JPH06317405A - Laser displacement gauge - Google Patents

Laser displacement gauge

Info

Publication number
JPH06317405A
JPH06317405A JP10580193A JP10580193A JPH06317405A JP H06317405 A JPH06317405 A JP H06317405A JP 10580193 A JP10580193 A JP 10580193A JP 10580193 A JP10580193 A JP 10580193A JP H06317405 A JPH06317405 A JP H06317405A
Authority
JP
Japan
Prior art keywords
scanning
light receiving
optical system
laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10580193A
Other languages
Japanese (ja)
Other versions
JPH0812051B2 (en
Inventor
Masayuki Yoshima
政幸 與島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10580193A priority Critical patent/JPH0812051B2/en
Publication of JPH06317405A publication Critical patent/JPH06317405A/en
Publication of JPH0812051B2 publication Critical patent/JPH0812051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To provide a laser displacement gauge which can flexibly cope with two- direction scanning at a high speed by using the same light receiving unit. CONSTITUTION:In a light emitting optical system, a first and second scanning optical systems 10 and 13 obliquely scan two optical paths in parallel with the orthogonal two axes of a measuring stage 1 from upper positions of the measuring surface of the stage 1 by scanning a laser beam with a scanner 4 and expanding the laser beam to a required beam diameter, and then, converging the expanded beam to a required beam diameter through an ftheta lens 6. In addition, the scanning speed is made constant and the optical paths are switched to between a direct advancing direction and 90 deg. direction by means of an optical, patch switching mechanism 7. In a light receiving optical system, in addition, a light receiving unit 16 constituted of a condenser lens 14 which is positioned in the regular reflecting direction of the optical system 10 and receives reflected light and a photoreceptor element 15 which is positioned to the image forming position of the lens 14 and receives reflected light is switched between the light receiving positions of the systems 10 and 13 by means of a light receiving position switching mechanism 18 by changing the reflecting direction of the system 13 to the direction parallel to the regular reflecting direction of the system 10 by means of a reflecting mirror 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ変位計に関し、
特にICリードの測定等場所により走査方向をXY二方
向に切り換える必要のある物の形状を測定するレーザ変
位計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser displacement meter,
In particular, the present invention relates to a laser displacement meter for measuring the shape of an object for which the scanning direction needs to be switched to the XY two directions depending on the measurement location of the IC lead.

【0002】[0002]

【従来の技術】従来のレーザ変位計について図面を参照
して説明する。
2. Description of the Related Art A conventional laser displacement meter will be described with reference to the drawings.

【0003】図4は従来例のレーザ変位計を示す光学系
の斜視図である。
FIG. 4 is a perspective view of an optical system showing a conventional laser displacement meter.

【0004】このレーザ変位計は一軸ステージを有する
測定ステージ50に裁置された測定物55であるICを
走査する走査光学計を備えている。
This laser displacement meter is equipped with a scanning optical meter for scanning an IC, which is a measurement object 55 placed on a measurement stage 50 having a uniaxial stage.

【0005】この走査光学系は、レーザ51と、レーザ
51のビーム径を所要のビーム径に拡大するビーム拡大
器52と、レーザ光を測定ステ−ジ50の真上から測定
ステ−ジ50の送り方向と直交する方向に走査させるガ
ルバノミラー53と、ガルバノミラー53で走査された
レーザ光を測定ステ−ジ50の測定面上で所要のビーム
径に集光させかつ一定速度で走査させるfθレンズ54
とを有する。
This scanning optical system comprises a laser 51, a beam expander 52 for expanding the beam diameter of the laser 51 to a required beam diameter, and a laser beam of a measuring stage 50 from directly above the measuring stage 50. A galvano mirror 53 for scanning in a direction orthogonal to the feed direction, and an fθ lens for converging the laser beam scanned by the galvano mirror 53 to a required beam diameter on the measurement surface of the measuring stage 50 and scanning at a constant speed. 54
Have and.

【0006】走査されたレーザ光の測定対象物55の反
射光の中で走査方向に直交する方向に反射する光の一部
を斜め上方から集光レンズ57で集光し、集光レンズ5
7を通過したレーザ光をシリンドリカルレンズ58で走
査方向に集光し、さらにこのレーザ光を集光レンズ57
と、シリンドリカルレンズ58の結像位置に置かれた受
光素子59で受光する。
Of the reflected light of the scanned laser light of the object to be measured 55, a part of the light reflected in the direction orthogonal to the scanning direction is condensed by the condenser lens 57 from diagonally above, and the condenser lens 5
The laser light that has passed through 7 is condensed in the scanning direction by the cylindrical lens 58, and this laser light is further condensed by the condenser lens 57.
Then, the light is received by the light receiving element 59 placed at the imaging position of the cylindrical lens 58.

【0007】図5は図4の測定対象物55の高さ測定原
理を説明するための平面図である。
FIG. 5 is a plan view for explaining the principle of measuring the height of the measuring object 55 shown in FIG.

【0008】測定対象物55に真上からレーザ光を当て
測定対象物55からの反射光をレーザの入射方向から角
度θ傾いた方向で集光レンズ57を介して受光素子59
で受光した場合、集光レンズ57の倍率をmとすると、
測定対象物55の高さtと受光素子59上での距離d
(高さtからの反射光の受光位置と測定台50の表面か
らの反射光での受光位置との間の距離)との関係は、 t=d/(m×sinθ) で与えられる。従って受光素子59上の受光位置の変位
を測ることで測定対象物55の高さが測定できる。
Laser light is applied to the object 55 to be measured from directly above, and reflected light from the object 55 to be measured is passed through a condenser lens 57 in a direction inclined by an angle θ from the incident direction of the laser, and a light receiving element 59.
When the light is received at, when the magnification of the condenser lens 57 is m,
Height t of measuring object 55 and distance d on light receiving element 59
The relationship between (the distance between the light receiving position of the reflected light from the height t and the light receiving position of the reflected light from the surface of the measurement table 50) is given by t = d / (m × sin θ). Therefore, the height of the measuring object 55 can be measured by measuring the displacement of the light receiving position on the light receiving element 59.

【0009】図6は図4のレーザ変位計による測定箇所
と走査方向との関係を説明するための平面図である。
FIG. 6 is a plan view for explaining the relationship between the measurement position and the scanning direction by the laser displacement meter of FIG.

【0010】IC61のリード形状を測定する場合、通
常リード配列方向には高分解能が必要だがリード方向は
比較的低分解能で良いため、高速測定を実現するために
リード配列方向に光学走査しリード方向にステージ送り
する方法が取られる。すなわち図6(a)に示すように
IC61の上下方向のリード形状を測定する場合はX方
向62に光学走査し、これと直交する方向63にステー
ジ送りして測定する。
When measuring the lead shape of the IC 61, usually high resolution is required in the lead arrangement direction, but since the lead direction is relatively low resolution, optical scanning is performed in the lead arrangement direction in order to realize high speed measurement. The method of sending to the stage is taken. That is, as shown in FIG. 6A, when measuring the lead shape in the vertical direction of the IC 61, optical scanning is performed in the X direction 62, and the stage is fed in the direction 63 orthogonal to this to perform measurement.

【0011】また、図6(b)に示すようにIC61の
左右方向のリード形状を測定する場合はY方向65に光
学走査し、これと直交する方向64にステージ送りして
測定する。
Further, as shown in FIG. 6 (b), when measuring the lead shape of the IC 61 in the left-right direction, optical scanning is performed in the Y direction 65, and the stage is fed in the direction 64 orthogonal to this to perform measurement.

【0012】従って、図4に示した従来のレーザ変位計
では、走査方向が一方向に限られているためIC61の
4辺を測定するために、図4に示したレーザ変位計をX
Y2方向の測定用に2セット用いたり、測定物あるいは
レーザ変位計全体を90度回転する回転機構を付加する
必要があった。
Therefore, in the conventional laser displacement meter shown in FIG. 4, since the scanning direction is limited to one direction, in order to measure the four sides of the IC 61, the laser displacement meter shown in FIG.
It was necessary to use two sets for the measurement in the Y2 direction or add a rotating mechanism for rotating the measured object or the entire laser displacement meter by 90 degrees.

【0013】尚、ICのリ−ド形状測定以外にも実装部
品の形状測定においては、走査方向により隣接部品が照
射レーザ光を遮光する場合があり、走査方向を変えて再
度測定する例がある。
In addition to the IC lead shape measurement, in the shape measurement of the mounted component, the adjacent component may block the irradiation laser beam depending on the scanning direction, and there is an example in which the scanning direction is changed and the measurement is performed again. .

【0014】[0014]

【発明が解決しようとする課題】上述した従来のレーザ
変位計は、走査方向が一方向に限られているためICリ
ードの測定等XY二方向の走査が必要な場合は、測定物
あるいは光学ヘッド全体のいずれかを90度回転する
か、同タイプの光学ヘッドを二つ用意する必要がある。
測定物や光学ヘッドが大きいと大型の回転機構が必要で
あり、装置が大きくなり高価となる。また、光学ヘッド
はレンズ等精密組立部品が多く、回転移動時の衝撃・振
動が位置ズレを誘発する危険があるため実用上問題があ
る。
The above-mentioned conventional laser displacement meter has a limited scanning direction, so that when the IC lead is required to be scanned in two XY directions, the object to be measured or the optical head. It is necessary to rotate any one of them 90 degrees or prepare two optical heads of the same type.
If the object to be measured or the optical head is large, a large rotating mechanism is required, and the device becomes large and expensive. Further, the optical head is often a precision assembly component such as a lens, and there is a danger in practical use because there is a risk that shock and vibration at the time of rotational movement may induce positional displacement.

【0015】さらに、一つの光学ヘッドでXY二方向走
査を行った場合、通常二つの受光光学系が必要で高価と
なる上、両者で特性が異なるため両者を校正し測定値を
保証する手段が必要である。
Further, when XY bidirectional scanning is performed by one optical head, usually two light receiving optical systems are required, which is expensive, and since the characteristics of both are different, a means for calibrating both and guaranteeing a measured value is provided. is necessary.

【0016】[0016]

【課題を解決するための手段】本発明のレーザ変位計
は、(a)二軸ステージを有する測定ステージと、
(b)レーザと、レーザ光を走査するスキャナと、レー
ザ光を所要のビーム径に拡大するビーム拡大器と、ビー
ム拡大器で拡大されたレーザ光を測定ステージの測定面
上で所要のビーム径に収束しかつ走査速度を一定にする
fθレンズと、fθレンズを通過したレーザ光の光路を
直進及び90度方向に切り換える光路切換え機構と、光
路切換え機構で切り換わる二光路の中で直進光を測定ス
テージの測定面に対して斜め上方から測定ステージの一
軸(以下X方向とする)と平行に走査させる複数枚のミ
ラーで構成された第一の走査光学系と、光路切換え機構
で切り換わる別光路(90度方向)のレーザ光を第一の
走査光学系の走査方向と直行する方向(Y方向とする)
に走査させる複数枚のミラーとで構成された第二の走査
光学系とを有する投光光学系と、(c)第一の走査光学
系の正反射方向に置かれ反射光を受光する集光レンズ及
び集光レンズの結像位置に置かれ反射光を受光する受光
素子を合わせた受光ユニットと、測定ステ ージの上方
に置かれ第二の走査光学系で照射されたレーザ光の反射
方向を第一の走査光学系の正反射方向と平行な向きに変
える折り返しミラーと、受光ユニットを前記第一の走査
光学系の受光位置及び第二の走査光学系の受光位置に切
り換える受光位置切換え機構とを有する受光光学系と、
(d)スキャナーの走査に同期し一定のサンプリング時
間で受光素子の出力を読みとり受光位置から三角測量法
で高さを算出する信号処理回路とを含むことを特徴とす
る。
The laser displacement meter of the present invention comprises (a) a measuring stage having a biaxial stage;
(B) A laser, a scanner for scanning the laser beam, a beam expander for expanding the laser beam to a required beam diameter, and a laser beam expanded by the beam expander for the required beam diameter on the measurement surface of the measuring stage. The fθ lens that converges on the optical axis and keeps the scanning speed constant, the optical path switching mechanism that switches the optical path of the laser light that has passed through the fθ lens to the straight and 90 degree directions, and the straight light in the two optical paths that are switched by the optical path switching mechanism. A first scanning optical system composed of a plurality of mirrors for scanning parallel to one axis (hereinafter referred to as the X direction) of the measurement stage from obliquely above the measurement surface of the measurement stage, and another for switching by an optical path switching mechanism A direction (Y direction) in which the laser light on the optical path (90 degree direction) is orthogonal to the scanning direction of the first scanning optical system.
A light projecting optical system having a second scanning optical system composed of a plurality of mirrors for scanning, and (c) a light collecting unit which is placed in the regular reflection direction of the first scanning optical system and receives reflected light. Reflection direction of the laser beam emitted from the second scanning optical system placed above the measurement stage and the light receiving unit that is placed at the image forming position of the lens and the condenser lens and receives the reflected light. And a light receiving position switching mechanism for switching the light receiving unit between a light receiving position of the first scanning optical system and a light receiving position of the second scanning optical system. A light-receiving optical system having
(D) A signal processing circuit for reading the output of the light receiving element at a constant sampling time in synchronization with the scanning of the scanner and calculating the height from the light receiving position by the triangulation method.

【0017】[0017]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0018】図1は本発明によるレーザ変位計の一実施
例を示す光学系の斜視図である。このレーザ変位計の光
学系は、二軸ステージを有する測定ステージ1に裁置さ
れた測定対象物2に対してレーザ光を走査する投光光学
系ならびにこの投光光学系により走査されたレーザ光の
測定物からの反射光を受光する受光光学系を備えてい
る。
FIG. 1 is a perspective view of an optical system showing an embodiment of a laser displacement meter according to the present invention. The optical system of this laser displacement meter includes a projection optical system that scans a laser beam onto a measurement object 2 placed on a measurement stage 1 having a biaxial stage, and a laser beam scanned by this projection optical system. The light receiving optical system for receiving the reflected light from the object to be measured.

【0019】この投光光学系は、レーザ3と、レーザ光
を走査するスキャナ4と、レーザ光を所要のビーム径に
拡大するビーム拡大器と、ビーム拡大器5で拡大された
レーザ光を測定ステージ1の測定面上で所要のビーム径
に収束しかつ走査速度を一定にするfθレンズ6と、f
θレンズ6を通過したレーザ光の光路を直進及び90度
方向に切り換える光路切換え機構7と、光路切換え機構
7で切り換わる二光路の中で直進光を測定ステージ1の
測定面に対して斜め上方から測定ステージ1の一軸(以
下X方向とする)と平行に走査させる二枚のミラー8,
9で構成された第一の走査光学系10と、光路切換え機
構7で切り換わる別光路(90度方向)のレーザ光を第
一の走査光学系10の走査方向と直行する方向(Y方向
とする)に走査させる二枚のミラー11,12で構成さ
れた第二の走査光学系13とを有する。
This projection optical system measures a laser 3, a scanner 4 for scanning the laser beam, a beam expander for expanding the laser beam to a required beam diameter, and a laser beam expanded by the beam expander 5. An fθ lens 6 that converges a required beam diameter on the measurement surface of the stage 1 and keeps the scanning speed constant;
The optical path switching mechanism 7 that switches the optical path of the laser light that has passed through the θ lens 6 to the straight direction and the 90 degree direction, and the straight traveling light in the two optical paths that are switched by the optical path switching mechanism 7 is diagonally above the measurement surface of the measurement stage 1. To two mirrors 8 for scanning parallel to one axis (hereinafter referred to as X direction) of the measurement stage 1,
The first scanning optical system 10 constituted by 9 and the laser beam of another optical path (90 degree direction) switched by the optical path switching mechanism 7 are orthogonal to the scanning direction of the first scanning optical system 10 (Y direction). And a second scanning optical system 13 composed of two mirrors 11 and 12 for scanning.

【0020】受光光学系は、第一の走査光学系10の正
反射方向に置かれ反射光を受光する集光レンズ14と、
集光レンズ14の結像位置に置かれ反射光を受光する受
光素子15と(以下集光レンズ14及び受光素子15を
合わせ受光ユニット16とする)、測定ステージ1の上
方に置かれ第二の走査光学系13で照射されたレーザ光
の反射方向を第一の走査光学系10の正反射方向と平行
な向きに変える折り返しミラー17と、受光ユニット1
6を第一の走査光学系10の受光位置及び第二の走査光
学系13の受光位置に切り換える受光位置切換え機構1
8とを有する。
The light receiving optical system is a condenser lens 14 placed in the regular reflection direction of the first scanning optical system 10 for receiving the reflected light.
The light receiving element 15 placed at the image forming position of the condenser lens 14 and receiving the reflected light (hereinafter, the condenser lens 14 and the light receiving element 15 are collectively referred to as a light receiving unit 16) is placed above the measuring stage 1 A folding mirror 17 for changing the reflection direction of the laser light emitted by the scanning optical system 13 to a direction parallel to the regular reflection direction of the first scanning optical system 10, and the light receiving unit 1.
Light receiving position switching mechanism 1 for switching 6 to the light receiving position of the first scanning optical system 10 and the light receiving position of the second scanning optical system 13.
8 and.

【0021】図2は図1の受光位置切換え機構18を説
明するための平面図である。
FIG. 2 is a plan view for explaining the light receiving position switching mechanism 18 of FIG.

【0022】レーザ光19は、まず光路切換え機構7で
直進光と90度右方向に切り換えられる。直進光は、ミ
ラー8で90度右に光路を変えさらにミラー9で反射さ
れ測定面上をX方向20に走査する。X方向20に走査
したレーザ光は右方向に反射し集光レンズ14で受光さ
れ受光素子15上に結像する。一方光路切換え機構7で
90度右に光路を変えたレーザ光は、ミラー11で下に
光路を変えさらにミラー12で反射され測定面上をY方
向21に走査する。ここで、光路切換え機構7で切り換
わる二つの光路の測定面までの光路長を等しくすること
により、第一及び第二の走査条件を同じにできる。Y方
向21に走査したレーザ光は下方向に反射するがミラー
17で反射し光路を右に変える。すなわち第一の走査に
おける反射光の方向に平行となる。従って受光ユニット
16を受光位置切換え機構18により左下方に水平移動
し受光距離を等しくすることにより、第一の走査光学系
と同じ条件で受光できる。
The laser light 19 is first switched by the optical path switching mechanism 7 to a straight light and 90 degrees rightward. The straight light changes its optical path to the right by 90 ° by the mirror 8 and is reflected by the mirror 9 to scan the measurement surface in the X direction 20. The laser beam scanned in the X direction 20 is reflected to the right and received by the condenser lens 14 to form an image on the light receiving element 15. On the other hand, the laser light whose optical path has been changed to the right by 90 degrees by the optical path switching mechanism 7 changes its optical path downward by the mirror 11 and is reflected by the mirror 12 to scan the measurement surface in the Y direction 21. Here, by making the optical path lengths of the two optical paths switched by the optical path switching mechanism 7 equal to the measurement surface, the first and second scanning conditions can be made the same. The laser beam scanned in the Y direction 21 is reflected downward, but is reflected by the mirror 17 to change the optical path to the right. That is, it is parallel to the direction of the reflected light in the first scan. Therefore, by horizontally moving the light receiving unit 16 to the lower left by the light receiving position switching mechanism 18 to equalize the light receiving distance, light can be received under the same conditions as the first scanning optical system.

【0023】図3は図1の受光素子15にPSDを用い
た場合の一般的な信号処理回路のブロック図である。
FIG. 3 is a block diagram of a general signal processing circuit when a PSD is used for the light receiving element 15 of FIG.

【0024】PSD22の2つの出力(A、Bとする)
をそれぞれプリアンプ23、プリアンプ23で増幅後、
割算器24で正規化((A−B)/(A+B))演算す
ることにより、PSD22の受光位置を求め、受光位置
の変動量から三角測量法により測定物の高さを算出す
る。
Two outputs of PSD 22 (A and B)
Are amplified by the preamplifier 23 and the preamplifier 23, respectively,
The light receiving position of the PSD 22 is obtained by performing the normalization ((A−B) / (A + B)) by the divider 24, and the height of the object to be measured is calculated from the variation of the light receiving position by the triangulation method.

【0025】[0025]

【発明の効果】以上説明したように、本発明のレーザ変
位計は、光路切換え機構により直交する二つの方向から
レーザ走査できかつ受光光学系の位置を簡単な直線移動
で切り換えることに両者の反射光を同一の受光ユニット
で受光できるため、測定場所により走査方向を変える必
要のある測定物に対しても柔軟かつ高速に対応できる
上、簡単な光路切り換えにより一つの受光ユニットで両
走査に対応できるため信号処理を含めた装置コストを安
価にできるという効果を奏する。
As described above, the laser displacement meter of the present invention is capable of performing laser scanning from two directions orthogonal to each other by the optical path switching mechanism and switching the position of the light receiving optical system by a simple linear movement. Since light can be received by the same light receiving unit, it can respond flexibly and at high speed even to the measurement object that needs to change the scanning direction depending on the measurement location, and one light receiving unit can support both scans by simple optical path switching. Therefore, the device cost including signal processing can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるレーザ変位計の一実施例を示す光
学系の斜視図である。
FIG. 1 is a perspective view of an optical system showing an embodiment of a laser displacement meter according to the present invention.

【図2】図1の受光位置切換え機構18を説明するため
の平面図である。
FIG. 2 is a plan view for explaining a light receiving position switching mechanism 18 of FIG.

【図3】図1の受光素子15にPSDを用いた場合の一
般的な信号処理回路のブロック図である。
FIG. 3 is a block diagram of a general signal processing circuit when a PSD is used for the light receiving element 15 of FIG.

【図4】従来例のレーザ変位計を示す光学系の斜視図で
ある。
FIG. 4 is a perspective view of an optical system showing a conventional laser displacement meter.

【図5】図4の測定対象物55の高さ測定原理を説明す
るための平面図である。
5 is a plan view for explaining the principle of measuring the height of the measuring object 55 in FIG.

【図6】図4のレーザ変位計による測定箇所と走査方向
との関係を説明するための平面図である。図6(a)、
図6(b)はそれぞれの走査方向によるリード形状の測
定を説明するための平面図である。
FIG. 6 is a plan view for explaining the relationship between the measurement location and the scanning direction by the laser displacement meter of FIG. FIG. 6 (a),
FIG. 6B is a plan view for explaining the measurement of the lead shape in each scanning direction.

【符号の説明】[Explanation of symbols]

1,50 測定ステージ 2,55 測定対象物 3,51 レーザ 4 スキャナ 5,52 ビ−ム拡大器 6,54 fθレンズ 7 光路切換え機構 8,9,11,12 ミラー 10 第一の走査光学系 13 第二の走査光学系 14,57 集光レンズ 15,59 受光素子 16 受光ユニット 17 折返しミラー 18 受光位置切換え機構 19,60 レ−ザ光 20 X方向 21 Y方向 22 PSD 23,23 プリアンプ 24 割り算器 53 ガルバノミラー 58 シリンドリカルレンズ 61 IC 62,65 光学走査方向 63,64 ステ−ジ送り方向 1,50 Measurement Stage 2,55 Measurement Object 3,51 Laser 4 Scanner 5,52 Beam Expander 6,54 fθ Lens 7 Optical Path Switching Mechanism 8, 9, 11, 12 Mirror 10 First Scanning Optical System 13 Second scanning optical system 14,57 Condensing lens 15,59 Light receiving element 16 Light receiving unit 17 Folding mirror 18 Light receiving position switching mechanism 19,60 Laser light 20 X direction 21 Y direction 22 PSD 23,23 Preamplifier 24 Divider 53 Galvano mirror 58 Cylindrical lens 61 IC 62,65 Optical scanning direction 63,64 Stage feed direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(a)二軸ステージを有する測定ステージ
と、(b)レーザと、前記レーザからのレーザ光を走査
するスキャナと、前記レーザ光を所要のビーム径に拡大
するビーム拡大器と、前記ビーム拡大器で拡大されたレ
ーザ光を前記測定ステージの測定面上で所要のビーム径
に収束しかつ走査速度を一定にするfθレンズと、前記
fθレンズを通過したレーザ光の光路を直進及び90度
方向に切り換える光路切換え機構と、前記光路切換え機
構で切り換わる二光路の中で直進光を前記測定ステージ
の測定面に対して斜め上方から前記測定ステージの一軸
(以下X方向とする)と平行に走査させる複数枚のミラ
ーで構成された第一の走査光学系と、前記光路切換え機
構で切り換わる別光路(90度方向)のレーザ光を前記
第一の走査光学系の走査方向と直交する方向(Y方向と
する)に走査させる複数枚のミラーとで構成された第二
の走査光学系とを有する投光光学系と、(c)前記第一
の走査光学系の正反射方向に置かれ反射光を受光する集
光レンズ及び前記集光レンズの結像位置に置かれ反射光
を受光する受光素子を合わせた受光ユニットと、前記測
定ステージの上方に置かれ前記第二の走査光学系で照射
されたレーザ光の反射方向を前記第一の走査光学系の正
反射方向と平行な向きに変える折り返しミラーと、前記
受光ユニットを前記第一の走査光学系の受光位置及び第
二の走査光学系の受光位置に切り換える受光位置切換え
機構とを有する受光光学系と、(d)前記スキャナーの
走査に同期し一定のサンプリング時間で前記受光素子の
出力を読みとり受光位置から三角測量法にて高さを算出
する信号処理回路とを含むことを特徴とするレーザ変位
計。
1. A measuring stage having (a) a biaxial stage, (b) a laser, a scanner for scanning a laser beam from the laser, and a beam expander for expanding the laser beam to a required beam diameter. , An fθ lens that converges the laser beam expanded by the beam expander to a required beam diameter on the measurement surface of the measurement stage and keeps the scanning speed constant, and a straight path in the optical path of the laser light that has passed through the fθ lens And an optical path switching mechanism for switching in the 90-degree direction, and straight traveling light in two optical paths switched by the optical path switching mechanism obliquely above the measurement surface of the measurement stage from one axis of the measurement stage (hereinafter referred to as the X direction). And a first scanning optical system composed of a plurality of mirrors for scanning in parallel with each other, and a laser beam of another optical path (90 degree direction) switched by the optical path switching mechanism of the first scanning optical system. A projection optical system having a second scanning optical system composed of a plurality of mirrors for scanning in a direction (Y direction) orthogonal to the scanning direction; and (c) the first scanning optical system. A light receiving unit, which is placed in the direction of specular reflection and includes a condenser lens for receiving reflected light and a light receiving element for receiving reflected light, which is placed at the image forming position of the condenser lens, and is placed above the measurement stage to provide the light receiving unit. A folding mirror for changing the reflection direction of the laser light emitted by the second scanning optical system to a direction parallel to the regular reflection direction of the first scanning optical system, and the light receiving unit for the light receiving position of the first scanning optical system. And a light receiving position switching mechanism for switching to the light receiving position of the second scanning optical system, and (d) the output of the light receiving element is read at a fixed sampling time in synchronism with the scanning of the scanner to form a triangle from the light receiving position. Surveying Laser displacement gauge which comprises a signal processing circuit for calculating the height at.
JP10580193A 1993-05-07 1993-05-07 Laser displacement meter Expired - Lifetime JPH0812051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10580193A JPH0812051B2 (en) 1993-05-07 1993-05-07 Laser displacement meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10580193A JPH0812051B2 (en) 1993-05-07 1993-05-07 Laser displacement meter

Publications (2)

Publication Number Publication Date
JPH06317405A true JPH06317405A (en) 1994-11-15
JPH0812051B2 JPH0812051B2 (en) 1996-02-07

Family

ID=14417223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10580193A Expired - Lifetime JPH0812051B2 (en) 1993-05-07 1993-05-07 Laser displacement meter

Country Status (1)

Country Link
JP (1) JPH0812051B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256178A (en) * 2009-04-24 2010-11-11 Mitaka Koki Co Ltd Noncontact surface shape measuring device
JP2015065279A (en) * 2013-09-25 2015-04-09 株式会社Screenホールディングス Exposure device, and optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256178A (en) * 2009-04-24 2010-11-11 Mitaka Koki Co Ltd Noncontact surface shape measuring device
JP2015065279A (en) * 2013-09-25 2015-04-09 株式会社Screenホールディングス Exposure device, and optical device

Also Published As

Publication number Publication date
JPH0812051B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
Liu et al. Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage
JP3604944B2 (en) Three-dimensional shape measuring machine and its measuring method
JP2510786B2 (en) Object shape detection method and apparatus
JPH0284612A (en) Optical type scanner
JP2005205429A (en) Laser beam machine
EP0110937B1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
JPH10239036A (en) Three-dimensional measuring optical device
JP2002257511A (en) Three dimensional measuring device
JP2595821B2 (en) 3D shape measuring device
JPH06317405A (en) Laser displacement gauge
JPH095059A (en) Flatness measuring device
JPH10267624A (en) Measuring apparatus for three-dimensional shape
US4973152A (en) Method and device for the noncontact optical measurement of paths, especially in the triangulation method
KR100240259B1 (en) Apparatus for measuring three dimension using spherical lens and laser scanner
JP2531449B2 (en) Laser displacement meter
JP2001317922A (en) Optical shape measuring device
JP3176734B2 (en) Optical position measuring device
JP2000258144A (en) Flatness and thickness measurement device for wafer
JPH09329417A (en) Light projector-receiver inter-calibration method for three-dimensional measurement
JP7536927B2 (en) Apparatus and method for geometrically measuring an object
WO2024004166A1 (en) Distance measurement device
JP2597711B2 (en) 3D position measuring device
JP3333759B2 (en) Measuring method and setting method of distance between mask and wafer
JP2943498B2 (en) Scanning laser displacement meter
JPH02247509A (en) Optical system for detecting height

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960723