偏向光学素子により偏向した前記物体反射光を受光して光電変換し画像信号として出力する2次元検出器と、前記開口アレイの像を、前記偏向光学素子を介して前記2次元検出器上に結像せしめる結像光学系と、前記2次元検出器の出力をデジタル信号として入力し、得られた一連の焦点位置の異なるデータを用いて、最大値を与える焦点位置を探索し、探索した焦点位置をその点の高さを特定する画像処理装置とにより構成され、前記開口アレイおよび前記移動プリズムは前記移動テーブルにより一定速度で移動させられ、移動中に複数回前記2次元検出器により画像取得され、前記2次元検出器の1回の露光時間は、前記開口アレイ移動方向の開口配列周期の整数倍の移動時間と同じになるよう設定するようにする。 The confocal scanner, an objective lens in which the aperture array is arranged at an image plane position, an illumination optical system that irradiates the entire effective image plane of the objective lens, and reflected by a measurement object and incident on the objective lens. The deflected optical element that deflects the object reflected light that has passed through the aperture array in a direction different from the illumination optical system, and the object reflected light deflected by the deflecting optical element is received, photoelectrically converted, and output as an image signal. A two-dimensional detector, an imaging optical system that forms an image of the aperture array on the two-dimensional detector via the deflection optical element, and an output of the two-dimensional detector as a digital signal; The aperture array is constituted by an image processing device that searches for a focal position that gives a maximum value using different data of a series of obtained focal positions and identifies the height of the point of the searched focal position. And the moving prism is moved at a constant speed by the moving table, and an image is acquired by the two-dimensional detector a plurality of times during the movement, and one exposure time of the two-dimensional detector is determined in the moving direction of the aperture array. The moving time is set to be the same as the moving time that is an integral multiple of the aperture arrangement period.
 以上のように構成することで、一軸の走査のみでXYZの三軸分の走査が可能となり簡素で低コスト、そして高速な共焦点三次元計測装置が実現できる。 By configuring as described above, XYZ three-axis scanning can be performed with only one axis scanning, and a simple, low-cost, and high-speed confocal three-dimensional measuring apparatus can be realized.
本発明の共焦点スキャナの実施例を示した図である。It is the figure which showed the Example of the confocal scanner of this invention. ピンホールタイプの開口アレイを説明するための図である。It is a figure for demonstrating a pinhole type opening array. 平行平面基板による焦点移動を説明するための図である。It is a figure for demonstrating the focus movement by a parallel plane board | substrate. スリットタイプの開口アレイを説明するための図である。It is a figure for demonstrating a slit-type opening array. 本発明の共焦点スキャナを使用した計測装置の実施例を示した図である。It is the figure which showed the Example of the measuring device using the confocal scanner of this invention. 本発明の露光時間中の焦点位置変動を説明するための図である。It is a figure for demonstrating the focus position fluctuation | variation during the exposure time of this invention. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. くさび型を説明するための図である。It is a figure for demonstrating a wedge type | mold. くさび型プリズムペアを説明するための図である。It is a figure for demonstrating a wedge-shaped prism pair.
実施形態Embodiment
 以下では、本発明を具体的に実施するにあたり最良と思われる実施形態について述べる。 In the following, embodiments that are considered to be the best for carrying out the present invention will be described.
 まず、本発明の共焦点スキャナを具現化した実施形態の例を、図1~図4を参照して説明する。 First, an example of an embodiment embodying the confocal scanner of the present invention will be described with reference to FIGS.
 図1に示すように本発明の共焦点スキャナは、一軸の移動テーブル101と、その移動テーブル101上に取り付けられたブラケット102に開口アレイ103と移動プリズム104と、移動テーブル101とは独立して設けられる固定プリズム105より構成される。 As shown in FIG. 1, the confocal scanner of the present invention includes a uniaxial moving table 101, a bracket 102 mounted on the moving table 101, an aperture array 103, a moving prism 104, and the moving table 101. The fixed prism 105 is provided.
 開口アレイ103は、図2に示すようにピンホールアレイとなっており各ピンホール相互間の間隔Pは、共焦点の効果が出るようにピンホール直径の数倍程度に設定される。図2に示すように移動軸方向に隣り合うピンホールは、移動軸に垂直な方向に微小距離Sずらして配置される。 The aperture array 103 is a pinhole array as shown in FIG. 2, and the interval P between the pinholes is set to several times the pinhole diameter so that a confocal effect can be obtained. As shown in FIG. 2, the pinholes adjacent to each other in the movement axis direction are arranged with a small distance S shifted in the direction perpendicular to the movement axis.
 距離Pとずらし量Sとを、P/Sが整数となるように設定することで、移動方向にP/S個分、つまりP×(P/S)毎の周期構造となる。 By setting the distance P and the shift amount S so that P / S is an integer, a periodic structure for every P / S in the movement direction, that is, P × (P / S).
 ずらし量Sは出来るだけ小さい方が移動に直交する方向の走査が細かくなるが、対物レンズの分解能から考えて無駄に細かくする必要はなく、ピンホールの半径分程度でP/Sが整数となる量に設定するのが良い。 When the shift amount S is as small as possible, scanning in the direction orthogonal to the movement becomes finer. However, it is not necessary to make it uselessly fine considering the resolution of the objective lens, and P / S becomes an integer about the radius of the pinhole. It is better to set the amount.
 開口アレイ103はそのままでは非開口部分の透過光(情報)が得られないことになるが、上記の周期P×(P/S)だけ移動することで開口アレイ103全面がくまなく走査され、全面の情報を得ることが出来る。 If the aperture array 103 is left as it is, the transmitted light (information) of the non-aperture portion cannot be obtained. However, by moving by the period P × (P / S), the entire surface of the aperture array 103 is scanned all over. Information can be obtained.
 ここで、移動テーブル101を一定速度vで移動させれば、任意のタイミングの(P×P/S)/v時間で上記全面走査が行われることになる。これでXY走査が1軸で実現できたことになる。 Here, if the moving table 101 is moved at a constant speed v, the entire scanning is performed at an arbitrary timing (P × P / S) / v time. Thus, XY scanning can be realized with one axis.
 また、開口アレイ103とともに移動する移動プリズム104は、たとえば図1に示すように、2つのくさび型のプリズムを互いに斜面が向かい合うように組み合わせた形状を有し、斜面間にVの字型の空間を有する。一方、移動テーブル101とは独立に設けられて物体に対して移動しない固定プリズム105は、移動プリズム104の斜面どうしがなすVの字の角度と同一の角度の頂角を持つくさび型の形状を有する。移動プリズム104と固定プリズム105とを組み合わせて用いることで等価的な平行平面基板が形成される。この等価平行平面基板は移動プリズム104の移動に伴い、厚さが変化することになる。なお、移動プリズム104の斜面どうしがなすVの字の頂角の2等分面と固定プリズム105の頂角の2等分面とは一致させておくことが好ましい。 Further, the moving prism 104 that moves together with the aperture array 103 has a shape in which two wedge-shaped prisms are combined such that their slopes face each other, as shown in FIG. Have On the other hand, the fixed prism 105 that is provided independently of the moving table 101 and does not move with respect to the object has a wedge shape having an apex angle that is the same as the V-shaped angle formed by the inclined surfaces of the moving prism 104. Have. By using the moving prism 104 and the fixed prism 105 in combination, an equivalent parallel flat substrate is formed. The thickness of the equivalent parallel flat substrate changes as the moving prism 104 moves. It is preferable that the bisector of the V-shaped apex angle formed by the inclined surfaces of the moving prism 104 and the bisector of the apex angle of the fixed prism 105 be matched.
 ここで云うくさび型とは、図8(A)に示すような断面形状を有する三角柱あるいは図8(B)に示すように対面する長辺が平行でない断面形状を有する四角柱を主に意味しているが、重要なことは対面する長辺が平行でない断面形状と云うことであって、図8(C)に示すように短辺部分の形状は限定されない。 The wedge shape here mainly means a triangular prism having a cross-sectional shape as shown in FIG. 8A or a quadrangular prism having a cross-sectional shape whose long sides facing each other are not parallel as shown in FIG. 8B. However, what is important is that it is a cross-sectional shape in which the long sides facing each other are not parallel, and the shape of the short side portion is not limited as shown in FIG.
 図3に示すように一般に結像レンズの焦点位置は、結像レンズの光路中に挿入された平行平面基板の厚さにより変化させることが出来る。すなわち平行平面基板の厚さ変化により焦点移動=Z走査をすることが出来る。平行平面基板の厚さ変化は、くさび型プリズムを組み合わせて使うことにより実現できる。くさび型プリズムを一つだけ使っても焦点変化は可能であるが、結像光学系に対して致命的な収差を与えることになる。図9に示すように2つのくさび型プリズムを組み合わせて平行平面基板として使えば収差は小さく抑えることができるが、移動テーブル101の移動に伴いプリズム間の空間の距離が変化することから、光線がシフトしてしまう。図1に示す移動プリズム104と固定プリズム105の組み合わせにおいては、図9のくさび型プリズムペアが反対方向に2段組み合わされたと同等の構造となっており、プリズム間の空間の距離の変化による光線のシフトが再度もとに戻され補償される構造となっている。 As shown in FIG. 3, generally, the focal position of the imaging lens can be changed by the thickness of the parallel flat substrate inserted in the optical path of the imaging lens. That is, focus movement = Z scanning can be performed by changing the thickness of the parallel flat substrate. The change in the thickness of the plane parallel substrate can be realized by using a wedge prism in combination. Even if only one wedge-shaped prism is used, the focal point can be changed, but a fatal aberration is given to the imaging optical system. As shown in FIG. 9, if two wedge prisms are combined and used as a parallel plane substrate, the aberration can be reduced. However, since the distance of the space between the prisms changes as the moving table 101 moves, It will shift. The combination of the moving prism 104 and the fixed prism 105 shown in FIG. 1 has the same structure as the wedge-shaped prism pair in FIG. 9 combined in two stages in the opposite direction, and the light beam due to the change in the space distance between the prisms. This shift is restored to the original value and compensated.
 当然のことながら、移動プリズム104と固定プリズム105は組み合わさって等価平行平面基板を構成すればよいから、逆であってもかまわない。つまり、くさび型の頂角を有するプリズムが移動プリズム104であり、V字型の空間を有するプリズムが固定プリズム105であっても良い。すなわち、移動プリズム104および固定プリズム105の一方が、互いに等しい角度で互いに逆方向に移動テーブル101の移動軸に対して傾斜した対向する2つの面を有するよう構成され、かつ、他方が、このプリズムが挿抜可能な開口部(開口空間)が直方体形状の部材に対して形成された形状を有するよう構成されていればよい。このとき、直方体形状の部材に形成された空間は、空間に挿抜されるプリズムが有する2つの対向面と同一の互いに等しい角度で互いに逆方向に移動テーブル101の移動軸に対して傾斜した2つの面に挟まれた空間とするとよい。たとえば、この空間の形状は、空間に挿抜されるプリズムと相似形をなすとよい。また、当該空間は直方体形状の部材を分断するように形成してもよく、この場合、直方体形状の部材は2つのプリズムに分けられる。このとき、2つのプリズムのそれぞれは、挿抜されるプリズムと対向する面の反対面が移動テーブル101の移動軸に対して平行となるように形成されるとよい。このように構成された移動プリズム104および固定プリズム105がなす等価的な平行平面基板は、移動テーブル101の移動に伴って、一方のくさび形のプリズムが他方の嵌合可能な空間に挿抜されることになり、その等価的な厚さが変化することになる。 Of course, the moving prism 104 and the fixed prism 105 may be combined to form an equivalent parallel plane substrate, and the reverse may be possible. That is, the prism having the wedge-shaped apex angle may be the moving prism 104, and the prism having the V-shaped space may be the fixed prism 105. That is, one of the moving prism 104 and the fixed prism 105 is configured to have two opposing surfaces that are inclined with respect to the moving axis of the moving table 101 in the opposite directions at the same angle, and the other is the prism. It is only necessary that the opening (opening space) into which can be inserted and removed has a shape formed with respect to a rectangular parallelepiped member. At this time, the space formed in the rectangular parallelepiped member has two inclined surfaces with respect to the moving axis of the moving table 101 in the opposite directions at the same angle as the two opposing surfaces of the prism inserted into the space. It should be a space sandwiched between surfaces. For example, the shape of this space may be similar to a prism inserted into and removed from the space. The space may be formed so as to divide a rectangular parallelepiped member. In this case, the rectangular parallelepiped member is divided into two prisms. At this time, each of the two prisms may be formed such that the opposite surface of the surface facing the inserted / removed prism is parallel to the moving axis of the moving table 101. In the equivalent parallel flat substrate formed by the moving prism 104 and the fixed prism 105 configured as described above, one wedge-shaped prism is inserted into and extracted from the other fitting space as the moving table 101 moves. As a result, the equivalent thickness changes.
 また、ここでは移動プリズム104と固定プリズム105の2つのプリズムとしているが、前記のように図9のくさび型プリズムペアを2段に重ね4個のプリズムで構成しても良い。 Further, here, the two prisms of the moving prism 104 and the fixed prism 105 are used. However, as described above, the wedge-shaped prism pair of FIG.
 以上のことから、移動テーブル101を一定速度で移動させると、XY方向の走査とZ方向の走査を同時に行うことが出来ることになる。 From the above, when the moving table 101 is moved at a constant speed, scanning in the XY direction and scanning in the Z direction can be performed simultaneously.
 また、開口アレイ103は、例えば図4のようなスリットアレイとすることも出来る。スリットアレイでは移動方向に垂直な方向には走査をする必要がないので、スリットピッチPがそのまま周期となる。 Further, the aperture array 103 may be a slit array as shown in FIG. 4, for example. In the slit array, since it is not necessary to scan in the direction perpendicular to the moving direction, the slit pitch P becomes the period as it is.
 また、開口アレイ103はゴミ等の異物の付着があると致命的であるため、異物が付着しないようにする対策が不可欠である。そのため、図1に示すように移動テーブル101上に保護透明板106を設ける必要がある。保護透明板106上に、例えばクロムの不透明膜が蒸着されていて、リソグラフィの技術により開口アレイ103をパターニングしているような場合は開口アレイ103の片側に関しては敢えて保護透明板106を設ける必要は無い。また、もう片側の保護は、移動プリズム104にその役割を担わせることも可能である。 Further, since the opening array 103 is fatal if foreign matter such as dust adheres to it, it is essential to take measures to prevent the foreign matter from adhering. Therefore, it is necessary to provide a protective transparent plate 106 on the moving table 101 as shown in FIG. For example, when an opaque film of chromium, for example, is deposited on the protective transparent plate 106 and the aperture array 103 is patterned by a lithography technique, it is necessary to provide the protective transparent plate 106 on one side of the aperture array 103. No. Further, the protection on the other side can be performed by the moving prism 104.
 次に、上記の共焦点スキャナを用いた共焦点三次元計測装置の一例を示す。図5を用いて説明する。 Next, an example of a confocal three-dimensional measuring apparatus using the above confocal scanner is shown. This will be described with reference to FIG.
 光源501からの光は、照明光学系502により最適な状態で開口アレイ103を照明する。光源501は、レーザのようなコヒーレントな光源でも使用可能であるし、インコヒーレントな熱光源であっても良い。ただ、それぞれ最適な光学系は異なる。照明光のコヒーレント性は共焦点光学系においては不必要なので、レーザを使用する場合はインコヒーレント化するような機構が照明光学系502内部に設けられることになる。 The light from the light source 501 illuminates the aperture array 103 in an optimal state by the illumination optical system 502. The light source 501 can be a coherent light source such as a laser, or an incoherent thermal light source. However, each optimum optical system is different. Since the coherency of the illumination light is not necessary in the confocal optical system, a mechanism for making it incoherent is provided in the illumination optical system 502 when using a laser.
 開口アレイ103を透過した照明光は、共焦点スキャナの移動プリズム104を通過し、更に固定プリズム105を通過した後、再度移動プリズム104を通過して対物レンズ503に入射する。対物レンズ503の結像作用により照明光は開口アレイ103の像となって物体504を照明する。物体504で反射した照明光は反射光となって対物レンズ503に入射し再び対物レンズ503の結像作用により像空間で結像し、一部あるいはそのほぼ全部が開口アレイ103の開口を通過することになる。 The illumination light that has passed through the aperture array 103 passes through the moving prism 104 of the confocal scanner, passes through the fixed prism 105, passes through the moving prism 104 again, and enters the objective lens 503. The illumination light becomes an image of the aperture array 103 by the image forming action of the objective lens 503 and illuminates the object 504. The illumination light reflected by the object 504 becomes reflected light and enters the objective lens 503, and forms an image again in the image space by the imaging action of the objective lens 503, and a part or almost all of it passes through the openings of the aperture array 103. It will be.
 開口アレイ103を通過した反射光は、照明光学系502の内部または照明光学系502と開口アレイ103との間に設けられた偏向光学素子505により偏向され、結像光学系506を介して2次元検出器507に到達する。結像光学系506は開口アレイ103の像を2次元検出器507上に結像するように配置されている。 The reflected light that has passed through the aperture array 103 is deflected by a deflection optical element 505 provided inside the illumination optical system 502 or between the illumination optical system 502 and the aperture array 103, and is two-dimensionally transmitted through the imaging optical system 506. The detector 507 is reached. The imaging optical system 506 is disposed so as to form an image of the aperture array 103 on the two-dimensional detector 507.
 2次元検出器507で検出された物体504からの反射光は、光電変換されて画像データ(2次元データ)として出力され画像処理装置508に格納され、その後、演算により物体の三次元情報に変換される。 The reflected light from the object 504 detected by the two-dimensional detector 507 is photoelectrically converted and output as image data (two-dimensional data), stored in the image processing device 508, and then converted into three-dimensional information of the object by calculation. Is done.
 通常は、開口アレイ103で反射した照明光が2次元検出器507の方に行くことを防ぐために偏向光学素子505として偏光ビームスプリッタを用い、また、対物レンズ503内部あるいは対物レンズ503と物体504の間にλ/4位相差板509を挿入するのが一般的である。 Normally, a polarizing beam splitter is used as the deflecting optical element 505 to prevent the illumination light reflected by the aperture array 103 from going toward the two-dimensional detector 507, and the inside of the objective lens 503 or the objective lens 503 and the object 504 is used. In general, a λ / 4 retardation plate 509 is inserted therebetween.
 開口アレイ103で反射した照明光はまったくの不要光であり、一方で物体504からの信号光である反射光は必ずしも強度的に大きいものではないことから、出来るだけ完全に除去する必要がある。上記のような構成にすれば、照明光は偏光ビームスプリッタである偏向光学素子505で直線偏光となり開口アレイ103で反射しても偏向光学素子505で偏向されることなくそのまま直進透過して2次元検出器507の方に行くことはない。一方、開口アレイ103を通過した直線偏光照明光は、λ/4位相差板509を一度通過した時点で円偏光となり、物体504で反射して再びλ/4位相差板509を通過すると照明光と直交する方向の直線偏光に変換され、偏向光学素子505で偏向されて2次元検出器507に到達できる。 The illumination light reflected by the aperture array 103 is absolutely unnecessary light, while the reflected light that is signal light from the object 504 is not necessarily large in intensity, and therefore needs to be removed as completely as possible. With the above configuration, the illumination light becomes linearly polarized light by the deflecting optical element 505 that is a polarization beam splitter and is reflected by the aperture array 103 without being deflected by the deflecting optical element 505. Never go towards the detector 507. On the other hand, the linearly polarized illumination light that has passed through the aperture array 103 becomes circularly polarized light once it has passed through the λ / 4 retardation plate 509, and is reflected by the object 504 and passes through the λ / 4 retardation plate 509 again. Can be converted into linearly polarized light in a direction orthogonal to, and deflected by the deflecting optical element 505 to reach the two-dimensional detector 507.
 さらに、より完全に開口アレイ103で反射した照明光を除去するために、偏光ビームスプリッタである偏向光学素子505とは別に、照明光学系502内に偏光板を設けさらに結像光学系506内に検光子を設ける場合もありうる。 Further, in order to remove illumination light reflected by the aperture array 103 more completely, a polarizing plate is provided in the illumination optical system 502 separately from the deflection optical element 505 that is a polarization beam splitter, and further in the imaging optical system 506. An analyzer may be provided.
 近年は、光学素子表面の反射をほぼ完全になくすことが可能な無反射表面処理なども開発されてきていることから、このような偏光素子を使った対策は必ずしも必要ではない。 In recent years, a non-reflective surface treatment that can almost completely eliminate reflection on the surface of the optical element has been developed. Therefore, a countermeasure using such a polarizing element is not necessarily required.
 以上の構成で、実際の計測時にどのように動作するのかを以下に述べていく。 The following describes how the above configuration works during actual measurement.
 計測動作のスタートは、共焦点スキャナの移動テーブル101の移動開始で始まる。移動テーブル101が加速され所定の速度に達し安定すると画像データ取得が開始される。 The start of the measurement operation starts with the movement of the movement table 101 of the confocal scanner. When the moving table 101 is accelerated and reaches a predetermined speed and becomes stable, image data acquisition is started.
 画像データ取得は、いわゆるビデオカメラである2次元検出器507の各センサ画素が露光され、露光で光電変換された電荷量に応じた画素毎の電気信号が画像データとして出力され画像処理装置508に格納されることを意味している。 In image data acquisition, each sensor pixel of a two-dimensional detector 507, which is a so-called video camera, is exposed, and an electrical signal for each pixel corresponding to the amount of charge photoelectrically converted by the exposure is output as image data to the image processing device 508. It means that it is stored.
 このとき、露光の時間を開口アレイ103の周期構造の一周期分あるいはその倍数分に移動テーブル101が移動する時間に設定すると、XYに完全に走査された共焦点画像を得ることが出来る。以下具体的に示す。 At this time, if the exposure time is set to a time during which the moving table 101 moves by one period or a multiple of the period of the periodic structure of the aperture array 103, a confocal image completely scanned in XY can be obtained. This is specifically shown below.
 開口アレイ103を図2で示したピンホールアレイタイプとすると一周期はP×P/Sであるから、移動テーブルの定速時の速度をvとすると露光時間Tは(P×P/S)/vに設定する。あるいはその倍数N×(P×P/S)/vに設定する。Nは自然数である。このように設定すると開口アレイ103のピンホールが、移動方向のあらゆる位置で均等な時間存在することになり、また、移動方向に直交する方向に関してもピンホール間隔Pの間をP/Sライン分走査することになり、完全なXY走査を実現できる。移動テーブル101が定速で移動中であれば任意のタイミングでXY走査された共焦点画像を取得することが出来る。条件は露光時間をTとすることだけである。 If the aperture array 103 is the pinhole array type shown in FIG. 2, one cycle is P × P / S. Therefore, if the speed at the constant speed of the moving table is v, the exposure time T is (P × P / S). Set to / v. Alternatively, the multiple is set to N × (P × P / S) / v. N is a natural number. With this setting, the pinholes in the aperture array 103 exist at the same time in every position in the moving direction, and the interval between the pinhole intervals P in the direction orthogonal to the moving direction is equal to the P / S line. Therefore, complete XY scanning can be realized. If the movement table 101 is moving at a constant speed, a confocal image that has been XY scanned at an arbitrary timing can be acquired. The only condition is that the exposure time is T.
 一方、移動プリズム104と固定プリズム105は、それらを通過する結像光束に対して、等価的に平行平面基板と見なすことが出来る。ここで移動テーブル101が移動するとそれに伴って平行平面基板の厚さが連続的に変化することになる。前記のように、結像レンズの光路中で平行平面基板の厚さが変化すると、焦点位置が移動することになるから、この装置においては対物レンズ503の焦点位置が移動しZ走査が実現される。移動テーブル101の速度が一定であれば時間に比例して厚さが変化することになり、焦点位置が等速で変化することになる。 On the other hand, the moving prism 104 and the fixed prism 105 can be equivalently regarded as parallel plane substrates with respect to the imaging light flux passing through them. Here, when the moving table 101 moves, the thickness of the parallel plane substrate continuously changes accordingly. As described above, when the thickness of the plane-parallel substrate changes in the optical path of the imaging lens, the focal position moves. In this apparatus, the focal position of the objective lens 503 moves and Z scanning is realized. The If the speed of the moving table 101 is constant, the thickness changes in proportion to time, and the focal position changes at a constant speed.
 以上のことから、移動テーブル101がスタートして加速後定速状態になった後、等時間間隔で画像を複数枚取得すると、焦点位置が一定間隔で変化した一連の共焦点画像を得ることが出来ることになり、一軸の移動のみでXYZ三軸の走査が実現できたことになる。画像取得後は、画像処理装置508により三次元計測演算が可能となる。 From the above, when a plurality of images are acquired at equal time intervals after the moving table 101 starts and enters a constant speed state after acceleration, a series of confocal images whose focal positions change at constant intervals can be obtained. This means that XYZ triaxial scanning can be realized only by uniaxial movement. After the image acquisition, the image processing device 508 can perform three-dimensional measurement calculation.
 三次元計測演算は、焦点位置が一定間隔で変化した一連の共焦点画像を用いて、画素毎に最大値となる共焦点画像を探索処理することにより実現される。最大値を与える共焦点画像が得られた焦点位置に物体表面(あるいは界面)が存在することになるので、Z方向の位置すなわち高さを特定できる。 3D measurement calculation is realized by searching for a confocal image having a maximum value for each pixel, using a series of confocal images whose focal positions are changed at regular intervals. Since the object surface (or interface) exists at the focal position where the confocal image giving the maximum value is obtained, the position in the Z direction, that is, the height can be specified.
 一定間隔で焦点位置を変えた共焦点画像を得る場合に、必ずしも必要計測精度間隔で画像を取得する必要はない。比較的粗い焦点位置変化間隔であっても内挿処理により、間隔を超える精度で物体の表面(あるいは界面)の位置を特定することは可能である。 When acquiring confocal images with the focal position changed at regular intervals, it is not always necessary to acquire images at the necessary measurement accuracy intervals. Even with a relatively coarse focal position change interval, it is possible to specify the position of the surface (or interface) of the object with accuracy exceeding the interval by interpolation processing.
 また、分かり易く焦点位置間隔を一定と上記では示したが、これは絶対要件ではない。間隔がバラバラであっても物体の表面(あるいは界面)の位置を特定することは可能である。 In addition, although it has been shown above that the focal position interval is constant for easy understanding, this is not an absolute requirement. Even if the intervals are different, the position of the surface (or interface) of the object can be specified.
 以上のように、一軸の移動のみでXYZ三軸の走査が実現できたが、Zの移動は連続的であることから、2次元検出器507の露光時間中にも焦点位置が変化していると考えられる。そのため、得られる共焦点画像には露光時間分焦点位置が異なるデータが含まれることになる。例えば、Z移動すなわち焦点移動が1mm/sである場合露光時間が1msであるとすると1μm程度焦点位置が移動していることになり共焦点画像中に1μm程度焦点位置の異なるデータが混在している状態となる。 As described above, XYZ triaxial scanning can be realized only by uniaxial movement, but since the movement of Z is continuous, the focal position changes during the exposure time of the two-dimensional detector 507. it is conceivable that. Therefore, the obtained confocal image includes data having different focal positions for the exposure time. For example, when the Z movement, that is, the focal movement is 1 mm / s, if the exposure time is 1 ms, the focal position is moved by about 1 μm, and the confocal image includes data having different focal positions by about 1 μm. It becomes a state.
 図6に示すように、ピンホールに囲まれたP×P領域を考えてみる。露光時間中に、このP×P領域はP/S本のラインで走査されることになるが、それぞれのラインでその位置を通過するタイミングは異なっている。L1のラインがこの位置を通過するのは露光時間の始め頃であり、ラインL10が通過するのは露光時間の終わり頃となる。 Consider a P × P region surrounded by pinholes as shown in FIG. During the exposure time, the P × P area is scanned with P / S lines, but the timing of passing through the position of each line is different. The line L1 passes this position around the beginning of the exposure time, and the line L10 passes around the end of the exposure time.
 つまり、この領域中には露光開始時から終了時までの全てのタイミングが揃っている。この条件は画像内の任意の位置で同じであり、任意の位置のP×Pの領域には露光時間の全てのタイミングが含まれている。微小領域であるP×P領域内で物体504の高さは均一であると仮定すれば、画素サイズをP×Pに設定することで、各画素は単に露光時間Tの間の高さ変化を積分しているだけとなり、平均である露光開始後T/2での焦点位置のデータを表していると考えて差し支えない。P×Pの倍数でも同様である。 That is, all the timings from the start to the end of exposure are aligned in this area. This condition is the same at an arbitrary position in the image, and the P × P region at the arbitrary position includes all timings of the exposure time. Assuming that the height of the object 504 is uniform within the P × P region, which is a minute region, each pixel simply changes in height during the exposure time T by setting the pixel size to P × P. It is only integrated, and it can be considered that it represents the average focal position data at T / 2 after the start of exposure. The same applies to multiples of P × P.
 必ずしも画素サイズをP×Pに合わせなくても、光学的に直径P相当以上の平滑化がかかっている、つまりボケている状態であれば画像中の任意の点が露光時間中の平均位置を表している状態と見なせることになり、同様の効果が得られる。 Even if the pixel size is not necessarily adjusted to P × P, any point in the image is the average position during the exposure time if it is optically smoothed more than the diameter P, that is, if it is blurred. It can be regarded as a state represented, and the same effect can be obtained.
 つまり、共焦点画像にピンホール間隔Pレベル以上の高い横分解能を求めない計測であるのならこの問題は大きな問題とはならないと云える。 In other words, if the measurement does not require a high lateral resolution greater than the pinhole interval P level in the confocal image, it can be said that this problem is not a big problem.
 ピンホール間隔Pレベルより高い分解能での計測が必要な場合は、露光時間Tを短くするあるいはZ方向の走査速度を小さくするなどして、露光時間中の焦点位置変化が必要計測精度にとって問題とならない程度に設定する必要がある。 When measurement with a resolution higher than the pinhole interval P level is required, the focal position change during the exposure time is a problem for the measurement accuracy by shortening the exposure time T or reducing the scanning speed in the Z direction. It is necessary to set it to the extent that it does not become.
 以上、本発明の実施例を説明したが、これは本発明の一例にすぎない。開口アレイ103のパターンは同じような効果を上げることが可能な他のパターンはありうるし、また、開口アレイ103がピンホール毎にマイクロレンズを伴っている、つまり開口アレイとマイクロレンズアレイが組み合わさった構造となっているような場合も考えられる。これらも、本発明に含まれる。 As mentioned above, although the Example of this invention was described, this is only an example of this invention. The pattern of the aperture array 103 can be other patterns that can achieve the same effect, and the aperture array 103 has a micro lens for each pinhole, that is, the aperture array and the micro lens array are combined. There may be cases where the structure is different. These are also included in the present invention.
 本発明により、一軸の走査のみでXYZの三軸分の走査が可能となり簡素で低コスト、そして高速な共焦点三次元計測装置が実現できる。これにより光による高速かつ高精度の計測が必要な部品が数多く存在する半導体産業において特に大きな需要があるものと考えられる。 According to the present invention, XYZ three-axis scanning can be performed with only one axis scanning, and a simple, low-cost, and high-speed confocal three-dimensional measuring apparatus can be realized. As a result, it is considered that there is a great demand in the semiconductor industry where there are many parts that require high-speed and high-precision measurement using light.

Claims (7)

  1. 少なくとも一軸の移動軸を有する移動テーブルと、
    前記移動テーブルに取り付けられて前記移動テーブルとともに移動する多数の共焦点開口を有する開口アレイと、
    前記移動テーブルに取り付けられて前記移動テーブルとともに移動する移動プリズムと、
    前記移動プリズムと組み合わせることで等価的な平行平面基板を構成するように前記移動テーブル外に設置された固定プリズムとから構成され、前記移動テーブルの移動に伴い前記等価的な平行平面基板の厚さが変化することを特徴とする共焦点スキャナ。
    A moving table having at least one moving axis;
    An aperture array having a number of confocal apertures attached to the moving table and moving with the moving table;
    A moving prism attached to the moving table and moving together with the moving table;
    A fixed prism installed outside the moving table so as to form an equivalent parallel plane substrate in combination with the moving prism, and the thickness of the equivalent parallel plane substrate as the moving table moves A confocal scanner characterized by changing.
  2. 前記移動テーブルに取り付けられて前記移動テーブルとともに移動する、前記開口アレイへの異物付着防止のための少なくとも1枚の保護透明板、
    をさらに備えたことを特徴とする請求項1に記載の共焦点スキャナ。
    At least one protective transparent plate that is attached to the moving table and moves together with the moving table to prevent foreign matter from adhering to the opening array;
    The confocal scanner according to claim 1, further comprising:
  3. 前記開口アレイはピンホールアレイであり、共焦点効果が発揮されるように各ピンホールを間隔Pごとに設け、移動方向に隣り合うピンホールは移動方向に直交する方向に微小距離SずらしてかつP/Sが整数となるように配置されることを特徴とする請求項1または請求項2に記載の共焦点スキャナ。 The aperture array is a pinhole array, and pinholes are provided at intervals P so that a confocal effect is exhibited, and pinholes adjacent to each other in the moving direction are shifted by a minute distance S in a direction perpendicular to the moving direction and The confocal scanner according to claim 1, wherein P / S is arranged to be an integer.
  4. 前記開口アレイはスリットアレイであり、各スリット間は共焦点効果が発揮されるように移動方向に一定間隔Pを空けて配置されることを特徴とする請求項1または請求項2に記載の共焦点スキャナ。 3. The aperture array according to claim 1, wherein the aperture array is a slit array, and the slits are arranged with a constant interval P in the moving direction so that a confocal effect is exhibited. Focus scanner.
  5. 前記移動プリズムおよび前記固定プリズムの一方は、
    互いに等しい角度で互いに逆方向に前記移動テーブルの移動軸に対して傾斜した2つの面を有するプリズムであり、
    前記移動プリズムおよび前記固定プリズムの他方は、
    直方体形状の部材に対して、前記一方のプリズムが挿抜可能な開口部であって互いに等しい前記角度で互いに逆方向に前記移動テーブルの移動軸に対して傾斜した2つの面に挟まれた開口部が形成された形状を有するプリズムであることを特徴とする請求項1ないし4のいずれか1項に記載の共焦点スキャナ。
    One of the moving prism and the fixed prism is
    A prism having two surfaces inclined at an equal angle to each other and in opposite directions with respect to the moving axis of the moving table;
    The other of the moving prism and the fixed prism is
    An opening in which the one prism can be inserted and removed with respect to a rectangular parallelepiped member, and is sandwiched between two surfaces inclined at an equal angle to each other in opposite directions with respect to the moving axis of the moving table The confocal scanner according to any one of claims 1 to 4, wherein the confocal scanner is a prism having a shape in which is formed.
  6. 前記等価的な平行平面基板は、
    前記移動テーブルの移動に伴い前記一方のプリズムが前記他方のプリズムの前記開口部に対して挿抜されることにより厚さが変化することを特徴とする請求項5記載の共焦点スキャナ。
    The equivalent parallel plane substrate is
    6. The confocal scanner according to claim 5, wherein the thickness of the one prism is changed by being inserted into and removed from the opening of the other prism as the moving table moves.
  7. 光を利用した計測装置において、
    請求項1ないし6のいずれか1項に記載の共焦点スキャナと、
    像面位置に前記開口アレイが配置された対物レンズと、
    前記対物レンズの有効像面全体を照射する照明光学系と、
    計測物体で反射して前記対物レンズに入射し、前記開口アレイを通過した物体反射光を前記照明光学系とは異なる方向へ偏向する偏向光学素子と、
    前記偏向光学素子により偏向した前記物体反射光を受光して光電変換し画像信号として出力する2次元検出器と、
    前記開口アレイの像を、前記偏向光学素子を介して前記2次元検出器上に結像せしめる結像光学系と、
    前記2次元検出器の出力をデジタル信号として入力し、得られた一連の焦点位置の異なるデータを用いて、最大値を与える焦点位置を探索し、探索した焦点位置よりその点の高さを特定する画像処理装置とにより構成され、
    前記開口アレイおよび前記移動プリズムは前記移動テーブルにより一定速度で移動させられ、移動中に複数回前記2次元検出器により画像取得され、前記2次元検出器の1回の露光時間は、前記開口アレイ移動方向の開口配列周期の整数倍の移動時間と同じになるよう設定することを特徴とする光学的計測装置。
    In a measuring device using light,
    A confocal scanner according to any one of claims 1 to 6,
    An objective lens in which the aperture array is disposed at an image plane position;
    An illumination optical system for irradiating the entire effective image surface of the objective lens;
    A deflecting optical element that reflects from a measurement object, enters the objective lens, and deflects the object reflected light that has passed through the aperture array in a direction different from the illumination optical system;
    A two-dimensional detector that receives the object reflected light deflected by the deflection optical element, photoelectrically converts it, and outputs it as an image signal;
    An imaging optical system that forms an image of the aperture array on the two-dimensional detector via the deflection optical element;
    The output of the two-dimensional detector is input as a digital signal, and using the obtained series of different data of the focus position, the focus position that gives the maximum value is searched, and the height of the point is specified from the searched focus position. And an image processing device that
    The aperture array and the moving prism are moved at a constant speed by the moving table, and an image is acquired by the two-dimensional detector a plurality of times during the movement, and one exposure time of the two-dimensional detector is determined by the aperture array. An optical measuring device, which is set so as to have the same moving time as an integral multiple of the aperture arrangement period in the moving direction.
PCT/JP2013/057249 2013-01-22 2013-03-14 Confocal scanner and optical measuring device using same WO2014115341A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137021773A KR101444048B1 (en) 2013-01-22 2013-03-14 Confocal scanner and optical measurement apparatus using the same
CN201380001083.XA CN104067158B (en) 2013-01-22 2013-03-14 Cofocal scanner and use its optical measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013008864A JP5376076B1 (en) 2013-01-22 2013-01-22 Confocal scanner and optical measurement apparatus using the same
JP2013-008864 2013-01-22

Publications (1)

Publication Number Publication Date
WO2014115341A1 true WO2014115341A1 (en) 2014-07-31

Family

ID=49954985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057249 WO2014115341A1 (en) 2013-01-22 2013-03-14 Confocal scanner and optical measuring device using same

Country Status (5)

Country Link
JP (1) JP5376076B1 (en)
KR (1) KR101444048B1 (en)
CN (1) CN104067158B (en)
TW (1) TWI444656B (en)
WO (1) WO2014115341A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3086156A1 (en) * 2015-04-20 2016-10-26 Canon Kabushiki Kaisha Laser scanning microscope apparatus
WO2022113407A1 (en) * 2020-11-25 2022-06-02 三菱電機株式会社 Imaging system and imaging method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852519B2 (en) * 2016-11-30 2020-12-01 Asm Technology Singapore Pte Ltd Confocal imaging of an object utilising a pinhole array
NL2018857B1 (en) * 2017-05-05 2018-11-09 Illumina Inc Systems and methods for improved focus tracking using a light source configuration
JP6786424B2 (en) * 2017-03-13 2020-11-18 株式会社モリタ製作所 3D scanner
JP2018180296A (en) * 2017-04-13 2018-11-15 横河電機株式会社 Microscope system, microscope, processing device and camera for microscope
JP7114272B2 (en) * 2018-02-28 2022-08-08 浜松ホトニクス株式会社 Light sheet microscope and sample observation method
CN110186391A (en) * 2019-05-22 2019-08-30 浙江大学 A kind of threedimensional model gradient scan method
CN112666696A (en) * 2021-01-18 2021-04-16 郑州轻工业大学 Focus scanning method, focus scanning device, and confocal microscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278449A (en) * 1995-03-31 1996-10-22 Carl Zeiss Jena Gmbh Confocal vertical illumination microscope
JP2009053398A (en) * 2007-08-27 2009-03-12 Mitsutoyo Corp Microscope and three-dimensional information acquisition method
JP2010054981A (en) * 2008-08-29 2010-03-11 Hamamatsu Photonics Kk Confocal microscope apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861984A (en) * 1995-03-31 1999-01-19 Carl Zeiss Jena Gmbh Confocal scanning microscope and beamsplitter therefor
CN1209653C (en) * 2000-04-26 2005-07-06 西安交通大学 Three-dimensional profile measuring method and equipment with optical fiber panel and confocal microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278449A (en) * 1995-03-31 1996-10-22 Carl Zeiss Jena Gmbh Confocal vertical illumination microscope
JP2009053398A (en) * 2007-08-27 2009-03-12 Mitsutoyo Corp Microscope and three-dimensional information acquisition method
JP2010054981A (en) * 2008-08-29 2010-03-11 Hamamatsu Photonics Kk Confocal microscope apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3086156A1 (en) * 2015-04-20 2016-10-26 Canon Kabushiki Kaisha Laser scanning microscope apparatus
US10690897B2 (en) 2015-04-20 2020-06-23 Canon Kabushiki Kaisha Laser scanning microscope apparatus
WO2022113407A1 (en) * 2020-11-25 2022-06-02 三菱電機株式会社 Imaging system and imaging method

Also Published As

Publication number Publication date
KR101444048B1 (en) 2014-09-23
CN104067158A (en) 2014-09-24
CN104067158B (en) 2016-03-16
JP5376076B1 (en) 2013-12-25
JP2014142183A (en) 2014-08-07
TW201409073A (en) 2014-03-01
KR20140103833A (en) 2014-08-27
TWI444656B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
JP5376076B1 (en) Confocal scanner and optical measurement apparatus using the same
JP3970998B2 (en) Confocal microscope with electric scanning table
KR101056926B1 (en) 3D Measuring Device Using Dual Wavelength Digital Holography
TWI402498B (en) An image forming method and image forming apparatus
WO2002023248A1 (en) Confocal point microscope and height measuring method using this
US20080024767A1 (en) Imaging optical coherence tomography with dynamic coherent focus
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
KR20130090313A (en) Three-dimensional shape measuring apparatus
CN101114134A (en) Alignment method and micro-device manufacturing method used for shadow cast scan photo-etching machine
EP1887312A1 (en) Imaging optical coherence tomography with dynamic coherent Focus
JPH11211439A (en) Surface form measuring device
US4932781A (en) Gap measuring apparatus using interference fringes of reflected light
DE102017004428B4 (en) Method and device for robust, deep-scanning focusing strip triangulation with multiple wavelets
US9366524B2 (en) Alignment sensor and height sensor
KR20130105267A (en) Focus position changing apparatus and confocal optical apparatus using the same
JP3509088B2 (en) Optical device for three-dimensional shape measurement
JP2013113650A (en) Trench depth measuring apparatus and trench depth measuring method and confocal microscope
JP2006105835A (en) Shape measuring method and device
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
CN112969899B (en) System and method for holographic interferometry
JP2016148569A (en) Image measuring method and image measuring device
JP4788968B2 (en) Focal plane tilt type confocal surface shape measuring device
DE102017004429A1 (en) Method and device for robust, deep-scanning / focusing strip triangulation
JP2012220349A (en) Displacement and distortion distribution measurement optical system and measurement method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380001083.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872981

Country of ref document: EP

Kind code of ref document: A1